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Summary (English)
In the healthcare system, a goal is to provide effective diagnosis and treat-
ment to patients. However, gaining a comprehensive understanding of the
underlying mechanisms within the human body is often necessary to achieve
this objective. Often, we cannot not directly observe these mechanisms, since
it is not feasible and/or practical to gain access directly. Instead, we can
describe the mechanisms using mathematical models that are characterized
by a set of parameters. The mathematical models relate the parameters
of interest to available non-invasive measurements, and we can use the pa-
rameters to, e.g., predict the response to treatment or assess the severity of
diseases. In this thesis we explore the two applications:

• Computed tomography: A non-invasive imaging technique.

• Hemodialysis: A treatment for patients with kidney failure.

The aim of this thesis is to obtain a better understanding of the underly-
ing mechanisms for the two applications such that we for instance might en-
able tailor patient-specific treatments in hemodialysis and improve the qual-
ity of low dose experiments in computed tomography. We employ Bayesian
modeling and uncertainty quantification to formulate mathematical models
for computed tomography and hemodialysis that allow us to estimate the
parameters of interest along with their statistical properties such as mean,
covariance and credible intervals.

In computed tomography, radiation is emitted from a source which is par-
tially absorbed as it travels through the object of interest, e.g., the human
body. Based on the absorption, images of the interior can be reconstructed.
To obtain these images, it is necessary to know the intensity of the source
which is typically estimated by flat-field measurements, i.e., measurements
without an object in the scanner. However, for low dose and/or time-limited
experiments, discrepancies between the true and estimated source can intro-
duce systematic model errors which appear as concentric rings in the image,
also known as ring artifacts. We employ modeling techniques for mitigating
ring artifacts caused by model errors, and the key finding is that, by using
explicit modeling of the source, it is possible to eliminate ring artifacts from
the images.
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We have also considered ring reduction for spectral computed tomog-
raphy. In spectral computed tomography, the attenuation is measured at
multiple energies, which enables the reconstruction of images at individual
energy levels, which is referred to as a spectral reconstruction. The spec-
tral reconstruction suffers from ring artifacts, and we propose an extended
flat-field model for mitigating ring artifacts which exploits high correlation
across energy channels in the spectral flat-fields.

Patients with kidney failure often suffer from hyperphosphatemia which
is associated with increased vascular calcification and mortality. Thus, it
is of great importance to regulate the phosphate level of the kidney-failure
patients. Hemodialysis is a method for removing phosphate from the blood
of the patient. The patient is connected to a dialyzer where blood and
dialysate fluid are separated by a semipermeable membrane allowing phos-
phate to move from the blood of the patient to the dialysate fluid. We
consider the phosphate removal during hemodialysis in a Bayesian frame-
work. We compare two types of hemodialysis treatments, i.e., single-pass
and multiple-pass, and find that the uncertainty of the parameters estimated
based on the single-pass model is greater than those estimated based on the
multiple-pass model. Moreover, a key finding is that the uncertainty of the
parameter estimates is greatly reduced by measuring the patients for con-
secutive treatments whereas measurements in the relapse phase has limited
effect on the precision of the parameter estimates.

This thesis contributes to an enhanced understanding of artifacts in
computed tomography and phosphate removal during hemodialysis using
Bayesian modeling and uncertainty quantification.



Summary (Danish)
Et mål i sundhedsvæsnet er at tilbyde effektiv diagnosering og behandling
til patienter. For at tilbyde dette er det ofte nødvendigt at opbygge en
omfattende forståelse af de underliggende mekanismer i menneskekroppen.
Ofte er det ikke muligt at tilgå disse mekanismer direkte og i stedet må
vi beskrive mekanismerne ved matematiske modeller som er karakteriserede
ved et sæt af parametre. De matematiske modeller relaterer parametrene til
tilgængelige ikke-invasive målinger, og vi kan bruge parametrene til at f.eks.
forudsige hvordan patienter vil respondere på behandling eller vurdere syg-
domsprogressionen. Vi vil I denne afhandling undersøge de to applikationer:

• Computer tomografi: En ikke-invasiv scanningsteknik.

• Hæmodialyse: En behandling for patienter med nyresvigt.

Målet for denne afhandling er at opnå en bedre forståelse af de under-
liggende mekanismer, så vi f.eks. kan muliggøre patient specifik behandling i
hæmodialyse og forbedre kvaliteten af scanninger ved lav stråling i computer
tomografi. Vi benytter Bayesiansk modellering og uncertainty quantification
til at formulere matematiske modeller for computer tomografi og hæmodial-
yse, hvorved vi kan estimere de relevante parametre sammen med deres
statistiske egenskaber som middelværdi, covarians og credible intervaller.

I computer tomografi, udsendes stråling fra en kilde som bliver delvist
absorberet når det bevæger sig gennem objekter, f.eks. en menneskekrop.
Baseret på absorptionen af strålingen, kan man rekonstruere billeder af det
indre af objektet. For at kunne beregne en rekonstruktion, er det nød-
vendigt at kende intensiteten af kildens stråling. Typisk estimeres kildens
intensitet ud fra flat-field målinger, som er målinger uden et objekt i scan-
neren. For eksperimenter men lav stråling og/eller tidsbegrænsning er signal-
støjforholdet lavt og der kan forekomme store forskelle mellem den faktiske
kilde intensitet og den estimerede. Denne afvigelse kan give systematiske
modelfejl og resultere i ring artefakter som er koncentriske ringe i rekonstruk-
tionen. Vi anvender modelleringsteknikker til at dæmpe ring artefakter og
hovedresultatet er at vi, ved eksplicit modellering af kilden, kan eliminere
ring artefakter i rekonstruktionerne.

Vi har også betragtet ring reduktion for spektral computer tomografi.
I spektral computer tomografi måles absorptionen ved forskellige energier,
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og man kan rekonstruere billeder for hver energi hvilket også kaldes for en
spektral rekonstruktion. Den spektrale rekonstruktion lider ofte af et lavt
signal-støjforhold og ring artefakter. Vi har formuleret en udvidet flat-field
metode som udnytter høj korrelation på tværs af de målte energier til at
bekæmpe ring artefakter i spektral computer tomografi.

Patienter med nyresvigt lider ofte af hyperfosfatæmi, som er relateret til
øget åreforkalkning og dødelighed. Det er derfor vigtigt at hjælpe nyresvigt
patienter med at regulere deres fosfatniveauet i blodet. Hæmodialyse er
en behandling hvorved fosfat fjernes fra blodet. Patienten kobles til en
dialysator hvor blod og dialysevæske er adskilt af en semipermeable mem-
bran som tillader diffusion af fosfat fra blodet til dialysevæsken. Vi benytter
en Bayesiansk tilgang til at undersøge fjernelse af fosfat ved hæmodialyse.
Vi betragter og sammenligner to typer af behandling, single-pass og multiple-
pass, og vores undersøgelser viser, at usikkerhederne knyttet til de estimerede
parametre er større for single-pass end for multiple-pass. Et hovedresultat
er at vores undersøgelser indikerer at vi kan sænke usikkerhederne forbundet
med parametrene ved at tage målinger af patienten ved på hinanden følgende
behandlinger mens at målinger i tilbagefaldsfasen, dvs. efter afsluttet behan-
dling, har en begrænset effekt på præcisionen af parameter estimaterne.

Denne afhandling bidrager til en øget forståelse af ring artefakter i com-
puter tomografi og fjernelse af fosfat under hæmodialyse ved hjælp af Bayesiansk
modellering og uncertainty quantification.
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CHAPTER1
Introduction

Mathematical models can describe complex systems and are widely used in
natural sciences such as physics, biology, chemistry and engineering. Mathe-
matical models can take many forms such as differential equations, algebraic
equations, statistical models, etc. and play a key role in the quest to under-
stand the world around us by providing quantitative insight into complex
systems.

Real world phenomena are often extremely complicated and formulating
a mathematical model requires a trade-off between simplicity and accuracy
of the model. If the model is very complicated, it may accurately describe
the measured phenomenon, but the trade-off is that it may not be tractable
from a computational point of view. However, if the model is too simple
then it might not characterize the system sufficiently well and conclusions
drawn from the model may be misleading or even wrong. Thus, scientists
aim to formulate a mathematical model based on the principle of Occam’s
razor which states that we should choose the simplest model that adequately
describes the underlying system. Consequently, the models describing real
world systems are rarely exact, but good models capture the essence of the
underlying system while disregarding the unimportant aspects.

1.1 Motivation and applications
In this thesis, we employ mathematical modeling to improve the understand-
ing of artifact reduction in computed tomography and phosphate removal
during hemodialysis. Conceptual illustrations of the two applications con-
sidered in this thesis are shown in Figure 1.1.

1.1.1 Computed tomography
In computed tomography (CT), we want to image the interior of an object
by exposing the object to radiation. The radiation is attenuated as it travels
through the object, and an image of the interior can be reconstructed by
measuring how the radiation is attenuated. As an example, CT can be used
by medical doctors to detect bone fractures and other abnormalities without
cutting or damaging the patient [17], i.e., it is a non-invasive scanning tech-
nique. The CT image can be represented using pixels, and a mathematical
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(a) Hemodialysis. (b) Computed tomography (CT).

Figure 1.1: Hemodialysis (a) and computed tomography (b) are the two
applications considered in this thesis. Hemodialysis is a treatment where
toxic substances such as phosphate are removed from the blood of the patient.
Computed tomography is an imaging technique that uses X-ray radiation to
image the interior of a patient or object.

model that relates the pixels in the image to the attenuation of the radiation
can be formulated. In most cases, the formulated model is accurate enough
to produce a high quality image of the interior. However, the model may fall
short and introduce artifacts, i.e., a feature which appears in the image but
is not present in the object, if the radiation dose is low and/or the exposure
time is low. In Chapter 2, we give a general introduction to CT, and we
develop methods for mitigating artifacts in CT in Chapter 6.

Spectral CT is a technique where the attenuation is measured at multiple
energies, and spectral CT has received considerable interest in recent years
because it contains much richer information about the object of interest.
However, the radiation dose for a single energy is often low, and spectral
CT is challenged by artifacts as well. In Chapter 7 we develop a method for
mitigating artifacts for spectral CT.

1.1.2 Hemodialysis
Patients with renal-failure, i.e., kidney-failure, suffer from hyperphosphatemia
which denotes excessive amount of phosphate in the blood. Hyperphos-
phatemia is associated with increased vascular calcification and mortality.
Thus, it is essential to remove the excessive phosphate from the blood of
renal-failure patients. Hemodia-lysis is a conventional treatment for patients
with hyperphosphatemia that filters phosphate from the blood. We can for-
mulate a mathematical model that describes the phosphate removal to ob-
tain an improved understanding of the phosphate kinetics. We introduce
modeling of hemodialysis in Chapter 3 and develop Bayesian models for two
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types of hemodialysis treatments, the conventional single-pass and the novel
multiple-pass treatments in Chapter 8.

1.2 Inverse problems
Both problems considered, i.e., hemodialysis and CT, can be characterized by
a set of unknown parameters, a mathematical model, and a set of measured
data. Moreover, both problems share the challenge that we cannot observe
the parameters directly, i.e., the pixels in CT and phosphate kinetics in
hemodialysis, and therefore we must rely on indirect measurements. Thus,
both problems can be classified as inverse problems.

Parameters Model Data

Forward problem

Inverse problem
Known

Unknown

Unknown

Known

Figure 1.2: Conceptual diagram of a forward problem and the correspond-
ing inverse problem. For the forward problem, both the parameters and
model are known whereas for the inverse problem, we know the data (out-
put) and the model, and we want to recover the unknown parameters.

The term inverse refers to the fact that the problem we consider is of
a contrary nature, i.e., the inverse problem is the reverse problem of the
forward problem. The forward and corresponding inverse problem are con-
ceptualized in Figure 1.2. In the forward problem, we know the parameters
and the model, and we aim to find the output (data). Solving the forward
problem corresponds to simulating the system and is usually straightforward.

However, if we do not know the parameters and cannot access them
directly through measurements, then we need to solve an inverse problem.
Inverse problems can be difficult to solve as they are often highly sensitive to
measurement noise and model errors. We give a brief introduction to inverse
problems in Chapter 4.

1.3 Uncertainty quantification
The classical approach to solve inverse problems is to compute point esti-
mates of the parameters. Obvious questions in this context are: how much
can we trust the estimated parameters? How sensitive is the model to the
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choice of parameters? A methodology aiming to address these statistical
questions is uncertainty quantification (UQ). In UQ, we consider the pa-
rameters as random variables and characterize the statistical properties of
the parameters such as mean, covariance and credible intervals. In Chap-
ter 5, we introduce a Bayesian approach for inverse problems and Markov
Chain Monte Carlo sampling for retrieving statistical information about the
parameters.

1.4 Contribution
The thesis gives an overview of modeling of CT and hemodialysis and an
introduction to a Bayesian approach for inverse problems. The aim of the
thesis is two-fold. In paper A and B, we use mathematical modeling and
uncertainty quantification to mitigate model errors in CT arising from too
simplistic mathematical models. In paper C, we use mathematical modeling
and uncertainty quantification to obtain an improved understanding of the
dynamics of hemodialysis and to compare two types of hemodialysis treat-
ments. The detailed contributions can be summarized as follows:

• New mathematical model for CT with source uncertainty (paper A).

• New method for removing ring artifacts in spectral CT (paper B).

• Bayesian model for phosphate removal during hemodialysis (paper C).

1.5 Structure of the thesis
We start out by introducing the two applications, CT and hemodialysis, in
Chapter 2 and Chapter 3, respectively. We give a brief introduction to dis-
crete inverse problems in Chapter 4, and this is followed by an introduction
to the Bayesian approach for inverse problems in Chapter 5. Chapters 6, 7
and 8 summarize the findings in paper A, B, and C, respectively. Lastly,
Chapter 9 discusses and comments on the work and concludes the thesis.
The papers are attached in the appendix.



CHAPTER2
Computed

tomography
We introduce CT which is the inverse problem considered in both paper A
and B. We present the physical model and derive a discretized measurement
model for conventional and spectral CT. Moreover, we discuss how artifacts
such as ring artifacts arise from model errors and how these degrade the
image quality.

2.1 Experimental set-up

Tomography originates from the Greek words Tomos which is the Greek
word for slice or section and graphos which means to write. Thus, CT is
a non-invasive imaging technique that enable us to obtain cross-sectional
images (slices) of the interior of an object from a set of projection images.

The projection images are acquired by illuminating the object by radia-
tion from a source, e.g., X-rays or neutrons, and measuring the attenuated
radiation. A panel of detectors is placed opposite of the source, and the
detectors measure the attenuation of the radiation by counting the number
of particles hitting the panel. The source and the detector panel are then
rotated around the object such that projection images are collected from
multiple angles, see Figure 2.1.

The experimental setup shown in Figure 2.1 for 2D imaging is called
parallel-beam geometry since the beams travel in straight parallel lines. The
parallel-beam geometry was used in early scanners and is used today in large-
scale synchrotron facilities. There exist other configurations such as the 2D
fan-beam and 3D cone-beam geometry, but from a mathematical point of
view, all configurations result in a similar mathematical model structure.
Thus, we focus on the parallel-beam geometry since it is the simplest config-
uration both mathematically and conceptually.
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Detector

Source

Figure 2.1: Illustration of the experimental set-up for CT. The Shepp-
Logan phantom simulates a cross-section of a human head where darker
shades correspond to higher absorption. A source emits radiation, e.g., X-
rays or neutrons, which travels through the object and is attenuated. The
attenuation of the rays is measured by a detector panel placed opposite of
the source. The source and the detector are then rotated such that the
attenuation is measured from different projection angles.

2.1.1 Types of radiation
We consider two types of radiation, i.e., photons (X-ray) and neutrons. Neu-
tron and X-ray imaging provide complementary scanning techniques since
the neutrons interact differently than X-rays with materials due to their
zero charge. However, from a mathematical point-of-view, the imaging tech-
niques are similar, and we can use the same model for both neutrons and
X-rays, i.e., the models derived in this chapter apply to both types of radi-
ation, and we will not distinguish between the two but use the terminology
for X-ray CT.

2.2 The physical model
We can describe the attenuation of a single ray by Lambert-Beer’s law.
Lambert-Beer’s law is a model of the physics of CT which describes the
mean photon count at a specific energy. Let I ∈ R+ and I0 ∈ R+ denote the
intensity incident on the detector element and on the object, respectively.
We can model I by the Lambert-Beer law,

I = I0 exp
(

−
∫

ℓ

µ(x)dx
)

, (2.1)
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where x ∈ Rd is the spatial position with dimension d ∈ {2, 3}, ℓ denotes the
line segment between the source and the detector element, and µ : Rd → R+
is the energy-dependent spatial attenuation function that we aim to recover.
We will focus on the two-dimensional case, i.e., we assume d = 2 henceforth.

Commonly, it is assumed that we know I0 and that the source is static
throughout the data acquisition. The aim is to reconstruct the attenuation
function µ from the line integral equation,

− log
(

I

I0

)
=
∫

ℓ

µ(x)dx. (2.2)

In practice, statistical fluctuations will influence the photon count. It can
be shown that the statistical fluctuations are well described by a Poisson
distribution with mean and variance equal to I [14]. Consequently, the
CT data in (2.2) is log-Poisson distributed. We can analyze the statistical
properties of the log-Poisson CT data by making a first order approximation.
Let X represent the measured data such that X is considered a Poisson
distributed variable with mean and variance E[X] = V[X] = I, and let Y
be the corresponding log-Poisson distributed variable such that Y = log(X).
We can make a first order approximation around I for the Poisson distributed
variable X by,

log(X) ≈ log(I) + 1
I

(X − I),

and it follows that E[Y ] ≈ log(I) and V[Y ] ≈ 1
I .

Thus, if I is high, then the variance is low and our measurements are close
to the true photon count I. However, if I is low, then so is the variance and
the measured data may fluctuate significantly from I which might introduce
substantial noise.

2.3 Filtered Back Projection
We can reconstruct the attenuation function µ in (2.2) analytically using the
inverse Radon transform. The forward model is called the Radon transform
after mathematician Johan Radon who proved in 1917 that under certain
regularity assumptions, the attenuation function may be reconstructed per-
fectly from a full set of line integrals over all angles [41].

The most commonly used reconstruction method for CT is the Filtered
Back Projection (FBP) which inverts the Radon transform to reconstruct
the attenuation function µ, see, e.g., [36] for a detailed description of FBP.
The FBP is widely used in practice since it is fast and reliable when the
model assumptions are valid, and the signal-to-noise ratio is high.

However, the FBP method is not robust with respect to noise, and FBP
gives a low quality reconstruction when the signal-to-noise ratio is low. More-
over, FBP struggles if the underlying assumptions fail and it is not easy to
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incorporate adjustments. Hence, we need a more robust and flexible method
for computing reconstructions if we have CT data with a low signal-to-noise
ratio or if the model assumptions are violated.

2.4 Discretized model
A method for obtaining a more flexible reconstruction method is to con-
sider the discretized CT problem. Let n denote the number of pixels in the
discretized domain and let πl denote the lth pixel as illustrated in Figure
2.2.

π1

π2

...

πn

πn−1

...

Figure 2.2: Discretization of the domain into n pixels. πl denotes the lth
pixel and the arrow symbolizes the traveled distance of the ith ray through
the grid for the jth projection. The length of which the ray travels through
each pixel is stored in the ith row of the matrix Aj such that the element
(Aj)i,l corresponds to the traveled distance of the ith ray through pixel l for
projection j.

We assume that we have measured p projection images which have been
acquired by a detector panel with r detector elements. We can discretize the
line integral in (2.2) by introducing the following parameterization of µ,

µ(x) ≈
n∑

l=1

ulχl(x), (2.3)

where ul is the attenuation coefficient in pixel πl and χl(x) is an indicator
function defined by,

χl(x) =
{

1 if x ∈ πl,
0 otherwise.
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The parameterization of µ allows us to express the line integral by,∫
ℓi,j

µ(x)dx = eT
i Aju,

where Aj ∈ Rr×n is the matrix with entries,

(Aj)i,l =
∫

ℓi,j

χl(x)dx

such that (Aj)i,l denotes the length of the traveled distance of ray i through
pixel πl at projection j. Thus, most entries in Aj are zero since each ray
only passes through a small subset of the pixels as illustrated in Figure 2.2.

Let Y ∈ Rr×p, often called the sinogram, denote the matrix with the
jth projection image in the jth column as illustrated in Figure 2.3, and let
ν ∈ Rr denote the effective measured intensity incident on the object.

Figure 2.3: Illustration of the measurement matrix Y , i.e., sinogram.
Darker shades correspond to higher intensity, i.e., measurements that are
not attenuated are black and the measurements gradually become lighter as
the attenuation increases. Each column of Y corresponds to a projection
image at a specific rotation angle.

We can then formulate the discretized CT model for projection j by,

Yj = diag(ν) exp(−Aju) (2.4)

for j = 1, 2 . . . , p with diag(ν) ∈ Rr×r defined as the diagonal matrix with the
elements of ν on the diagonal. Equivalently, we can formulate the discretized
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CT model for all projections by,

y = diag(1p ⊗ ν) exp(−Au) , (2.5)

where y = vector(Y ) ∈ Rrp is the vector obtained by stacking the columns
of Y vertically, ⊗ is the Kronecker product and

A =


A1
A2
...

Ap

 .

If we assume that ν is known, we arrive at the linear system of equations,

b = Au, (2.6)

where b = −(log(y) − log(1p ⊗ ν)). Thus, reconstructing the attenuation
coefficients boils down to solving a linear system of equations.

2.5 Ring artifacts
Commonly, most reconstruction methods assume that we know the effective
intensity incident on the object ν in (2.6). In practice, ν is estimated from so-
called flat-field measurements (also known as white-fields) which are simply
projection images acquired without an object in the scanner.

The flat-field measurements contain noise due to the statistical nature of
the radiation, just as regular CT measurements. Often a couple of flat-fields
are measured, and we denote the estimate of ν based on the sampled mean of
the recorded flat-fields by ν̂. Correcting the measurements by the estimate
ν̂ is often called flat-field correction.

Flat-field correction reduces the amount of noise introduced in (2.6), but
often ν̂ is not sufficiently close to the true intensity ν when the acquisition
time is limited or the dose is low.

Errors in ν̂, also called flat-field errors, will enter the model through b in
a highly systematic manner which can be seen by considering the discretized
model in (2.6). The discretized model reveals that ν̂ is replicated for each
projection, i.e., the flat-field errors introduce stripes through the sinogram
as illustrated in Figure 2.4. The stripes in the sinogram can give rise to
concentric rings in the reconstruction known as ring artifacts. Ring artifacts
degrade the quality of the reconstruction and might conceal features of the
object as illustrated in Figure 2.4. Paper A proposes a mathematical model
for mitigating ring artifacts for monochromatic CT.
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Figure 2.4: Illustration of the effect of ring artifacts. Darker shades corre-
spond to higher values. If we know ν, then we normalize the data correctly
and do not introduce systematic errors (left). However, if we use the estimate
ν̂ based on flat-field measurements, we might introduce systematic errors in
the normalized sinogram b which appear as horizontal stripes. Consequently,
the horizontal stripes in b result in concentric rings in the corresponding re-
construction (right).
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2.6 Spectral model
The attenuation is both material- and energy-specific as illustrated in Figure
2.5 where the attenuation of gold, lead, iodine, iron and water are depicted as
a function of energy. The figure illustrates that different materials may look
similar for some energies while distinct for other energies. Thus, spectral CT
can be used to discern different materials in an object and thereby obtain a
quantitative material decomposition as illustrated in Figure 2.6.

Figure 2.5: Linear attenuation for five materials (gold, lead, iodine, iron
and water) as a function of energy for X-ray CT.

We can obtain a material decomposition by computing a reconstruction
for each energy, also referred to as energy-wise reconstructions or a spectral
reconstruction. Let m denote the number of energies. For each energy
k = 1, 2, . . . , m, we can use Lambert-Beer’s law and arrive at the linear
system of equations,

bk = Auk, (2.7)

where bk = −(log(yk) − log(1p ⊗ vk)). Thus, we have the same type of model
for spectral CT as for monochromatic CT with the only difference that we
have m times as many reconstruction problems. For a single energy, the
photon count is often low, and consequently spectral CT is challenged by
ring artifacts. We develop a method for mitigating ring artifacts for spectral
CT in Paper B.
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Figure 2.6: Illustration of a material decomposition. The phantom has
three distinct materials illustrated by varying attenuation coefficients.
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CHAPTER3
Phosphate kinetics

In this chapter, we give a brief introduction to the regulation mechanisms of
phosphate in the human body and introduce the treatment hemodialysis for
patients with hyperphosphatemia. We introduce the concept of compartment
modeling and derive differential equations describing the phosphate kinetics
during hemodialysis, which are the foundation of the models analyzed in
papers C and E. We refer the reader to [29, 19] for an introduction to
modeling in life sciences.

3.1 Phosphate’s role in the body

Phosphate plays a crucial role in the human body since it performs vital
processes such as construction of nucleic acids, energy transport and bone
tissue formation. [9] About 80-85% of the phosphate in an adult is stored
in the bones and 15–20% is present in body fluids and soft tissues. Only
1% of the phosphate is found in the plasma and extracellular fluid, which is
accessible through the blood and can be measured in clinical practice. [30]

The phosphate level is tightly regulated, and both hyperphosphatemia
and hypophosphatemia can have fatal consequences [46]. The regulation
of phosphate concentration in the blood is mainly maintained by the phos-
phate storage in bones and soft tissues, absorption from the intestines, and
excretion and reabsorption in the kidneys. A simplified overview of the phys-
iological mechanisms involved in the phosphate regulation is given in Figure
3.1.

The kidneys are crucial in the maintenance of the phosphate level since
phosphate can only be renally cleared. For renally impaired patients, the
ability to excrete phosphate is reduced leading to accumulation of phosphate
in the blood. Hyperphosphatemia is a considerable clinical problem since it
is associated with serious adverse outcomes for the patients and imposes a
significant burden on both the patients and the healthcare system. [34]
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kidney

intestines

blood

bone

Figure 3.1: Conceptual diagram of the regulation mechanisms of phosphate
in the human body. Phosphate enters the body through food intake and is
absorbed into the systemic blood circulation from the intestines. The bones
provide a phosphate storage which can both excrete and absorb phosphate
to and from the systemic blood circulation. The kidney filters the blood and
removes phosphate and other toxins through urinary excretion.

3.2 Hemodialysis
About half of all renal-failure patients suffer from hyperphosphatemia. Strate-
gies to control phosphate levels include phosphate binders, low-phosphate
diet and removal of phosphate by hemodialysis. Hemodialysis is a conven-
tional treatment for hyperphosphatemia where the patient is connected to
a dialysis machine for four to eight hours. [24] Hemo is the Greek word for
blood, and dialysis originates from dialuete, which means separation. The
idea of hemodialysis is to separate the excessive phosphate from the blood.
The patient is connected to the dialysis machine through access to the blood
vessels as illustrated in Figure 3.2. The blood of the patient is then circu-
lated through the dialysis machine where waste products, e.g., phosphate
and excess fluid is moved from the blood to the dialysate fluid by use of a
semipermeable membrane called a dialyzer. Thus, the dialyzer works as an
artificial kidney that cleanses and returns the blood to the body.

Hemodialysis cannot cure the patient since it only removes phosphate
from the blood temporarily. After the treatment ends, the phosphate con-
centration starts to increase and the patient experiences a relapse. Thus,
the patient needs recurrent treatments to keep the phosphate concentration
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fresh dialysate

used dialysate

blood

clean blood

dialyzer
patient

Figure 3.2: Illustration of the hemodialysis treatment. The blood of the
patient is passed through the dialyzer where a semipermeable membrane
allows phosphate and other toxins to flow to the dialysate fluid by diffusion.

at a non-fatal level. Moreover, the rebound in phosphate concentration is
relatively fast, and consequently the patient often needs treatment trice a
week to maintain a tolerable phosphate concentration.

3.3 Compartment modeling
We use a compartment model to describe the process of phosphate removal
during hemodialysis. Compartment modeling is a general modeling tech-
nique that can model a broad class of biological systems such as chemical
reactions, infectious diseases and population dynamics. The assumption is
that we can describe a system as a set of interconnected, well-mixed com-
partments that exchange substances by simple linear kinetics. [19]

Each compartment represents a biological quantity, i.e., phosphate con-
centration in hemodialysis. We consider a three-compartment model consist-
ing of a bone, blood (including plasma and extracellular fluid) and dialysate
fluid compartment as illustrated in Figure 3.3. We can describe the change
in concentration of phosphate in each compartment by the conservation of
mass. The law of mass conservation states that the change of mass is equal
to the substance flowing into the compartment subtracted that flowing out
of the compartment.
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used dialysate

fresh dialysate

blood dialysatebone

Figure 3.3: Compartment model for the conventional hemodialysis treat-
ment denoted single-pass. We consider a three-compartment model consist-
ing of bone, blood and dialyzer compartments. The arrows indicate that
phosphate flows from the bones to the blood and from the blood to the
dialysate fluid.

3.3.1 Single-pass modeling

First, we consider the conventional hemodialysis treatment denoted single-
pass where the dialysis fluid is constantly replenished as illustrated in Figure
3.3. We consider the bone compartment as being an infinite storage which
is motivated by the fact that most of the phosphate in the human body is
stored in the bones and only a small fraction of this is removed during dialysis.
Thus, we assume that the concentration of phosphate in the bones is constant
and can be modeled as a source that continuously excretes phosphate to the
blood.

The constant inflow of phosphate from the bones to the blood compart-
ment can be modeled as a diffusion process. Diffusion is a metabolically
cheap transport mechanism where a substance, e.g., phosphate, moves from
a compartment of high concentration to a compartment of lower concen-
tration. We assume that the compartments are separated by a thin mem-
brane such that we may model the diffusion process as proportional to the
concentration gradient between the two compartments. When the patient
is connected to the dialyzer, phosphate can move from the blood to the
dialysate fluid by diffusion as well. The dialysate fluid has an inflow of phos-
phate from the blood through the semipermeable membrane. However, the
dialysate fluid is constantly replenished such that the concentration in the
dialysis compartment is constantly low and can be assumed constant.

We can formalize the transport of phosphate in the blood by an ordinary
differential equation (ODE). Let Cs, Cb(t) and Cd denote the concentration
of phosphate in the bones (source), blood and dialysate fluid, respectively.
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We model the flow of phosphate during hemodialysis by,

Vb
dCb(t)

dt
= Ks(Cs − Cb(t)) − Kb(Cb(t) − Cd), (3.1)

where Ks is the diffusion coefficient, Vb is the volume of the blood compart-
ment which is assumed to be constant during the hemodialysis, and Kb is
the diffusion coefficient from blood to dialysate. For the system to have a
unique solution, we equip the ODE with the initial condition Cb(0) which is
the concentration of phosphate in the blood at time t = 0.

Note that if the patient is not receiving treatment, then there is no out-
flow of phosphate, and we simply have Kb = 0. Thus, we can use the model
to predict the relapse of the patient when Kb = 0.

3.3.2 Multiple-pass modeling
The quality of life for a hemodialysis patient can be compromised by the
frequent hospital treatments. This may be eased by having a dialysis unit
at home. However, home treatment requires significant training and lo-
gistics and approximately a 100 liters of dialysate. [27] As an alternative
to the single-pass treatment, we can consider the novel hemodialysis treat-
ment called multiple-pass. The multiple-pass treatment recirculates the dial-
ysis fluid and requires less than 20% of the dialysate fluid compared to the
single-pass treatment. [20] Thus, the multiple-pass treatment enables a trans-
portable dialysis unit which can ease home treatment and enable treatment
during travel. An illustration of the multiple-pass compartment model is
depicted in Figure 3.4.

recirculated
dialysate

blood dialysatebone

Figure 3.4: Compartment model for the novel hemodialysis treatment de-
noted multiple-pass. We consider a three-compartment model consisting of a
bone, blood and dialyzer compartment. The arrows indicate that phosphate
flow from the bones to the blood, from the blood to the dialysate fluid and
that the dialysate fluid is recirculated.
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We can formulate an ODE governing the flow of mass for the multiple-
pass model. Note that the flow between the inner compartments, i.e., bone
and blood, is unaffected by the change of the dialyzer mechanism, and thus
we may model the in- and outflow of phosphate for the blood compartment
by

Vb
dCb(t)

dt
= Ks(Cs − Cb(t)) − Kb(Cb(t) − Cd(t)), (3.2)

where the only change from (3.1) is that the concentration of phosphate in
the dialysate fluid is now time dependent since it accumulates over time. For
the multiple-pass treatment, the dialysate fluid is recirculated, and we can
model the change of mass in the dialysate fluid by the following ODE,

Vd
dCd(t)

dt
= Kb(Cb(t) − Cd(t)), (3.3)

where Vd is the volume of the dialysate fluid. Thus, we can model the
multiple-pass treatment by the coupled system of ODEs,

Vb
dCb(t)

dt
= Ks(Cs − Cb(t)) − Kb(Cb(t) − Cd(t)), (3.4a)

Vd
dCd(t)

dt
= Kb(Cb(t) − Cd(t)), (3.4b)

and we equip the ODEs with the initial conditions Cb(0) and Cd(0) which
are the concentrations of phosphate in the blood and dialysate fluid at time
t = 0, respectively. Note however, that at time t = 0, the concentration of
phosphate in the dialysate fluid is zero, i.e., we have Cd(0) = 0.

3.4 Parameter estimation
We can measure Vd directly and we have estimates of Vb from measurements,
but we cannot measure the remaining parameters, i.e., Cs, Ks, Kb, directly.
Thus, the goal is to recover the set of parameters (Cs, Ks, Kb) that gave rise
to the observed phosphate concentration in the blood during hemodialysis.

We can formalize the system of ODEs in a general setting. We assume
that we have m measurements at time t1, t2, . . . , tm. Let bi ∈ Rd denote
the measurements of phosphate concentrations at time ti (with d = 1 for
single-pass and d = 2 for multiple-pass), let u =

[
Cs, Ks, Kb

]T denote the
vector of unknown parameters, and let Fi(ti, u) ∈ Rd

+ be the solution to the
system of ODEs at time ti with respect to u, see e.g. [35] for methods for
solving ODEs numerically or [39] for analytical solutions to ODEs. We can
then formulate the parameter estimation problem as a non-linear system of
equations,

b = F (u), (3.5)
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where F (u) ∈ Rdm and b ∈ Rdm are the vectors obtained by stacking Fi(ti, u)
and bi vertically, respectively.

There are great similarities in parameter estimation problem for hemodial-
ysis in (3.5) and the reconstruction problem for CT in (2.6), and we now turn
to the more general theory of how to deal with problems where we need in-
direct measurements to estimate the parameters.
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CHAPTER4
Discrete inverse

problems
In this chapter, we introduce the reader to discrete inverse problems. The
chapter begins with a general introduction to discrete inverse problems and
the characteristics of inverse problems such as ill-posedness. We focus on the
solution to the linear discrete inverse problem in the context of least-squares
solutions and introduce the concept of regularization. We refer to [2, 36] for
a thorough introduction to inverse problems.

4.1 Classification of inverse problems
We want to recover the parameters that characterize the system,

b = F (u), (4.1)

where b is the vector of measurements, u is the vector of unknown parameters
and F denotes the mathematical model that relates the parameters u to the
measurements b. For inverse problems, we cannot measure u directly, and
we can only obtain information about u indirectly through b.

The measurements b may be a function of time or a set of discrete ob-
servations, and the model F can take many forms and may arise from, e.g.,
ordinary differential equations, partial differential equations, or a system
of algebraic equations. We will focus on the case where u and b are finite-
dimensional vectors, which are often called discrete inverse problems or pa-
rameter estimation problems.

We use CT as an example to illustrate the characteristics of discrete
inverse problems throughout the chapter. Figure 4.1 depicts the inverse
problem for CT. In CT, the forward problem corresponds to computing
projection images b from a known object u whereas the inverse problem is
to reconstruct the object u from the set of acquired projection images b.

Discrete inverse problems can, despite their simple expression, be very
challenging to solve since they are often ill-posed. To formally characterize
ill-posed problems, we first introduce the complementary notion of a well-



24 4 Discrete inverse problems

Forward problem

Inverse problem

Figure 4.1: Illustration of the forward and inverse problem of CT. The
parameters are the material-specific attenuation coefficients represented as
pixels, and the data is the log-transformed sinogram defined in (2.6).

posed problem which was first introduced by Hadamard [25]. A problem is
said to be well-posed if it satisfies the following three conditions:

• Existence: There should be at least one solution.

• Uniqueness: There should be at most one solution.

• Stability: The solution must depend continuously on data.

On the other hand, if a problem fails to satisfy one or more conditions, then
the problem is said to be an ill-posed problem.

4.2 Linear inverse problems
To solve (4.1), we often linearize F (u) ≈ Au to obtain a linear system of
equations, i.e.,

b = Au, (4.2)

where A ∈ Rm×n is the system matrix or model, u ∈ Rn is the vector of
unknowns and b ∈ Rm is the vector of measurements.

We can consider the linear discrete inverse problem in the context of the
three conditions, existence, uniqueness and stability. If the linear system
is consistent and A has fewer rows than columns, then the null space of A
is non-trivial and there are infinitely many solutions, and consequently the
uniqueness condition fails. On the other hand, if A has more rows than
columns and full column rank then the solution exists if and only if b lies in
the range of A. It is often the case that the observed data is imperfect due
to measurement noise which moves b out of the range of A, and consequently
there does not exist any solution.

Even in the case where the existence and uniqueness conditions are sat-
isfied and A is invertible, then the stability condition may still fail. The
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stability condition can be interpreted as that a small change in the data
should only result in a small change in the solution. The stability of a linear
discrete inverse problem is closely connected to the condition number of the
system matrix A. The condition number of an invertible matrix A is given
by,

κ(A) = ∥A∥2∥A−1∥2, (4.3)

where ∥ · ∥2 is the 2-norm.
We can relate the stability to the condition number of the matrix A by

considering the observed data b as a vector consisting of two components:
the clean data b̄ and measurement noise ε, i.e.,

b = b̄ + ε. (4.4)

Let ū = A−1b̄ denote the exact solution and let u = A−1b denote the
computed solution affected by the noise component in b. The difference
between the exact solution and the computed solution satisfies the following
bound [48],

∥u − ū∥2

∥ū∥2
≤ κ(A)∥ε∥2

∥b̄∥2
. (4.5)

Thus, even small perturbations of the clean data b̄ might lead to large errors
in the computed solution u if the condition number is large.

4.2.1 Least-squares solution
We can address the issue with non-existence of the solution by considering the
least-squares solution. The least-squares solution is defined as the solution
to the following optimization problem,

minimize
u

∥Au − b∥2
2, (4.6)

which is often referred to as a data fitting problem.
The least-squares problem is a convex optimization problem, which means

that a local solution is also a global solution. We refer the reader to [12] for a
thorough introduction to convex optimization. Consequently, the first order
optimality condition is both sufficient and necessary for the solution to be
optimal. The first order optimality condition requires that the gradient of
the objective function is zero at the optimal solution. The optimal solution
is therefore easily derived from the first order optimality condition and has
the solution, (

AT A
)

u = AT b. (4.7)
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As a remark, we will briefly mention that even though there exists an
analytical solution to the optimization problem in (4.6), it may not be prac-
tical nor feasible to compute the exact solution. For large-scale problems
such as CT, it is often infeasible and/or impractical to compute the matrix
product AT A and even more troublesome to compute the inverse as needed
to solve (4.7). Thus, instead we use iterative methods to approximate the
solution of the optimization problem. For a general introduction to iterative
methods, we refer the reader to [2, 26].

Inverse problem

Figure 4.2: Illustration of the ill-posedness of the CT problem. We have
simulated X-ray data, i.e., sinogram with noise (left). The resulting recon-
struction which is the solution to the least-squares problem in (4.6) is severely
affected by noise (right).

Even though the least-squares solution in (4.7) guarantees existence it
does not guarantee uniqueness (only if A has rank n) nor stability. Figure
4.2 shows the complications that may arise when the stability condition
fails. The reconstruction is the solution to (4.6) computed using a Matlab
implementation of the iterative method FISTA, see [10] for details. The
sinogram (data) has been perturbed by adding small amount of noise. The
figure illustrates that even a small amount of noise in the sinogram can result
in a reconstruction heavily affected by noise where most of the details of the
original image are lost.

4.3 Regularization
To address uniqueness and stability, we can regularize the least-squares prob-
lem to obtain a modified problem that has a unique and stable solution. The
simplest form for regularization is perhaps the 2-norm regularization also
known as Tikhonov regularization. The Tikhonov solution is defined as the
solution to the following optimization problem,

minimize
u

∥Au − b∥2
2 + λ∥u∥2

2, (4.8)

where λ > 0 is the regularization parameter, also referred to as a hyper-
parameter, that balances the data fitting term and the regularization term.
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Figure 4.3 illustrates how Tikhonov regularization can be used to improve
the image quality in CT. The naive solution is the least-squares solution
in (4.6) and the regularized solution is the solution to (4.8) with λ = 100.
Both solutions are computed using a Matlab implementation of the itera-
tive method FISTA [10]. The figure illustrates how Tikhonov regularization
suppresses noisy components and favors smooth solutions for CT.

Naive solution

Regularized solution

Figure 4.3: Illustration of the effect of Tikhonov regularization. The naive
reconstruction is the solution to the least-squares optimization problem in
(4.6), which is severely affected by measurement noise. The regularized
reconstruction is the solution to the regularized optimization problem in
(4.8) with λ = 100.

The regularization term represents our prior knowledge about the solu-
tion. However, for CT imaging, we are often interested in images with sharp
edges, e.g., fracture detection in medical imaging and thus Tikhonov may
not be the optimal form of regularization since Tikhonov favors smooth so-
lutions. There exists a variety of different regularization techniques, e.g.,
the edge preserving total variation technique, non-negativity, and sparsity
regularization. We refer the reader to [2] for details regarding advanced
regularization techniques.

For a fixed λ, the objective function in (4.8) is differentiable and convex
with the solution, (

AT A + λI
)

u = AT b. (4.9)

If λ is small, then we give more weight to the data fitting term whereas
increasing λ gives more weight to the regularization term. We define the
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optimal λ as the value that brings us closest to the true solution in terms of
minimizing the relative error, i.e.,

∥ū − u∥2

∥ū∥2
. (4.10)

Figure 4.4: Relative error as a function of the regularization parameter λ.
For small values of λ, we get a reconstruction dominated by noise whereas
we obtain a smooth and blurred reconstruction for large values of λ. Our
definition of the optimal λ is a value that brings us closest to the true solution
in terms of relative error and balances the trade-off between data fitting and
regularization.

Figure 4.4 shows the relative error for the CT example as a function
of λ to illustrate the effect of regularizing the least-squares solution. If we
choose λ too small, then we obtain a noisy reconstruction. If we choose λ too
large, then we introduce too much bias and end up with an over-smoothed
reconstruction.

4.3.1 Bias-variance trade-off
Regularization can bring us from a low-quality solution where important
features are masked by noise to a reconstruction with distinct visible features,
as illustrated in Figures 4.3 and 4.4. However, there is a price to pay. The
statistical interpretation of regularization is that it introduces a trade-off
between bias and variance. If we do not have regularization, then we have
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a high variance in our estimate and we risk fitting our estimate to the noise
component. If we have too much regularization, then we introduce a high
bias, and the computed solution may be too far from the true solution.

4.3.2 Choice of regularization parameter
Choosing the regularization parameter can be a tedious and non-trivial task.
If chosen too small, we get a reconstruction close to the noisy naive recon-
struction like in Figure 4.2, but if chosen too large, we might smooth out
important features of the image.

For small-scale simulated examples where we know the true solution ū,
we can compute the relative error for different choices of λ to narrow down
a suitable λ as in Figure 4.4. However, in practice, we do not know the true
solution ū and finding a suitable regularization parameter can, especially
for large-scale problems, be a tedious task. There exist several strategies for
selecting a suitable regularization parameter such as the L-curve, discrepancy
principle, and generalized cross validation, and we refer the reader to [26]
for a thorough overview of strategies for choosing a suitable regularization
parameter.
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CHAPTER5
Uncertainty

quantification
In this chapter, we introduce the reader to the Bayesian approach to inverse
problems. In the Bayesian framework, we consider the inverse problem from
a statistical point-of-view and consider the parameters to be random variables
rather than deterministic quantities. We will focus on the case with Gaussian
measurement noise and priors since these are commonly used and play a key
role in paper A and C. We introduce Markov Chain Monte Carlo and consider
the following sampling methods: Metropolis Hastings, the Gibbs sampler, and
the No-U-Turn Sampler (NUTS) which are used in paper A and C. We refer
the reader to [7, 15, 45] for a thorough introduction to Bayesian inference for
inverse problems and to [15, 42, 45] for a rigorous introduction to sampling
techniques for parameter estimation.

5.1 Bayesian approach
So far, we have only discussed how to find a solution, but how certain can we
be of the computed solution? A way to address this question of uncertainty,
is to consider the optimization problem from a Bayesian point-of-view.

From a Bayesian point-of-view, we consider the parameters and the mea-
surement errors to be random variables and wish to infer their statistical
properties such as mean, correlation and 95% credible intervals (CIs), i.e.,
the interval in which the parameter lies with a probability of 95%. Thus,
we are not just interested in a point estimate, but the statistical properties
which provide a useful, interpretable visual summary of the uncertainty of
the model parameters.

In particular, we are interested in the posterior density of the parameters,
and we will let π(·) denote probability density functions. We can write the
posterior of the parameters u formally using Bayes’ rule by

π(u|b) ∝ π(b|u)π(u),

where π(u|b) is the posterior of u given b, π(b|u) is the density function of b
given u, and π(u) denotes the prior of u.
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The exact expression for the posterior is,

π(u|b) = π(b|u)π(u)
π(b)

,

where π(b) =
∫

π(b|u)π(u))du is called the evidence. The evidence can
be extremely difficult to calculate since it in most cases cannot be solved
analytically and numerical integration becomes expensive if there are more
than just a few dimensions.

However, the evidence does not depend on the parameters and often
simply plays the role of a normalizing constant. We will only consider cases
where the posterior is only known up to a multiplicative constant, and we
will later in this chapter introduce sampling techniques that allow us to avoid
explicit calculation of the evidence.

5.1.1 Likelihood function
The likelihood function relates the observed data to the parameters, i.e., it
constitutes a mechanism through which the data informs the posterior. The
likelihood is specified by the mathematical model that maps the unknown
parameters to the observations and by the assumptions made regarding the
density of the measurement errors.

If we assume additive independent and identically distributed (iid) Gaus-
sian noise with zero mean, then we can formulate the statistical linear for-
ward problem,

b = Au + ε, (5.1)

with ε ∼ N
(
0, σ2Im×m

)
, where b, u and ε are random variables representing

measurements, parameters and measurement errors, respectively. The sta-
tistical model in (5.1) corresponds to b being Gaussian with mean Au and
variance σ2, i.e.,

π
(
b|u, σ2) =

(
1

2πσ2

)m
2

exp
(

− 1
2σ2 ∥Au − b∥2

2

)
. (5.2)

The likelihood function is a function of u and σ2 for a specific observation
of b, bobs, i.e.

L(u, σ2|bobs) =
(

1
2πσ2

)m
2

exp
(

− 1
2σ2 ∥Au − bobs∥2

2

)
. (5.3)

If we fix σ2 and simply seek the parameters u that maximize the likelihood
function, then the solution that maximizes (5.3), also referred to as a max-
imum likelihood (ML) estimate, is equivalent to a least-squares solution in
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(4.6). This can easily be shown by utilizing the fact that the Gaussian den-
sity is log-concave with respect to u, and thus maximizing the likelihood is
equivalent to minimizing the negative log-likelihood, i.e.,

minimize
u

− log
(
L(u, σ2|bobs)

)
.

Inserting the expression from (5.3) we get

minimize
u

m

2
log
(

1
2πσ2

)
+ 1

2σ2 ∥Au − bobs∥2
2,

and by ignoring terms independent of u, we arrive at the least-squares prob-
lem

minimize
u

∥Au − bobs∥2
2.

5.1.2 Prior modeling
The prior density represents our prior beliefs about our parameters and
allows us to formally include such knowledge into the model, e.g., clinical
knowledge from previous studies or structural information about the image.

In the absence of high-quality data, the prior can help fill in missing
information and stabilize the solution. The inclusion of the prior has a
regularizing effect on the parameter estimation problem in the sense that
the parameter estimates become less sensitive to measurement noise and
can in some cases improve identifiability of the parameters [15, 45].

There are several different strategies for constructing a suitable prior,
e.g., see [7, 15], but here we will focus on the Gaussian prior which is used
in both paper A and C. If we assume that the prior of u is iid Gaussian with
zero mean and covariance δI, then we can write the prior by,

π(u|δ) =
(

1
2πδ

)n
2

exp
(

− 1
2δ

∥u∥2
2

)
. (5.4)

The Gaussian prior has a strong connection to Tikhonov regularization since
maximizing the Gaussian prior with respect to u is equivalent to minimizing
the squared two-norm of u.

The Gaussian prior is a very convenient choice if the measurement noise
is assumed Gaussian since the Gaussian prior is a conjugate prior for the
likelihood function of a Gaussian. Conjugacy refers to the property that the
prior and posterior have the same parametric form, i.e., the resulting poste-
rior for u will also be Gaussian if both likelihood and prior are Gaussian. The
use of conjugate priors is often very advantageous since the corresponding
posterior will have a closed-form expression.
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5.1.3 Posterior
For this specific choice of likelihood in (5.3) and prior in (5.4), we can write
the posterior of u as,

π
(
u|b, δ, σ2) ∝ exp

(
− 1

2σ2 ∥Au − b∥2
2 − 1

2δ
∥u∥2

2

)
, (5.5)

which corresponds to the Gaussian posterior,

u|b, σ2, δ ∼ N
((

1
σ2 AT A + 1

δ
I

)−1 1
σ2 AT b,

(
1
σ2 AT A + 1

δ
I

)−1
)

. (5.6)

However, for large-scale problems it is neither feasible nor practical to
compute the exact statistical properties (mean and covariance) due to the
computational expenses associated with the covariance matrix. Thus, just as
for the least-squares solution in (4.7), we need to employ iterative methods
to approximate the statistical properties of the posterior.

If we assume that both σ2 and δ are known a priori, then the solution
which maximizes the posterior of u, also referred to as a maximum a poste-
riori (MAP) estimate, is found by maximizing (5.5) or equivalently solving

minimize
u

1
2σ2 ∥Au − b∥2

2 + 1
2δ

∥u∥2
2,

which is equivalent to the optimization problem in (4.8) for the specific choice
of λ = σ2

δ .

5.1.4 Hyperpriors
We often do not know σ2 or δ and finding suitable hyperparameters can be a
tedious task, just as for the regularization parameter λ in (4.8). In a Bayesian
framework, the natural approach is to consider the hyperparameters as ran-
dom variables and include them in the inference process by assigning prior
densities. The prior densities are called hyperpriors, and we denote the
hyperpriors for σ2 and δ by π(σ2) and π(δ).

We have no information about the hyperparameters, except for the fact
that they model variances and therefore cannot be negative. As commonly
done when the prior information is of questionable accuracy, it is often better
to choose a so called non-informative prior with minimal influence on the
inference. [45]

Commonly, an inverse gamma hyperprior is chosen due to its non-negative
property and its non-informative nature. Moreover, the inverse gamma hy-
perprior is often a convenient choice since it is a conjugate prior to the
Gaussian, i.e., the posterior density of the hyperparameter will also be an
inverse gamma. [7] The density of the inverse gamma is defined by,

π(γ) = βα

Γ(α)
γ−α−1exp

(
−βγ−1) ,
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where α is the shape parameter and β is the scale parameter. Bardsley [7]
proposes the choice α = 1 and β = 10−4, making the hyperpriors exponen-
tially distributed with small decay parameters.

We can formulate the full posterior for u, σ2 and δ, i.e.,

π
(
u, δ, σ2|b

)
∝ π

(
b|u, σ2)π(u|δ) π(σ2)π(δ). (5.7)

However, we only know the full posterior up to a multiplicative constant
and thus we need to employ sampling techniques to characterize the full
posterior.

5.2 Sampling
In many scientific problems, it is often infeasible or impractical to compute
the statistical properties of the full posterior, e.g., when the full posterior
is only known up to multiplicative constant, does not have a closed-form
solution, and/or is high-dimensional. Instead, we can employ sampling tech-
niques to generate samples that, as the number of samples increases, con-
verge to the true full posterior in terms of statistical properties.

For the remainder of the chapter, we will let x denote the unknown
parameters, i.e., for the problem in (5.7) x = [u, σ2, δ]. Moreover, we assume
that we know the target density π(x) up to a multiplicative constant C > 0,
i.e.,

π(x) = f(x)
C

≥ 0, ∀ x, (5.8)

and that we can evaluate f but it is extremely impractical if not infeasible
to compute C which is exactly the case for the full posterior in (5.7).

First, we consider a very simple method, namely the accept and reject
method to sample from non-standard densities. We briefly consider this
method since it illustrates elegantly the concept of sampling and serves as a
prelude to the later introduced Metropolis Hastings (MH) algorithm.

Suppose f is a non-negative function that satisfies (5.8) on the interval
[a, b] and is bounded by a constant M > 0 such that 0 ≤ f(x) < M for
all x ∈ [a, b]. The fundamental theorem of simulation [42] states that if we
generate uniform samples (xi, ui) on the set [a, b]×[0, M ] and only accept the
set of samples that satisfy ui < f(xi), then the normalized histogram of the
accepted samples gives an approximation of the density of π. Thus, we can
approximate samples from π by generating uniform samples and evaluating
f . The accept and reject method is illustrated in Figure 5.1.

The accept and reject method is a very simple and elegant method for
computing samples from a possibly very complicated density. However, the
performance of the accept and reject method is highly dependent on the
choice of M and the interval [a, b]. For the one-dimensional case, these are
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Figure 5.1: Illustration of the accept and reject method for the
one-dimensional case with the function f(x) = exp

(
−x2) (sin

( 1
2 x
)2 +

3 cos(x)2 sin(2x)2 + 1). (Left) Points (xi, ui) are sampled uniformly on the
domain [a, b] × [0, M ]. The i’th sample is accepted if ui < f(xi) (green dots)
and rejected otherwise (red dots). (Right) Normalized histogram of the ac-
cepted samples.

easy to choose since we can visually inspect f and find an appropriate sup-
port. However, it can be very hard to find a suitable choice of support for
high-dimensional cases. The interval [a, b] that supports f is generally un-
known, and M must be larger than the maximum of f , but if chosen too large
we end up rejecting too many samples leading to computational inefficiency.
Moreover, each sample is completely independent of previous samples, and
uniform sampling in a high-dimensional space is highly inefficient since the
support of f is often restricted to only a small subset. Thus, we risk ending
up with a large number of rejected samples.

5.2.1 Markov Chain Monte Carlo
Markov Chain Monte Carlo (MCMC) is a sampling technique for approxi-
mating the statistical properties of the posterior. In MCMC, we generate
a sequence of random samples (x1, x2, . . . , xs) whose density asymptotically
approaches the target density π. A Markov chain is a sequence of samples
where the next sample xi+1 only depends on the current sample xi, i.e.,

π(xi+1|xi, xi−1, . . . , x0) = π(xi+1|xi),

and the Markov chain is completely characterized by the transition kernel
K,

K(xi, xi+1) = π(xi+1|xi),

which describes the probability of moving from the current state xi to the
next state xi+1. Moreover, we will consider only time-homogeneous Markov
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chains satisfying,

K(xi = x, xi+1 = y) = K(x0 = x, x1 = y), ∀i,

which implies that the transition probability is independent of how the chain
evolves, i.e., the probability of moving from a sample x to y is the same for
all time steps.

A finite time-homogeneous Markov chain which is irreducible, aperiodic
and satisfies the detailed balance equation is guaranteed to converge to the
target density [44]. A Markov chain is irreducible if any state xi can be
reached from any other state xj in a finite number of steps and aperiodic if
K(x, x) is non-zero for every state x. The detailed balance equation is given
by

π(y)K(y, x) = π(x)K(x, y), (5.9)

where π is the target density that we know up to a multiplicative constant
and K is the transition kernel. The key challenge for MCMC methods is
how to construct a transition kernel that satisfies (5.9). We refer the reader
to [42, 44] for a thorough theoretical introduction to MCMC.

5.3 Metropolis Hastings
A commonly used MCMC method is the MH algorithm. We introduce the
MH algorithm since the later introduced Gibbs sampler and NUTS can be
interpreted as special cases of the MH algorithm. The introduction to MH
is conceptual, and we refer the reader to [15] for an in depth introduction.

The goal of MH is to construct a transition kernel that satisfies (5.9).
Let the density q be a proposal generating kernel such that if we are at the
current state xi then q(xi, y) generates a candidate y. Note that q should
be chosen such that it is easy to obtain samples and preferably is close to
the target density. If we sample a candidate y from q and it happens that y
satisfies

π(y)q(y, xi) = π(xi)q(xi, y), (5.10)

then we accept y and set xi+1 = y. However, in most cases we will have a
situation where y does not satisfy the detailed balance equation, e.g.,

π(y)q(y, xi) < π(xi)q(xi, y). (5.11)

To correct for this imbalance, we introduce a correcting function θ(xi, y) such
that

π(y)θ(y, xi)q(y, xi) = π(xi)θ(xi, y)q(xi, y), (5.12)
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where θ(xi, y) can be interpreted as a probability that we make the move
from xi to y.

The problem has now been reduced to finding a suitable correcting func-
tion θ(xi, y). The correcting function does not need to be symmetric and
we may choose θ(y, xi) = 1 for simplicity. An interpretation of θ is that the
choice θ(y, xi) = 1 corresponds to maximizing the chance of moving from y
to xi which is desirable since without the correction we make the move from
y to xi too rarely. The choice of θ(xi, y) which satisfies (5.12) is therefore

θ(xi, y) = π(y)q(y, xi)
π(xi)q(xi, y)

< 1. (5.13)

Note that if the inequality was flipped in (5.11) then we simply inter-
change xi and y and set θ(xi, y) = 1. Hence, to ensure that the detailed
balance equation is satisfied for the proposal generating kernel q, we pick
the transition kernel

K(xi, y) = θ(xi, y)q(xi, y)

with

θ(xi, y) = min
{

π(y)q(y, xi)
π(xi)q(xi, y)

, 1
}

. (5.14)
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Figure 5.2: Illustration of the MH algorithm. The MCMC chain generated
by the MH algorithm (left) and the histogram of the sample chain (right).
The histogram closely resembles the target density depicted in Figure 5.1.

This choice of transition kernel K guarantees that the accepted samples
converge asymptotically to the target density π(x) since it satisfies the de-
tailed balance equation. In practice, we generate from q(xi, y) a candidate y
and accept it with probability θ(xi, y). Implementation-wise, we introduce
an accept or reject step such that for each proposed sample y, we generate
a uniform random variable u on the interval [0, 1] and if u < θ(xi, y), we
accept and set xi+1 = y, otherwise we reject and set xi+1 = xi.
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Note that the target density π appears as a ratio in the correcting func-
tion, and we can therefore write θ as,

θ(xi, y) = min
{

f(y)q(y, xi)
f(xi)q(xi, y)

, 1
}

, (5.15)

which means that we only need to know π up to a multiplicative constant.
One strength of the MH algorithm compared to the accept and reject

method is that we use the information from previous sample to guide the
evolution of the sample chain. Consequently, a weakness of the MH algo-
rithm is that the samples are correlated, and it might require a lot of samples
to approximate the target density. Figure 5.2 shows a one-dimensional ex-
ample for the MH algorithm. The left figure shows the sample chain, and
the right figure shows the corresponding histogram of the sample chain.

The main challenge of the MH algorithm is how to choose a suitable
proposal generating density q, since if chosen naively the MH algorithm
is essentially performing a random walk without taking information of the
target density into account. However, choosing q in a non-naive way is
especially challenging in the case of high-dimensional problems where the
MH algorithm is prone to exhibit slow convergence.

Figure 5.3 illustrates the sensitivity of the MH algorithm to the choice of
the proposal kernel and the correlation-rejection trade off. We have chosen
the simple Gaussian density with zero mean and standard deviation σ as the
proposal density. The value of the standard deviation σ can be interpreted
as the step size for the MH algorithm. When chosen too small (top row,
σ = 0.5), consecutive samples of the chain tend to be very close to each other
which is a sign that the simulation is not moving quickly through its space.
On the other hand, if we choose σ too large (bottom row, σ = 50), we end
up rejecting too many proposals which might lead to inefficient exploration
of the target density. Chosen adequately (middle row, σ = 6), we achieve
satisfying exploration of the target density.

5.4 Gibbs sampler
The Gibbs sampler is a method that avoids the search for a suitable proposal
generating density by using a coordinate-wise proposal. [16, 38] The idea
is to reduce the sampling from a complex high-dimensional density to a
sequence of simpler low-dimensional densities by sampling each parameter in
turn from their conditional density while keeping the remaining parameters
fixed. This is exactly the case for the Bayesian model in paper A.

We assume that we have n random variables x1, x2, . . . , xn, and that the
target density is the joint density

π(x1, x2, . . . , xn),
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Figure 5.3: Illustration of the MH algorithm with Gaussian proposal den-
sity for different choices of variance (σ2). (Left) depicts a histogram of the
samples, the target density π(x) chosen as π(x) = 4

6 π1(x) + 2
6 π2(x) with π1

being Gaussian distributed with µ1 = 0 and σ1 = 1 and π2 with µ2 = 5 and
σ = 1

3 . (Right) shows the sample chains obtained by the MH algorithm.

and we have the conditional densities available

π(xi|x1, . . . , xi−1, xi+1, . . . , xn),

for 1 ≤ i ≤ n. The Gibbs sampler updates the elements sequentially by gen-
erating proposals from the conditional densities while keeping the remaining
parameters fixed.

Suppose that we sample a candidate y to replace xi from the conditional
density of xi, i.e.,

y ∼ π(xi|x1, . . . , xi−1, xi+1, . . . , xn).
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To ease notation, we introduce x ∈ Rn as the vector with elements xj for
1 ≤ j ≤ n and let z ∈ Rn denote the vector with elements zj = xj for all
j ̸= i and zi = y. Moreover, we denote the vector with all the elements of x
except xi by x−i.

We can rewrite the density for x by the rule for conditional densities [40],
i.e.,

π(x) = π(xi|x−i)π(x−i)

and similarly for the density of z we obtain

π(z) = π(y|z−i)π(z−i) = π(y|x−i)π(x−i),

where we have utilized that z−i = x−i. The proposal generating kernel for
moving from x to z is simply

q(x, z) = π(y|x−i),

and the probability of moving from z to x is

q(z, x) = π(xi|z−i) = π(xi|x−i).

The correcting function θ(x, z) for the MH algorithm can then be written as

θ(x, z) = π(z)q(z, x)
π(x)q(x, z)

= π(y|x−i)π(x−i)π(xi|x−i)
π(xi|x−i)π(x−i)π(y|x−i)

= 1.

Hence, the Gibbs sampler is indeed a special case of the MH algorithm
where the proposal y from the conditional density is always accepted since
the acceptance probability is one.

So far, we have considered breaking the full set of parameters into scalar
products. However, in some cases it may be advantageous to formulate
the Gibbs sampler for blocks of parameters. Thus, the Gibbs sampler is
ubiquitous in Bayesian inference since we often have simple conditionals for
the parameters and hyperparameters which form two natural blocks or stages
for the Gibbs sampler [47]. Thus, this method is applicable exactly for the
full posterior in (5.7) when choosing the conjugate priors and hyperpriors.
This specific type of Gibbs sampler is often referred to as the hierarchical
Gibbs sampler.

To illustrate the strengths and weakness of the Gibbs sampler, we can
consider the two-dimensional Gaussian characterized by[

x1
x2

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
, (5.16)
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where ρ is a measure of the correlation between the two components. The
conditionals can be shown to be the following one-dimensional Gaussian
densities [21]

x1|x2 ∼ N
(
ρx2, (1 − ρ2)

)
,

x2|x1 ∼ N
(
ρx1, (1 − ρ2)

)
.

Thus, we can reduce the sampling to two one-dimensional Gaussian samples.
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Figure 5.4: Illustration of the Gibbs sampler for the two-dimensional Gaus-
sian density specified by (5.16) with ρ = 0.5. The sample chain moves rapidly
through the space and the chains appear well-mixed (left). The green-shaded
ellipsoids show the contour of the target density.

The main strength of the Gibbs sampler is that it is parameter-free in
the sense that it does not require choosing a proposal as required in the
MH algorithm. However, the Gibbs sampler is severely challenged if the
different blocks of the parameters are highly correlated. High correlation
between blocks or components may lead to painfully high correlation of the
Markov chain since we only move a very small step in each conditional sample.
[44] If we consider the two-dimensional Gaussian in (5.16) and increase the
correlation between the two coordinates such that ρ = 0.95, the samples
become highly correlated as illustrated in Figure 5.5.

5.5 Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) is an MCMC technique that utilizes Hamil-
tonian dynamics to propose a new state by taking a series of first-order gradi-
ent informed steps that is distant from the current state with high probability
of acceptance, even in the case of highly correlated parameters. Thus, the
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Figure 5.5: Illustration of the Gibbs sampler for the two-dimensional Gaus-
sian density specified by (5.16) with ρ = 0.95. The correlation between the
two coordinates is high and the Gibbs sampler only moves a very small step
in each conditional sample (left). The green-shaded ellipsoids show the con-
tour of the target density.

HMC can eliminate the slow convergence that may haunt the MH and Gibbs
samplers in case of correlated or high-dimensional parameter spaces. The
motivation for briefly explaining the concept of HMC is that a variant of the
HMC sampler called NUTS is used in Paper C. Note that the explanation
of the HMC method is only meant to provide a conceptual understanding,
and we refer the reader to [13, 32] for an in dept introduction to HMC.

A intuitive interpretation of the HMC is that we can consider the sample
chain as a particle moving through space where xi is the current position of
the particle. [28] The movement of the particle is driven by the potential
and kinetic energy of the particle. We can interpret the negative logarithm
of the target density as the potential of the particle such that, if no kinetic
energy is applied to the particle, it will follow the gradient and move towards
regions of higher probability and get stuck at a mode of the target density.
However, we are not interested in the particle getting stuck at a mode since
this would give a poor exploration of the target density. Thus, to ensure a
sufficient exploration of the target density we introduce auxiliary momentum
variables. [11]

Let x denote the parameters of interest and r denote the corresponding
auxiliary momentum variables. We can write the joint density

π(r, x) = π(r|x)π(x),
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which defines the Hamiltonian function

H(r, x) = − log(π(r, x))
= − log(π(r|x)) − log(π(x))
= EK(r, x) + EP (x),

where EK(r, x) = − log(π(r|x)) is the kinetic energy and EP (x) = − log(π(x))
is the potential energy (our target density). As commonly done, we choose
the kinetic energy to be a multivariate Gaussian, i.e.,

r ∼ N(0, I) (5.17)

such that the kinetic energy is independent of the parameters, i.e., EK(x, r) =
EK(r).

The evolution of x and r is determined by Hamilton’s equations,

∂x

∂t
= ∂H(x, r)

∂r
,

∂r

∂t
= −∂H(x, r)

∂x
,

and one important property of the Hamiltonian dynamics is that it is time
reversible, i.e., if we reverse time then the trajectory will remain the same.
Thus, there exists functions ϕx and ϕr such that xT = ϕx(x0, r0) and
rT = ϕr(x0, r0) and if we reverse time then x0 = ϕx(xT , −rT ) and r0 =
ϕr(xT , −rT ). Another important property is that the Hamiltonian dynam-
ics conserve energy, i.e.,

∂H(x, r)
∂t

= 0,

and lastly, the Hamiltonian dynamics preserve volume in the (x, r) space.
This property ensures that we do not need to include a Jacobian for the
mapping determined by the Hamiltonian dynamics.

We want to compute samples from π(x, r) which we know only up to a
multiplicative constant through H(x, r), i.e.,

π(x, r) ∝ exp{−H(x, r)}.

The idea is that for a current state (xi, ri), we propose a candidate (yT , rT )
and then use an MH acceptance step to evaluate whether or not the candidate
should be accepted. First, we generate a random momentum vector r0 from
(5.17), and then we apply the Hamiltonian dynamics to the current position
y0 = xi and momentum r0 and let the dynamics run for time T to obtain a
proposal (yT , rT ).

The Hamiltonian dynamics is deterministic and the probability of moving
from (y0, r0) to (yT , rT ) is therefore always 1. However, the probability of
moving from (yT , rT ) to (y0, r0) is zero. Thus, we modify our proposal by
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negating the momentum variable, i.e., (yT , −rT ) to ensure that we have a
valid proposal. In fact, this negation makes the proposal symmetric since
the probability of moving from (y0, r0) to (yT , −rT ) and from (yT , −rT ) to
(y0, r0) is 1 and therefore the proposal cancels out in the MH acceptance
probability. Hence, we accept the proposed candidate with probability

θ(y0, r0, yT , −rT ) = min
(

1,
π(yT , −rT )

π(y0, r0)

)
= min

(
1,

exp(−H(yT , −rT ))
exp(−H(y0, r0))

)
= min(1, exp(−H(yT , −rT ) + H(y0, r0))) .

Note that since the Hamiltonian conserves energy then

H(y0, r0) = H(yT , −rT ),

and thus, we always accept the proposal in theory. However, in practice
the Hamiltonian equations are too complex to be solved analytically and
numerical integration must be applied. The numerical methods introduce
errors, and therefore we need the correction step to ensure that the detailed
balance equation is satisfied in practice.

The most used numerical integrator for HMC is the leapfrog integrator
[43] which depends on two hyperparameters, the number of steps and the
step size. These two hyperparameters are crucial for the performance of the
HMC and require non-trivial hand-tuning to obtain efficient sampling.

5.5.1 NUTS
To make HMC widely applicable, we need a method for tuning the hyperpa-
rameters of HMC automatically. The No-U-Turn Sampler (NUTS) provides
exactly such a framework. NUTS is an extension to HMC that eliminates
the need for hand-tuning the hyperparameters [28]. The idea is to stop the
simulation when taking more steps, no longer increases the distance between
the current state xi and the proposed state yT . Thus, we simulate the trajec-
tory until we start moving back towards the current state whereof the name
No-U-Turn originates. We refer the reader to [28] for details.

The great advantage of the NUTS (and HMC in general) is that it pro-
duces less correlated samples with a higher acceptance rate compared to MH
and the Gibbs sampler which is illustrated by comparing the NUTS sample
chain in Figure 5.6 to the Gibbs sample chain in Figure 5.5.

However, there is a price to pay. The price for the increased performance
is that we need to compute the gradients of the Hamiltonian function, and
thus NUTS requires the log-density of the parameters to be continuously
differentiable. Computing the gradients can be troublesome for large-scale
problems which might make the HMC impractical. However, for small to
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moderate scale problems, NUTS provides an efficient method for sampling
the full posterior for inverse problems.
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Figure 5.6: Illustration of the NUTS sampler for the two-dimensional Gaus-
sian density specified by (5.16) with ρ = 0.95. The sample chain moves
rapidly through the space and the chains appear well-mixed (left). The
green-shaded ellipsoids show the contour of the target density.

5.6 Convergence diagnostics
In theory, with enough samples, our chain of samples will well-approximate
the target density. However in practice, sampling can be expensive, espe-
cially for large-scale problems, and we only have a limited number of sam-
ples. Thus, we need convergence diagnostics to ensure that our sample chain
has converged such that the statistical properties of the sample chain well-
approximate our target density. We will not give a rigorous introduction
to convergence diagnostics for the sampling algorithms, but briefly discuss
methods used for assessing the convergence of the sample chain, see e.g. [42]
for details.

The initial stage of a sample chain is called burn-in since the initial
samples move from a region with low probability to a region of relative
high probability. The samples in the burn-in stage should be removed since
they can otherwise introduce a bias in the statistics computed based on the
sample chain. Once the burn-in phase has been removed from the chain
we say that the chain has converged, and if the chain has enough samples,
we can compute statistics that well-approximate the statistics of the target
density.

The simplest method to assess whether the sample chain has converged is
by visual inspection of the one-dimensional sample chains. The visual inspec-
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tion suggests that the sample chain has converged if it appears well-mixed.
The chain appears well-mixed if the autocorrelation between neighboring
samples is low and the samples fluctuate around a stationary mean. Figure
5.3 shows an example of a chain that appears well-mixed (middle row) and
a chain with poor mixing properties (bottom row).

There exist quantitative methods for assessing convergence of the sample
chain. Two widely used tests are the Geweke test [22] that compares the sta-
tistical properties of the first and last part of the sample chain to determine
convergence, and the potential scale reduction statistic R̂ [23] that based on
several generated sample chains measures the ratio of the average variance
of samples within each sample chain to the variance of the pooled samples
across chains.

We have now introduced the foundation of the methods, i.e., Bayesian
modeling and UQ, which are used in paper A, B and C, and we will now
turn to the individual contributions of the papers.
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CHAPTER6
Computed

tomography with
uncertain source

Relevant paper
A) Katrine O. Bangsgaard and Martin S. Andersen, ”A statistical re-

construction model for absorption CT with source uncertainty”, Inverse
Problems, 2021, [3].

6.1 Motivation and goals
In CT we often assume that we know the source intensity and that it is
constant throughout the data acquisition process. However, for time de-
manding experiments, e.g., large-scale synchrotron neutron facilities, the
source is prone to vary in intensity during the data acquisition, and we de-
note this phenomenon intensity drift. Intensity drift may occur because of
source instabilities, vibrating beamline components, time-varying detector
properties, etc. The result is a mismatch between the reconstruction model
and the underlying physics which introduces systematic model errors that
can compromise the image quality.

Commonly, the source intensity and detector response are estimated
based on flat-field images prior to reconstruction. Existing methods for
estimating the detector response can be divided into four main categories:

• Acquisition methods

• Preprocessing methods

• Post-processing methods

• Extended measurement models
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Acquisition methods perturb the object between projections to smear out the
systematic error in the sinogram. This can lead to notable improvements,
but it is not always feasible nor practical. Preprocessing methods work
by manipulating the projection images prior to the reconstruction, i.e., they
modify the measured data to fit the model. Post-processing methods remove
or reduce rings in the image domain after the reconstruction step. The
extended reconstruction models either implicitly or explicitly include the
detector response as an unknown quantity to be estimated along with the
attenuation function, i.e., the model is modified to fit the measured data.
However, these approaches are oblivious to intensity drift.

There exist methods that extract information about the intensity drift
from flat-field images and use this information to manipulate the measure-
ment data prior to the reconstruction. Commonly, linear interpolation based
on flat-field images is used to correct for intensity drift, provided that flat-
field images were acquired both before and after the projection images. An-
other heuristic method for estimating the intensity drift is by using air-pixel,
i.e., detector pixels that are not affected by the object in some or all pro-
jections. However, this method is only applicable if the object does not fill
the entire sinogram. Both methods can be viewed as preprocessing meth-
ods since they manipulate the sinogram prior to reconstruction of the image.
Moreover, they depend on the noisy flat-fields and air-pixels which, just as
for the detector response, may introduce systematic errors in the normalized
sinogram and consequently in the image.

6.2 Contributions
The main contributions of paper A can be summarized as follows. We pro-
pose a CT reconstruction model that allows us to jointly estimate both re-
construction image, intensity drift, and the detector response. We formulate
the model in a Bayesian framework and propose two models, an optimiza-
tion model computing the MAP estimate denoted Approximated Maximum
a Posteriori (AMAP) and a full Bayesian model denoted Approximated Pos-
terior Mean (APM).

6.3 Methods
Consider a modified version of the discretized CT model in (2.5),

y =(ω ⊗ ν) exp(−Au) , (6.1)

where y ∈ Rrp is a vector of measurements, u ∈ Rn is the vector of unknown
attenuation coefficients, ν ∈ Rr is the effective measured intensity incident
on the object, A ∈ Rrp×n is the system matrix, and ω ∈ Rp models the
time-varying intensity, i.e., ωj is the intensity at the j’th projection.
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For convenience, we introduce a change of variables

ν = diag(ν̂) exp(−v) , (6.2a)
ω = diag(ω̂) exp(−w) , (6.2b)

where v and w are the new variables and ω̂ and ν̂ are estimates presenting
prior knowledge, e.g., obtained by flat-field measurements and air-pixels.

Inserting (6.2) into (6.1) gives the extended measurement model,

y =(ω̂ ⊗ ν̂) exp(−Au − Gv − Hw) , (6.3)

where G = (1p ⊗ Ir) and H = (Ip ⊗ 1r). We can rewrite (6.3) into a linear
system of equations, i.e.,

b = Au + Gv + Hw,

where b = −(log(y) − log(ω̂ ⊗ ν̂)). To regularize the problem, we formulate
the model in a Bayesian framework and model the measurement noise as a
weighted Gaussian, i.e.,

b|u, v, w ∼ N(Au + Gv + Hw, Σb) , (6.4)

where Σb = diag(y)−1 and assign priors to u, v and w, i.e.,

u|δ ∼ N(0, δIn) (6.5a)
v|α ∼ N(0, αIr) (6.5b)
w|β ∼ N(0, βIp) . (6.5c)

For a fixed set of the hyperparameters, we can compute the AMAP estimate
by solving

minimize
u,v,w

∥Au + Gv + Hw − b∥2
Σ−1

b

+ 1
2δ

∥u∥2
2 + 1

2α
∥v∥2

2 + 1
2β

∥w∥2
2.

(6.6)

A full Bayesian model (AMP) is formulated by assigning the hyperparame-
ters with hyperpriors and use a hierarchical Gibbs sampler to compute the
posterior statistics such as posterior mean and 95% CIs.

6.4 Results
In this section we briefly summarize the main findings in paper A. We com-
pare our method to a commonly used preprocessing method proposed by
Münch et al. [37] which combines wavelet and Fourier filtering to mitigate
ring artifacts in the reconstruction. We denote a preprocessed reconstruc-
tion with the prefix P. The preprocessing method is either combined with
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Figure 6.1: Reprint of main result figure from paper A.

the conventional FBP reconstruction method or the weighted least squares
(WLS) reconstruction method which solves

minimize
u,v,w

∥Au + Gv + Hw − b∥2
Σ−1

b

,

with Σb = diag(y)−1.

Figure 6.1 demonstrates that the AMAP and APM models can reduce
artifacts and are competitive with existing methods. We note that although
the computational cost associated with the new methods exceeds the cost of
many existing methods, the extended model offers a clear advantage when
working with datasets from challenging experimental setups that are expen-
sive and/or difficult to improve.
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6.4.1 Neutron Data Experiment
The findings of paper A have all been for simulated data, and we will now
present results which have not been published elsewhere, where the proposed
models are tested on a real neutron dataset. The neutron dataset [31] has
been recorded at the IMAT Beamline at the ISIS Neutron and Muon Source
based at the STFC Rutherford Appleton Laboratory, Harwell, UK [33]. Dur-
ing data acquisition, 186 projection images were acquired using the golden
angle ratio for the projection angles with an acquisition time of 30 minutes
per projection image. Six flat-fields have been recorded; a single flat-field
before the experiment and five flat-fields after.

(a) Normalized sinogram. (b) FBP reconstruction.

Figure 6.2: Normalized sinogram in (a) and FBP reconstruction with con-
ventional flat-field correction in (b). The sinogram reveals an intensity drift
during the time of acquisition, and the FBP reconstruction is affected by
noise and source model errors. All images are displayed in display range
[−0.2, 0.6].

The normalized sinogram obtained by conventional flat-field correction
and the corresponding FBP reconstruction are depicted in Figure 6.2. The
sinogram in Figure 6.2a shows a gradual change in the intensity of the air-
pixels which is an indication that an intensity drift has occurred during
the data acquisition. The corresponding FBP reconstruction in Figure 6.2b
is affected by the source model errors. Moreover, we see that the FBP
reconstruction is of poor quality due to the low signal-to-noise ratio. Thus,
we test the different ring reduction techniques in combination with the WLS
reconstruction model instead of FBP. We extend the WLS model to include
Tikhonov regularization and non-negativity constraints [8], i.e., the prior
modeling for the WLS model is chosen as,

φ(u) = P+(u) + 1
2

∥u∥2
2,
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where
P+(u) =

{
u u ≥ 0,
0 u < 0.

APM and AMAP models are based on the Bayesian model,

b|u, v, w, λ ∼ N
(
Au + Gv + Hw, λ−1Σb

)
,

priors defined in (6.5) with the addition of a non-negativity constraint for u
(see [3] for details) and Gamma hyperpriors with αγ = 1 and βγ = 10−4 for
the hyperparameters.

Geweke p-value 95% CI
λ 0.998 [1688, 1723]
δ 0.998 [16.07, 16.36]
α 0.971 [589.2, 780.6]
β 0.952 [0.07431, 0.10986]

Table 6.1: Chain statistics for the hyperparameter chain depicted in Figure
6.4a.

(a) APM. (b) Width of 95% CI.

Figure 6.3: APM reconstruction for the neutron dataset. The posterior
mean is shown in (a) and (b) shows the width of the 95% CI.

The reconstruction for APM is shown in Figure 6.3, and chain statistics
are shown in Figure 6.4 and listed Table 6.1. Figure 6.4 shows that the
hyperparameter chains appear well-mixed which indicates that the sampler
has converged. This observation is supported by Table 6.1 where the Geweke
values are all close to one. The intensity of the APM reconstruction seems a
bit too low and some remaining ring artifacts are still visible which indicates
that, as for the simulated experiments in paper A, the Gibbs sampler has
likely converged to a too low value for the hyperparameter for the detector
response (α). Considering the width of the 95% CI in Figure 6.3b, we see a
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(a) Chains of the sampled hyperparameters.

Figure 6.4: Hyperparameter chains for the hierarchical Gibbs sampler.

high uncertainty in the pixels where the remaining ring artifacts are present
and also where the intensity is high.

(a) WLS. (b) P-WLS. (c) AMAP.

Figure 6.5: WLS (a), P-WLS (b) and AMAP (c) reconstructions for the
neutron data with air-pixel correction and different ring reduction techniques.
All images are displayed in the intensity range [−0.2, 0.6].

The reconstructions for WLS, P-WLS and AMAP are shown in Figure
6.5. We choose the hyperparameters for the AMAP model based on the
hyperparameter estimates obtained from the APM model shown in Table
6.1.

The figure shows that the quality of the reconstruction is greatly in-
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creased by using WLS with non-negativity compared to the FBP reconstruc-
tion in Figure 6.2b, but that there are still source model error present for
the WLS reconstruction. Considering the ring reduction methods in Figures
6.5b and 6.5c, it seems that both methods (P-WLS and AMAP) succeed
in reducing the ring artifacts and produce reconstructions that are similar
in quality. However, the AMAP model seems to produce a slightly more
homogeneous reconstruction compared to the P-WLS reconstruction where
low-frequency ring artifacts are observed similar to the simulation experi-
ments in paper A. Thus, the new results on real data support the findings
of paper A, namely that the AMAP model is applicable for CT reconstruc-
tion with intensity drift, and moreover that the method is competitive with
existing preprocessing methods.

6.5 Summary
In this chapter, we summarized the findings of paper A. We proposed a
new reconstruction model using a Bayesian framework that jointly estimate
both reconstruction image, intensity drift, and the detector response for CT.
In addition, we presented previously unpublished results on real data that
support the findings of paper A.
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Ring artifacts in

spectral computed
tomography

Relevant paper
B) Katrine O. Bangsgaard, Genoveva Burca, Evelina Ametova, Martin S.

Andersen and Jakob S. Jørgensen, ”Low-rank flat-field correction for arti-
fact reduction in spectral computed tomography”, Applied Mathematics
in Science and Engineering, 2023, [6].

7.1 Motivation and goals
In Chapter 6 we proposed a new reconstruction model tailored to mitigate
ring artifacts for monochromatic CT. Spectral CT is also challenged by ring
artifacts since we compute a spectral reconstruction, i.e., a reconstruction
for each energy, and the intensity for a single energy is low. Consequently,
we have a low signal-to-noise ratio which may result in severe ring artifacts
in the reconstructions. Thus, we need to employ ring reduction techniques
to compute reliable reconstructions.

Extended models for mitigating ring artifacts in spectral CT have been
proposed but they all rely on computational expensive algorithms. Conven-
tional preprocessing methods for ring reduction in monochromatic CT, as
described in Chapter 6, can also be applied to spectral CT. However, these
methods struggle when the ring artifacts are severe and may unintentionally
introduce new artifacts in the reconstructions [3].

To compute the spectral reconstructions, we need spectral flat-fields. A
spectral flat-field is a collection of flat-fields measured for each energy. The
ring artifacts arise because the spectral flat-fields are very noisy. Thus, we
need several spectral flat-fields to avoid introducing systematic errors if we
simply compute the spectral detector response as the mean of the spectral
flat-fields.
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However, for spectral CT, there is a correlation of the energy-wise mea-
surements which also appears in the spectral flat-fields. Thus, a single
spectral flat-field carries significant redundant information which can be ex-
ploited. Thus, the goal is to formulate a method for ring artifact reduction in
spectral CT by utilizing the redundant information in the spectral flat-fields.

7.2 Contributions
The main contribution of paper B can be summarized as follows. We propose
an extended flat-field model that exploits high correlation across energy-
channels in the spectral flat-fields to mitigate ring artifacts in the spectral
reconstruction.

7.3 Methods
We assume that we have m energies, r detector elements, p projection images,
s flat-field images and n pixels. The spectral CT measurement model can
be written,

yk = diag(1p ⊗ Zk) exp(−Auk) , (7.1)

for k = 1, 2, . . . , m, where uk ∈ Rn and Zk ∈ Rr are the attenuation coeffi-
cients and detector response for energy k, respectively.

Conventionally, an estimate of the spectral detector response, Ẑ ∈ Rr×m

is computed by,

Ẑ = 1
s

s∑
j=1

Fj = 1
s

(
1T

s ⊗ Ir

)
F, (7.2)

where

F =

F1
...

Fs

 ∈ Rrs×m,

is the matrix with the spectral flat-fields stacked vertically. The matrix F
is contaminated by noise and carries redundant information. Thus, we aim
to substitute F in (7.2) by a low-rank approximation which only carries the
significant information about the spectral flat-fields.

We can formulate a low-rank matrix using a singular value decomposition
(SVD). SVD is a technique that allows us to express F , and in fact any matrix
of rank q, in terms of a sum of rank-one matrices [48], i.e.,

F =
q∑

i=1
σiUiV

T
i , (7.3)
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where σi is the ith singular value that satisfies σ1 ≥ σ2 ≥ . . . ≥ σq > 0, and
Ui and Vi are the ith left and right singular vectors, respectively. The Eckart–
Young–Mirsky theorem [18] states that the best rank-l approximation of F
that solves

F l ∈ argmin
z

{∥F − Z∥F | Rank(Z) ≤ l} ,

can be computed by truncating (7.3) after the first l terms, i.e.,

F l =
l∑

i=1
σiUiV

T
i . (7.4)

Note that l is the only parameter of the method, and that this parameter can
be easily chosen by visual inspection of the singular values of the spectral
flat-fields.

7.4 Results
In this section we briefly summarize the findings of paper B. The extended
spectral flat-field model which we denote LR (Low-Rank) is tested on a
real neutron dataset. The neutron data was acquired at the Imaging and
Materials Science and Engineering (IMAT) beamline operating at the ISIS
neutron spallation source (Rutherford Appleton Laboratory, UK). [33]

We compare the LR method to two existing ring reduction techniques: a
preprocessing method proposed by Münch et al. [37] as described in Chapter
6 and a preprocessing method proposed by Vo et al. [49] that uses a combi-
nation of sorting and smoothing (non-local means) to reduce ring artifacts
by mitigating stripes in the sinogram. We denote the methods of Münch et
al. [37] and Vo et al. [49] by WF (Wavelet Fourier) and NLM (non-local
means), respectively.

All three methods are preprocessing methods and need to be combined
with a reconstruction model. We have chosen the conventional FBP and
WLS combined with TV regularization.

The results demonstrate that our proposed LR method can successfully
mitigate ring artifacts in spectral CT reconstruction. Moreover, our method
is shown to be robust, i.e., even in case of severe ring artifacts where the
conventional ring reduction methods NLM and WF struggle, our method
prevails in mitigating the ring artifacts, and in particular, our method needs
only a single spectral flat-field for ring artifact reduction whereas existing
methods need multiple spectral flat-field images to reach a similar level of
ring reduction as illustrated in Figure 7.1.
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Figure 7.1: Reprint of main result from paper B. The numbers in each row
indicate the number of flat-fields used for flat-field correction.

7.5 Summary
In this chapter, we summarized the findings of paper B. We proposed a new
extended flat-field model that utilizes redundancy in the spectral flat-fields
to mitigate ring artifacts for spectral CT, and we briefly summarized the
results of paper B.
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Relevant paper

C) Katrine O. Bangsgaard, Morten Andersen, James G. Heaf and Johnny
T. Ottesen, ”Bayesian parameter estimation for phosphate dynamics dur-
ing hemodialysis”, Mathematical Biosciences and Engineering, 2022, [4].

8.1 Motivation and goals

As described in Chapter 3, phosphate kinetics during hemodialysis may be
modeled by a diffusion process and ODEs. The parameters are patient-
specific and can potentially help clinicians tailor individual hemodialysis
treatment in the future by providing improved insight into the physiological
mechanisms and individual responses.

However, especially for single-pass, we have very few data points from
which we can estimate the physiological parameters and to our knowledge,
there has not been investigations of the uncertainty associated with the com-
puted estimates. Moreover, since the parameters can be interpreted as physi-
ological quantities, we have qualified prior knowledge such as a physiological
meaningful parameter range and mean value from previous clinical trials.
However, current models do not utilize this additional information to inform
the model.

The goal of paper C is to investigate the single- and multiple-pass models
using sampling techniques and extend them into a Bayesian framework such
that we can incorporate prior clinical knowledge into the model.
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8.2 Contributions
The main contributions of paper C can be summarized as follows. We pro-
pose a Bayesian approach for estimating patient-specific parameters for phos-
phate dynamics during hemodialysis and use UQ to assess the reliability of
our parameter estimates. We address the identifiability of the parameters
for the single- and multiple-pass and the combination of the two, denoted
combined-pass. In addition, we conduct experiments on real and synthetic
data to investigate how the parameter estimation can be improved by in-
cluding relapse measurements and / or measure consecutive sessions using
UQ.

8.3 Methods
We solve the parameter estimation problem using a Bayesian approach such
that we can incorporate prior clinical knowledge into the model and regular-
ize the parameter space. We assume that we have measurements of the blood
and dialysate volumes, i.e., Vb and Vd, such that the unknown parameters
are the phosphate concentration in the bones and the diffusion coefficients
between bone and blood, and blood and dialysate, i.e., Cs, Ks and Kb. In
addition, we also include the initial measurement of phosphate concentration
in the blood, Cb(0) as a parameter since Cb(0) is subject to measurement
noise.

We assume that the measurement noise of the measured phosphate con-
centrations b is Gaussian, i.e.,

b|u, σ2
d ∼ N

(
F (u), σ2

dIdm

)
where u ∈ R4 is the unknown parameters and initial condition for the phos-
phate concentration in the blood, b ∈ Rdm is the measured phosphate con-
centrations and F (u) ∈ Rdm is the solution to the system of ODEs in (3.1)
with d = 1 for single-pass or (3.4) with d = 2 for multiple-pass, respectively.

We equip the parameters and initial condition with Gaussian priors. For
the initial condition, we choose the Gaussian prior with mean equal to the
measurement at time zero with variance modeled by σd, i.e., we assume
that the measurement noise of the first data point is equal to the later
measured concentrations. We choose the Gaussian priors for the parameters
to incorporate clinical knowledge about the range and mean but choose to fix
the variance to ensure stability of the sampling process. We use the NUTS
sampler to sample the posterior since preliminary results showed that the
parameters had high correlation.



8.4 Results 63

8.4 Results
We have tested the Bayesian model on both real and synthetic data. The
results for the synthetic data is found in the supplementary of paper C
and show that if we use the single-pass model with fixed Cs and without
incorporating the prior clinical knowledge as commonly done, then we get
highly correlated parameter estimates for Ks and Kb with very large CIs,
see Figure 8.1. Thus, the model used for conventional parameter estimation
in hemodialysis gives estimates with high uncertainty. The corresponding
estimates for multiple-pass without clinical knowledge produced estimates
with much lower uncertainties which indicates that the multiple-pass model
is more informative about the parameters than the single-pass model.
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Figure 8.1: Reprint from the supplementary of paper C. Estimated poste-
rior for the parameters using synthetic data with fixed Cs for both single-
and multiple-pass. The orange, green and blue dots represent the samples for
single-pass, multiple-pass and combined-pass, respectively. The gray lines
and square represent the true parameter values.

Including the prior clinical knowledge through a Bayesian framework
showed to greatly decrease the uncertainty associated with the parameter
estimates and the correlation between parameters as seen in Figure 8.2. The
results show that considering multiple-pass data for estimation greatly re-
duces the uncertainty of the parameters Cs and Kb compared to single-pass
data whereas the uncertainty associated with the parameter Ks remains un-
affected by the additional knowledge provided by multiple-pass.

Lastly, investigations of synthetic and real data revealed that we can
reduce the uncertainty of the parameter estimates greatly by measuring the
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same patient for consecutive sessions whereas measurement in the relapse
phase (after ended treatment) had little impact on the parameter estimates
as illustrated in Figure 8.3.

8.5 Summary
In this chapter, we summarized the findings of paper C. We proposed a
Bayesian framework for estimating patient-specific parameters for phosphate
kinetics during hemodialysis treatment. We used UQ to compare two ex-
isting hemodialysis treatments, the conventional single-pass and the novel
multiple-pass, and we briefly summarized the results of paper C.
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Figure 8.2: Reprint from paper C. Estimated posterior for the parameters
using real data for both single- and multiple-pass. The orange, green and
blue dots represent the samples for single-pass (SP), multiple-pass (MP) and
combined-pass (CP), respectively.
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Figure 8.3: Reprint from paper C. Estimated posterior for the parameters
using real data for a patient with consecutive single-pass measurements. The
orange, green, blue and ret dots represent the samples for single-pass data
with no relapse (NR), partial relapse (PR), full relapse (FR) and lastly full
three relapse (FTR) corresponding to three consecutive sessions.
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CHAPTER9
Discussion and

Conclusion
In this Chapter, we give a brief discussion bridging the contributions and

potential future work. Lastly, we end the thesis by providing a summary and
concluding remarks.

9.1 Discussion
The general aim of the PhD project was to study Bayesian modeling for
inverse problems and apply the Bayesian framework to real life applications,
i.e., CT and hemodialysis. The two CT related papers (paper A and paper
B) were motivated by spectral neutron CT data.

In paper A, we extended the CT reconstruction model to include ad-
ditional parameters, i.e., source intensity and detector response. However,
introducing these additional parameters decreased the regularity of the prob-
lem and made the reconstruction problem significantly harder. Thus, prior
modeling was of crucial importance to obtain a high-quality solution to the
extended reconstruction problem. In particular, the non-negativity assump-
tion was needed for both the AMAP and APM models to converge to a
physical meaningful reconstruction.

In paper A, we used very simplistic priors but incorporating edge-preserv-
ing priors for the reconstruction might have a regularizing effect of the recon-
struction problem since it would enhance the piece-wise-constant behavior
which might stabilize the remaining parameters as well. We emphasize at
this point that our models are computationally expensive, thus they are only
justified for data with a low signal-to-noise ratio where the conventional pre-
processing methods struggle and start to introduce new artifacts.

The reconstruction model proposed in paper A could readily be applied
to the spectral CT case. The spectral neutron data was acquired at large
synchroton scanners where both intensity drift and ring artifacts are sources
to artifacts in the spectral reconstruction. The intensity drift and detector
response correlates across the energy-channels, thus a possible improvement
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of the extended reconstruction model for spectral CT could incorporate this
correlation through the model and/or the priors.

The extended flat-field model proposed in paper B could be viewed as
an improved prior mean and be used in combination with the extended
reconstruction model in paper A (or potentially the modified version for
spectral CT). Our Bayesian model heavily depends on the quality of the
prior model, especially when the data quality is low. Thus, we would most
likely ease the reconstruction problem significantly by improving the prior
mean.

The general challenge for Bayesian CT is the curse of dimensionality.
We have many parameters and the sampling algorithms are computational
expensive in practice. However, for biological applications such as hemodial-
ysis and blood cancer, we have fewer parameters such that the Bayesian
approach does not impose an unreasonable computational cost compared to
the standard parameter estimation methods.

Including the prior clinical knowledge in the hemodialysis model in paper
C, showed to improve the stability of the estimation process, especially for
the conventional treatment single-pass, compared to the parameter estimates
found by the conventional optimization approach in paper E. The sampling
process revealed and confirmed that the single-pass treatment without prior
knowledge is not sufficient to estimate the patient-specific parameters reli-
able. Moreover, the Bayesian approach provided valuable insight into how
the data experiments could be optimally designed.

We chose very simple Gaussian priors for the hemodialysis model mak-
ing it readily applicable to other biological applications. Potential future
work could be to apply the Bayesian approach to the blood cancer model in
paper D for parameter estimation. Moreover, it would be interesting to use
Bayesian inference to investigate if the experimental design can be optimized
by measuring the patients at different time intervals, etc.

9.2 Concluding remarks
In this thesis, we have studied a Bayesian approach to solving inverse prob-
lems. The motivation has been driven by the two real-life applications CT
and hemodialysis where conventional methods struggled to compute satisfy-
ing solutions possibly due to the lack of stability and prior modeling. Chapter
2 and 3 introduced the physics and biological mechanisms behind CT and
hemodialysis and showed, that despite their very different applications, both
applications can be narrowed down to the same problem structure described
as a discrete inverse problem. A general introduction to discrete inverse prob-
lems and to uncertainty quantification for inverse problems were presented
in Chapter 5 and 6 to provide the necessary intuition for the methods devel-
oped in papers A, B and C.
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We have developed an extended reconstruction model in paper A for
monochromatic CT that jointly estimate reconstructions and source to miti-
gate artifacts in the reconstruction. We employed a Bayesian approach and
included prior modeling to the source uncertainty. The method showed that,
in case of low signal-to-noise data, our model succeeded in mitigating ring
artifacts even when other existing methods struggled.

In paper B, we analyzed the spectral flat-fields using singular value de-
composition and the findings suggested that a low-rank approximation of
the spectral flat-fields could well-approximate the measured flat-fields. Thus,
inspired by these findings, we formulated an extended flat-field model to mit-
igate noise in the spectral flat-fields and consequently mitigate ring artifacts
in the spectral reconstructions.

Lastly, we considered the parameter estimation problem for hemodialysis
in paper C. Here we found that the prior modeling was crucial to stabilize the
parameter estimates and that the Bayesian approach elegantly incorporated
the clinical knowledge.

To summarize, we have applied the Bayesian approach for inverse prob-
lems to two very different applications and shown that the Bayesian approach
is a powerful modeling tool for inverse problems.
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Abstract
Reconstruction methods for computed tomography are often based on the
assumption that the source intensity and the detector response are known and
static. In practice, however, both are unknown and must be estimated. An
estimate of the combined source intensity and detector response is typically
obtained by acquiring a number of so-called flat-field measurements, but this
approach is oblivious to intensity drift, e.g. due to source instabilities, vibrat-
ing beamline components, etc. Discrepancies between the estimated response
and true response can lead to severe artifacts in the reconstruction, especially for
dose- and/or time-limited experiments. We propose a new, extended reconstruc-
tion model that jointly estimates the reconstruction, the detector response, and
the (possibly time-varying) source intensity. We demonstrate through simulated
experiments that the proposed reconstruction model leads to reconstructions
with significantly reduced artifacts.

Keywords: computed tomography, model errors, reconstruction methods,
intensity drift, ring artifacts

(Some figures may appear in colour only in the online journal)

1. Introduction

Absorption computed tomography (CT) is a non-invasive imaging technique that makes it pos-
sible to obtain cross-sectional images of the interior of an object from a set of projection images.
The projection images are formed by illuminating an object in different orientations by radia-
tion from a source (e.g. x-ray or neutron radiation) and recording the attenuated radiation using
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a detector. The attenuation is material-specific and obeys Lambert–Beer’s law which charac-
terizes the attenuation of a beam of radiation as it propagates through a material or medium [8].
The problem of computing a spatial attenuation image from the projection images is an inverse
problem that is commonly referred to as a reconstruction problem. Numerous reconstruction
algorithms exist and, roughly speaking, each algorithm corresponds to a reconstruction model
with different underlying assumptions.

Most reconstruction models rely on the assumption that the source intensity and the detector
response are known. In practice, however, these are typically estimated from a set of flat-field
measurements (also known as white-fields) which are simply projection images acquired with-
out an object in the scanner [23]. The flat-field images contain noise due to the statistical nature
of the radiation and the absorption process, and this noise can give rise to a type of reconstruc-
tion artifacts known as ring artifacts [16]. Such artifacts can mask important features in the
reconstruction [21], and they may arise, e.g. if only a few flat-field images are available, if the
exposure time is short, and/or if the source intensity is low [1].

The assumption that the source intensity is known is typically violated if the source intensity
varies during the data acquisition process. For example, intensity drift may occur because of
source instabilities, vibrating beamline components, time-varying detector properties, or other
factors disturbing the stationarity of the experiment [25]. The resulting mismatch between the
reconstruction model and the underlying physics introduces systematic model errors which, in
turn, can lead to reconstruction artifacts that compromise diagnostic or quantitative measures
of image quality.

Existing methods for ring artifact reduction can be divided into four main categories:
(i) acquisition methods, (ii) preprocessing methods, (iii) postprocessing methods, and (iv)
reconstruction methods based on extended models. Roughly speaking, acquisition methods
mitigate the systematic errors that lead to ring artifact by perturbing the projection geome-
try between consecutive projections [10]. This can lead to notable improvements, but it is not
always feasible nor practical. Preprocessing methods work by manipulating or filtering the pro-
jection images prior to the reconstruction [17, 26], and postprocessing methods are designed to
remove or reduce rings in the image domain after the reconstruction step [20, 23, 27, 28]. The
extended reconstruction models either implicitly or explicitly include the detector response as
an unknown quantity to be estimated along with the attenuation function [1, 19, 22, 24]. A
common trait of all the aforementioned approaches is that they are oblivious to intensity drift.

Existing methods for combating artifacts that arise because of intensity drift may be viewed
as preprocessing methods that extract information about intensity drift from flat-field images
[18, 25] and use this information to manipulate the measurement data prior to the reconstruc-
tion. Moreover, the parts of the projection images that are not affected by the object of interest
are essentially flat-field measurements that can be used to estimate the time-varying intensity.
We will refer to such measurements as ‘air pixels’ since they correspond to rays that only travel
through air.

To address the limitations of existing methods, we propose a new reconstruction model that
treats both the (possibly time-varying) source intensity and the detector response as unknown
model parameters along with the unknown attenuation of the object of interest. The model
generalizes the reconstruction methods of Aggrawal et al [1] and Salehjahromi et al [22], and
it includes an array of other models as special cases.
Outline. Section 2 introduces our model assumptions, and we discuss how the implicit assump-
tions inherent in many existing models can lead to reconstruction artifacts. In section 3, we
propose a new, extended reconstruction model, and we outline a Bayesian reconstruction
framework that allows the inclusion of suitable priors. We also discuss different strategies for

2
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selecting a set of hyperparameters. Section 4 contains some numerical experiments based on
simulated data, and section 5 includes a discussion and concludes the paper.
Notation. The set Rn is the n-dimensional Euclidean space, Rn

+ is the non-negative orthant of
R

n, and R
m×n denotes the set of real-valued m × n matrices. Lower case letters denote vectors,

and x = vec(X) is the vector obtained by stacking the columns of the matrix X. If x is a vector in
R

n, then diag(x) ∈ R
n×n denotes the diagonal matrix with the elements of x on its diagonal, and

the functions log(x) and exp(x) are defined as an elementwise operation. The identity matrix is
denoted by I, the vector 1 is a vector of ones, and ei denotes the ith canonical basis vector; the
dimension can be inferred from the context. Given two matrices A and B, A ⊗ B denotes the
Kronecker product of A and B. Finally, ‖ · ‖2 denotes the Euclidean norm and ‖ · ‖F denotes
the Frobenius norm.

2. Extended reconstruction model

2.1. Measurement model

We start by introducing an extended measurement model that may be derived from the Lam-
bert–Beer law by including the detector response and a time-varying source intensity. We will
assume that the set of measurements consists of p images y1, . . . , yp ∈ R

r, each of which has
been acquired using a detector with r detector elements. We associate with the jth image a
tuple (t j, θ j, δ j) where t j is the acquisition time, θ j is the projection angle, and δ j is a binary
variable that indicates whether the jth image is a projection image (δ j = 1) or a flat-field image
(δ j = 0). We will denote by s the total number of flat-field images, i.e.

s =
p∑

j=1

(1 − δ j).

Now, using the Lambert–Beer law, we express the intensity of the incident radiation on
detector element i at time t j as

Ii(t j, θ j) = I0νiψ(t j) exp

(
−δ j

∫
�i(θ j)

μ(x)dx

)
, i = 1, . . . , r, (1)

where μ : Rd →R+ is a spatial attenuation function, I0 denotes the nominal source intensity,
the vector ν = (ν1, . . . , νr) models the detector response (including any effects due to the direc-
tion of incidence), the function ψ : R→ R+ models a time-varying intensity, and li(θ j) is the
line segment between the source and the ith detector element for the jth projection angle.

The integral in (1) is discretized by introducing a parameterization of the attenuation
function of the form

μ(x) =
n∑

k=1

ukχk(x), (2)

where u ∈ R
n is a vector of unknown parameters (e.g. pixel or voxel values) and

χ1(x), . . . ,χn(x) are basis functions. For example, a parameterization based on a rectilinear
grid with nearest-neighbor interpolation corresponds to χk(x) being an indicator function that
takes the value 1 if x is inside the kth pixel or voxel and 0 otherwise. The parameterization (2)
allows us to express the line integral in (1) as∫

�i(θ j)
μ(x)dx = eT

i A ju,

3
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where A j ∈ R
r×n is the matrix with entries

(A j)ik = δ j

∫
�i(θ j)

χk(x) dx, i = 1, . . . , r, k = 1, . . . , n.

Note that Aj = 0 if the jth image is a flat-field measurement (i.e. δ j = 0). Our discretized
forward model may now be expressed as

Ii(θ j) = I0νiω j exp(−eT
i A ju), i = 1, . . . , r, j = 1, . . . , p,

where ω j = ψ(t j) and ω = (ω1, . . . ,ωp). Equivalently, if we define ȳ j = (I1(θ j), . . . , Ir(θ j)),
then

ȳ j = I0ω j diag(ν) exp(−A ju), j = 1, . . . , p.

To simplify our notation in subsequent derivations, it is convenient to make a change of
variables. Specifically, we define

I0ν = diag(ν̂) exp(−v) (3)

ω = diag(ω̂) exp(−w), (4)

where v ∈ R
r and w ∈ R

p are the new variables, and the vectors ν̂ ∈ R
r
++ and ω̂ ∈ R

p
++ are

given. Our forward model may then be expressed as

ȳ j(u, v,w; ν̂, ω̂) = ω̂ j diag(ν̂) exp(−A ju − v − 1w j), j = 1, . . . , p,

or equivalently, in vectorized form,

ȳ(u, v,w; ν̂, ω̂) = diag(ω̂ ⊗ ν̂) exp(−Au − Gv − Hw), (5)

where G = 1 ⊗ I and H = I ⊗ 1, and A is the vertical concatenation of A1, . . . , Ap such that
ȳ ∈ R

rp. We will simply write ȳ(u, v,w) instead of ȳ(u, v,w; ν̂, ω̂) whenever the vectors ν̂ and ω̂
are assumed to be given. We will refer to ȳ as an augmented, raw sinogram, since the sinogram
in conventional CT does not include the flat-field images. Figure 1(a) shows an example of
an augmented, raw sinogram for a simulated experiment with a time-varying intensity and
with projections acquired using the golden angle radial sampling [15] and periodic flat-field
samples.

The forward model (5) does not take the statistical nature of the photon arrival process into
account [8]. A common assumption in tomographic imaging is that the measurements obey
Poisson distributions whose means are prescribed by the Lambert–Beer law. Adopting this
assumption, we will model the jth image, y j, as a sample of a random variable y j with the
conditional distribution

y j|u, v,w ∼ Poisson(ȳ j(u, v,w)). (6)

Denoting the conditional probability of observing y j by π(y j|u, v,w), the log-likelihood may
be expressed as

log(π(y j|u, v,w)) = −1T ȳ j(u, v,w) + yT
j log(ȳ j(u, v,w)) − 1T log(y j!), (7)

where the logarithm and factorial functions are applied elementwise.

4



Inverse Problems 37 (2021) 085009 K O Bangsgaard and M S Andersen

Figure 1. Illustration of measurements. (a) Shows an augmented raw sinogram for a
simulated experiment with a time-varying intensity and golden angle radial sampling
and periodic flat-field measurements (flat-fields are measured for every 200 projections).
(b) Shows the raw sinogram without the flat-field projections, and (c) is the augmented
raw sinogram with the flat-field projections in the beginning and the remaining projec-
tions ordered by angle. Finally, (d) is the raw sinogram ordered by angle but without
flat-field projections.

2.2. Conventional reconstruction approach

Before we turn our attention to a Bayesian extension of the measurement model (6), it is instruc-
tive to see how a number of existing reconstruction models may be derived as special cases.
This also allows us to illustrate when and how existing methods may fall short. The conven-
tional approach is to estimate the flat-field, intensity drift, and the attenuation image separately.
We now outline how each of these estimation problems is related to the model assumption (6).
Flat-field estimation. Perhaps the most common approach to flat-field estimation is to com-
pute the empirical mean of the flat-field images. This estimate may be viewed as a maximum
likelihood (ML) estimate based on the flat-field images. Specifically, in terms of our extended
model (6), it corresponds to the assumptions that v = 0, w = 0, and ω̂ = 1 such that

ν̂ = argmin
ν

⎧⎨⎩−
p∑

j=1

(1 − δ j) log π(y j|u, v = 0,w = 0; ν, ω̂ = 1)

⎫⎬⎭
=

1
s

p∑
j=1

(1 − δ j)y j. (8)

Note that the vector u does not affect this estimate since only flat-field images are included
in the estimation problem.

5
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Intensity estimation based on flat-field images. Sometimes the flat-field images may also be
used to estimate variations in the intensity. For example, a common heuristic is to use linear
interpolation to correct for intensity drift, provided that flat-field images were acquired both
before and after the projection images. Here we outline a somewhat more formal and flexible
approach based on ML estimation and our statistical model (6). We will assume that a flat-
field estimate ν̂ is available, and we will assume a parametric representation ω̂ = ω(α) where
α ∈ R

l is a vector of parameters. An ML estimate of α, based on only the flat-field images,
may then be expressed as

α̂ = argmin
α∈Rl

⎧⎨⎩−
p∑

j=1

(1 − δ j) log π(y j|u, v = 0,w = 0; ν̂,ω(α))

⎫⎬⎭ . (9)

This problem is convex if ω(α) is an affine function of α. For example, linear regression
(LR) corresponds to the special case where ω(α) =

[
1 t

]
α with α ∈ R

2. In this case, the
estimate (9) may be expressed as

α̂ = argmin
α∈R2

⎧⎨⎩
p∑

j=1

(1 − δ j)1T
((
α1 + t jα2

)
ν̂ − y j log

(
α1 + t jα2

)⎫⎬⎭ . (10)

Only the flat-field samples contribute to the sum in both (9) and (10), so these estimates are
independent of u.
Intensity estimation based on air pixels. Another heuristic technique for estimating intensity
variations is applicable when the object of interest does not fill the sinogram, i.e. there are ‘air
rows (AR)’ on either or both sides of the object in some or all projections. In this case, we can
use the flat-field projections and additional measurements that are essentially flat-field mea-
surements to estimate ω. Elements of the sinogram that correspond to flat-field measurements
may be identified manually or by means of segmentation. To identify the flat-field measure-
ments, we define a binary mask C ∈ R

r×p such that Ci j = 1 if δ j = 0 (i.e. the jth projection
is a flat-field projection) or if the ith pixel of the jth projection is essentially a flat-field mea-
surement, and otherwise Ci j = 0. We then arrive at an ML estimate of the form ω(α̂) where

α̂ = argmin
α∈Rl

{
p∑

i= j

cT
j

(
ν̂ω j(α) − y j log(ω j(α))

)}
, (11)

and where c j denotes the jth column of C. Note that (9) is obtained as a special case of (11) by
letting c j = (1 − δ j)1.
Attenuation image estimation. Given some estimates ν̂ and ω̂, the distribution of the
measurements y, conditioned on u, may be expressed as

π(y|u) =
p∏

j=1

π(y j|u, v = 0,w = 0; ν̂, ω̂).

This allows us to estimate the attenuation image from the projection images, e.g. as an ML
estimate

û = argmin
u

{− log π(y|u)},

6
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which is a convex problem. A common variation on this approach is to use a Gaussian approxi-
mation of the likelihood function which may also be viewed as constructing a quadratic approx-
imation of the log-likelihood function. Specifically, if we define b = log(ω̂ ⊗ ν̂) − log(y), the
resulting approximation may be expressed as

û ∈ argmin
u

{
1
2
‖Au − b‖2

̂Σ−1

}
, Σ̂−1 = diag(y), (12)

which is a weighted least-squares (WLS) problem.
Effect of estimation errors. The conventional reconstruction approach that we have just out-
lined can easily be extended to include suitable priors on the attenuation function u, the flat-field
ν, and/or the time-varying intensity ω. The inclusion of priors allows us to make use of maxi-
mum a posteriori (MAP) estimation or sampling methods such as Markov chain Monte Carlo
(MCMC) instead of ML estimation. However, the outlined approach, with or without priors, is
essentially a three-stage procedure: the estimation of ν̂, ω̂, and û is not performed jointly but
separately. Roughly speaking, this approach can be expected to work well when the flat-field
images are many and/or have a high signal-to-noise ratio, allowing us to obtain high-accuracy
estimates of ν̂ and ω̂. However, in noisy imaging environments (e.g. imaging with low dose
and/or short exposure), the sequential approach may introduce systematic errors in û, as we
will now demonstrate with an example based on the WLS estimator (12).

To illustrate the effect that inaccurate flat-field and intensity estimates have on b, we start
by rewriting b. It follows from the variable transformations (3) and (4) that

v = log(ν̂) − log(I0ν), w = log(ω̂) − log(ω),

and if we express y as y = diag(ȳ) exp(−e), we may decompose b as

b = log(ω̂ ⊗ ν̂) − log(y)

= log(ω ⊗ (I0ν)) − log(ȳ) + e + Gv + Hw

= b̄ + e + Gv + Hw. (13)

Here b̄ represents noise-free measurements (i.e. b̄ = Au), e is a vector that represents mea-
surement noise, and the terms Gv and Hw are systematic errors due to flat-field and intensity
estimation errors, respectively. Figure 2 shows an example of what these terms may look like
for a simulated set of measurements with a time-varying source intensity. As can be seen from
the figure, the error terms that arise because of flat-field and intensity estimation errors are
highly systematic in nature.

The decomposition of b in (13) allows us to analyze the effect of the different error terms
when a linear reconstruction operator is applied to b. Examples of linear reconstructions
operators include WLS estimator (12) and filtered backprojection (FBP). Figure 3 shows the
FBP reconstructions of the individual terms in the decomposition of b. This example demon-
strates that model errors propagate to the reconstruction when the underlying assumptions are
violated, e.g. ignoring a time-varying intensity and/or flat-field errors.

2.3. Bayesian hierarchical model

We now turn our attention to a Bayesian hierarchical model that is based on the extended mea-
surement model (6), i.e. we will assume that the detector response and intensity drift are inde-
pendent and that the measurements are Poisson with the mean determined by Lambert–Beer’s
law.

7
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Figure 2. Illustration of the error terms in (13) introduced by conventional flat-field
correction.

Figure 3. FBP reconstruction of the error terms in (13). The measurement noise, e
appears as random noise as expected and the flat-field error, Gv appears as concentric
rings in the reconstruction. The contribution from the intensity drift, Hw, is smeared
out with varying intensity affecting all the pixels in the reconstruction, especially in the
top left and bottom right corner of the reconstruction. The FBP reconstruction of the
sum of the error components is depicted in the most right image, illustrating that they
significantly degrade the quality of the reconstruction.

In order to formulate a Bayesian hierarchical model, we treat u, v and w as independent
random variables with suitable prior distributions, say, π(u|δ), π(v|α), and π(w|β) where
δ, α, and β represent independent hyperparameters with hyperpriors π(δ), π(α), and π(β).
Let x = (u, v,w) and η = (δ,α, β) represent the model parameters and hyperparameters,
respectively. Using Bayes’ rule, the joint posterior distribution of our parameters and hyperpa-
rameters may be expressed as

π(x, η|y) =
π(y|x)π(x|η)π(η)

π(y)
. (14)

8
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This distribution may be used to compute point estimates (MAP, ML, posterior mean) and
interval estimates (credible intervals) which, in turn, provide a useful, interpretable visual
summary of the uncertainty of the model parameters. The MAP and ML point estimates gener-
ally require the solution of an optimization problem whereas the computation of the posterior
mean and interval estimates typically involve multidimensional integration. In practice, sam-
pling methods such as MCMC are often used to approximate multidimensional integrals,
thus avoiding deterministic numerical integration methods that are subject to the curse of
dimensionality.

The choice of priors plays a crucial role in that it provides regularization for an otherwise
ill-posed inverse problem [13]. Several methods exist for selecting or estimating the hyperpa-
rameters when the hyperpriors are omitted, e.g. the GCV and L-curve criteria [13]. However,
the use of the full posterior with weakly informative hyperpriors allows us to obtain useful
statistical information about the hyperparameters through samples from the posterior distribu-
tion. This may come at the cost of a significant increase in computational cost, e.g. if a large
optimization problem must be solved for each sample [3].

To address the computational cost associated with sampling in CT problems, we also pro-
pose an approximate posterior distribution that, with certain choices of priors and hyperpri-
ors, may be cheaper to sample from than the posterior (14). Specifically, we will replace
the Poisson likelihood π(y|x) (see (6)) by a Gaussian approximation π̃(b|x) where we define
b = log(ω̂ ⊗ ν̂) − log(y) as in (13) and let

b|x ∼ N(Mx,Σb), Σb = diag(y)−1, M =
[
A G H

]
. (15)

The derivation is included in appendix A. The resulting posterior then satisfies

π̃(x, η|b) ∝ π̃(b|x)π(x|η)π(η). (16)

We end this section by mentioning that both the model of Aggrawal et al [1] and that of
Salehjahromi et al [22] may be viewed as special cases of the hierarchical model (14). Specif-
ically, the model of Aggrawal et al [1] corresponds to the assumption that the prior on v is a
gamma distribution and that ω̂ = 1 and w = 0. Furthermore, the so-called SWLS reconstruc-
tion model may be viewed as a special case based on the approximation (16). In other words,
the reconstruction models of Aggrawal et al [1] include the flat-field but ignore intensity drift.
Similarly, the model of Salehjahromi et al [22] can be expressed as a special case of (16) with
ω̂ = 1 and w = 0 and specific priors on u and v. Specifically, it corresponds to a Laplace prior
on the elements of v and a Gibbs prior on u that is derived from a particular directional total
variation penalty that discourages ring artifacts. The fact that both models are special cases of
our extended model implies that both models can readily be extended to include a time-varying
intensity.

3. Implementation

3.1. Choice of priors and hyperpriors

The likelihood function associated with the Poisson measurement model (6) and its Gaussian
approximation π̃(b|x) are log-concave in x. Thus, the posterior will also be log-concave if
we choose a log-concave prior. To simplify the exposition, we will limit our attention to the

9
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Gaussian approximation (16) which is used for the numerical experiments in section 4. A con-
venient prior on x is a Gaussian prior of the form x|η ∼ N(0,Σx(η)) with hyperparameters
η = (δ,α, β) and covariance matrix

Σx(η) = blkdiag(δ−1Σu,α−1Σv , β−1Σw), (17)

where Σu ∈ R
n×n, Σv ∈ R

r×r, and Σw ∈ R
p×p are symmetric and positive definite. This is a

conjugate prior for the Gaussian likelihood, and it yields the conditional posterior

x|b, η ∼ N((MTΣ−1
b M +Σx(η)−1)−1MTΣ−1

b b, (MTΣ−1
b M +Σx(η)−1)−1), (18)

which we will denote π̃(x|b, η). This distribution coincides with the distribution of the solution
to the stochastic quadratic problem

x(ξ) = argmin
x

{
1
2
‖Mx − b‖2

Σ−1
b

+
1
2
‖x‖2

Σx (η)−1 − ξT x

}
, (19)

where ξ ∼ N(0, MTΣ−1
b M +Σx(η)−1), which suggests that samples can be approximated by

computing inexact solutions to instances of this problem. Indeed, the gradient scan Gibbs sam-
pler (GSGS) [11] produces samples that are asymptotically distributed according to the target
distribution (18) by applying a small, fixed number of iterations of the conjugate gradient
method to instances of (19).

In order to form the full approximate posterior π̃(x, η|b), we need to define a prior on the
hyperparameters η. The gamma distribution is a conjugate prior, and hence it is a convenient
choice. We define π(η) = π(δ)π(α)π(β) where

δ ∼ Gamma(αγ , βγ), α ∼ Gamma(αγ , βγ), β ∼ Gamma(αγ , βγ), (20)

and we will assume that the shape parameter αγ and the inverse scale parameter βγ are known
(e.g. αγ = 1 and βγ = 10−4, as suggested in [3], which yields an exponential distribution with
rate βγ). The posterior distribution of η, conditioned on x, may then be expressed as the product
π(η|x) = π(δ|u)π(α|v)π(β|w) where

π(δ|u) ∝ δn/2+αγ−1 exp

(
−δ

(
1
2

uTΣ−1
u u + βγ

))
(21a)

π(α|v) ∝ αr/2+αγ−1 exp

(
−α

(
1
2
vTΣ−1

v v + βγ

))
(21b)

π(β|w) ∝ βp/2+αγ−1 exp

(
−β

(
1
2
wTΣ−1

w w + βγ

))
. (21c)

As an alternative to the Bayesian hierarchical model (16) with the priors (18) and (20),
we also consider an implicit prior that restricts u to be nonnegative. Following the approach
by Bardsley and Fox [5] and Bardsley and Hansen [6], we then define the conditional poste-
rior π̃(x|b, η) ∝ π̃(b|x)π(x|η) as the distribution of the solution to the constrained stochastic
quadratic problem

x(ξ) = argmin
x∈C

{
1
2
‖Mx − b‖2

Σ−1
b

+
1
2
‖x‖2

Σx (η)−1 − ξT x

}
, (22)

where ξ ∼ N(0, MTΣ−1
b M +Σx(η)−1) and C = R

n
+ × R

r × R
p. The resulting conditional pos-

terior may be viewed as a mixture of two distributions: a truncated Gaussian, defined on the
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interior of C, and a distribution on the boundary of C that is obtained from (18) by transport-
ing the mass outside C to the boundary of C. A sample from π̃(x|b, η) can be computed by
solving (22) for a random realization of ξ. We note that without the constraint x ∈ C in (22),
the prior reduces to the explicit prior x|η ∼ N(0,Σx(η)), resulting in the conditional posterior
(18). Finally, with the nonnegativity assumption, we replace the conditional posterior (21a) by

π(δ|u) ∝ 1Rn
+

(u)δn̄/2+αγ−1 exp

(
−δ

(
1
2

uTΣ−1
u u + βγ

))
, (23)

where

1R
n
+

(u) =

{
1, u ∈ R

n
+,

0, u /∈ R
n
+,

is the characteristic function associated with the nonnegative orthant and n̄ is the number of
nonzeros in u; see [5] for details. Both (21b) and (21c) remain unchanged.

3.2. Two-stage hierarchical Gibbs sampler

The hierarchical Gibbs sampler [9] is a natural choice for our hierarchical model due to the
availability of the full conditionals, i.e. (18) and (21) or, with the nonnegativity assumption,
(22), (23), (21b), and (21c). In both cases, the conditional posterior of x is a high-dimensional
distribution, and to mitigate the high cost of sampling with direct methods, we will compute
inexact solutions to (19) or (22) using an iterative method. Specifically, we will use FISTA
[7] with a fixed number of iterations and using the previous sample, xk, as initialization. On a
conceptual level, the resulting sampler is very similar to the GSGS, but unlike the conjugate
gradient method used in the GSGS, FISTA can readily be applied to both the unconstrained
problem (19) and the constrained problem (22). We note that terminating FISTA after a fixed
number of iterations incurs an approximation error, and hence the resulting Markov chain may
not have the exact target distribution as its stationary distribution. The resulting two-stage hier-
archical Gibbs sampler is shown in algorithm 1. We note that it is parameter-free in the sense
that there is no need to tune or estimate the hyperparameters η. In fact, it is sufficient to initial-
ize x (e.g. using FBP or some point estimate) since the hyperparameter vector η1 only depends
on x0.

4. Numerical experiments

We now turn to a numerical investigation of our proposed extended reconstruction models.
We will consider reconstructions based on four different methods. The first method is an
approximate MAP (AMAP) reconstruction based on (22) with ξ = 0, i.e. it is the mode of
the conditional posterior x|b, η under the assumption that u is nonnegative1. The second recon-
struction method that we will explore is based on the mean of x, η|b, also with the nonnegativity
assumption on u. We will refer to this as an approximate posterior mean (APM) reconstruc-
tion. Note that the AMAP reconstruction method depends on η and involves the solution of an
optimization problem. By contrast, the APM reconstruction method estimates x and η simul-
taneously using algorithm 1, and it requires an inexact solution of an optimization problem

1 The variant of our reconstruction models that include a nonnegativity assumption on the attenuation image outper-
formed the unconstrained counterpart in all of our experiments, and hence we limit the presentation of our experimental
results to those obtained with the nonnegativity assumption.
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Algorithm 1. Two-stage hierarchical Gibbs sampler.

Table 1. Reconstruction methods used in experiments.

Abbreviation Reconstruction method

AMAP Approximate MAP est.; FISTA applied to (22) with ξ = 0
APM Approximate posterior mean est.; algorithm 1 with nonnegativity
FBP Filtered backprojection
P-FBP Filtered backprojection with preprocessing

in each iteration. In all experiments, we have used 20 iterations of FISTA to compute inex-
act solutions to (19) in algorithm 1. We will compare our reconstructions to those obtained
using FBP with and without a sinogram preprocessing step based on the wavelet and FFT
filtering approach proposed by Münch et al [17]. In all experiments with preprocessing, we
used the damping factor 0.9 and the Daubechies 5 wavelet with a three-level decomposition;
see [17] for details. We will use the shorthand notation P-FBP to refer to the FBP algorithm
with preprocessing. Table 2 contains an overview of the four reconstruction methods and their
abbreviations.

In all of the models, we define b = log(ω̂ ⊗ ν̂) − log(y) with the implicit assumption that
y, ω̂, and ν̂ are positive vectors. We use (8) to compute ν̂, and to address the intensity drift,
we consider four different ways of estimating ω̂, as outlined in table 3. The first option is ‘no
correction (NC)’ (i.e. ω̂ = 1), and the second option is to use the linear parametric model (10).
The third option uses the more general model (11) with a binary matrix C ∈ R

r×p defined as
a Ci j = 1 − δ̃iδ j where δ̃i ∈ {0, 1} indicates whether the ith detector pixel is influenced by the
object of interest (δ̃i = 1) or provides direct flat-field measurements in all projections (δ̃i = 0).
In other words, the estimation of ω relies on flat-field projections and a set of ‘AR’ of the
augmented, raw sinogram. In all experiments with this parameterization, we include the first
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Table 2. Intensity estimates based on (11).

Method Abbreviation Parameterization Binary mask

No correction NC ω(α) = 1 N/A
Linear regression LR ω(α) =

[
1 t

]
α Ci j = 1 − δ j

Air rows AR ω(α) = α Ci j = 1 − δ̃iδ j

Baseline B ν̂ = ν, ω̂ = ω N/A

and last five rows of the augmented, raw sinogram (i.e. we define δ̃i = 1 for i = 6, . . . , r − 5,
and otherwise δ̃i = 0). As a fourth option, we use the ground truth ν̂ = ν and ω̂ = ω as a
baseline (B) to illustrate the effect of perfect knowledge of the detector response and intensity
drift.

We report our results from two simulated experiments. The first experiment compares recon-
structions based on our extended models, AMAP and APM, to those obtained using FBP
and P-FBP. The second experiment investigates the statistical properties of our reconstruc-
tion method by comparing the reconstruction quality for reconstructions obtained with FBP,
P-FBP, and AMAP based on 100 realizations of the measurements.

Before presenting our results in sections 4.3 and 4.4, we briefly present some error measures
and outline our simulation setup.

4.1. Quantitative error measures

In addition to our qualitative assessment based on a visual comparison of the reconstructions,
we will report two quantitative error measures. The first one is the relative attenuation error
(RAE), defined as

RAE(û) =
‖û − u‖2

‖u‖2
, (24)

where û is the estimated reconstruction and u is the ground truth. The second error measure is
the relative source intensity error (RSE), defined as

RSE(ν̂, ω̂) =
‖ν̂ω̂T − νωT‖F

‖νωT‖F
, (25)

where ν̂ and ω̂ are the estimated detector response and time-varying intensity, respectively. We
will also visualize the elementwise absolute error for both reconstruction and sinogram, i.e.
û − u and ν̂ω̂T − νωT , respectively.

In the experiments where several samples are available, we assess the statistical proper-
ties of the results by visualizing the sample mean and the empirical 95% credibility interval
(CI). The latter is defined by the empirical 0.025 and 0.975 quantiles of the samples. For the
reconstructions, we visualize this as an image of the pixelwise width of the interval (i.e. the
difference between the 0.975 quantile and the 0.025 quantile).

To assess the convergenceof our Gibbs sampler (algorithm 1), we use the Geweke diagnostic
[12] which tests for equality of means based on two subsets of samples, one from the beginning
of the chain and one from the end. We will also show the hyperparameter chains and histograms
of these, allowing us to qualitatively assess the convergence of the hyperparameter chains [4].
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Figure 4. Phantom, the detector response and source intensity used to generate the
simulated data for the numerical experiments.

4.2. Experimental setup

In order to assess the ability of our model to mitigate artifacts due to flat-field estimation errors
and intensity drift, we simulate an experimental setup in which the source intensity is relatively
low and subject to significant drift. Such an experimental setup often presents a significant
challenge to existing reconstruction methods and may lead to severe reconstruction artifacts if
the source uncertainty is ignored. We simulate a parallel beam projection geometry with 720
equidistant projection angles from 0 to 180 degrees, a detector with 200 detector elements, and
a 2 × 2 cm reconstruction domain discretized into a 140 × 140 pixel grid (i.e. n = 1402). To
avoid committing an inverse crime, we generate the data using a finer grid (280 × 280 pixels).

The number of flat-field measurements vary between the experiments. In the first experi-
ment, we simulate two flat-field projections prior to the scan and a single flat-field projection
after the scan (i.e. p = 723). In the second experiment, we only have two flat-field projections
prior to the scan (i.e. p = 722). We use the MATLAB package AIR Tools II [14] to generate the
phantom and the augmented system matrix. In all simulations, we use the ‘threephases’ phan-
tom, shown in figure 4(a). The true flat-field is generated by simulating I0ν i ∼ Poisson(103),
and the source intensity drift, ω(t), is given by the fifth degree polynomial2

ω(t) = 0.798t5 − 2.580t4 + 3.441t3 − 2.311t2 + 0.396t + 1.2629, t ∈ [0, 1].

Both Ioν and ω(t) are shown in figure 4(b).

4.3. Intensity drift correction

We start by investigating how the different intensity drift correction methods, listed in table 3,
impact the reconstructions obtained using the four methods in table 2. Figure 5 shows the sino-
gram for the four different intensity drift estimation methods. Without intensity drift correction,
the absolute error grows toward the end of the scan due to the decreasing intensity.

The LR estimate reduces the overall magnitude of the error, but the horizontal gradient in the
visualization of the absolute error reveals that the error has a significant systematic component.
The ‘air row’ (AR) estimate uses additional information for the estimation of the intensity drift,

2 The intensity drift was obtained from a real data set by fitting a fifth degree polynomial to the mean of a set of air
rows in the sinogram. We were not able to include this data set due to license restrictions.
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Figure 5. Visualization of the sinogram and the pixelwise absolute error for each of the
four different source intensity correction methods listed in table 3.

Table 3. RAE and RSE for the intensity drift correction experiment depicted in
figure 6.

RAE

FBP P-FBP APM AMAP RSE

NC 0.459 0.409 0.235 0.193 0.304
LR 0.312 0.262 0.227 0.192 0.102
AR 0.313 0.257 0.225 0.188 0.080
B 0.246 0.259 0.216 0.181 0.068

and the resulting estimate yields a more accurate sinogram. However, as can be seen from the
visualization of the error, it has introduced some vertical stripes in the sinogram. These are
due to the noise in the measurements and can possible be mitigated by including a suitable
smoothness prior in the intensity drift estimation problem (11). Figure 5 also includes the
B correction where the effect of estimation errors is eliminated completely. As a result, the
error does not have a systematic component, only independent measurement noise. The RSE
associated with each of the four intensity drift estimates are included in table 4. These numbers
verify that the RSE decreases from left to right in figure 5. Note that the most significant
decrease in the RSE occurs when going from NC to the LR correction. Both the LR and AR
correction are relatively close to the B in terms of their RSE.

Next, we consider the reconstructions which are shown in figure 6 with the corresponding
RAEs listed in table 4. Recall that the AMAP reconstruction depends on the hyperparameters
η = (δ,α, β). We used the sample mean of the hyperparameter chains produced by algorithm
1 as an initial estimate of the hyperparameters for AMAP. These values generally resulted in
slightly underregularized reconstructions that were similar to the APM reconstructions, and
we were able to improve the AMAP reconstruction by increasing δ and α relative to the mean
of the sampled hyperparameters. The hyperparameters used for the AMAP reconstructions are
listed in table 5.
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Figure 6. Visualization of the reconstruction obtained by FBP, P-FBP, APM and AMAP
for the four different intensity drift correction methods.

Table 4. Hyperparameters used for AMAP reconstructions depicted
in figure 6.

δ α β

NC 11.48 1.292 × 104 2.830 × 101

LR 11.62 1.547 × 104 8.279 × 102

AR 11.63 2.672 × 104 1.726 × 103

B 11.52 7.603 × 104 2.221 × 105

It is clear from the reconstructions in figure 6 that, to a large extent, the P-FBP reconstruction
method mitigates ring artifacts. However, both the FBP and P-FBP reconstructions contain
noticeable drift artifacts, especially without intensity correction (i.e. ω̂ = 1). The LR and AR
estimates reduce the drift artifacts for both methods which can be verified both visually and
in terms of the RAEs. Unsurprisingly, the best FBP and P-FBP reconstructions are obtained
with the B intensity estimate, and in this case, the FBP reconstruction is marginally better that
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Figure 7. Visualization of the absolute errors for the reconstructions in figure 6.

the P-FBP one. The reason for this is that the preprocessing used in P-FBP is unnecessary and
may introduce errors.

Unlike the FBP and P-FBP reconstructions, the APM and AMAP reconstructions are not
very sensitive to the intensity drift estimate. This is not surprising since the two reconstruction
models are based on the same extended model. This is a clear advantage as the LR and AR
estimates rely on the availability of temporal information in the form of, e.g. flat-field images
before and after the regular projections and/or entire rows of air pixels. The results demonstrate
that the extended model can yield a significant reduction in ring and drift artifacts, although
both the APM and AMAP reconstructions contain a faint ring or disc-like artifact in the center.
This can be seen more clearly from the error images included in figure 7, and it is consistent
with the analysis of the effect of flat-field estimation errors by Aggrawal et al [1]. The AMAP
reconstructions appear to be somewhat less noisy that the corresponding APM reconstructions.
This is partly due to the fact that the AMAP reconstructions are based on a larger value for δ
relative to the posterior mean estimate obtained with APM.

Figure 8 shows the APM, the pixelwise 95% CIs, and the hyperparameter chains for the
case without correction (i.e. ω̂ = 1). Notice that pixelwise attenuation CIs reveal that the
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Figure 8. APM reconstruction obtained using algorithm 1 with NC, i.e. ω̂ = 1. The
hyperparameter chains and histograms suggest that these have converged. The dashed
lines represent the 95% CIs. This is further supported by the Geweke p-value [12], shown
in table 5.

uncertainty is relatively large in the center of the reconstruction which is consistent with what
we observe from the error images in figure 7. The chains suggest that the hierarchical Gibbs
sampler has converged. Similar results were obtained for the three other intensity drift correc-
tion estimates which we omit to save space. Additional chain statistics are included in table 5
for all four intensity drift estimates.

4.4. Ensemble experiment

The aim of our next experiment is to empirically investigate pixelwise reconstruction bias and
uncertainty based on an ensemble of random realizations of measurements. To this end, we
generate 100 realizations of the measurements based on (7) with two flat-field images in the
very beginning. For each realization, we compute a reconstruction with three methods: (i) FBP
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Table 5. Chain statistics for the APM reconstruction method. The ‘NC’ results are
shown in figure 8.

Samples Burn-in Geweke p-value
95% CI quantiles

Lower Upper

NC 5000 2500 δ 0.999 2.25 × 100 2.35 × 100

α 0.996 1.05 × 103 1.55 × 103

β 0.996 2.54 × 101 3.13 × 101

LR 2000 1000 δ 0.997 2.27 × 100 2.38 × 100

α 0.978 1.25 × 102 1.85 × 102

β 0.992 7.43 × 102 9.20 × 102

AR 2000 1000 δ 0.999 2.27 × 100 2.38 × 100

α 0.996 4.36 × 102 6.41 × 102

β 0.987 1.55 × 103 1.91 × 103

B 2000 1000 δ 0.997 2.25 × 100 2.36 × 100

α 0.970 6.16 × 103 9.23 × 103

β 0.999 1.73 × 105 2.79 × 105

with flat-field correction but without intensity drift correction, (ii) P-FBP with flat-field cor-
rection and the AR intensity drift correction (see table 3), and (iii) the extended reconstruction
model, AMAP, defined in (23) and using the same ν̂ and ω̂ as for P-FBP. We used the hyper-
parameters δ = 12.84, α = 3.52 × 104 and β = 3.59 × 103 for AMAP; these were adjusted
manually using the sample posterior mean estimate obtained by the hierarchical Gibbs sampler
as an initial guess. Our results are summarized in figure 9, which shows reconstructions based
on a single realization, the empirical mean, and the width of the 95% CI. Moreover, figure 10
includes histograms of the RAE for the 100 noise realizations.

The FBP reconstruction in figure 9 contains severe ring and drift artifacts. The effect of
intensity drift is especially noticeable toward the lower right and upper left corners. The empir-
ical mean, on the other hand, does not contain ring artifacts, but it is clear that the drift incurs a
low-frequency bias. This is not surprising: the flat-field estimate is a stochastic variable whereas
the intensity drift is fixed and has a deterministic effect on the sinogram. Finally, the 95%
CI reveals that the uncertainty is largest in the center. Compared to the FBP reconstruction,
the P-FBP reconstruction is much less affected by ring artifacts. This is consistent with the
much narrower 95% CI. However, a closer inspection of the P-FBP reconstruction reveals
that new artifacts have been introduced. Specifically, notice the embossed edge of the object.
The effect is even more pronounced in the empirical mean which also reveals a wave-like pat-
tern throughout the object. The AMAP reconstruction contains the least noise and artifacts
of the three reconstructions, and although the empirical mean reveals a small bias in the cen-
ter, the AMAP reconstruction is a clear improvement over the P-FBP reconstruction. This is
confirmed by figure 10 which shows RAE histograms for the three methods. Considering the
width of the 95% CI for AMAP, we see a clear structural difference compared to those obtained
with the two other methods. Specifically, the AMAP reconstruction appears to have low uncer-
tainty in areas of the image where the pixel values are zero. This is a consequence of the
nonnegativity assumption that is included in the underlying reconstruction model. Neither FBP
nor P-FBP makes such an assumption, and hence the support of the object is not visible in the
CI images.
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Figure 9. Statistical simulation study for 100 noise realizations, comparing FBP with
NC and P-FBP and AMAP with air row correction. Top row depicts a reconstruction
for a single noise realization whereas the middle row depicts the empirical mean of
reconstructions for the 100 noise realizations. Lastly, the bottom row shows the width
of the 95% CI for the 100 reconstructions.

5. Discussion and Conclusion

In CT, the source intensity is typically assumed to be constant and is estimated together with
the detector response based on a set of flat-field images. However, intensity drift and noisy flat-
field estimates give rise to systematic errors in the sinogram. These errors can lead to severe
reconstruction artifacts, especially in experimental setups with a short exposure time or a low
source intensity. By including the source intensity and the detector response as parameters
in an extended reconstruction model, we have demonstrated that the attenuation image, the
detector response and intensity drift can be estimated simultaneously, resulting in improved
reconstructions under challenging conditions.

Our extended statistical measurement model (6) is readily embedded in a Bayesian frame-
work, allowing the inclusion of suitable priors and the computation of quantities of interest
such as point estimates and credible intervals. We have also derived a simplified model which
is based on a Gaussian approximation of the likelihood function. This enables us to view the
extended model as a generalization of many existing reconstruction models.
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Figure 10. Histograms of RAE defined in (24) for figure 9. FBP has a mean RAE of
0.448 with a standard deviation of 7.7 × 10−3, P-FBP has a mean RAE of 0.253 with a
standard deviation of 2.7 × 10−3, and finally, AMAP has a mean RAE of 0.175 with a
standard deviation of 2.0 × 10−3.

To overcome the computational burden associated with sampling from high-dimensional
posterior distributions, we have investigated the use of a two-stage hierarchical Gibbs sampler.
We propose to compute approximate solutions to a stochastic optimization problem within one
of the two stages of the Gibbs sampler in order to allow the inclusion of an implicit nonnegativ-
ity prior on the attenuation image without incurring a high computational cost. The resulting
method is parameter-free in the sense that the hyperparameters are estimated as part of the
sampling process.

In the numerical experiments, we have compared two new reconstruction methods that are
based on the extended model (AMAP and APM) to existing reconstruction methods with a
heuristic ring reduction and intensity drift correction. The results, which are based on simu-
lated data, demonstrate that our model is capable of reducing artifacts and is competitive with
existing methods. We note that although the computational cost associated with the new meth-
ods exceeds the cost of many existing methods, the extended model offers a clear advantage
when working with data sets from challenging experimental setups that are expensive and/or
difficult to improve and redo.

The model that we have used in the experiments may be improved in several ways. We
have chosen a Tikhonov prior because of its connection to the Gaussian density, but the recon-
struction quality can possibly be improved by adopting more advanced priors. For example,
one could impose an edge-preserving prior such as total variation on the attenuation image u
and/or a smoothness prior on the intensity driftw, e.g. based on the spline kernel [2]. Moreover,
the estimates ν̂ and ω̂ implicitly affect the prior on v and w, and hence it may be of interest
to improve these estimates. For example, as an extension of the estimation problem (11), one
could estimate ν and ω jointly or formulate a matrix completion problem.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the
authors.

Appendix A. Quadratic approximation of log-likelihood

The Gaussian approximation (15) may be obtained by constructing a quadratic approxima-
tion to the log-likelihood function (7), as we will now show. First, assume that y is Poisson
distributed according to (6). An ML estimate of u, v, and w may then be expressed as
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(û, v̂, ŵ) = argmin
u,v,w

{− log(π(y|u, v,w))}

= argmin
u,v,w

{
yT(Au + Gv + Hw)

+ (ω̂ ⊗ ν̂)T exp(−Au − Gv − Hw)
}

,

or using a more compact notation,

x̂ = argmin
x

{
yTMx + (ω̂ ⊗ ν̂)T exp(−Mx)

}
,

where x = (u, v,w) and M =
[
A G H

]
. Now, let z = Mx and define

g(z) = yTz + (ω̂ ⊗ ν̂)T exp(−z),

such that x̂ = argminx{g(Mx)}. We now construct a quadratic approximation of g from a
second-order Taylor expansion of g around b = log(ω̂ ⊗ ν̂) − log(y), i.e.

g(z) ≈ g(b) +∇g(b)(z − b) + (z − b)T∇2g(b)(z − b). (26)

For this particular choice of b, we have that

∇g(b) = y − diag(ω̂ ⊗ ν̂) exp(−b) = 0,

and

∇2g(b) = diag(ω̂ ⊗ ν̂)diag(exp(−b)) = diag(y),

and hence (26) reduces to

g(z) ≈ (z − b)T diag(y)(z − b).

Using the right-hand side, we arrive at the approximate ML estimation problem

x̂AML = argmin
x

{
(Mx − b)T diag(y)(Mx − b)

}
,

or equivalently,

x̂AML = argmin
x

{
1
2
‖Mx − b‖2

Σ−1
b

}
,

with Σ−1
b = diag(y). The approximate ML estimate x̂AML may be viewed as an ML estimate

based on a Gaussian likelihood, corresponding to the model assumption b|x ∼ N(Mx,Σb).

ORCID iDs

Katrine O Bangsgaard https://orcid.org/0000-0001-7491-0064
Martin S Andersen https://orcid.org/0000-0002-4654-3946

References

[1] Aggrawal H O, Andersen M S, Rose S D and Sidky E Y 2018 A convex reconstruction model for
x-ray tomographic imaging with uncertain flat-fields IEEE Trans. Comput. Imaging 4 17–31

22



Inverse Problems 37 (2021) 085009 K O Bangsgaard and M S Andersen

[2] Andersen M S and Chen T 2020 Smoothing splines and rank structured matrices: revisiting the
spline kernel SIAM J. Matrix Anal. Appl. 41 389–412

[3] Bardsley J M 2018 Uncertainty Computational Quantification for Inverse Problems (Philadelphia,
PA: SIAM)

[4] Bardsley J M 2012 MCMC-based image reconstruction with uncertainty quantification SIAM J. Sci.
Comput. 34 A1316–32

[5] Bardsley J M and Fox C 2012 An MCMC method for uncertainty quantification in nonnegativity
constrained inverse problems Inverse Probl. Sci. Eng. 20 477–98

[6] Bardsley J M and Hansen P C 2020 MCMC algorithms for computational UQ of nonnegativity
constrained linear inverse problems SIAM J. Sci. Comput. 42 A1269–88

[7] Beck A and Teboulle M 2009 A fast iterative shrinkage-thresholding algorithm for linear inverse
problems SIAM J. Imag. Sci. 2 183–202

[8] Buzug T M 2008 Computed Tomography (Berlin: Springer)
[9] Casella G and George E I 1992 Explaining the Gibbs sampler Am. Statistician 46 167–74

[10] Doran S J, Koerkamp K K, Bero M A, Jenneson P, Morton E J and Gilboy W B 2001 A CCD-based
optical CT scanner for high-resolution 3D imaging of radiation dose distributions: equipment
specifications, optical simulations and preliminary results Phys. Med. Biol. 46 3191–213

[11] Feron O, Orieux F and Giovannelli J-F 2016 Gradient scan Gibbs sampler: an efficient algorithm
for high-dimensional Gaussian distributions IEEE J. Sel. Top. Signal Process. 10 343–52

[12] Geweke J 1992 Evaluating the accuracy of sampling-based approaches to the calculation of posterior
moments Bayesian Statistics 4 (Oxford: Clarendon) pp 169–93

[13] Hansen P C 2010 Discrete Inverse Problems (Philadelphia, PA: SIAM)
[14] Hansen P C and Jørgensen J S 2017 AIR Tools II: algebraic iterative reconstruction methods,

improved implementation Numer. Algorithms 79 107–37
[15] Kohler T 2004 A projection access scheme for iterative reconstruction based on the golden section

IEEE Symp. Conf. Record Nuclear Science (IEEE)
[16] Kowalski G 1977 The influence of fixed errors of a detector array on the reconstruction of objects

from their projections IEEE Trans. Nucl. Sci. 24 2006–16
[17] Münch B, Trtik P, Marone F and Stampanoni M 2009 Stripe and ring artifact removal with combined

wavelet-Fourier filtering Opt. Express 17 8567
[18] Van Nieuwenhove V, De Beenhouwer J, De Carlo F, Mancini L, Marone F and Sijbers J 2015

Dynamic intensity normalization using eigen flat fields in x-ray imaging Opt. Express 23 27975
[19] Paleo P and Mirone A 2015 Ring artifacts correction in compressed sensing tomographic recon-

struction J. Synchrotron Radiat. 22 1268–78
[20] Prell D, Kyriakou Y and Kalender W A 2009 Comparison of ring artifact correction methods for

flat-detector CT Phys. Med. Biol. 54 3881–95
[21] Rashid S, Lee S Y and Hasan M K 2012 An improved method for the removal of ring artifacts in

high resolution CT imaging EURASIP J. Adv. Signal Process. 2012 93
[22] Salehjahromi M, Wang Q, Gjesteby L A, Harrison D, Wang G and Yu H 2019 A directional TV

based ring artifact reduction method Medical Imaging 2019: Physics of Medical Imaging ed H
Bosmans, G-H Chen and T G Schmidt (SPIE)

[23] Sijbers J and Postnov A 2004 Reduction of ring artefacts in high resolution micro-CT reconstruc-
tions Phys. Med. Biol. 49 N247–53

[24] Six N, Beenhouwer J D, Nieuwenhove V V, Vanroose W and Sijbers J 2018 2018 Joint reconstruc-
tion and flat-field estimation using support estimation IEEE Nuclear Science Symp. and Medical
Imaging Conf. Proc. (NSS/MIC) (IEEE)

[25] Titarenko V, Titarenko S, Withers P J, De Carlo F and Xiao X 2010 Improved tomographic
reconstructions using adaptive time-dependent intensity normalization J. Synchrotron Radiat. 17
689–99

[26] Vo N T, Atwood R C and Drakopoulos M 2018 Superior techniques for eliminating ring artifacts in
x-ray micro-tomography Opt. Express 26 28396

[27] Wei Z, Wiebe S and Chapman D 2013 Ring artifacts removal from synchrotron CT image slices J.
Instrum. 8 C06006

[28] Yan L, Wu T, Zhong S and Zhang Q 2016 A variation-based ring artifact correction method with
sparse constraint for flat-detector CT Phys. Med. Biol. 61 1278–92

23



APPENDIXB
Low-rank flat-field

correction for
artifact reduction in
spectral computed

tomography
Published in Applied Mathematics in Science and Engineering, Volume 31,
Number 1, 6 March 2023, DOI: 0.1080/27690911.2023.2176000.

Katrine O. Bangsgaard, Genoveva Burca, Evelina Ametova, Martin Skov-
gaard Andersen and Jakob Sauer Jørgensen.

©2023 Taylor & Francis group. Reproduced with permission. All rights
reserved.



APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING
2023, VOL. 31, NO. 1, 2176000
https://doi.org/10.1080/27690911.2023.2176000

Low-rank flat-field correction for artifact reduction in spectral
computed tomography

Katrine Ottesen Bangsgaard a, Genoveva Burca b,c,d, Evelina Ametova c,e,
Martin Skovgaard Andersen a and Jakob Sauer Jørgensen a,c

aDepartment of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens
Lyngby, Denmark; bISIS Pulsed Neutron and Muon Source, STFC, UKRI, Rutherford Appleton Laboratory,
Didcot, UK; cDepartment of Mathematics, The University of Manchester, Manchester, UK; dDiamond Light
Source Ltd, Didcot, UK; eLaboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of
Technology, Karlsruhe, Germany

ABSTRACT
Spectral computed tomography has received considerable interest
in recent years since spectral measurements contain much richer
information about the object of interest. In spectral computed
tomography, we are interested in the energy channel-wise recon-
structions of the object. However, such reconstructions suffer from
a low signal-to-noise ratio and share the challenges of conventional
low-dose computed tomography such as ring artifacts. Ring arti-
facts arise from errors in the flat fields and can significantly degrade
the quality of the reconstruction. We propose an extended flat-field
model that exploits high correlation in the spectral flat fields to
reduce ring artifacts in channel-wise reconstructions. The extended
model relies on the assumption that the spectral flat fields can be
well-approximated by a low-rankmatrix. Our proposedmodel works
directly on the spectral flat fields and canbe combinedwith anyexist-
ing reconstruction model, e.g. filtered back projection and iterative
methods. The proposed model is validated on a neutron data set.
The results show that our method successfully diminishes ring arti-
facts and improves the quality of the reconstructions. Moreover, the
results indicate that ourmethod is robust; it only needs a single spec-
tral flat-field image,whereas existingmethodsneedmultiple spectral
flat-field images to reach a similar level of ring reduction.
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1. Introduction

Computed Tomography (CT) is a non-invasive imaging technique that allows us to obtain
structural knowledge about the interior of objects from a set of projection images. Projec-
tion images are acquired by illuminating the object from different angles with radiation
from a source, e.g., an X-ray beam or beam of neutron radiation. The beam is attenu-
ated as it travels through the object, and the attenuated beam is measured by a detector
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placed opposite the source. The attenuation is governed by absorption in X-ray CT and by
scattering and absorption in neutron CT – in both cases the attenuation is material- and
energy-specific. In spectral CT [1, 2], attenuation is measured at multiple energies, either
in turn or simultaneously, in other words at each energy level a full set of projection images
is measured, which enables the reconstruction of object images at individual energy lev-
els. Sometimes cases with few and many energy levels are distinguished by referring to the
latter as hyperspectral CT [3, 4].

Spectral CT data can be reconstructed in different ways, the most straightforward being
simply the reconstruction of each energy channel independently. From reconstructed
energy images one may then, possibly with knowledge of the attenuation as a function
of energy for the constituting materials seek to decompose into material images - this
is known as material decomposition [5, 6]. A variety of material decomposition meth-
ods exist, sometimes with the decomposition carried out on the projection images before
reconstruction and sometimes jointly. In this work, we focus solely on improving the step
of energy-channel-wise reconstruction considered as a step toward improved material
decomposition.

Most reconstruction methods rely on the assumption that the detector response is
known. In practice, however, the detector response is subject to various errors and must
be estimated from measurements acquired without an object in the scanner, i.e. from
flat fields, also referred to as air scans [7], white fields [8] or open beams. The flat fields are
noisy due to factors such as measurement noise, miscalibration, defective pixel elements
with non-linear response, andmay introduce concentric rings in the reconstruction, which
are known as ring artifacts [9]. Ring artifacts are a great challenge for experimental CT
set-ups with low-dose and/or short exposure time [10] and can significantly degrade the
quality of the reconstruction. In spectral CT,wemeasure spectral flat fields, i.e. flat fields for
each energy. However, the spectral measurements share the characteristics of low-dose CT
since each energy channel has a low signal-to-noise ratio (SNR), and hence ring artifacts
present a challenge in spectral CT [11, 12].

To illustrate the challenges of spectral CT, let us consider a neutron CT data set [13]
which is described in detail in Section 3. Filtered back projection (FBP) reconstructions of
the neutron data are shown for two energies in Figure 1, and the reconstructions reveal the
presence of ring artifacts.

1.1. Existingmethods for ring reduction

Several reconstruction methods have been proposed to combat ring artifacts as part of the
spectral reconstruction step. Wu et al. [14] propose a reconstruction method that exploits
the similarity across spectral images by computing a polychromatic reconstruction (aver-
age across the spectral dimension) as a reference image combinedwith total variation (TV).
Lv et al. [15] and Fang et al. [16] both propose deep-learning approaches to suppress noise
and remove ring artifacts for spectral CT. However, all methods rely on computationally
expensive algorithms where the ring reduction is part of the reconstruction process.

Conventional preprocessing methods for ring reduction in monochromatic CT, i.e.
single-energy CT, can also be applied to the spectral CT data, e.g. [17, 18]. The main
drawback of these methods is that they are not designed for data with extremely low SNR.
Moreover, they are sensitive to the choice of parameters.
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Figure 1. FBP reconstructions at 2.7 Å and 3.4 Å. Ring artifacts with varying severity are present in both
reconstructions.

1.2. Contribution

Figure 2 shows the eightmeasured spectral flat fields stacked vertically and the correspond-
ing singular values. A visual inspection suggests that the spectral flat fields carry significant
redundant information and that we can improve the SNR in the spectral flat fields by
approximating the spectral flat fields with a low-rank matrix. In particular, the singular
values indicate that the spectral flat fields can be well-approximated by a rank-one matrix
due to the large jump in magnitude between the first and second singular values. A similar
idea where principal component analysis (PCA) is used to reduce ring artifacts in case of
beam instability has been proposed by Hagemann et al. [19] and Nieuwenhove et al. [20].
The underlying assumptions in these studies are related, but the nature of the problems
solved differs.

Inspired by Figure 2, we propose an extended flat-field model that exploits high cor-
relation across channels in the spectral flat fields to reduce ring artifacts in the recon-
structions. The extended model relies on the assumption that the spectral flat fields can
be well-approximated by a low-rank matrix. Our method does not depend on a specific

Figure 2. Visualization of the eight spectral flat fields (each 460 detectors) stacked vertically, with the
neutron energy range on the first axis and the detector index from 1 to 8 · 460 = 3680 on the second
axis (a) and a loglog plot of the singular values (b). The singular values indicate that the spectral flat fields
are well-approximated by a rank-one matrix.
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reconstruction method since it works directly on the spectral flat fields. Thus, our method
can be combined with existing reconstruction models such as FBP and more advanced
spectral methods, e.g. [14, 21–23]. Moreover, our method does not need to be applied
channel-wise in the sense that the low-rank spectral flat field simply replaces the measured
spectral flat field in the reconstruction step.

1.3. Outline

Section 2 introduces the spectral CT model, existing methods for ring reduction and the
proposed methodology. Section 3 describes the experimental set-up for the neutron data
set, and our numerical results are reported in Section 4. Section 5 discusses the results, and
Section 6 concludes the paper.

1.4. Notation

The set R
n is the n-dimensional Euclidean space, R

n+ is the non-negative orthant, and
R
m×n denotes the set of real-valued m × n matrices. The vector 1n ∈ R

n is a vector of
ones, In ∈ R

n×n denotes the identity matrix, and the transpose of A is denoted AT . The
exponential function exp(·) applied to a vector or a matrix is interpreted element-wise.
Given a vector x, diag(x) denotes the diagonalmatrix with the elements of x on its diagonal.
Lastly, the 2-norm of a vector x is denoted ‖x‖2.

2. Methods

Consider a spectral data setwithm energy channels, and letEk denote the energy associated
with the kth energy channel. The incident intensity of a beam with energy Ek on a detector
element is prescribed by the Beer–Lambert law [24],

I(Ek) = I0(Ek) exp
(

−
∫

�

μ(x,Ek) dx
)
, (1)

where I(Ek) and I0(Ek) are the energy-dependent intensity incident on the detector element
and on the object, respectively. Furthermore, � is the line segment between the source and
the detector, andμ : R

d × R → R+ is the energy-dependent spatial attenuation function.
Let Yk ∈ R

rp denote the measurements at energy Ek obtained from p projection images
and a detector with r detector elements. We discretize the reconstruction domain into n
pixels such that (see, e.g. [25])

Yk = diag
(
1p ⊗ Zk

)
exp (−AXk) + �, (2)

where ⊗ denotes the Kronecker product, Zk ∈ R
r is the flat field and Xk ∈ R

n are the
unknown attenuation coefficients associated with the kth channel,A ∈ R

rp×n is the system
matrix, and � ∈ R

rp represents noise. In practice, the flat field Zk is estimated by measur-
ing the detector response. We assume that s flat-field measurements are available for each
channel. An estimate Ẑ ∈ R

r×m of the spectral flat field Z = [ Z1 ··· Zm ] is then given by
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the sample mean of the s flat-field measurements F1, . . . , Fs ∈ R
r×m, i.e.

Ẑ = 1
s

s∑
j=1

Fj = 1
s

(
1Ts ⊗ Ir×r

)
F, (3)

where F = [FT1 , F
T
2 , . . . , F

T
s ]T . The flat-field estimate Ẑ generally contains noise, which can

give rise to ring artifacts in reconstructions.

2.1. Low-rank approximation

Each of the spectral flat-field measurements carries information about the detector
response and the spectrum of the incident beam. Our aim is to exploit the high correlation
in the spectral dimension, which is motivated by the observations in Figure 2. The figure
suggests that F is well-approximated by a low-rank matrix. The best rank-l approximation
of F (in the spectral norm) can be computed by means of a singular value decomposition
(SVD) [26] of F, i.e.

Fl =
l∑

i=1
σiUiVT

i , (4)

where σ1 ≥ σ2 ≥ · · · ≥ σl ≥ 0 are the l largest singular values of F, and Ui and Vi are left
and right singular vectors associated with σi. It follows from the Eckart–Young–Mirsky
theorem that the relative approximation error is given by

‖Fl − F‖2
‖F‖2 = σl+1

σ1
. (5)

Figure 3 shows such approximations of rank 1 and rank 5 for the neutron data. The rel-
ative approximation error for the rank-1 and rank-5 approximations are 0.030 and 0.028,
respectively, i.e. we only observe a minor reduction in the relative approximation error
when including four additional singular vectors. As shown in Figure 3, the rank-1 approx-
imation yields a substantial reduction of the noise, and the same is true for the rank-5
approximation. However, the rank-5 approximation appears to be noisier than the rank-
1 approximation as can be seen in Figure 3(e,f), which show the difference between the
spectral flat fields and the low-rank approximations. Thus, in our numerical experiments,
we will only consider rank-1 approximations of the spectral flat fields, i.e. we compute the
estimate for Ẑ by replacing F by F1 in (3), i.e.

Ẑ = 1
s

(
1Ts ⊗ Ir×r

)
F1. (6)

The cost grows as O(min(rs,m)2 max(rs,m)) if the Golub–Reinsch algorithm is used to
compute a thin SVD. We note that by employing a randomized SVD [27], this can be
reduced toO(rsm), which is linear in size of the flat-field data, and hence it is fast. More-
over, it can be combined with any reconstruction method, e.g. FBP, iterative methods,
statistical models, etc. since it is applied to the spectral flat field measurements as a form
of preprocessing.
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Figure 3. Rank-one and five approximations of the spectral flat field are shown in (b) and (c). The corre-
sponding difference images between the spectral flat fields and low-rank matrices are shown in (e) and
(f ) for rank-1 and rank-5, respectively. In all plots except (d), the first axis is the neutron energy and the
second axis is the detector index over the eight stacked flat fields.

2.2. Existing ring reductionmethod

Our method works solely on the spectral flat fields, and hence it separates the ring reduc-
tion from the reconstruction step. We compare our method to two existing ring reduction
techniques for monochromatic CT. The first method is the preprocessing method pro-
posed by Münch et al. [17], which combines wavelet and Fourier filtering to mitigate ring
artifacts in the reconstruction. The method is computationally inexpensive and does not
increase the overall computational cost significantly. Themethod depends on three param-
eters; we use a damping factor of 0.9 and the Daubechies 5 wavelet with a three-level
decomposition for all numerical experiments; see [17] for details. The second prepro-
cessing method is proposed by Vo et al. [18] and uses a combination of sorting and
smoothing (non-local means) to mitigate stripes in the sinogram and thereby reducing
ring artifacts. The method depends on a parameter related to the smoothing filter; see [18]
for further details. We used the value 31 in our experiments. We denote the methods of
Münch et al. [17] and Vo et al. [18] byWF (Wavelet Fourier) and NLM (non-local means),
respectively.

3. Neutron data

We validate the proposed methodology on a neutron CT data set [13]. The neutron data
were acquired at the Imaging and Materials Science and Engineering (IMAT) beamline
operating at the ISIS neutron spallation source (Rutherford Appleton Laboratory, UK).
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Figure 4. Sketch of the object for the experimental neutron data [13]. The experimental set-up con-
sists of six aluminum cylinders where five of the cylinders have been filled with aluminum (Al), iron (Fe),
copper (Cu), nickel (Ni) and zinc (Zn) powders. The sixth cylinder is empty.

Table 1. Experimental set-up for the spectral neutron data used for the numerical experiments.

Pixels (n) Energies (m) Detectors (r) Projections (p) Spectral flat fields (s)

4602 339 460 120 8

Figure 4 shows a sketch of the object of interest. The object consists of six aluminum cylin-
ders whereof five are filled with high-purity metal powders, i.e. aluminum (Al), iron (Fe),
copper (Cu), nickel (Ni) and zinc (Zn) powders.

3.1. Data acquisition

Ametova et al. [23] describe the data acquisition and pre-treatment of data in detail, i.e.
beam instabilities correction, overlap correction and spectral averaging. We consider the
reconstruction-ready measurements and confine ourselves to reporting only the essen-
tial details of the experimental set-up. The data set containsm = 339 spectral projections
acquired at p = 120 equidistant angles distributed from 0◦ to 180◦ with 1.5◦ angular incre-
ments. Each spectral projection arises from binning all neutrons with energies in a narrow
energy range around a central energy level, ranging from 1.0576Å to 5.0321Å, with an
energy bin width of 0.0115Å for all but a few bins, as explained in [23]. Eight spectral
flat fields were acquired, four prior to the scan and four after, i.e. s = 8. Each projection
consists of 460 × 460 pixels with a pixel size of 0.055mm resulting in a view of approxi-
mately 25 × 25mm2 and r = 460 detector elements. We use a square reconstruction grid
with n = 4602 pixels, and we use the 127th vertical detector row for our experiments, i.e.
we consider a two-dimensional set-up. The experimental set-up is summarized in Table 1.
The attenuation coefficient for the neutron experiment is denoted �tot(λ) and has unit
cm−1, see [23] for further details.

4. Numerical experiments

We consider two reconstruction models: FBP and a weighted least squares (WLS) recon-
struction model combined with TV regularization. We compare our method to the con-
ventional flat-field correction and the existing ring reduction techniques described in
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Table 2. Abbreviations used for the reconstruction
models and ring reduction techniques.

Reconstruction Model

Ring reduction technique FBP WLS with TV

Conventional FBP TV
Preprocessing Münch et al. [17] WF-FBP WF-TV
Preprocessing Vo et al. [18] NLM-FBP NLM-TV
Low-rank spectral flat fields LR-FBP LR-TV

Section 2.2. Table 2 provides an overview of the reconstruction models and ring reduction
techniques.

We use AIR TOOLS II [28] to generate the parallel-beam geometry of the experimen-
tal set-up. For the FBP reconstructions, we use the fbp function from AIR TOOLS II
with the Hann filter to reduce the noise in the computed FBP reconstructions. For the TV
reconstructions, we used the implementation of WLS with TV from [10] in MATLAB. All
TV reconstructions have a maximum number of iterations of 1000 and a regularization
parameter of 0.005. The regularization parameter was found by visual inspection of recon-
structions for varying values of the regularization parameter. Note that we pick the same
regularization parameter for all energies which will result in some reconstructions being
a bit over-regularized whereas other reconstructions might be slightly under-regularized.
The reason is that the SNR changes significantly as a function of energy and thus there is
not a single regularization parameter that fits all energy channels. However, the purpose of
the methods is ring reduction and thus we limit the experiments to considering the same
regularization parameter for all reconstructions.

4.1. Errormeasures

The quality of the computed reconstructions is assessed by visual inspection combined
with contrast-to-noise ratio (CNR). The CNRmetric is used for evaluating the image con-
trast and noise properties for a selected region of interest (ROI) [3]. We use the method
proposed by Bian et al. [29] where an ROI with a low-contrast structure is compared to a
background ROI while taking the standard deviations of both the signal and background
ROIs into account. The ROIs are clearly marked on the figures when applicable.

4.2. Experiment: different energies

There are too many energies to visualize all reconstructions, and the SNR varies signif-
icantly between the energies [23]. Thus, we select three energies based on the relative
difference (RD) between the computed FBP and LR-FBP solution to ensure a representative
visualization of energy channels. We define the RD as

RD(k) = ‖XFBP
k − XLR-FBP

k ‖2
‖XLR-FBP

k ‖2
, (7)

where XFBP
k and XLR-FBP

k denote the FBP and LR-FBP reconstructions for energy k,
respectively. We select three energies corresponding to the minimum, median and maxi-
mum RD (3.1, 4.2 and 2.9 Å, respectively).
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The FBP reconstructions in Figure 5 (first column) are all affected by ring artifacts.
However, the severity of the ring artifacts increases from top to bottom, i.e. when the RD
increases. The WF-FBP reconstructions (second column) seem to mitigate the ring arti-
facts at first glance. However, when carefully comparing the WF-FBP with NLM-FBP and
LR-FBP, wave-like artifacts can be seen in the WF-FBP reconstructions. Thus, the ring
artifacts have been reduced but not eliminated.No visible ring artifacts remain in theNLM-
FBP and LR-FBP reconstructions (third and fourth columns). Considering the CNR listed
in Table 3, we see that the CNR decreases from top to bottom for all four methods. Thus,
when the SNR is low, our method differs most from the FBP, which can be explained by
the fact that the ring artifacts are more dominating when the SNR is low. The CNR for all
four methods is quite close in Figure 5. A possible explanation is that the dominating noise
contribution comes from the measurement noise and not the ring artifacts since all FBP
reconstructions suffer from a very low SNR. Note that the high noise level may conceal
remaining ring artifacts.

Inspecting the TV reconstructions in Figure 6, we see that TV regularization reduces the
noise level significantly, and consequently, the ring artifacts appear more severe for the TV
reconstructions. In addition, we also note that the vague wave structures in the WF-FBP
reconstructions are even clearer in the WF-TV reconstructions compared to the WF-FBP
reconstructions. By carefully inspecting the NLM-TV reconstruction for 2.9 Å, one can
see that the preprocessing has introduced a dark spot with negative values in the center.
The other NLM-TV reconstructions show no introduced artifacts and closely resemble

Figure 5. FBP (first column), WF-FBP (second column), NLM-FBP (third column) and LR-FBP (fourth col-
umn) reconstructions for three energies chosen by the RD measure. The white squares with full and
dashed lines mark the structure and background ROIs for CNR, respectively.
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Table 3. CNR for experiment depicted in Figures 5 and 6.

FBP TV

Energy Conv. WF NLM LR Conv. WF NLM LR

3.1 Å 2.15 2.31 2.17 2.31 1.02 · 103 1.03 · 103 1.01 · 103 1.06 · 103
4.2 Å 0.28 0.30 0.29 0.30 0.16 · 102 0.16 · 103 0.21 · 103 0.28 · 103
2.9 Å 0.20 0.24 0.24 0.25 0.03 · 101 0.04 · 103 0.07 · 103 0.07 · 103
Note: The ROIs are marked in Figures 5 and 6.

Figure 6. TV (first column), WF-TV (second column), NLM-TV (third column) and LR-TV (fourth column)
reconstructions for three energies chosen by the RD measure. The white squares with full and dashed
linesmark the structure and background ROIs for CNR, respectively. Thewhite circles represent the pixels
chosen for the spectral plot in Figure 7.

the LR-TV reconstructions (fourth column). The LR-TV reconstructions reveal no ring
structure even though the noise level is reduced. The TV reconstructions yield significant
improvements in the CNR compared to the FBP reconstructions, which can be seen in
Table 3. For the TV experiment in Figure 6, we also see an increase in CNR when applying
a ring reduction method, especially for NLM-TV and LR-TV. The LR-TV reconstruction
achieves the highest CNR for two out of the three energies depicted in Figure 6.

Figure 7 illustrates the spectral dimension of the reconstructions by plotting spectral
profiles for each material. The pixels chosen for the spectral profiles are marked by full cir-
cles on the upper right part in Figure 6. We generated spectral plots for both the FBP and
TV experiments, but we only include the spectral plot for the TV reconstruction since the
spectral profiles obtained with FBP were very noisy. Figure 7 shows minor improvement
in the spectral domain by using one of the preprocessing methods. This minor improve-
ment is quantified by computing the mean square error (MSE) between the estimated and
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Figure 7. Spectral profiles for the TV reconstructions across all energies. The pixels chosen for the
spectral profiles are marked with circles on the upper right subfigure in Figure 6.

theoretical spectral profile. The MSE measures are listed in Table 4 and show a decrease
in MSE for the NLM and LR methods for all materials except nickel (Ni). It is notable
that the significant improvement in the spatial domain has only a small effect in the spec-
tral domain. Thus, for improvedmaterial decomposition, we need reconstructionmethods
which include spectral regularization.
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Table 4. Mean square error (MSE) com-
puted for each of the spectral plots in
Figure 7.

MSE

Material TV WF-TV NLM-TV LR-TV

Fe 5.68 5.48 5.24 5.33
Ni 3.04 3.04 3.00 3.04
Cu 4.50 4.38 3.95 3.67
Zn 5.00 5.01 5.07 4.32
Al 22.6 18.2 15.3 16.5

4.3. Experiment: effect of number of spectral flat fields

Wenowperform an experiment with a varying number of spectral flat fields to examine the
robustness of the proposed method. We consider the energy 2.1 Å for the experiment and
use eight, four, two and one flat-field measurements for the flat-field correction, respec-
tively. The FBP, WF-FBP, NLM-FBP and LR-FBP reconstructions are shown in Figure 8,
and the TV reconstructions for the same experiment are shown in Figure 9. The CNR for
the reconstructions are listed in Table 5.

In the first columnof Figure 8, we see that there are visible ring artifacts in all FBP recon-
structions, and the severity of the ring artifacts increases when the number of flat fields
decreases (i.e. from top to bottom). The WF-FBP reconstructions are shown in the sec-
ond column of the figure. Vague ring artifacts can be seen in the WF-FBP reconstruction
using all eight flat fields. Like in the FBP reconstructions, the severity of the ring artifacts
increases significantly when the number of flat fields decreases. TheNLM-FBP reconstruc-
tions in the third column show less wave-like artifacts than the WF-FBP reconstructions.
However, with four or fewer flat fields, ring artifacts start to become visible in the NLM-
FBP reconstructions. The LR reconstructions in the fourth column show no sign of ring
artifacts, not even in the case where a single flat field is used. This indicates that the low-
rank approximation is quite robust, which is also supported by the CNR results reported
in Table 5. Indeed, the CNR is nearly constant for the four reconstructions based on the
proposed LR flat field, but it increases with the number of flat fields for both FBP,WF-FBP
and NLM-FBP. The experiment was repeated using TV regularization in the reconstruc-
tion model, and the findings are consistent with those for FBP. Note that the use of TV
regularization yields a significant increase in the SNR, which is easily seen by compar-
ing the reconstructions in Figure 8 with those in Figure 9. Moreover, the TV-regularized
reconstructions expose some remaining ring artifacts that were not visible in the FBP
reconstructions due to noise.

5. Discussion

Ourmethod relies on the assumption that the true flat field can be expressed as (or approx-
imated by) a separable function. The robustness of themethod is related to the fact that the
detector elements provide redundant information about the spectrum. The data set used
in our experiments includes eight flat fields with 339 energy channels, and our method
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Figure 8. FBP, WF-FBP, NLM-FBP and LR-FBP reconstructions of energy 2.1 Å with eight, four, two
and one flat field, respectively. The white squares with full and dashed lines mark the structure and
background ROIs, respectively.

utilizes all of these channels to compute a rank-1 approximation. In contrast, the conven-
tional method computes the sample mean, which ignores the spectral dimension. In the
monochromatic case, our method and the conventional method are the same.

We emphasize that our proposed method is applied as a preprocessing operation prior
to reconstruction and as such can be combined with any reconstructionmethod.We chose
here to demonstrate it in combination with standard FBP, which does not assume a par-
ticular object composition, and TV regularization which is expected to perform well for
an object with piecewise constant attenuation as considered here. Our results demonstrate
clear improvements both visually and quantitativelywith both reconstructionmethods and
wewould expect comparable results with other reconstructionmethods and for other types
of objects.

As a simple extension of ourmethod, the spectral flat-fieldmeasurements can be treated
as a three-dimensional tensor of dimension s × r × m. Tensor decomposition methods
such as the Tucker decomposition and parallel factors decomposition (PARAFAC) [30,
31] can then be used to compute a low-rank approximation. However, some preliminary
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Figure 9. TV, WF-TV, NLM-TV and LR-TV reconstructions of energy 2.1 Å with eight, four, two and one
flat field, respectively. The white squares with full and dashed lines mark the structure and background
ROIs, respectively.

Table 5. CNR for experiment depicted in Figures 8 and 9 for energy 2.1 Å.

FBP TV

Conv. WF NLM LR Conv. WF NLM LR

8 0.15 0.17 0.16 0.16 0.95 × 102 0.95 × 102 1.62 × 102 1.70 × 102

4 0.13 0.15 0.14 0.16 0.55 × 102 0.56 × 102 1.39 × 102 1.79 × 102

2 0.11 0.14 0.13 0.16 0.36 × 102 0.39 × 102 0.87 × 102 1.78 × 102

1 0.06 0.12 0.14 0.16 0.14 × 102 0.15 × 102 0.52 × 102 1.80 × 102

experiments with the tensor approach showed no significant difference between a low-rank
tensor approximation and the low-rank approximation proposed in this paper.

Another extension of this work would be to jointly estimate a reconstruction and the
spectral flat field, e.g. using an extension of the model proposed in [25]. The estimate
obtained by the LR method would then be a natural initial guess for the spectral flat-field
matrix.
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6. Conclusion

We have proposed an extended flat-field model for spectral CT that exploits high corre-
lation in the spectral flat fields. Our approach is to use a low-rank approximation of the
spectral flat-field measurements to obtain a less noisy spectral flat-field estimate, thereby
mitigating ring artifacts in the subsequent reconstruction. The proposed methodology
can be combined with existing reconstruction methods, and it only depends on a single
parameter (the approximation rank), which is easy to choose by inspection of the singu-
lar values of the spectral flat-field measurements. We have demonstrated the usefulness of
the method based on a neutron CT data set and comparisons with conventional flat-field
correction and two existing preprocessing methods for ring reduction. Our method suc-
cessfully mitigated ring artifacts in all experiments, whereas the other methods struggled
to suppress ring artifacts, especially in more challenging cases with severe ring artifacts.
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Abstract: Hyperphosphatemia in patients with renal failure is associated with increased vascular
calcification and mortality. Hemodialysis is a conventional treatment for patients with hyperphos-
phatemia. Phosphate kinetics during hemodialysis may be described by a di↵usion process and mod-
eled by ordinary di↵erential equations. We propose a Bayesian model approach for estimating patient-
specific parameters for phosphate kinetics during hemodialysis. The Bayesian approach allows us to
both analyze the full parameter space using uncertainty quantification and to compare two types of
hemodialysis treatments, the conventional single-pass and the novel multiple-pass treatment. We val-
idate and test our models on synthetic and real data. The results show limited identifiability of the
model parameters when only single-pass data are available, and that the Bayesian model greatly re-
duces the relative standard deviation compared to existing estimates. Moreover, the analysis of the
Bayesian models reveal improved estimates with reduced uncertainty when considering consecutive
sessions and multiple-pass treatment compared to single-pass treatment.

Keywords: hemodialysis; phosphate kinetics; mathematical modeling; parameter estimation;
uncertainty quantification

1. Introduction

Phosphate enables the body to perform vital processes such as construction of nucleic acids, en-
ergy transport and bone tissue formation [1]. The level of phosphate is tightly controlled, and excess
phosphate is excreted by the kidneys [2]. However, for patients with renal failure, the control of phos-
phate homeostasis is impaired. An abnormal level of phosphate is associated with increased vascular
calcification and mortality [3, 4].
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About half of all dialysis patients su↵er from hyperphosphataemia, and strategies to control phos-
phate levels include phosphate binders, low-phosphate diet and removal of phosphate by hemodialy-
sis [5]. Hemodialysis (HD) is a conventional treatment for renal failure where a patient is coupled to
a dialysis machine for four to eight hours. The blood plasma and dialysate fluid are passed through a
filter that causes a di↵usion process that removes toxic substances, e.g., phosphate, from the blood to
the dialysate. The phosphate kinetics in HD is of particular interest because it di↵ers the other removed
toxins, e.g., urea, by the fact that hypophoshataemia is fatal for the patient [6]. Thus, the phosphate
concentration should not be exhausted, but kept within the critical values.

1.1. Previous studies

The control of the phosphate concentration is a considerable clinical problem and has been studied
extensively; The conventional hemodialysis treatment is the single-pass (SP) treatment. Agar et al. [7]
and Debowska et al. [3] both study the SP treatment by considering a simple two-compartment ordi-
nary di↵erential equation (ODE) model for phosphate removal during HD. They present their results
as an average of the measured patients to obtain confidence intervals for their parameters, however,
these are not patient specific. Poleszczuk et al. [2] extend the model proposed by Debowska et al. [3]
to include a time delay. The time delay is introduced to improve the fit at the later stage of the HD
where a minor rebound is observed in some clinical experiments. Andersen et al. [8] analyze the same
model analytically and estimate parameters using an optimization-driven approach. Here the param-
eters are estimated for each patient, but the uncertainty of the parameter estimates is not addressed.
Laursen et al. [9, 10] propose a two- and three-compartment model for phosphate clearance during SP
and find that the three-compartment model produces the most satisfying fit but does not address the
uncertainty associated with the parameter estimates. Spalding et al. [11] propose a complicated four-
compartment model where the fourth pool is a control pool for avoiding dangerously low phosphate
concentrations. They argue that a simple two-compartment model cannot fit the relapse phase su�-
ciently. The relapse phase refers to the period after ended treatment where the phosphate concentration
starts to increase. However, both Andersen et al. [8] and Debowska et al. [3] demonstrate that the
simple two-compartment model can produce adequate fits for the relapse phase as well. A novel HD
treatment called multiple pass (MP) [12–14] provides an alternative to the conventional SP. This novel
treatment reduces the amount of dialysis fluid needed for a single session of HD. Andersen et al. [8]
and Heaf et al. [14] analyse and compare the MP treatment and SP treatment.

However, none of the above-listed models address patient specific uncertainties associated with the
parameter estimates. Moreover, the reported uncertainty of the parameter estimates for the average of
the measured patients is very large, e.g., Debowska et al. [3] report a phosphate clearance with a relative
standard deviation of 79% and Agar et al. [7] report a relative standard deviation of 47%, indicating that
parameters of the two-compartment model are poorly identified. Common for all models is that they
assume that the phosphate concentration in the inner-source compartment is known exactly through
measurements at time zero. However, measurements are noisy and can potentially bias the results.

The Bayesian approach for parameter estimation for ODE modeling has gained attention in later
years [15, 16] since it provides an elegant way of addressing the uncertainty associated with the esti-
mated parameters and includes clinical knowledge. The Bayesian approach gives a complete image of
the parameter estimation in terms of uncertainty quantification, i.e., posterior mean, credibility inter-
vals and correlations. A Bayesian approach for patient-specific parameters for hemodialysis has been
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proposed by Bianchi et al. [17] but does not consider the phosphate kinetics.

1.2. Contribution

We propose a Bayesian approach for estimating patient-specific parameters for phosphate dynamics
during hemodialysis. Moreover, we include the phosphate concentration in the inner compartment as
a parameter of the model. We use uncertainty quantification to assess the reliability of our parameter
estimates and explore the full parameter space. We address the identifiability of the parameters for
the SP, MP and the combination of the two, denoted combined-pass (CP). While CP has limited direct
clinical impact it improves the parameter estimation slightly, since both SP and MP data are considered
simultaneously. In addition, we also investigate how the parameter estimation can be improved by
including relapse measurements and / or measure consecutive sessions.

1.3. Outline

Section 2 describes the phosphate kinetics during hemodialysis and introduces the single- and
multiple-pass treatments. Section 3 introduces the Bayesian model and describes implementation and
sampling diagnostics. In Section 4, we test and validate SP, MP and CP models on data sets and discuss
findings from synthetic data which are found in the supplementary materials. Lastly, we conclude the
paper in Section 5.

2. Hemodialysis modeling

About 85% of the total phosphate in the human body is stored in the bones [18]. We assume that we
have an inexhaustible source (bone) that excretes phosphate to the blood, including extracellular fluid.
The phosphate transport from source to blood is driven by di↵usion. The di↵usion process is gov-
erned by the di↵usion coe�cient (permeability) and concentration gradient. The blood compartment is
coupled to the dialysate compartment through a semipermeable membrane which generates a flow of
phosphate to the dialysate fluid. The flow of phosphate from blood to dialysate is mainly governed by
di↵usion and to an insignificant degree by a convection process. [9] However, comprehensive investi-
gations have shown that the convective flow has a negligible e↵ect on the model and parameters during
the normal range of dialysis treatment, i.e., up to eight hours [8]. Thus, we exclude the convection term
from the models. In this paper, we consider three types of models for HD for phosphate clearance in
dialysis patients, the conventional SP, MP and the combination CP.

The value of this analysis for clinicians is twofold. Firstly, accurate modeling permits the prediction
of phosphate removal during di↵erent forms of dialysis, e.g., short and long dialysis or use of filters
with standard or high phosphate clearances. Secondly, it is possible to get insight into the underlying
physiological causes of phosphate dynamics.

The model parameters are individually calibrated, so the parameter values are patient specific sig-
natures. Hence, reliable estimates for these parameters are clinically important in order to assess the
phosphate kinetics.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4455–4492.
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2.1. Single-pass dialysis

For the SP treatment, the dialysate is constantly replenished by fresh dialysate such that the phos-
phate concentration in the outflowing dialysate remains low. Data shows this phosphate concentration
to be approximately constant throughout the treatment. SP requires excessive amounts of dialysate
for each session. A conceptual diagram of the SP treatment is depicted in Figure 1 that illustrates the
removal of phosphate by di↵usion.

Figure 1. Conceptual diagram for single-pass (SP). In SP, blood and dialysate are passed
through a filter which initiates a di↵usion process that removes toxic substances from the
blood (plasma and extracellular fluid). The outflowing dialysate is constantly replenished by
fresh dialysate, and the concentration of phosphate in the dialysate is assumed constant.

Agar et al. [7] proposed a simple compartment model for SP consisting of a single linear au-
tonomous ODE,

Vb
dz(t)

dt
= CsKs � (Ks + Kb)z(t) + KbCd, (2.1)

where z(t) is the concentration of phosphate in the blood compartment at time t, Cs is the constant
concentration in the source compartment and Cd is the phosphate concentration in the dialysate as-
sumed to be constant and measurable. Ks and Kb are di↵usion rates from source to blood and from
blood to dialysate, respectively. Lastly, Vb denotes the blood volume taken as the blood plasma and
extracellular volume. For the system to have a unique solution, we equip the ODE with the initial con-
dition z(0) = z0. Notice that the system is not identifiable since Vb can be integrated in the remaining
parameters and thus we assume that Vb is known through measurements for SP.

The assumption of a constant Cd is not crucial. If we allow the phosphate concentration to be a
variable with initial value 0, then we can extend the model by an extra di↵erential equation. This ex-
tension results in a fast transient in Cd toward the steady state value given by data shown in Table 1 with
at doubling time of approximately 10-15 minutes (see supplementary, Figure E.14). Moreover, such
extension does not a↵ect the parameter estimates achieved. Hence we confine ourselves to consider Cd

as a constant.

2.2. Multiple-pass dialysis

Contrary to SP where dialysate is constantly replenished, the dialysate for MP is recirculated, and
consequently, the removed substances accumulate in the dialysate fluid over time. A conceptual dia-
gram of the MP treatment is depicted in Figure 2.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4455–4492.
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MP is less e↵ective than SP due to the accumulation of substances in dialysate. However, MP
greatly reduces the amount of dialysate fluid needed for HD treatment, which makes a smaller clinical
setting possible. Furthermore, it may ease HD treatment at home and treatment during travels, which
can possibly greatly improve the quality of life for renal failure patients. [12–14]

Figure 2. Conceptual diagram for multiple pass (MP) treatment. Like in conventional SP,
blood and dialysate is passed through a filter that causes a di↵usion process that removes
toxic substances from the blood (plasma and extracellular fluid). The dialysate is recirculated
and consequently, the removed substances accumulate in the dialysate, i.e., y(t) changes as a
function of time.

The MP model can be described by the following system of linear autonomous ODEs,

Vb
dx(t)

dt
= CsKs � (Ks + Kb)x(t) + Kby(t), (2.2a)

Vd
dy(t)

dt
= Kb(x(t) � y(t)), (2.2b)

where x(t) and y(t) are the time-varying phosphate concentrations for the blood compartment and in
the dialysate at time t, respectively, and Vd is the volume of the dialysate. The remaining parameters,
i.e., Vb, Cs, Ks and Kb, have the same interpretation as for the SP model in (2.1). The initial conditions
are x(0) = x0 and y(0) = y0 corresponding to the phosphate concentration in blood and dialysate at
time t = 0, respectively. The phosphate concentration in the dialysate at time t = 0 is zero, i.e., we
assume y0 = 0 henceforth.

The MP model carries additional information compared to the SP model since the only new param-
eter, the dialysate volume Vd is accurately known from the dialysis equipment. Hence, we have an
additional equation in the model but the same number of unknown parameters compared to SP. Thus,
given su�cient data, the MP model allows for structural identifiability of the parameters due to the
addition of (2.2b) since we cannot simply integrate Vb in the remaining parameters. However, since
bioimpedance measurements of Vb are available, we will consider Vb to be known a priori, since it is
not practically identifiable.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4455–4492.
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2.3. Combined-pass dialysis

The parameters for a single patient are shared for the two treatments. Thus, if a patient completes
both SP and MP, we can utilize all available information by considering the CP model,

Vb
dz(t)

dt
= CsKs � (Ks + Kb)z(t) + KbCd, (2.3a)

Vb
dx(t)

dt
= CsKs � (Ks + Kb)x(t) + Kby(t), (2.3b)

Vd
dy(t)

dt
= Kb(x(t) � y(t)), (2.3c)

with z(0) = z0, x(0) = x0 and y(0) = 0, and the parameters as described for SP. The CP model, just
as the MP model, allows for structural identifiability, and potentially even more precise estimation
compared to the MP model due to the addition of the SP model.

2.4. Clinical data
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Figure 3. Visualization of the measured phosphate concentrations for SP and MP. The dots
represent the measurements, and the full line is the linear interpolation of the measurements.
The concentration of phosphate in dialysate in MP is denoted Y and the phosphate concen-
tration in the blood is denoted Z and X for SP and MP, respectively.

We consider longitudinal data sets from 10 patients with renal failure that were measured during an
SP session and an MP session. The measured phosphate concentrations for SP and MP (Z, X and Y)
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are depicted in Figure 3. Measurements were once every hour for a total of four and eight hours for SP
and MP, respectively. No measurements were taken in the relapse phase, i.e., after ended treatment.

Considering the SP measurements (orange dotted line) in Figure 3, we see an exponential-like decay
in the measured phosphate concentration after two hours as predicted by (2.1). Thereafter, phosphate
concentration seems to stabilize around a reduced concentration level. For the MP measurements
(green and blue dotted lines), we see similar exponential-like decay for the phosphate concentration in
agreement with the bi-exponential solution to (2.2). However, this drop in phosphate concentration is a
bit slower for some patients and after two hours it starts to slowly increase due to the accumulation of
phosphate in the dialysate. The phosphate concentration in the dialysate increases rapidly in the begin-
ning of the treatment but slows down and approaches an equilibrium with the phosphate concentration
in the blood. This behavior is expected according to the model in (2.2) since the concentration gradient
vanishes.

3. Bayesian inference

We solve the parameter estimation problem using a Bayesian approach, where we consider the
parameters, measurement noise and initial conditions as random variables. In Bayesian inference, we
are interested in the posterior probability of the parameters. The posterior probability consists of two
components: a prior probability reflecting our knowledge or beliefs about likely parameter values, and
a likelihood function that expresses how likely it is to observe the data for a set of parameters. Thus, the
posterior allows us to formally include clinical prior knowledge in the model. Moreover, the inclusion
of the prior may have a regularizing e↵ect on the parameter estimation problem in the sense that the
parameter estimates become less sensitive to measurement noise.

We use uncertainty quantification to assess the reliability of the parameter estimates and the con-
centrations in terms of posterior statistics, i.e., mean, correlation and 95% credibility intervals (CI). A
strength of the uncertainty quantification is that the solution is based on all probable outcomes instead
of being solely based on a point estimate [19]. Uncertainty quantification can also be used for model
analysis and improvement, e.g., revealing strong correlation or identifying potential measurements that
could improve identifiability of the model [20]. Hence, uncertainty quantification is a flexible method
to assess how certain we are of the parameter values and parameter-dependent solutions

3.1. Likelihood and prior modeling

We describe the Bayesian model for the SP and MP treatments and presume data for the relevant
state variables (phosphate concentrations) are measured. Notice that the Bayesian formulation is triv-
ially extended to CP by combining the SP and MP models.

3.1.1. Single-pass formulation

First, we consider the Bayesian formulation for SP. Let ✓ = [Cs, Ks, Kb] denote the vector of
unknown parameters and zIC denote the initial condition for SP. We assume that Vb and Cd are known
to a su�cient degree a priori and do not estimate them based on the model. A justification of this
assumption is given in Section 4.

The state variable z(t, ✓, zIC) is the solution to (2.1) and we wish to infer the model parameters ✓
and initial condition zIC defining the state variable. Henceforth, we shorten notation such that z(t) ⌘

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4455–4492.
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z(t, ✓, zIC).
We assume that the measurement noise is normally distributed such that the state variable, z(t) is

inferred through the Gaussian likelihood function,

Zi ⇠ N
⇣
z(ti),�2

d

⌘
, for i = 1, 2, ...,m, (3.1)

where Z 2 Rm is a vector with the measurement of the phosphate concentration in the blood at time
t = ti. The parameter �2

d 2 R+ is a hyperparameter describing the variance of the measurement noise.
The hyperparameter �2

d is not known a priori. Thus, we infer �2
d as a parameter of the model and assign

an inverse gamma prior [19]. We enforce non-negativity on the likelihood function by truncating it at
0 since the phosphate concentrations are non-negative.

We consider the initial condition zIC to have mean equal to the phosphate concentration at time t = 0
and variance �2

d equal to the measurement error, i.e.,

zIC ⇠ N
⇣
Z0,�

2
d

⌘
. (3.2)

This choice of prior for the initial condition can be interpreted as the initial measurement following
the same measurement model as the measurements for time t > 0, i.e., we do not assume that the first
measurement is more accurately measured than the subsequent ones.

We model the prior of the unknown parameters ✓ by the Gaussian distribution,

✓ ⇠ N

0
BBBBBBBBB@

2
666666664

µCs

µKs

µKb

3
777777775 ,

2
6666666664

�2
Cs

0 0
0 �2

Ks
0

0 0 �2
Kb

3
7777777775

1
CCCCCCCCCA
, (3.3)

where µCs , µKs and µKb represent the prior clinical knowledge, i.e., our prior belief about most likely
parameter values and �2

Cs
, �2

Ks
and �2

Kb
are the variances for Cs, Ks and Kb, respectively. As with the

likelihood function, we impose constraints such that we only consider the parameters in a physiologi-
cally meaningful range.

As commonly done, we assume that at the start of the dialysis, i.e., t = 0, the patient’s phosphate
concentration is approximately in a steady state, i.e., we assume that Z0 is close to Cs and we choose
µCs = Z0. The steady state assumption follows from (2.1) where Kb = 0 when the patient is not
receiving dialysis treatment.

In previous publications [3, 7, 8] Cs is fixed to the value of the initial phosphate measurement.
However, the data from Agar et al. [7] show large uncertainty for the first measurement point. Our
choice of prior allows Cs to deviate from the initial measurement of the phosphate concentration and
thereby our model is not oblivious to measurement errors for the initial phosphate measurement.

We base our values for µKs and µKb on literature and we choose µKs = 8.06 L/hour and µKb = 7.56
L/hour [3].

We initially considered �2
Cs

, �2
Ks

and �2
Kb

to be parameters of the model. However, preliminary
results showed that it greatly decreased the stability of the results. Thus, we choose �2

Cs
= 0.2, �2

Ks
=

2.0 and �2
Kb
= 2.0 based on visual inspection of the prior to incorporate adequate uncertainty about

the prior mean. Modest increase of the prior variances did not lead to change in conclusions, see
subsection E.2 and Table E.4. Thus, the chosen prior variances are robust with respect to the results
and not sensitive to the prior assumptions.
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3.1.2. Multiple-pass formulation

The main di↵erence between the MP formulation and the SP formulation is the inclusion of an
additional state variable through equation (2.2b). Hence, the likelihood function for MP is

"
Xi

Yi

#
⇠ N

 "
x(ti)
y(ti)

#
,�2

dI
!
, for i = 1, 2, ..., n, (3.4)

where X 2 Rn and Y 2 Rn are vectors with the measurements of the phosphate concentration in the
blood and dialysate at time t = ti, respectively, and I is the 2 ⇥ 2 identity matrix. The initial condition
for the phosphate concentration in the dialysate is set to zero, i.e., yIC = 0, and the initial condition for
the phosphate concentration in the blood is assigned a prior with mean X0 and variance equal to the
measurement variance, i.e.,

xIC ⇠ N
⇣
X0,�

2
d

⌘
. (3.5)

Lastly, we choose the prior for the parameters ✓ to be (3.3) with the exception that µCs = X0.

3.2. Implementation and diagnostics

We use sampling-based techniques to approximate the posterior [20]. Markov Chain Monte Carlo
(MCMC) is a sampling technique that generates a Markov chain of samples that converges to the
posterior distribution of the parameters [21]. Hence, we can compute posterior statistics, i.e., mean,
95% CI and correlation from the Markov chain.

The simple MCMC techniques such as random walk Metropolis Hastings and the Gibbs sampler
are plagued by ine�cient exploration of the parameter space via random walks and are highly sensitive
to correlated parameters. Hamiltonian Monte Carlo (HMC) is an MCMC method that avoids random
walk behavior by taking a series of first-order gradient informed steps in the simulation and explores
the parameter space well even in the case of correlated parameters. The performance of the HMC
sampler is highly sensitive to the choice of user-specified parameters. However, the No-U-Turn Sam-
pler (NUTS) is an HMC method where the user-specified parameters are automatically estimated. [22]
We use Runge-Kutta 45 (RK45) to solve the ODE system [23] and the PySTAN implementation of
NUTS [24] with default choice for all associated parameters to compute the samples that approximate
the posterior distribution.

For each simulation, we generate four sample chains from random initializations, and we consider
the potential scale reduction statistic, the so-called R̂ value for sampling diagnostics [25]. The R̂ value
measures the ratio of the average variance of samples within each chain to the variance of the pooled
samples across chains, and if all chains are at equilibrium, then the R̂ value will be one.

4. Results

In this section, we consider two data sets for dialysis patients during hemodialysis. For each patient,
we generate 4000 samples and visualize the results in terms of posterior mean and 95% CIs for the
estimated parameters and phosphate concentrations during and after hemodialysis. In addition, we
also visualize the pairwise correlation for the parameters by scatter plots of the samples and compute
the relative standard deviation. All presented results returned an R̂ value of one, indicating convergence
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of the sample chains. In addition, we visually inspected the sample chains, which appeared well mixed.
Tables with estimated posterior means, 95% CIs and relative standard deviations are found in Appendix
B, and RMSE is listed in Table 2. The assumptions of normal distributed measurement errors are
investigated by the empirical error distributions and QQ-plots which are shown in Appendix D, Figure
D.1 and Figure D.2. We may not reject the hypothesis about normal distributed measurement errors
based on the investigations.

We have also investigated the models using synthetic data to confirm the findings of the results with
real data. These synthetic experiments can be found in the supplementary. Here we present the results
obtained by the Bayesian model described in Section 3 for the data depicted in Figure 3.

4.1. Single-pass and multiple-pass

First, we consider the hemodialysis data for the ten patients shown in Figure 3. Beside phosphate
concentrations in the blood and dialysate depicted, we have hourly measurements of the phosphate
concentration in the dialysate (Cd) for SP, the volume of the blood compartment (Vb) for both SP and
MP, and the dialysate volume (Vd) for MP. Cd was measured when exiting the dialysate compartment
after initializing the dialysis process. We assume that the concentration of phosphate in the dialysis
for SP is constant as suggested by data, and for each patient, we compute Cd as the spatial average
of the concentration of phosphate from inlet to outlet of the dialysis machine. Table 1 lists Cd, Vd

and Vb estimated directly from available data and Figure A.1 and Figure A.2 in Appendix A provide
exploratory statistics of the corresponding data.

Table 1. The mean concentration of phosphate in the dialysate for SP, Cd, the mean dialysate
volume for MP, Vd and the mean extracellular volume, Vb for both SP and MP.

Estimate
Patient

1 2 3 4 5 6 7 8 9 10

SP
Cd [mmol/L] 0.16 0.12 0.11 0.16 0.18 0.21 0.14 0.09 0.14 0.09

Vb [L] 16.88 17.74 16.92 21.20 18.20 14.74 15.32 13.04 20.20 18.00

MP
Vb [L] 16.99 17.80 17.43 21.20 18.39 15.15 15.48 13.76 20.21 18.25

Vd [L] 22.61 23.00 26.57 31.93 28.51 20.15 23.42 14.24 28.59 23.25

4.1.1. Estimation

The estimated phosphate concentrations obtained for SP are depicted in Figure 4 along with the
predicted relapse. The solid line represents the posterior mean, the full circles are data points and the
transparent region indicates the 95% CI i.e., the region that contains 95% of the samples. Considering
the estimated phosphate concentrations for SP, we see that the sampler has computed a decent fit in
terms RMSE in Table 2 and posterior mean with a narrow 95% CI for the treatment phase. However,
there is a large 95% CI for the relapse phase.

The corresponding parameter estimates with 95% CI for SP are visualized in Figure 5 and listed in
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Figure 4. Estimated treatment and relapse for SP. The full lines are the posterior mean
of the samples whereas the transparent regions represent the 95% CI. The full circles are
measurements, and the dashed line is the posterior mean of the estimated relapse. For RMSE,
see Table 2.

Table B.1 where the average relative standard deviation is 10.3%, 18.4% and 18.6% for Cs, Ks and Kb,
respectively. The full posterior density for the parameters for patient 2 is shown in Figure 6. We have
chosen to only include a correlation plot for patient 2 in this section since it shows the general trend of
the estimated parameters. The correlation plots for the remaining patients are found in Figure C.1-C.9
in Appendix C.

Figure 7 shows the estimated phosphate concentrations and predicted relapse phase for MP. Figure
7 and Table 2 show that the parameter estimation has found a satisfying fit both visually and in terms
of RMSE for MP as for SP. However, the width of the 95% CIs is smaller for the relapse phase. The
reduced uncertainty in the relapse can be explained by the reduced 95% CI for Cs in MP compared to
SP which is shown in Figure 5 and Figure 6 and quantified by the decreased average standard deviation
of 7.3% in Table B.2, i.e., a reduction of 3%.

Moreover, Figure 5 shows a great reduction in the uncertainty about Kb as expected from the addi-
tion of equation (2.2b) with a relative standard deviation of 9.6%, i.e., a reduction of 9% compared to
SP. However, the uncertainty about Ks remains largely una↵ected by the additional knowledge utilized
by the MP model and the uncertainty actually increases on average with an average relative standard
deviation of 24.8%.
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Figure 5. Visualization of the parameter estimates. The dots, diamonds and triangles repre-
sent the posterior mean for SP, MP and CP, respectively. The transparent region is the 95%
CI. The full posterior of the parameters for patient 2 is shown in 6 and for the remaining
patients in Figure C.1-C.9 in Appendix C.
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Figure 6. Plot of the posterior density and correlation of the parameters estimated for patient
2 for SP, MP and CP. The density plots show the posterior density functions, and the scatter
plots show the posterior samples.

Considering the CP results in Figure 8, we see that CP finds a unified set of parameters that describe
the SP and MP sessions for each patient. Moreover, the CP estimates a satisfying fit both visually and
in terms of RMSE in Table 2. The parameter estimates are very similar to the ones obtained by MP as
seen in Figure 5 except for patient 6 and with only a slight reduction compared to MP in average relative
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Figure 7. Estimated treatment and relapse for MP. The full lines are the posterior mean
of the samples whereas the transparent regions represent the 95% CI. The full circles are
measurements, and the dashed line is the posterior mean of the estimated relapse. For RMSE,
see Table 2.

standard deviation, 6.9%, 22.9% and 8.2% for Cs, Ks and Kb, respectively. A possible explanation for
the di↵erence in Ks for patient 6 is the large di↵erence in initial measured phosphate concentration,
indicating that steady state had not been reached before treatment onset.

The synthetic results in Figure E.2 and E.3 in the supplementary materials show that with fixed
Cs and an uniform prior on Ks and Kb (mimicking the parameter estimation in [3, 7, 8]), we have
a very limited identifiability of Ks and Kb for SP, whereas MP and CP recover values very close to
the true parameters with significantly lower uncertainty. In addition, the parameter estimates for Ks

and Kb were highly correlated and this correlation was significantly reduced by MP and CP. We also
considered the full Bayesian model with priors on the synthetic data and the results are depicted in
Figure E.5 and E.6 in the supplementary materials. The results showed that MP and CP in general
came closer to the true parameters with smaller 95% CI and showed similar results in terms of relative
standard deviation.

In summary, the uncertainty associated with the SP results is reduced significantly by using the
Bayesian model with priors compared to the standard parameter estimation without the clinical knowl-
edge incorporated. For the Bayesian models, we see that MP and CP are superior to SP in estimating
patient-specific parameters Cs and Kb, but that the gain of considering CP compared to MP is limited.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4455–4492.



4468

0.0

1.0

2.0

3.0
Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

0 2 4 6 8

time [hours]

0.0

1.0

2.0

3.0

p
h
os

p
h
at

e
[m

m
ol

/L
]

Patient 6

0 2 4 6 8

Patient 7

0 2 4 6 8

Patient 8

0 2 4 6 8

Patient 9

0 2 4 6 8

Patient 10

z(t)

x(t)

y(t)

Figure 8. Estimated treatment and relapse for CP. The full lines are the posterior mean
of the samples whereas the transparent regions represent the 95% CI. The full circles are
measurements, and the dashed line is the posterior mean of the estimated relapse. For RMSE,
see Table 2.

However, we see that the uncertainty about Ks is large even when using all available data with the
CP model. These findings are further supported by the synthetic results in the supplementary materi-
als, where the estimates obtained by MP and CP are closer to the true parameter value and with less
uncertainty. Thus, based on the estimation results, it seems that the SP data without relapse data or
consecutive sessions are not su�cient for estimating the parameters reliably.

4.2. Consecutive SP sessions

Debowska et al. [3] present a data set consisting of 25 patients that were examined during three
consecutive SP sessions of a one-week dialysis treatment cycle. They present the data as the average
of the measurement for the 25 patients and we have read o↵ the data from the figures. Measurements
were obtained hourly for a total duration of four hours with the addition of a measurement 45 minutes
after ended treatment, i.e., we have five SP measurements and a relapse measurement for each of the
three consecutive SP sessions. We choose Vb = 20 and Cd = 0.
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Table 2. Computed RMSE for Figure 4, 7 and 8. We compute RMSE by the formula

RMSE =
q

1
n
Pn

i=1(X̂i � Xi)2 where X̂ and X are the estimated and measured phosphate con-
centrations, respectively.

Patient SP MP CP

1 0.29 0.08 0.1
2 0.17 0.04 0.05
3 0.11 0.06 0.08
4 0.32 0.06 0.09
5 0.26 0.02 0.04
6 0.59 0.07 0.1
7 0.27 0.08 0.12
8 0.16 0.08 0.11
9 0.19 0.06 0.08

10 0.1 0.03 0.04

4.2.1. Simulations and estimates

The aim of this subsection is to investigate the improvement of information obtained by including
relapse measurement and / or consecutive sessions in the SP model. We investigate the four following
scenarios, Scenario 1 (S1) where we consider the first SP treatment only, Scenario 2 (S2) with the first
SP treatment with the addition of a measured relapse point, Scenario 3 (S3) where we consider the first
SP treatment with relapse point and the first measured data point of the second SP, and Scenario 4 (S4)
where we include the data from all three SP consecutive sessions.

The results for the four scenarios are depicted in Figure 9. The measurements included in each
parameter estimation are marked with colored dots, whereas the measurements not included in the
model estimation are marked with black open circles. The posterior statistics for the parameters are
shown in Figure 10 and listed in Table B.4. Correlation of the parameters is shown in Figure 11.

Figure 9a shows estimation without relapse measurement for a single SP session, the phosphate
concentration has a quite large 95% CI and undershoots the relapse. If we consider the uncertainty
in the correlation plot for the parameters in Figure 11 and Figure 10, we see a large 95% CI for the
parameter estimates and relative standard deviation in Table B.4 which is similar to the uncertainty
associated with the estimate for the SP estimation in Section 4.1.

A model estimation including the measured relapse 45 minutes after ended treatment is depicted in
Figure 9b. The 95% CIs for the phosphate concentration is slightly reduced, but the 95% CIs for the
parameters have barely changed as seen in Figure 10, Figure 11 and Table B.4. Hence, including a
measurement after 45 minutes relapse has limited e↵ect on the uncertainty of the parameter estimates.
This can also be seen by considering the correlation plot in Figure 11, where the width of the distri-
bution is only slightly changed. It is noteworthy that the addition of the relapse point has such limited
e↵ect on the estimation. However, this limited e↵ect is due to the very rapid dynamics in the initial
relapse phase. The initial relapse is not very sensitive to small changes, whereas a relapse point mea-
sured later e.g., after two hours, will have a larger e↵ect on the estimation process due to the slower
change in the concentration.
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(a) Scenario 1 (S1).
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(b) Scenario 2 (S2).
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(c) Scenario 3 (S3).
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(d) Scenario 4 (S4).

Figure 9. Four scenarios for the relapse data. (a) first SP treatment with no relapse data (S1),
(b) first SP treatment with a single relapse data point after 4.75 hours (S2), (c) first SP treat-
ment with relapse data after 4.75 and 48 hours (S3). Lastly (d) shows the fit when including
all three consecutive SP treatment with relapse data (S4). The measurements are shown with
colored circles. The open black circles in (a) and (b) indicate that the measurements are not
used for estimation. RMSE is S1 =0.05, S2=0.03, S3=0.06 and S4=0.03, respectively.
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Figure 10. Posterior mean and 95% CI for the parameter estimates for the four scenarios,
S1, S2, S3, and S4 depicted in Figure 9. The figure shows that the uncertainty about the
parameter estimates decreases as the number of measurements increases.

Considering the full relapse in Figure 9c, we see the e↵ect of having a relapse measurement several
hours after ended treatment. The estimated steady state for the phosphate concentration has an in-
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Figure 11. Plot of the posterior density and correlation for the parameter estimates for the
four scenarios, S1, S2, S3, and S4. The density plots show the posterior density functions,
and the scatter plots show the posterior samples. The uncertainty associated with the pos-
terior mean of the parameters decreases as more information is included in terms of relapse
measurement and /or consecutive sessions.

creased posterior mean and narrower 95% CI compared to Figure 9a and 9b. This increase is explained
by the increase for Cs which can be seen in Figure 10 and Figure 11. There is also a slight narrowing
of the 95% CI for Ks whereas the e↵ect on Kb is limited as the relative standard deviation actually
increases from 16% to 18% compared to the partial relapse. Hence, including relapse measurements
has limited e↵ect on the identifiability of Kb, but reduces the uncertainty associated with the estimates
for Cs and Ks. This observation is expected based on the model (2.1), since we have Kb = 0 in the
relapse phase.

Lastly, if we have three consecutive SP treatments for the same patient, we can reduce the un-
certainty even further, as shown in Figure 9d. The three consecutive SP treatments carry significant
information since the repetition makes the estimates less sensitive to fluctuations in the data, which can
also be seen in Figure 10 and Figure 11. Considering the relative standard deviation for Ks in Table
B.4, we find that it decreases from 20% to 5 % by considering the consecutive sessions compared to a
single session. However, even in the case of a single session, our Bayesian approach has significantly
smaller relative standard deviation compared to the estimates found by Debowska et al. [3] and Agar
et al. [7], who report a relative standard deviation of 79% and 47%, respectively. Even for Kb, we
see a significant narrowing of the 95% CI. Thus, measuring consecutive sessions greatly increases the
identifiability of all three model parameters as the relative standard deviation decreases significantly
for all three parameter estimates, as seen in Table B.4.

We also investigated the e↵ect of including relapse measurements for the synthetic data for SP, MP
and CP. The results including relapse measurements are shown in Figure E.8-E.11 and results for two
consecutive sessions are shown in Figure E.12 and E.13. Here we found that the consecutive sessions
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were more e↵ective than relapse measurements to reduce the uncertainty of the parameters which
aligns with the findings in Figure 9. In general for the synthetic data, we found that MP compared to
SP had less uncertainty and came closer to the true parameter values.

5. Conclusion

Phosphate clearance with hemodialysis is crucial for patients with renal failure since abnormal
levels of phosphate are associated with increased vascular calcification and mortality. We propose a
Bayesian approach to parameter estimation for patients undergoing hemodialysis treatments (SP, MP
and CP). The Bayesian approach allows us to formally include clinical knowledge in the model and
to use uncertainty quantification to assess how reliably we can estimate the three model parameters:
phosphate concentration in the bones, phosphate clearance from bone to blood and from blood to
dialysate.

We validated and tested our Bayesian model on two data sets for patients with renal failure. The re-
sults showed that the uncertainty for the parameter estimates is greatly reduced by considering MP and
CP compared to SP while CP is not significantly better than MP. However, for the parameter governing
the di↵usion rate between bone phosphate and blood, the uncertainty remained unchanged. We also
investigated the impact of including relapse data and consecutive treatments. The results showed that
including an early relapse measurement (after 45 minutes) had little e↵ect on the estimation process if
not combined with a measurement in the later relapse phase. The relapse measurements taken more
than 45 minutes after ended treatment had significant impact on the reliability of the model parame-
ters. Moreover, the results showed that we can reduce the relative standard deviation for the phosphate
clearance from blood to bone from 20% to 5% by including consecutive sessions in the estimation
process compared to estimation based on a single session.

Numerical results on synthetic data confirmed the findings obtained from the real data, and showed
that the parameters were poorly identified for SP if no prior information was included. The uncertainty
of the estimates greatly decreased when using the Bayesian model incorporating clinical knowledge,
and the MP model generally was closer to the true parameter values of the model. Compared to existing
parameter estimates of the phosphate clearance from bone to blood, our Bayesian model can estimate
a parameter associated with significantly lower uncertainty for both SP and MP. As the consecutive SP
sessions may also be used to reduce the uncertainty of the estimated parameters significantly and such
action comes without any costs, it seems very straight forward to implement clinically. Hence, pooling
data, e.g., from three consecutive SP sessions to estimate patient specific parameters, is recommend-
able.
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Figure A.1. Boxplots of the measured parameters Cd and Vb for the SP sessions in Figure 3.
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Figure A.2. Boxplots of the measured parameters Vb and Vd for the MP sessions in Figure 3.
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Table B.1. Median (m), lower (l) and upper (u) 95% CI and relative standard deviation ( std
mean )

for the parameters for the SP estimation.

Patient
Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

1 1.41 1.71 2.06 9% 6.18 9.33 12.1 16% 10.14 13.16 15.31 10%

2 0.88 1.12 1.44 13% 5.03 8.94 12.96 22% 6.48 10.03 13.63 17%

3 0.98 1.23 1.51 11% 6.06 9.56 13.23 19% 5.38 8.57 12.25 21%

4 1.61 1.90 2.23 8% 7.50 10.66 13.13 13% 8.75 11.39 13.46 11%

5 1.33 1.63 1.98 10% 4.79 8.36 11.94 22% 6.42 9.54 12.63 17%

6 2.22 2.60 2.99 8% 4.10 4.97 6.10 10% 9.27 10.25 11.20 5%

7 1.45 1.78 2.08 9% 5.42 8.86 12.33 20% 2.30 4.97 8.24 30%

8 0.85 1.08 1.39 13% 5.45 8.43 11.52 18% 6.43 9.35 12.18 16%

9 1.10 1.4 1.71 11% 4.07 8.06 11.93 25% 1.90 4.69 8.14 34%

10 0.97 1.23 1.51 11% 5.93 9.27 12.73 19% 3.43 6.60 9.91 25%

Table B.2. Median (m), lower (l) and upper (u) 95% CI and relative standard deviation ( std
mean )

for the parameters for MP estimation.

Patient
Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

1 1.41 1.57 2.13 12% 2.30 6.98 11.97 38% 5.82 7.08 8.73 10%

2 1.05 1.15 1.37 7% 4.38 7.80 11.58 24% 7.39 8.47 9.78 7%

3 1.26 1.40 1.62 7% 4.96 7.78 11.22 21% 6.48 7.78 9.41 10%

4 1.29 1.45 1.71 7% 4.50 7.46 11.06 23% 7.14 8.49 10.16 9%

5 1.31 1.42 1.65 6% 4.45 7.23 10.21 22% 9.43 10.07 10.79 3%

6 1.23 1.37 1.65 8% 3.71 7.13 11.06 26% 6.04 7.50 9.43 11%

7 1.50 1.64 1.91 6% 4.22 7.89 11.86 24% 5.84 7.12 8.75 11%

8 0.90 0.99 1.19 7% 3.07 7.36 11.45 28% 3.22 4.34 6.9 20%

9 1.16 1.28 1.44 6% 5.95 9.03 12.63 19% 4.96 5.98 7.43 10%

10 1.2 1.32 1.54 7% 4.40 7.11 10.66 23% 6.54 7.16 7.88 5%
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Table B.3. Median (m), lower (l) and upper (u) 95% CI and relative standard deviation ( std
mean )

for the parameters for CP estimation.

Patient
Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

1 1.37 1.51 1.91 8% 3.19 7.26 11.34 28% 7.07 8.27 9.78 8%

2 1.03 1.11 1.27 5% 5.44 8.45 11.72 19% 8.2 9.30 10.51 6%

3 1.24 1.38 1.60 7% 5.11 7.70 11.14 19% 7.23 8.38 9.74 8%

4 1.34 1.51 1.79 8% 4.30 7.25 11.14 24% 6.57 7.59 8.79 7%

5 1.26 1.34 1.50 5% 6.72 10.48 13.93 18% 8.20 9.09 10.05 5%

6 1.37 1.66 2.24 14% 2.02 4.21 8.41 39% 5.67 6.70 7.86 8%

7 1.55 1.67 1.86 5% 5.89 9.20 12.74 19% 4.82 5.81 7.08 10%

8 0.86 0.96 1.13 7% 3.39 7.09 11.05 27% 4.27 5.64 7.59 16%

9 1.22 1.33 1.52 6% 5.42 8.54 12.28 20% 4.59 5.36 6.27 9%

10 1.17 1.24 1.36 4% 6.70 9.62 12.62 16% 6.28 6.97 7.68 5%

Table B.4. Median (m), lower (l) and upper (u) 95% CI and relative standard deviation ( std
mean )

for the relapse data.

Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

NR 1.11 1.37 1.74 11% 6.44 10.51 14.84 20% 6.48 10.04 13.53 18%

PR 1.25 1.45 1.71 8% 7.57 11.70 15.61 18% 8.18 12.17 14.42 14%

FR 1.49 1.68 1.79 4% 5.97 8.75 11.21 15% 7.77 11.94 14.88 16%

FTR 1.64 1.68 1.71 1% 8.64 9.66 10.57 5% 13.01 14.4 15.51 4%
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C. Correlation plots for SP and MP

5

10

15

K
s

[L
/h

ou
r] Patient 1

SP

MP

CP

0 1 2 3
Cs [mmol/L]

5

10

15

K
b

[L
/h

ou
r]

5 10 15
Ks [L/hour]

5 10 15
Kb [L/hour]

Figure C.1. Correlation and poste-
rior density for the patient 1.
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Figure C.2. Correlation and poste-
rior density for the patient 3.

5

10

15

K
s

[L
/h

ou
r] Patient 4

SP

MP

CP

0 1 2 3
Cs [mmol/L]

5

10

15

K
b

[L
/h

ou
r]

5 10 15
Ks [L/hour]

5 10 15
Kb [L/hour]

Figure C.3. Correlation and poste-
rior density for the patient 4.
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Figure C.4. Correlation and poste-
rior density for the patient 5.
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Figure C.5. Correlation and poste-
rior density for the patient 6.
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Figure C.6. Correlation and poste-
rior density for the patient 7.
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Figure C.7. Correlation and poste-
rior density for the patient 8.
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Figure C.8. Correlation and poste-
rior density for the patient 9.
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Figure C.9. Correlation and poste-
rior density for the patient 10.
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D. Validation of model assumption
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Figure D.1. Histogram of the computed errors for the experiment in Figures 4, 7 and 8.
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Figure D.2. QQ plot of the computed errors for the experiment in Figures 4, 7 and 8.

Due the thin tails in the QQ-plots we supplement the visual inspections in Figure D.1 and Figure
D.2 with an additional analytic test, the Anderson-Darling test [26]. We determine the p-values for
the Anderson-Darling statistic [27]. The Anderson-Darling test gives p-values of p=0.08, p=0.04,
and p=0.07 for SP, MP, and CP, respectively. With a significant level of ↵ = 0.05, we see that all
p-values are close to ↵ but those for SP and CP are just above while that for MP is just below it. Thus,
the conclusions are very sensitive to the choice of significant level, and one should be careful to make
definitive conclusions until more data are collected. Altogether, we do not reject the hypothesis that the
residuals are normal distributed but acknowledge that more data is needed to reach a robust conclusion.
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Supplementary

E. Synthetic data experiments

We generate synthetic data for a patient with renal failure to investigate the identifiability of the
hemodialysis model parameters. We base the true parameters on the estimates obtained for patient 2
and simulate both SP and MP treatments with relapse. We add Gaussian noise with mean equal to
the ”true” trajectory of the state variables and with variance �2 = 0.05. Figure E.1 shows simulated
data for a renal failure patient during hemodialysis with added Gaussian noise. The true parameters
for the simulation are listed in Table E.1. Note that we have used the true values for the parameters
estimated from data, i.e., Vb, Vd and Cd and thus the only uncertainty introduced arise from the Gaussian
measurement noise.

We will use the simulated data to investigate the following four cases:

• Reduced Bayesian model with fixed Cs and uniform priors
• Full Bayesian model
• Full Bayesian model with relapse measurements
• Full Bayesian model with consecutive sessions
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Figure E.1. Synthetic data with Gaussian noise for a dialysis patient during SP and MP
treatments. The full lines are the true phosphate concentrations during hemodialysis and the
dashed lines are the true relapse phase. The dots represent the hourly measurements with
Gaussian noise.

Table E.1. The true model parameters chosen for the simulation experiment.

Cs Ks Kb Vb Vd Cd Z0 X0

1.23 8.39 9.23 17.77 23.0 0.12 1.23 1.23
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E.1. Reduced Bayesian model with fixed Cs and uniform priors

We fix the parameter Cs and reduce the priors to uniform priors. The uniform priors correspond to
simply having bounds on the parameters but with equal probability for all outcomes in the specified
interval. Hence this reduced Bayesian model mimics the simple model suggested by Debowska et
al. [3] and Agar et al. [7]. The results for the reduced Bayesian model are shown in Figure E.2, the
parameter estimates are visualized in Figure E.3 and listed in Table E.2. Correlation plot is shown in
Figure E.4.
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Figure E.2. Results for the simulated experiment for SP, MP and CP. The dots represent the
measurements, the solid line is the estimated mean and the transparent region shows the 95%
CI. RMSE is SP= 0.04, MP= 0.05 and CP= 0.11.
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Figure E.3. Visualization of the parameter estimates and 95% for the estimated phosphate
concentrations in Figure E.2. The vertical gray dotted line represents the true parameter
value.

Remarkably, even though we have ignored the uncertainty in Cs, the SP model is very uncertain
about Ks and Kb, as seen in Figure E.3 and in Table E.2. Moreover, we see a pronounced correlation
between Ks and Kb in Figure E.4. Hence, the parameters of the SP model are poorly identified when
no prior knowledge is included in the model. The parameters for MP and CP are, on the other hand,
more certain about their estimates and closer to the true parameter values with lower relative standard
deviation. However, this certainty comes at a cost in terms of validity of the available knowledge of
Cs since the estimates for Ks and Kb may be biased if this estimate is not su�ciently close to the true
parameter.
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Figure E.4. Correlation plot for simulated experiment in Figure E.2.

Table E.2. Median (m), lower (l) and upper (u) 95% CI and relative standard deviation ( std
mean )

for Figure E.2.

HD
Ks Kb

l m u std
mean l m u std

mean

SP 1.83 5.93 15.62 50% 6.22 9.28 17.8 28%

MP 6.22 7.48 9.09 10% 7.62 9.27 11.82 11%

CP 6.01 6.97 8.06 8% 8.44 9.64 11.07 7%

E.2. Full Bayesian model

We consider Cs to be a parameter of the model such that we investigate the same estimation problem
as presented in Section 4 for the SP and MP data. The results are shown in Figure E.5, the parameter
estimates and corresponding 95% CI are visualized in Figure E.6 and listed in Table E.3. Correlation
plot shown in Figure E.7.

Figure E.5 shows the same behavior as when using real data in Section 4. All three models find a
satisfying fit to the data and all three models estimate posterior means of the parameters that are close
to the true parameter values. Figure E.6 and E.4 show that the uncertainty in the parameter space is
much larger for SP than for MP and CP for the parameters Cs and Kb, whereas the uncertainty is only
slightly reduced for MP and CP compared to SP for the estimate of Ks. Hence, the identifiability of Cs

and Kb is greatly increased by considering MP measurements since the mean is closer to the true value
and the uncertainty associated with the estimate is greatly reduced compared to SP.
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Figure E.5. Results for the simulated experiment for SP, MP and CP. The dots represent the
measurements, the solid line is the estimated mean and the transparent region shows the 95%
CI. RMSE is SP= 0.04, MP= 0.05 and CP= 0.1.
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Figure E.6. Visualization of the parameter estimates and 95% CI for the estimated phosphate
concentrations in Figure E.5. The vertical gray dotted line represents the true parameter
value.

Table E.3. Median (m), lower (l) and upper (u) 95% CI and relative standard deviation ( std
mean )

for Figure E.5.

HD
Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

SP 0.86 1.13 1.48 14% 3.94 6.85 10.52 24% 5.76 8.32 11.19 17%

MP 1.14 1.27 1.5 7% 4.39 7.23 10.94 23% 7.51 8.99 10.78 9%

CP 1.16 1.31 1.55 8% 3.97 6.36 9.7 22% 8.31 9.47 10.79 7%

To ensure that the priors for Ks and Kb are not too strong, we redid the investigation with an 10%
increase of the variance, i.e., �Ks = 2.2 and �Kb = 2.2. The results are shown in Table E.4 and show no
significant change in the results.
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Figure E.7. Correlation plot for simulated experiment in Figure E.5.

Table E.4. Median (m), lower (l) and upper (u) 95% CI and relative standard deviation ( std
mean )

for the experiment in Figure E.5 with 10% increased variance of the priors for Ks and Kb,
i.e., �Ks = 2.2 and �Kb = 2.2.

HD
Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

SP 0.86 1.15 1.5 14 % 3.49 6.63 10.75 28% 5.61 8.37 11.4 18%

MP 1.14 1.27 1.51 7 % 4.24 7.21 11.09 24 % 7.54 9.05 10.9 9 %

CP 1.16 1.31 1.56 8 % 3.89 6.21 9.59 23 % 8.32 9.47 10.75 6 %

E.3. Full Bayesian model with relapse

In the third simulated experiment, we investigate the e↵ect of including relapse measurements 1,
2 and 4 hours after ended treatment for both SP and MP. The estimated phosphate concentrations are
depicted in Figure E.8 and Figure E.9 for SP and MP, respectively. The corresponding parameter
estimates are visualized in Figure E.11 and listed in Table E.5.

Figure E.11 shows that the uncertainty about Cs is reduced for all methods by including relapse
measurements, especially by including a relapse measurement after 4 hours.

The uncertainty for Ks is only slightly reduced for SP and MP by including relapse measurements
after 1,2 and 4 hours. This observation is quantified in Table E.5 where the relative standard deviation is
reduced by 5% and 6% by including relapse up to four hours for SP and MP, respectively. Considering
the estimate for Ks for CP we obtain an reduction in relative standard deviation of 10% by including
the relapse measurements.

For Kb, we see a limited e↵ect of including relapse measurements for MP and CP, as expected,
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Figure E.8. Results for the simulated experiment for SP with included relapse measurements
after 1, 2 and 4 hours, respectively. The measurements used for estimation are marked by full
dots and the measurements left out are marked by black open circles. RMSE is None = 0.04,
1 hour = 0.04, 2 hours = 0.04 and 4 hours = 0.04.
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Figure E.9. Results for the simulated experiment for MP with included relapse measure-
ments after 1, 2 and 4 hours, respectively. The measurements used for estimation are marked
by full dots and the measurements left out are marked by black open circles. RMSE is None
= 0.05, 1 hour = 0.05, 2 hours = 0.05 and 4 hours = 0.05.

since Kb is not active in the equations during relapse since y(t) and Cd are zero. However, we do see a
reduction in uncertainty for Kb for SP. These findings align very well with the data experiment including
relapse presented in Section 4. Overall, it seems that SP has the greatest reduction in uncertainty by
including relapse measurements, which might be explained by SP having the most uncertain starting
point.
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Figure E.10. Results for the simulated experiment for CP with included relapse measure-
ments after 1, 2 and 4 hours, respectively. The measurements used for estimation are marked
by full dots and the measurements left out are marked by black open circles. RMSE is None
= 0.1, 1 hour = 0.1, 2 hours = 0.1 and 4 hours = 0.1.
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Figure E.11. Visualization of the parameter estimates and 95% CI for the estimated phos-
phate concentrations with relapse measurements in Figure E.8, E.9 and E.10. The vertical
gray dotted lines represent the true parameter values.

E.4. Full Bayesian model with consecutive sessions

Lastly, we investigate the e↵ect of measuring a patient for two consecutive sessions. We simulated
that the patient is measured during two sessions with 18 hours between start of the first and second
session. The phosphate concentration is in a steady state after 18 hours and thus, it does not a↵ect the
results if the time between the starts is larger, e.g., 48 hours. The results are shown in Figure E.12,
Figure E.13 and Table E.6.

Figure E.12 shows that the uncertainty for the relapse phase, especially for SP, is greatly reduced
compared to the results in Figure E.5. Similar for the parameter estimates, we see a great reduction
in uncertainty for Cs and Kb for SP by comparing Figure E.6 and E.13 whereas there is only a slight
reduction in the uncertainty for Ks. For MP and CP, we see a great reduction in uncertainty compared
to SP for all three parameters, but that the mean estimate of Ks is slightly under estimated.
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Table E.5. Median (m), lower (l) and upper (u) 95% CI and relative standard deviation ( std
mean )

for Figure E.8, E.9 and E.10.

HD
Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

SP

None 0.87 1.13 1.49 14% 3.82 6.81 10.36 24% 5.80 8.31 11.14 16%

1 hour 1.00 1.25 1.56 9% 4.81 7.31 10.78 22% 6.87 9.63 12.04 11%

2 hour 1.00 1.18 1.46 10% 4.55 7.46 10.96 22% 6.88 8.99 11.07 12%

4 hour 1.08 1.21 1.39 6% 4.84 7.26 10.35 19% 7.55 9.20 11.01 9%

MP

None 1.14 1.27 1.50 7% 4.34 7.27 10.97 23% 7.54 9.02 10.76 9%

1 hour 1.14 1.25 1.44 6% 4.68 7.72 11.33 21% 7.5 8.97 10.81 9%

2 hour 1.15 1.26 1.44 6% 4.70 7.55 10.99 21% 7.57 8.98 10.75 9%

4 hour 1.15 1.22 1.33 4% 5.72 8.34 11.24 17% 7.57 8.99 10.71 9%

CP

None 1.15 1.31 1.55 8% 3.92 6.26 9.54 23% 8.34 9.46 10.66 6%

1 hour 1.15 1.26 1.41 5% 5.16 7.38 10.16 15% 8.28 9.46 10.73 7%

2 hour 1.17 1.27 1.41 5% 5.04 6.96 9.39 16% 8.35 9.47 10.76 7%

4 hour 1.16 1.23 1.32 3% 5.82 7.59 9.68 13% 8.42 9.56 10.83 6%
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Figure E.12. Results for the simulated experiment for SP with included relapse measure-
ments after 1, 2 and 4 hours, respectively. The measurements used for estimation are marked
by full dots and the measurements left out are marked by black open circles. RMSE is
SP= 8.30 · 10�6, MP= 6.53 · 10�6 and CP= 8.28 · 10�6.
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Figure E.13. Visualization of the parameter estimates and 95% CI for the estimated phos-
phate concentrations with consecutive sessions. The vertical gray dotted lines represent the
true parameter values.
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Table E.6. Median (m), lower (l) and upper (u) 95% CI and relative standard deviation ( std
mean )

for Figure E.12.

HD
Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

SP 1.15 1.26 1.38 5% 4.58 7.1 10.15 20% 6.59 8.73 11.11 13%

MP 1.21 1.29 1.38 3% 5.14 6.77 9.18 15% 8.06 9.11 10.36 6%

CP 1.19 1.27 1.37 4% 5.26 6.83 8.79 13% 8.43 9.56 10.81 6%

E.5. Single-pass with non-constant phosphate concentration in the dialysate

We assume that the phosphate concentration in the dialysate for SP is constant. However, the
assumption of a constant Cd is not crucial. Allowing it to be a variable with initial value 0 extends
the model by an extra di↵erential equation. The result of the extended SP model is shown in Figure
E.14. This extension results in a fast transient in Cd toward the steady state value given by data with at
doubling time of approximately 10-15 minutes.
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Figure E.14. Estimation of the phosphate concentration in blood (z(t)) for the extended
SP model with non-constant phosphate concentration in the dialysate (u(t)). The estimation
shows a fast transient in Cd toward the steady state.
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