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Abstract

The Arctic is warming faster than any other region of the world (known as Arctic amplifi-
cation) leading to rapid and widespread changes, which transform the Arctic environment
with far-reaching consequences. Despite much attention, existing observational datasets,
reanalyses and climate models show large uncertainties in Arctic surface temperatures
and limited consensus on the magnitude of the Arctic amplification. The difference and
uncertainties mainly arise in the Arctic oceans where many clouds, the mix of open water
and sea ice, and the sparse in situ network challenge an accurate and absolute surface
temperature estimation.

Each of these challenges are considered in this PhD study with the overall aim to pro-
vide more accurate and consistent sea surface temperature (SST) and sea ice surface
temperature (IST) estimates in the Arctic, and thereby improving the understanding,
characterization and monitoring of the Arctic warming and amplification.

The frequent and persistent cloud cover in the Arctic limits the extent to which SST can
be retrieved from thermal infrared satellite sensors. Therefore, this PhD study explores
the capability of using passive microwave (PMW) observations to retrieve SST and im-
prove the SST estimates in the Arctic. Multiple PMW SST retrieval algorithms have
been developed, analysed and validated and the first European PMW SST climate data
record has been generated. To prepare for the future Copernicus Imaging Microwave
Radiometer (CIMR) satellite mission, this study also investigates the impact of using dif-
ferent frequency channels in SST retrievals, with promising results for the proposed CIMR
constellation. The impact of including the PMW SST observations in the Arctic surface
temperature estimation has been evaluated and substantial improvements are seen. The
results are expected to become even better in the future with the launch of CIMR, which
will enable SST retrievals at lower uncertainties and much closer to the coasts and sea ice.

Due to the mix of open ocean and sea ice (and the temporal varying sea ice coverage) the
most consistent way to monitor the Arctic surface temperature change is by integrating
SST and IST estimates. This PhD study presents the first gap-free infrared satellite-based
climate data record (1982-2021) of combined sea and sea-ice surface temperatures in the
Arctic (>58◦N), which can be used as a consistent indicator for climate monitoring. It
shows that the combined sea and sea-ice surface temperature has increased by ∼4.5◦C
from 1982 to 2021, with a peak warming of ∼10◦C in the northeastern Barents Sea.

To supplement the sparse in situ network, the satellite-observed ISTs have been used
to estimate near-surface air temperature (T2m) over sea ice. The satellite-derived T2m
estimates provide much better spatial coverage than the in situ observations and show im-
proved performance compared to ECMWF’s most recent reanalysis (ERA5). The satellite-
derived IST and T2m estimates provide an important supplement to the existing in situ
observations and have a large potential to be used for assimilation, evaluating and im-
proving global surface temperature reconstructions, atmospheric reanalyses and climate
models in the Arctic. Initial efforts show that the satellite-derived surface temperatures
can improve our physical understanding and guide future developments in global climate
models and atmospheric reanalyses in the Arctic.
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Resumé

I Arktis stiger temperaturen meget hurtigere end i resten af verden (kendt som arktisk
forstærkning), hvilket fører til hurtige og omfattende forandringer, der transformerer det
arktiske miljø med vidtrækkende konsekvenser. På trods af megen opmærksomhed viser
eksisterende observationelle datasæt, reanalyser og klimamodeller store usikkerheder i ark-
tiske overfladetemperaturer og stor uenighed om størrelsen af den arktiske forstærkning.
Forskellene og usikkerhederne opstår hovedsageligt i de arktiske havområder, hvor mange
skyer, blandingen af åbent vand og havis, og det sparsomme in situ netværk udfordrer
bestemmelsen af absolutte og nøjagtige overfladetemperaturer.

I denne ph.d.-undersøgelse tages hver af disse udfordringer i betragtning med det formål
at udlede mere nøjagtige og konsistente hav- og havis-overfladetemperaturer i Arktis og
dermed forbedre forståelsen, karakteriseringen og overvågningen af den arktiske opvarm-
ning og forstærkning.

Det hyppige og vedvarende skydække i Arktis begrænser i vid udstrækning, bestemmelsen
af havtemperaturer fra termisk infrarøde satellit-sensorer. I dette studie undersøges mu-
ligheden for at bruge passive mikrobølge (PMW) observationer til at bestemme havover-
fladetemperatur (SST) og forbedre eksisterende SST-estimater i Arktis. Forskellige PMW
SST algoritmer er blevet udviklet, analyseret og valideret, og det første europæiske PMW-
SST-klimadatasæt er blevet produceret. For at forberede os på den fremtidige Copernicus
Imaging Microwave Radiometer (CIMR) satellit-mission undersøges effekten af at anvende
forskellige frekvenskanaler i SST algoritmerne med lovende resultater for den forudsatte
CIMR konstellation. Effekten af at inkludere PMW SST-observationer til bestemmelsen
af den Artiske overfladetemperatur er blevet undersøgt, og der ses betydelige forbedringer.
Resultaterne forventes at blive endnu bedre i fremtiden med opsendelsen af CIMR, som
vil gøre det muligt at estimere havtemperaturer med meget lavere usikkerheder og meget
tættere på kysterne og havisen.

På grund af kombinationen af åbent hav og havis (og den tidslige variation i havisdække) er
den mest konsistente måde, at overvåge temperatur-ændringen i de arktiske havområder at
integrere hav- og havis-overfladetemperaturer. Denne ph.d.-undersøgelse præsenterer det
første infrarøde satellit-baserede klimadatasæt (uden huller ved skydække) af kombineret
hav- og havis-overfladetemperaturer i Arktis (>58◦N), der kan bruges som en konsistent
indikator i klimaovervågningen. I følge det nye datasæt, er den kombinerede overflade-
temperatur steget med ∼4.5◦C fra 1982 til 2021 med en maksimal opvarmning på ∼10◦C
i det nordøstlige Barentshav.

For at supplere det sparsomme in situ netværk undersøges potentialet i at bruge de
satellit-observerede havis-temperaturer til at estimere lufttemperatur (T2m) over havis.
De satellit-baserede T2m giver meget bedre geografisk dækning end in situ observation-
erne og udviser større nøjagtighed sammenlignet med ECMWF’s nyeste reanalyse (ERA5).
De satellit-baserede overfladetemperaturer er et vigtigt supplement til de sparsomme in
situ observationer og har desuden et stort potentiale til at blive brugt til assimilering,
evaluering samt forbedring af eksisterende overfladetemperatur estimater. De foreløbige
resultater viser, at de satellit-baserede overfladetemperaturer kan forbedre vores fysiske
forståelse og guide fremtidige udviklinger i globale klimamodeller og reanalyser i Arktis.
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Chapter 1. Introduction

CHAPTER1
Introduction

The Arctic is warming more rapidly than any other region of the world, a phenomenon
known as Arctic amplification (AMAP, 2021; Overland et al., 2019; Pithan & Mauritsen,
2014), which arise due to a number of amplifying feedback mechanisms (Goosse et al.,
2018). The fast rising Arctic temperatures lead to rapid and widespread changes in snow
cover, sea ice, land ice (glaciers and ice sheets), permafrost, precipitation and extreme
events (Box et al., 2019; IPCC, 2021; Stroeve & Notz, 2018). These changes are trans-
forming the Arctic environment with far-reaching consequences e.g. global sea level rise
and opening of new shipping routes including the opportunities and risks associated with
this (AMAP, 2021). Most projections by climate models indicate that future warming will
also be amplified in the Arctic (Holland & Landrum, 2021) and some scenarios indicate
that the Arctic Ocean may be entirely ice free in summer by ∼2050 (Notz & Community,
2020). This makes the Arctic an important indicator of climate change.

Both sea surface temperature (SST) and sea ice surface temperature (IST) are categorized
as essential climate variables (ECVs) by the Global Climate Observing System (GCOS),
and observing these with high accuracy is crucial for monitoring, understanding, charac-
terizing and predicting the Arctic climate system and its change (GCOS, 2022). Accurate
Arctic surface temperatures are critical in various elements of the climate system deter-
mining the exchange of heat between the surface and atmosphere, ice growth and melt
processes, and effecting the ocean circulation, ocean carbon dioxide uptake, as well as the
ecosystems (AMAP, 2021; Behrenfeld et al., 2006; Bentamy et al., 2017; Key et al., 1997;
Maykut, 1986; O’Carroll et al., 2019). Passing specific temperature thresholds may also
result in the passing of ”tipping points” (leading to large and often irreversible changes)
e.g. in the Arctic sea ice, Greenland Ice Sheet (GrIS), Atlantic meridional overturning
circulation (AMOC), permafrost and ecosystems (Lenton et al., 2008; Wang et al., 2023).
Finally, Arctic surface temperatures play a crucial role in weather and sea ice forecasts
through assimilation into ocean, sea ice and atmospheric models (Carton & Giese, 2008;
Oke et al., 2008; Rasmussen et al., 2018; Rayner et al., 2003).

Despite much attention, existing observational datasets, atmospheric reanalyses and global
climate models show large differences and uncertainties in the Arctic surface temperatures
(e.g. Davy & Outten, 2020; IPCC, 2021; Lenssen et al., 2019; Wang et al., 2019) and
limited consensus on the magnitude of Arctic amplification (Rantanen et al., 2022). The
differences and uncertainties mainly arise in the Arctic oceans which consist of open ocean,
sea ice and a marginal ice zone (defined as the transitional zone between the open sea and
pack ice). In this region, persistent cloud cover, the mix of open water and sea ice (and the
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Chapter 1. Introduction

temporal varying sea ice coverage), and the sparse in situ network challenge accurate and
absolute estimation and monitoring of the Arctic sea and sea-ice surface temperatures.

The surface temperature has routinely been measured in situ from meteorological stations
and other platforms over sea ice, which usually provide near-surface air temperatures at
1–2 m height (e.g. Nielsen-Englyst et al., 2019; Richter-Menge et al., 2006; referred to
as T2m in the following), and over the ocean using ships, drifting/moored buoys, Argo
floats and other platforms which provide SST at varying depths (Atkinson et al., 2014;
Good et al., 2013; Kennedy, 2014; Rayner et al., 2006; Roemmich et al., 2009; Woodruff
et al., 2011). However, the extreme environment and the poor accessibility make in situ
observations challenging and sparse in the Arctic (Centurioni et al., 2019; Donlon et al.,
2012). The best way to get a spatially broad coverage of the Arctic is through satellite
remote sensing. Thermal infrared (IR) sensors are very useful for ocean and ice (or snow)
covered surfaces and are heavily used to provide spatially detailed maps of SST and IST.

Since the early 1980s, IR satellite sensors have routinely been used to observe SST with
a typical spatial resolution of 1–4 km and uncertainties of about 0.2–0.4◦C (e.g. Donlon
et al., 2007; Embury et al., 2012; Gladkova et al., 2016; Merchant et al., 2019; Reynolds et
al., 2002). The IR SST products are derived using satellite observations in the atmospheric
windows at wavelengths of 3.5–4.1 µm (mid-IR) and/or 9.5–13 µm (thermal IR). In both
IR bands, the radiance is partially attenuated by the atmosphere due to water vapor,
CO2, CH4, NO2, and aerosols, with the main contribution from water vapor, which is very
variable in both time and space (Saunders & Edwards, 1989). This requires an atmospheric
correction and several methods have been proposed (e.g. Barton, 1995; Emery et al., 1994;
Kilpatrick et al., 2001; Kilpatrick et al., 2015; McMillin, 1975; Minnett, 1990; Walton,
1988; Wick et al., 1992). Insufficient representation of the atmospheric attenuation is one
of the main sources of uncertainty in IR SST retrievals in the Arctic (Castro et al., 2008;
Donlon et al., 2007; O’Carroll et al., 2019). Several other factors also complicate IR SST
retrievals in the Arctic e.g. the limited opportunities for matchups with in situ observations
(in particular during summer when sun glint contaminates the mid-IR wavelengths) to
determine the coefficients for the atmospheric correction algorithms and for assessing the
accuracy of the retrieved SSTs (Centurioni et al., 2019; Donlon et al., 2012; Minnett et al.,
2019; O’Carroll et al., 2019). Moreover, cloud cover introduces intolerable errors in the
IR SST retrievals, and cloud-contaminated pixels should be identified and excluded prior
to the retrieval of SST from IR measurements. Therefore, the accuracy of IR SSTs is
very dependent on the availability of a good cloud screening algorithm (e.g. Kilpatrick
et al., 2001; Liu & Minnett, 2016; Merchant et al., 2005; Vázquez-Cuervo et al., 2004), in
particular in persistent cloudy regions such as the Arctic (Curry et al., 1996; Eastman &
Warren, 2010; Jia & Minnett, 2020). However, accurate cloud screening is difficult in the
Arctic where persistent cloud cover, long twilight, and in some cases similar temperature of
the cloud tops and the ocean challenge cloud screening algorithms in accurate identification
of clouds (Curry et al., 1996; Shupe et al., 2011).

The long periods without surface coverage from IR observations make passive microwave
(PMW) observations an important supplement (despite a poorer spatial resolution) since
these are not prevented by non-precipitating clouds (Donlon et al., 2009; Ulaby et al., 1986;
Wentz et al., 2000). The first global accurate PMW SST retrievals became available with
the launch of the Advanced Microwave Scanning Radiometer – Earth Observing System
(AMSR-E) on the NASA Aqua satellite (Chelton & Wentz, 2005; Kawanishi et al., 2003)
in 2002, which was followed by the currently operational AMSR2 on the Japan Aerospace
Exploration Agency (JAXA) GCOM-W1 satellite, launched in May 2012. At frequencies
between 4 and 11 GHz, the vertically polarized brightness temperature of the ocean has an
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appreciable sensitivity to SST. In addition to SST, the brightness temperatures depend
on the sea surface roughness (usually parameterized in terms of the near-surface wind
speed and direction) and the atmospheric temperature and moisture profiles (Ulaby et al.,
1986; Wentz & Meissner, 2000), but these effects can usually be accounted for in the SST
retrieval e.g. given simultaneous measurements at multiple frequencies and polarizations
(e.g. Meissner & Wentz, 2012; Nielsen-Englyst et al., 2018; Wentz & Meissner, 2000; Wentz
& Meissner, 2007).

In general, the retrieval algorithms can be divided into two categories: statistical algo-
rithms and physically based algorithms. The statistical algorithms are the most common
and these are developed through comparisons of satellite measured brightness tempera-
tures and collocated in situ observations and model data (e.g. Chang et al., 2015; Shibata,
2006). The physically based algorithms use radiative transfer models (RTMs) to simulate
the top of atmosphere brightness temperatures using instrumental (azimuth/earth inci-
dence angles, frequency and polarisation) and environmental (SST, sea surface salinity,
wind speed/direction, water vapour density, liquid water density, pressure, and atmo-
spheric profiles of temperature) information. The simulated brightness temperatures can
then be used to determine the coefficients in regression-based algorithms (Meissner &
Wentz, 2012) or alternatively the RTM can be inverted to retrieve SST (and other param-
eters) from the satellite observed brightness temperatures e.g. using optimal estimation
(OE; Nielsen-Englyst et al., 2018).

The PMW SST retrievals provide almost complete daily global coverage only prevented in
regions with rain, strong winds, sun-glitter, Radio Frequency Interference (RFI), and/or
proximity (typically within ∼100 km) to land and sea ice, where the impact of side-lobe
contamination becomes a significant error (Gentemann, 2014; Gentemann & Hilburn,
2015). PMW SSTs typically have uncertainties of 0.4–0.5◦C and spatial resolutions of 50–
60 km (Gentemann, 2014; Gentemann et al., 2010; Nielsen-Englyst et al., 2018; Shibata,
2006; Wentz et al., 2000). The existing PMW SST algorithms have typically been derived
for individual sensors, limited time periods or using sparse in situ data for tuning and
validation. However, the complementary characteristics of PMW SSTs and the sustained
measurements over a time frame that is now of sufficient length for climate studies, make
them a potentially important supplement to existing satellite IR SSTs for development
of climate time series, especially in cloudy regions such as the Arctic (O’Carroll et al.,
2019). The potential is even greater since the series of PMW imagers has now been
sustained for the future with AMSR3 planned by JAXA (Kasahara et al., 2020) as well
as the Copernicus Imaging Microwave Radiometer (CIMR) prepared by European Space
Agency (ESA). CIMR is a polar mission designed to provide high-accuracy, high resolution
PMW observations to enable retrievals of SST and other surface parameters with lower
uncertainty and at a higher spatial resolution than what is possible with the existing PMW
missions (Donlon, 2020).

The radiometer channel configuration of CIMR is not identical but has channels in common
with the AMSR missions and for that reason, it is important to assess the expected impact
of using the CIMR channel configuration compared to previous missions. Theoretical
information content studies have been conducted to assess the expected CIMR performance
for SST and the impacts from including different channels (Kilic et al., 2018; Pearson et al.,
2019; Prigent et al., 2013), but the ocean forward models typically used in these studies
show large differences and significant disagreement with observations in particular for high
wind speeds and cold waters (Kilic et al., 2019a). To supplement the existing theoretical
studies, it is important to evaluate PMW SST retrieval algorithms against a common in
situ reference dataset when assessing the impact of different channel selections.
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Chapter 1. Introduction

The large potential of using high latitude PMW observations, with frequent updates from
previous, current and future PMW missions, makes it important to investigate how IR and
PMW SST retrievals should be combined in the Arctic. The SST retrievals are usually
averaged, interpolated and combined into different data levels, with level 4 (L4) being
gridded and gap-free fields. A large number of global L4 SST products are available using
a variety of different satellite observations (both IR and PMW) and some including in
situ observations (e.g. Donlon et al., 2012; Good et al., 2020; Merchant et al., 2019;
Reynolds et al., 2007; Roberts-Jones et al., 2012). The existing L4 SST analyses perform
fairly uniformly globally, but significant differences and large uncertainties are found in
the Arctic (Castro et al., 2016; Dash et al., 2012; Vazquez-Cuervo et al., 2022), where
the extreme environmental conditions, sparse in situ network, persistent cloud cover and
the varying length of the sunlit part of the day round the year, complicate accurate SST
retrievals (Donlon et al., 2009; Høyer et al., 2012; Minnett et al., 2019; Wang & Key,
2005). A number of specialized high latitude algorithms have been developed and shown
improved performance in the Arctic compared to the global analyses (Jia & Minnett,
2020; Vincent et al., 2008a; Vincent et al., 2008b). More accurate SST observations and
improved PMW data coverage in the Arctic have been identified by the SST community as
being of high priority for future SST developments and research (O’Carroll et al., 2019).

Few global L4 SST products do not report SST in sea ice covered regions, while most prod-
ucts provide a foundation temperature, assumed to be at the freezing point of seawater.
However, using foundation SSTs in sea ice regions does not represent the surface tempera-
ture since large temperature gradients can exist in the ice and snow (Tonboe et al., 2011).
Different methods have been used to generate proxy SSTs from sea ice concentrations in
the marginal ice zone (Banzon et al., 2020), which in some cases are blended with the
closest open water SSTs (Rayner et al., 2003; Reynolds et al., 2002; Reynolds et al., 2007).
Blending SST and IST is recognised as the most appropriate approach for determining
surface temperatures in the marginal ice zone (Minnett et al., 2019).

IST can be derived from thermal emission at wavelengths in the IR or PMW domain
(Lavergne et al., 2022). The IR sensors observe the radiation from the upper micrometers
of the snow or sea ice surface (i.e. the skin surface), while the PMW sensors observe the
radiation from the snow pack, snow-ice interface or even the solid sea ice depending on the
frequency, salinity, temperature and snow/ice metamorphism (e.g. Tonboe, 2010; Tonboe
et al., 2011; Ulaby et al., 1986). The penetration into the snow and sea-ice cover, and
a varying sea ice emissivity complicate IST retrievals from PMW observations (Comiso
et al., 2003). For that reason, ISTs from IR sensors are more widely used, although PMW
sensors are considerably less sensitive to clouds. ISTs have been retrieved from IR satellite
temperature observations since 1982 at daily (with gaps) and monthly temporal resolution
(Dybkjær et al., 2012; Hall et al., 2004; Key & Haefliger, 1992; Key et al., 1997; Key et al.,
2013; Liu et al., 2018; Maslanik et al., 1997). Cloud screening are more challenging over
ice (compared to open ocean) due to the similar temperatures of the sea ice and cloud
tops (Dybkjær et al., 2012; Wang & Key, 2005). As a result, IST retrievals usually have
larger uncertainties than SST retrievals, and undetected clouds or atmospheric ice/water
typically result in a cold bias in IST products (Dybkjær et al., 2012; Hall et al., 2004).

Traditionally, the sea and sea-ice surface temperature datasets have been derived and
analysed individually. However, estimating climate trends for the Arctic open-ocean and
sea ice separately is complicated due to the large seasonal and annual variability of the
sea ice cover (Bulgin et al., 2020; Comiso, 2003). Using the L4 SST analyses, including
foundation SST estimates below sea ice, to determine Arctic warming (e.g. as done in
Chen et al., 2019; IPCC, 2021) should also be done with caution as the use of foundation
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SSTs (usually fixed at the freezing point) in sea ice covered regions suppress the observed
warming compared to the use of air temperatures, with differences up to 0.15◦C in the
global monthly mean anomalies (Rohde & Hausfather, 2020).

Some IR satellite-based Arctic surface temperature products combine SST and IST (Dy-
bkjær et al., 2012; Vincent et al., 2008b), and a few products provide land surface tem-
peratures as well (Comiso, 2003; Comiso & Hall, 2014; Dodd et al., 2019). These are all
clear-sky surface temperature estimates i.e. with gaps due to clouds. A gap-free combined
SST and IST product has been produced within the Copernicus Marine Environment Mon-
itoring Service (CMEMS) providing near-real-time surface temperature estimates of the
Arctic open ocean, sea ice and marginal ice zone (doi: http://dx.doi.org/10.48670/moi-
00130). However, no satellite-based gap-free combined SST and IST reanalysis or climate
data record (CDR) are currently available, but it could potentially provide a consistent
climate indicator, which is important for studying climate trends in the Arctic.

Traditionally, the Arctic warming has instead been assessed using global gridded near-
surface temperature products (such as HadCRUT, BEST, NOAAGlobalTemp and GIS-
TEMP), which are currently based only on in situ observed near-surface air temperatures
over sea ice (and land), and SST observations (usually both satellite and in situ) over
open ocean (e.g. Lenssen et al., 2019; Morice et al., 2021; Rohde and Hausfather, 2020;
Vose et al., 2012). They are among the longest instrumental records of temperature and
have routinely been used in climate assessments (e.g. AMAP, 2021; IPCC, 2021; Rantanen
et al., 2022). However, their utility is limited in applications that require high temporal
and/or spatial resolution and absolute temperatures, since the datasets are presented at
monthly, coarse spatial resolution, and often expressed in terms of temperature anoma-
lies (temperatures relative to some reference period), rather than in terms of absolute
temperature.

The use of SST instead of air temperatures over the ocean is mainly because SST obser-
vations from satellites and in situ are far more numerous than marine air temperature
measurements (Kennedy, 2014), which have been in recent decline (Berry & Kent, 2017).
However, the combination of near-surface air temperatures over sea ice and SST over open
ocean also complicates the surface temperature trend calculations since the changing sea
ice cover leads to shifts between the two variables, and artefacts of the varying techniques
may thereby be introduced into the data record, which is clearly undesirable in the context
of climate monitoring (IPCC, 2021; Richardson et al., 2018).

In addition to the global gridded observational datasets, dynamical reanalyses, which
combine numerical weather prediction (NWP) models with a variety of observational data
(e.g. Dee et al., 2011; Gelaro et al., 2017; Hersbach et al., 2020; Kobayashi et al., 2015) are
increasingly being used for climate monitoring and to force ocean and sea ice models. These
alternative sources of near-surface temperatures can provide information in regions that
are not well represented in traditional observational datasets. Examples of these include
the ERA5 (Hersbach et al., 2020) (and its predecessor ERA-Interim, ERA-I, Dee et al.,
2011), JRA-55 (Kobayashi et al., 2015), and MERRA-2 (Gelaro et al., 2017). However, the
sparse in situ network causes large deviations and uncertainties in the Arctic in existing
global reanalyses (Davy & Outten, 2020; IPCC, 2021; Lindsay et al., 2014; Marquardt
Collow et al., 2020; Simmons et al., 2017; Wang et al., 2019; Wesslén et al., 2014) as
well as in the global gridded observational datasets (Cowtan & Way, 2014; Lenssen et al.,
2019; Rapaić et al., 2015). As recognized by Marquardt Collow et al. (2020), more in situ
and remote sensing observations as well as a better use of existing satellite observations
are needed in order to represent the characteristics of the Arctic. Likewise, the Arctic
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Monitoring and Assessment Programme (AMAP) emphasizes the need for Arctic and
international science institutions and governments to address key data gaps e.g. by using
satellite observations to gather data from difficult-to-reach areas of the Arctic in order to
expand the monitoring and documentation of Arctic climate change (AMAP, 2021).

1.1 Motivation and research objectives
The aim of this PhD is to improve the surface temperature estimation and monitoring
of the Arctic oceans. The PhD study focuses on the challenges related to the persistent
cloud cover, the mix of open water and sea ice (and the temporal varying sea ice coverage)
and the sparse in situ network, which all complicate accurate and absolute estimation and
monitoring of the sea and sea-ice surface temperatures in the Arctic. To guide the work
of this PhD study, five main research objectives have been established.

To deal with the persistent Arctic cloud cover, this PhD study investigates the potential
of using PMW sensors to fill in the large and persistent data gaps (due to clouds) in Arctic
IR SSTs. This is investigated through the following research objectives:

1. Develop/improve and compare algorithms to retrieve SST from PMW satellite ob-
servations.

2. Assess the impact of using different channel selections in the PMW SST retrieval
algorithms using in situ observations as reference.

3. Examine how to best combine IR and PMW SSTs, and assess the impact of including
PMW SST observations in an Arctic gap-free SST analysis.

To address the challenges related to the varying sea ice cover, this PhD study investigates
how sea and sea-ice parameters can be integrated in a gap-free analysis to increase the
consistency in the surface temperature monitoring of the Arctic oceans.

4. Generate a gap-free combined sea and sea-ice surface temperature CDR of the Arctic

To supplement the sparse in situ network, this PhD study examines the potential of using
satellite-observed ISTs to improve the near-surface air temperature estimation of the Arctic
(through an improved spatial coverage).

5. Use the satellite-observed ISTs to derive near-surface air temperatures over ice sur-
faces in the Arctic

1.2 Thesis outline
This PhD thesis builds upon a number of appended publications (Section 1.3) and the
reader is referred to these for detailed information on each of the studies carried out
during this PhD study.

To address the first research objective, Chapter 2 presents the work that has been done
to develop and improve SST retrievals from PMW observations using an optimal esti-
mation approach (Section 2.1), a regression model (Section 2.2, Paper I) and machine
learning techniques (Section 2.3, Paper II). The second research objective is addressed
in Section 2.4, which provides an assessment of the impact of using different radiometer
channels in the retrievals (Paper III). The chapter ends with a comparison and discussion
of the strengths and weaknesses of the PMW SST retrieval algorithms in Section 2.5.

To address the fourth research question, Chapter 3 investigates how SST observations
can be integrated with sea ice parameters in the Arctic. For this, efforts have first been
put into the generation of an accurate and consistent long-term sea ice concentration
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product. This is described in Section 3.1 and used in the generation of an Arctic gap-free
IR-based sea and sea-ice surface temperature CDR (Section 3.2, Paper IV). An assessment
of including PMW SSTs in the Arctic gap-free CDR is provided in (Section 3.3, Paper V)
to address the third research objective. To address the last research objective, Chapter 3
also presents a method which can be used to derive near-surface air temperatures from
satellite-observed ice surface temperatures (Section 3.4.1, Paper VI) as well as an example
of using the derived product for model evaluation (Section 3.5, Paper VII). The chapter
concludes with a discussion of the results and their contributions to the monitoring and
characterisation of the Arctic warming and amplification (Section 3.6).

Finally, in Chapter 4, the findings of this PhD study is summarized and the overall contri-
bution to the surface temperature mapping and monitoring of the Arctic oceans is provided
together with an outlook on future work.

1.3 Publications
This section provides an overview of the publications I have contributed to during my PhD
study. For each publication, I have included a percentage of my estimated contribution to
the given publication. Only publication I-VII are appended to this thesis.

Paper I Alerskans, Emy, Jacob L. Høyer, Chelle L. Gentemann, Leif Toudal Pedersen, Pia
Nielsen-Englyst, Craig Donlon. 2020. ”Construction of a climate data record of
sea surface temperature from passive microwave measurements”, Remote Sensing of
Environment, Volume 236, 111485, ISSN 0034-4257.

My contribution: 10%

This work was done in parallel and extension of the work presented in Nielsen-Englyst
et al. (2018) (see end of this section), where my focus was on the optimal estimation
algorithm. My contribution to this paper was limited to simulating brightness tem-
peratures used for the sensitivity experiments, discussing/interpreting the results
and proofreading the paper.

Paper II Alerskans, Emy, Ann-Sofie P. Zinck, Pia Nielsen-Englyst, Jacob L. Høyer. 2022.
”Exploring machine learning techniques to retrieve sea surface temperatures from
passive microwave measurements”, Remote Sensing of Environment, Volume 281,
113220, ISSN 0034-4257.

My contribution: 10%

I was not involved in the model development, and my contribution was limited to
the sensitivity experiments, interpretation and general discussion of the results, as
well as writing and proofreading the paper.

Paper III Nielsen-Englyst, Pia, Jacob L. Høyer, Emy Alerskans, Leif Toudal Pedersen,
Craig Donlon. 2021. ”Impact of channel selection on SST retrievals from passive
microwave observations”, Remote Sensing of Environment, Volume 254, 112252,
ISSN 0034-4257.

My contribution: 85%

Most of this paper and the underlying experiments, analysis, interpretation and
writing was done by me with supervision from co-authors. One exception is the
regression algorithm retrievals, which were conducted by Emy.

Paper IV Nielsen-Englyst, Pia, Jacob L. Høyer, Wiebke M. Kolbe, Gorm Dybkjær, Thomas
Lavergne, Rasmus Tage Tonboe, Sotirios Skarpalezos, Ioanna Karagali. 2023. ”A
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combined sea and sea-ice surface temperature climate dataset of the Arctic, 1982–
2021”, Remote Sensing of Environment, Volume 284, 113331, ISSN 0034-4257.

My contribution: 80%

For this paper, I did most of the work with supervision from co-authors, but part of
the actual running of the CDR was conducted during my maternity leave by Jacob
and Wiebke.

Paper V Nielsen-Englyst, Pia, Jacob L. Høyer, Ioanna Karagali, Wiebke M. Kolbe, Rasmus
T. Tonboe, Leif T. Pedersen. 2023. ”Impact of microwave observations on the
estimation of Arctic sea surface temperature”. Submitted. In review – Remote
Sensing of Environment

My contribution: 90%

For this paper, I did almost everything myself with supervision from co-authors.
One exception is the spectral analysis part, which was done by Ioanna.

Paper VI Nielsen-Englyst, Pia, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe,
Gorm Dybkjær, Sotirios Skarpalezos. 2021. ”Deriving Arctic 2 m air tempera-
tures over snow and ice from satellite surface temperature measurements”. The
Cryosphere, 15(7), 3035-3057.

My contribution: 80%

For this paper, I compiled and quality checked in situ data, developed and tested
the regression models, validated/analyzed the results and wrote the manuscript with
supervision from co-authors. The uncertainty estimation was conducted by Kristine
and Jacob.

Paper VII Tian Tian, Shuting Yang, Jacob L. Høyer, Pia Nielsen-Englyst, Suman Singha.
2023. ”Concerns on benchmarking climate models in the Arctic.” Preprint submitted
to Nature Geoscience - Correspondence

My contribution: 15%

I have provided the satellite-derived near-surface air temperatures, performed the
validation of those and the ERA-5, and contributed to the interpretation and dis-
cussion of the results as well as to the writing of the manuscript.

Paper VIII Ponsoni, Leandro, Mads H. Ribergaard, Pia Nielsen-Englyst, Tore Wulf, Jørgen
Buus-Hinkler, Matilde B. Kreiner, Till A. S. Rasmussen. 2023. ”Greenlandic sea
ice products with a focus on an updated operational forecast system”, Frontiers in
Marine Science, 10, 2296-7745, doi: https://doi.org/10.3389/fmars.2023.979782

My contribution: 5%

I have generated and provided the sea ice concentration product (DMI-SIC), wrote
the corresponding data section and contributed to the interpretation and discussion
of the results (i.e. comparisons with model output and sea ice charts).

Paper IX Rayner, Nick A., Renate Auchmann, Janette Bessembinder, Stefan Brönnimann,
Yuri Brugnara, Francesco Capponi, Laura Carrea, Emma M. A. Dodd, Darren
Ghent, Elizabeth Good, Jacob L. Høyer, John J. Kennedy, Elizabeth C. Kent, Rachel
E. Killick, Paul van der Linden, Finn Lindgren, Kristine S. Madsen, Christopher
J. Merchant, Joel R. Mitchelson, Colin P. Morice, Pia Nielsen-Englyst, Patri-
cio F. Ortiz, John J. Remedios, Gerard van der Schrier, Antonello A. Squintu, Ag
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Stephens, Peter W. Thorne, Rasmus T. Tonboe, Tim Trent, Karen L. Veal, Alison
M. Waterfall, Kate Winfield, Jonathan Winn, and R. Iestyn Woolway. 2020. ”The
EUSTACE Project: Delivering Global, Daily Information on Surface Air Tempera-
ture”, Bulletin of the American Meteorological Society, 101, 11, E1924-E1947, doi:
https://doi.org/10.1175/BAMS-D-19-0095.1

My contribution: <5%

For this study, the satellite-derived near surface air temperatures for the ice sheets
and sea ice developed in Paper VI were used, but except from deriving those, I only
contributed with proofreading the manuscript.

Paper X Karagali, Ioanna, Magnus B. Suhr, Ruth Mottram, Pia Nielsen-Englyst, Gorm
Dybkjær, Darren Ghent, and Jacob L. Høyer. 2022. ”A new Level 4 multi-sensor
ice surface temperature product for the Greenland Ice Sheet.” The Cryosphere, 16.9,
3703-3721. doi: https://doi.org/10.5194/tc-16-3703-2022

My contribution: 10%

I have contributed to the validation using PROMICE and IceBridge observations,
and to the interpretation and discussion of the results as well as the writing and
proofreading the paper.

It should be noted that this PhD thesis will reference two other first-author publications
namely:

Nielsen-Englyst, Pia, Jacob L. Høyer, Leif Toudal Pedersen, Chelle L. Gentemann, Emy
Alerskans, Tom Block, and Craig Donlon. 2018. ”Optimal Estimation of Sea Surface
Temperature from AMSR-E” Remote Sensing, 10, no. 2: 229, doi: https://doi.org/10.
3390/rs10020229

Nielsen-Englyst, Pia, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm
Dybkjær, Emy Alerskans. 2019. ”In situ observed relationships between snow and ice
surface skin temperatures and 2 m air temperatures in the Arctic”. The Cryosphere,
13(3), 1005-1024, doi: https://doi.org/10.5194/tc-13-1005-2019

The first one was written and published before my PhD start. The second one presents
work that was initiated before my PhD start and continued during my PhD as external
work (including the paper writing and review). For those reasons, they cannot officially
count as PhD publications and the work should not be counted in the evaluation.

The same holds for the following publication, which was also written before my PhD start:

Rasmussen, Till A. S., Jacob L. Høyer, Darren Ghent, Claire E. Bulgin, Gorm Dyb-
kjær, Mads H. Ribergaard, Pia Nielsen-Englyst, Kristine S. Madsen, 2018. ”Impact of
Assimilation of Sea-Ice Surface Temperatures on a Coupled Ocean and Sea-Ice Model”.
Journal of Geophysical Research: Oceans, 123(4), 2440-2460. doi: https://doi.org/10.
1002/2017JC013481

Lastly, Appendix H contains an unpublished report which was submitted as a part of a
3-week PhD course at DTU, 02910 Computational Data Analysis. The course was taken
as part of the PhD degree, and the report should not be counted in the evaluation.

Surface Temperatures of the Arctic Oceans 9

https://doi.org/10.1175/BAMS-D-19-0095.1
https://doi.org/10.5194/tc-16-3703-2022
 https://doi.org/10.3390/rs10020229
 https://doi.org/10.3390/rs10020229
https://doi.org/10.5194/tc-13-1005-2019
https://doi.org/10.1002/2017JC013481
https://doi.org/10.1002/2017JC013481


Chapter 1. Introduction

10 Surface Temperatures of the Arctic Oceans
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CHAPTER2
Sea Surface Temperature from

Microwaves

In the Arctic, frequent and persistent cloud cover limits the extent to which SST can be
retrieved from IR satellite sensors. Therefore, there is a large potential in using the almost
all-weather capability of PMW observations to retrieve SST in this region to supplement
the clear-sky IR SSTs. The PMW sensors now offer a long and consistent time series, which
has been sustained for the future with AMSR3 and CIMR in the pipeline. To prepare for
AMSR3 and CIMR, and to fully benefit from the existing PMW satellite missions, there
is a need to further develop and improve algorithms to retrieve SST from PMW satellite
observations.

This chapter summarizes the PMW SST retrieval algorithm development conducted dur-
ing this PhD study. Multiple PMW SST retrieval algorithms have been developed, tested
and compared including an optimal estimation (OE) algorithm (Nielsen-Englyst et al.,
2018) (Section 2.1), a regression (RE) algorithm (Alerskans et al., 2020) (Paper I, Sec-
tion 2.2), and a number of machine learning (ML) models (Alerskans et al., 2022) (Paper
II, Section 2.3). They are all global retrieval algorithms, but have been derived with a
particular focus on the Arctic. To get a better understanding of the various types of re-
trieval algorithms and to prepare for future PMW satellite missions the impact of using
different radiometer channels in the retrieval algorithms has also been investigated. This
work is presented in Section 2.4 (Nielsen-Englyst et al., 2021a) (Paper III). Section 2.5
compares the different types of retrievals algorithms and discusses the strengths and weak-
nesses of each of them. Moreover, suggestions are provided for future work with a focus
on improving the Arctic PMW SSTs and preparing for future PMW satellite missions.

The foundation for the retrieval work, is the the ESA Climate Change Initiative (CCI)
Multi-sensor Matchup Datasets (MMDs), which have been used both for development
and validation of the PMW SST retrieval algorithms. They consist of pairs of in situ
SSTs (drifters and Argo floats) and satellite observations (AMSR-E and AMSR2) matched
with wind speed (WS), total column water vapour (TCWV), total cloud liquid water
(TCLW), SST, and sea ice concentration from the ERA-I and ERA5 reanalyses as well as
Cross-Calibrated Multi-Platform (CCMP) gridded surface vector winds, and sea surface
salinity from the GLOBAL-REANALYSIS-PHY-001-030 reanalysis product, provided by
the CMEMS. All MMDs have been quality controlled and filtered to reduce effects from
rain, diurnal warming, sun glitter, land, sea ice, and RFI. For more information on the
MMDs and the quality checks, the reader is referred to Nielsen-Englyst et al. (2018) as
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well as Alerskans et al. (2020), Alerskans et al. (2022) and Nielsen-Englyst et al. (2021a)
(Paper I-III). The MMDs have been powerful tools in the development, assessment and
validation of the different retrieval algorithms.

2.1 Optimal Estimation
This section provides a brief description of the optimal estimation (OE) algorithm pre-
sented in Nielsen-Englyst et al. (2018), which was developed before this PhD study started.
It is included here to provide a complete review of the PMW SST retrieval algorithms used
in this PhD study.

The OE algorithm was developed within the ESA-CCI SST project and used to retrieve
subskin SST using AMSR-E birghtness temperatures from 2010. The algorithm is based
on a forward model, which predicts the top-of-atmosphere PMW brightness temperatures
that should be measured by the individual channels given knowledge of the physical state
of the atmosphere and ocean. The forward model in Nielsen-Englyst et al. (2018) is
based on the RTM described in Wentz and Meissner (2000), which consists of atmospheric
absorption model for oxygen, water vapor and cloud liquid water and a sea surface emis-
sivity model that determines the emissivity as a function of SST, sea surface salinity, sea
surface wind speed and direction. In OE, the geophysical parameters are retrieved by
inverting the forward model using the observed brightness temperatures, a priori infor-
mation (from ERA-I in this case) about the state of the atmosphere and ocean, and the
related uncertainties, to constrain the retrievals (Nielsen-Englyst et al., 2018; Rodgers,
2000). Nielsen-Englyst et al. (2018) shows that it is essential to update the first guess
atmospheric and oceanic state variables and to perform several (typically three to four)
iterations (Figure 4). The OE method directly provides an uncertainty estimate for each
retrieval based on the uncertainties in the measurements, forward model and in the a
priori state vector. In Nielsen-Englyst et al. (2018) an additional uncertainty indicator
is setup based on a scaled root-mean-squared difference of the simulated versus observed
brightness temperatures (RMSE TB). It turned out to be an efficient quality indicator of
the OE SST retrievals (Figure 7, Nielsen-Englyst et al., 2018) and will be referred to as
the theoretical uncertainty in the following.

A validation against drifting buoys shows a mean difference of 0.02◦C and a standard
deviation of 0.47◦C when considering the 64% of the matchups, where the RMSE TB is
less than 0.5 K (Table 3, Nielsen-Englyst et al., 2018). The corresponding mean theoretical
uncertainty is estimated to 0.48◦C, including the in situ and sampling (point to satellite
footprint) uncertainties. The OE framework also directly provides the sensitivities of
the retrieved parameters to the true state (through the averaging kernel). The mean
SST sensitivity is found to be 0.50 with the smallest sensitivities in high latitudes and
the largest in the equatorial region (Figure 10, Nielsen-Englyst et al., 2018), which is in
agreement with Gentemann et al. (2010), and consistent with the fact that the sensitivity
of the brightness temperatures to SST is smaller for cold waters, especially for the 10.65
GHz channels (Nielsen-Englyst et al., 2021a; Prigent et al., 2013) (Paper III, Figure 2).

In general, the results from Nielsen-Englyst et al. (2018) are very encouraging and demon-
strate that the OE algorithm can provide reliable PMW SSTs as a valuable supplement
to statistical retrieval algorithms. The forward model from Nielsen-Englyst et al. (2018)
has been used to simulate the brightness temperatures, which are used in the sensitivity
calculations performed in Alerskans et al. (2020) (Paper I, Section 2.2) and Alerskans et al.
(2022) (Paper II, Section 2.3), and the OE algorithm used in Nielsen-Englyst et al. (2021a)
(Paper III, Section 2.4) uses a setup very close to the on presented in Nielsen-Englyst et al.
(2018).
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2.2 Regression
This section briefly summarizes the work presented in Alerskans et al. (2020) (Paper
I), where a statistical regression-based SST retrieval algorithm is developed and used to
generate a consistent CDR of PMW SST using AMSR-E and AMSR2 observations. The
level 2 (L2) algorithm consists of a wind speed (WS) retrieval algorithm and SST retrieval
algorithm. The WS algorithm is inspired by the NOAA AMSR2 WS retrieval algorithm
(Chang et al., 2015) and consists of two steps: a ”global” regression algorithm for which
an initial estimate of the WS is retrieved using one set of regression coefficients for all WS,
and a ”local” regression algorithm, trained to perform well in restricted WS bins, using the
initial WS estimate for bin selection. As for WS, the SST algorithm consists of a global
regression algorithm and local regression algorithm with the latter consisting of localized
latitude algorithms for ascending and descending orbits. The localized algorithms are
implemented to account for the non-linearities in the relationship between the brightness
temperature and the SST and WS, respectively. The SST algorithm uses the brightness
temperatures, Earth incidence angle and the relative angle between satellite azimuth angle
and wind direction.

All regression coefficients are determined using drifting buoy observations and the least-
squares method. Separate regression coefficients have been derived for AMSR-E and
AMSR2. To obtain a more consistent retrieval between AMSR-E and AMSR2, the AMSR2
7.3 GHz channels are not used in the retrievals. All SST retrievals come with an uncer-
tainty estimate, which is based on a global regression model. A new and effective RFI
filter has also been developed by comparing the above presented retrieval with alternative
retrieval algorithms excluding the 10 GHz and 18 GHz channels, respectively (Alerskans
et al., 2020) (Paper I, Figure 4+5).

The sensitivity of the retrieved SST to true changes in SST has been estimated, using sim-
ulated brightness temperatures (by the forward model from Section 2.1) in the retrieval
algorithm, and an average sensitivity of 0.90 is found. The validation against independent
drifters (comparable for Argo) shows mean differences of –0.02◦C and 0.002◦C and stan-
dard deviations of 0.46◦C and 0.45◦C for AMSR-E and AMSR2, respectively, using the
quality levels 4+5 (Alerskans et al., 2020) (Paper I, Table 6), with the largest standard
deviations in high latitudes and in regions with large SST gradients (Alerskans et al.,
2020) (Paper I, Figure 6+9). The validation results are comparable to or even better
than found for existing PMW SST retrievals (Gentemann, 2014; Gentemann & Hilburn,
2015; O’Carroll et al., 2008). The corresponding mean modelled uncertainties are 0.45◦C
and 0.44◦C including the in situ and sampling uncertainties. The analysis and extensive
validation of SST, and the corresponding uncertainties presented in Alerskans et al. (2020)
(Paper I) demonstrate a consistent and reliable multi-satellite PMW SST CDR that facil-
itates the uptake within the many applications of SSTs. Section 3.3 and Nielsen-Englyst
et al. (2023a) (Paper V) provides an example of one application where the PMW SST is
ingested into an IR-based gap-free sea and sea-ice surface temperature CDR of the Arctic.

2.3 Machine Learning
Machine learning (ML) models may supplement or improve the existing PMW SST re-
trieval algorithms through their higher flexibility and ability to recognize complex patterns
in data. The first attempt to use ML techniques for PMW SST retrievals is presented in
Alerskans et al. (2022) (Paper II). In parallel to this, I participated in a 3-week PhD
Course, Computational Data Analysis at DTU-Compute in which I also worked with ML
models for PMW SST retrievals using a smaller subset of the MMD (the validation subset
from Paper II). This section briefly summarizes the work presented in Alerskans et al.
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(2022) (Paper II) and the work conducted during the PhD course (Appendix H).

Alerskans et al. (2022) (Paper II) presents two types of ML models, which are used to
retrieve PMW SST from AMSR-E brightness temperatures and other associated data
available from the MMD (Alerskans et al., 2022) (Paper II, Figure 2). The first algorithm
is an Extreme Gradient Boosting (XBG) model, which is a decision tree-based model,
and the second algorithm is a multi-layer perceptron neural network (NN). For a detailed
description of the ML models the reader is referred to Alerskans et al. (2022) (Paper II).
The regression (RE) algorithm from Alerskans et al. (2020) (Paper I) is used as benchmark
to evaluate the performance of the two ML algorithms. The validation against independent
drifter observations shows mean differences of 0.01◦C, 0.01◦C and –0.02◦C and standard
deviations of 0.36◦C, 0.50◦C and 0.55◦C for XGB, NN and RE, respectively (Table 4, Paper
II). Simulated brightness temperatures (by the forward model from Nielsen-Englyst et al.,
2018) have been used in each of the retrieval algorithms to estimate the SST sensitivities,
which are found to be 0.78, 0.88 and 0.90 for XGB, NN and RE, respectively. Hence,
the lower standard deviation of XGB is accompanied by a lower SST sensitivity, which
may be a result of over-fitting in certain areas. This demonstrates the importance of
including the sensitivity when evaluating different retrieval algorithms. The NN shows
good performance in terms of both standard deviation and sensitivity.

During the PhD course, four ML models were investigated based on the validation subset
of Alerskans et al. (2022) (Paper II), which was divided randomly into three (further)
subsets used for training, testing and validating of the ML models (Appendix H). The
ML models consist of a bootstrap aggregation (Bagging) model, random forest model,
Least-squares boosting (LSBoost) model, and a neural network (see Appendix H for more
details). The neural network is very similar to the one in Alerskans et al. (2022) (Paper II),
but with minor (improving) changes e.g. from leaving out the wind direction and satellite
azimuth angle (but keeping the relative angle between the satellite azimuth angle and
the wind direction). In this comparison, the neural network also demonstrates superior
performance when considering both standard deviation (0.45◦C) and sensitivity (0.92)
(Table 1, Appendix H). All models show increased standard deviations and decreased
sensitivities in the Arctic (Figure 1–3 and Table 2A, Appendix H). In particular, the tree-
based (i.e. bagging, random forest and the least squares boosting) models show decreased
performance for extremes (e.g. strong winds and cold waters), while the neural network
manages to compensate better for these effects (Figure 2A, Appendix H).

The results presented in Alerskans et al. (2022) (Paper II) and in Appendix H are very
promising and indicate that ML models have a great potential to retrieve SST from PMW
observations.

2.4 Channel Selection
This section summarizes the work done in Nielsen-Englyst et al. (2021a) (Paper III) to
investigate the impact of using different radiometer channel selections for PMW SST re-
trievals using independent in situ observations as reference. This work is done to assess
the optimal channel selection for PMW SST retrievals to prepare for future satellite mis-
sions (with a specific focus on CIMR, which has a slightly different channel configuration
compared to AMSR-E and AMSR2), but also to investigate the effects of other scenarios
e.g. where one or more channels fail during operations or in a case where future Inter-
national Telecommunication Union (ITU) frequency allocations contaminate some of the
specific bands used for PMW SST retrievals. Previously, theoretical information content
studies have been conducted to assess the impacts from using different frequency channels
(e.g. Kilic et al., 2018; Prigent et al., 2013). However, the large discrepancies among the
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forward models (Kilic et al., 2019a) makes it important supplement these studies, with
an assessment including in situ observations as reference. The use of in situ observations
for validation may furthermore inform us about deficiencies and strengths of the different
retrieval algorithms.

In Nielsen-Englyst et al. (2021a) (Paper III), two PMW SST retrieval algorithms are
used namely the OE algorithm from Nielsen-Englyst et al. (2018) (Section 2.1) and the
regression algorithm from Alerskans et al. (2020) (Paper I, Section 2.2). Unfortunately,
the ML models were not developed at the time of this study. In the OE setup, we use
an inflated diagonal covariance matrix element for SST to increase the sensitivity of the
retrieved SST to true changes in SST (increases from 0.50 to 0.99) and to minimize the
dependence on first guess. In the RE setup, the global-derived coefficients are used to
ensure a consistent comparison of the different channel selections and to minimize the
effects from localized algorithm coefficient derivations. This explains the inflated standard
deviations in this paper compared to Nielsen-Englyst et al. (2018) and Alerskans et al.
(2020) (Paper I). In this study, the focus in not on the absolute performances but on the
relative differences between the channel selections and the retrieval algorithms.

In general, it is found that the retrieval performance increases (as expected) when more
channels are included (Nielsen-Englyst et al., 2021a) (Paper III, Figure 5). Including
more channels allow a better representation of the range of different observing conditions
(Nielsen-Englyst et al., 2021a) (Paper III, Figure 6). The two retrieval algorithms agree
that using a three-channel configuration of the 6, 10 and 18 GHz provides better SST
retrievals than using the 6, 10, and 23 GHz configuration. This is demonstrated for all
seasons and geographical regions (Nielsen-Englyst et al., 2021a) (Paper III, Figure 11). In
general, it is found that withholding observations from the 23 and 36 GHz channels has the
least impact on the SST retrieval performance and that the CIMR like channel configura-
tion (excluding the 23 GHz channels) performs very well when compared to an AMSR-E
configuration using both types of retrieval algorithm. This study also demonstrates a very
good performance of the 6, 10, and 18 GHz channel combination. The limited impact of
the 36 GHz channels supports the channel selection for CIMR, since the CIMR 36 GHz
channels will likely only contribute with limited information to the SST retrievals, due to
elevated NEdT for the 36 GHz (Donlon, 2020).

Nielsen-Englyst et al. (2021a) (Paper III) also demonstrates some of the strengths and
weaknesses of the two types of retrieval algorithms. These will be discussed in the following
section (Section 2.5), which also includes a comparison and discussion of the ML models.

2.5 Discussion
In this PhD study, multiple global PMW SST retrieval algorithms have been developed,
validated and compared to improve the understanding and performance of PMW SSTs
with a particular focus on the Arctic, where cloud clover severely limits the SST coverage
from IR sensors. This section summarizes the main findings and discusses the strengths
and weaknesses of the different kinds of retrieval algorithms. Moreover, suggestions for
future work and priorities related to Arctic PMW SST retrievals are provided.

Generally, the retrieval algorithms can be grouped into two primary categories: physically
based (or RTM-based) algorithms (e.g. OE) and statistical algorithms (e.g. RE+ML).
The main advantage of the RTM-based algorithms is that the physical processes are evi-
dent in each step of the retrieval, and therefore, using RTM simulations can provide useful
insights into the physics of the retrieval. Both the RE algorithm and the ML models fall
into the second category of retrieval algorithms, which rely on matches of in situ and
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satellite brightness temperatures as well as some environmental and instrument informa-
tion depending on the design of the retrieval. The understanding of the physics behind
the retrieval e.g. gained from RTM simulations, is important for the design and input
selection of the RE algorithm as well as the feature selection in ML models.

In contrast to the OE algorithm, the ML and RE algorithms require a large and repre-
sentative dataset to train the models and to derive the relevant retrieval coefficients. A
drawback from this is that the retrievals can only match conditions where in situ mea-
surements are available. In conditions that are not (well) represented by in situ mea-
surements, the ML and RE algorithms have limited basis for algorithm/model training
(and validation), and thus, we can only rely on their extrapolation capabilities in these
conditions. This can be a problem in under-represented regions, such as the Arctic, where
the environmental conditions are moreover changing fast and thereby out-dating the rep-
resentativeness of the training datasets at an equally fast pace. Despite the high latitudes
being under-represented, Nielsen-Englyst et al. (2021a) (Paper III) found that the RE
algorithm outperforms OE in high-latitudes, in particular during winter (Nielsen-Englyst
et al., 2021a) (Paper III, Figure 11), and better represent the range of different observing
conditions compared to OE (Nielsen-Englyst et al., 2021a) (Paper III, Figure 6).

To provide accurate SST retrievals, the OE algorithm requires an accurate RTM and
the satellite sensor to be well characterised and calibrated. Differences in simulated and
observed brightness temperatures can normally be attributed to errors in the RTM or
measurement errors such as imperfect calibration, channel contamination etc (Minnett
et al., 2019). Typically, ad-hoc corrections have been used to bias-correct the simulated
brightness temperatures to better match the observations as in Nielsen-Englyst et al.
(2018) and Nielsen-Englyst et al. (2021a) (Paper III). This is in contrast to the statistical
approach where these effects to some extent are empirically accounted for in the coefficients
of the RE algorithm and in the design of the ML models, and thus, reducing the need for
understanding the instrument characteristics and calibration.

Both the OE and RE algorithm make a series of initial assumptions about how the mea-
sured brightness temperatures are related to the SST and other physical properties (as
well as proxies for these), and are constrained to the established relationships during the
retrieval. In ML models, on the other hand, there are much fewer assumptions about the
functional form of how the input features are related to the SST. This flexibility of ML
models enables the development of much more complex functional forms that may better
approximate the unknown instrument effects as well as the actual physical processes that
underlie the emission of microwave radiation and the transfer through the atmosphere,
and thus provide a more accurate SST retrieval.

In contrast to the RE and ML algorithms, the OE algorithm uses a priori information to
constrain the retrievals. In situations with limited information in a given set of channels,
the OE algorithm will put more weight on the first guess (in this case from ERA-I) and
thereby still be able to provide reliable SST retrievals (although at a lower sensitivity).
This is demonstrated in Nielsen-Englyst et al. (2021a) (Paper III, Figure 5+6), where
the OE algorithm shows a relatively stable performance for the different channel subsets,
while the RE algorithm clearly shows reduced performance in cases where few channels
are included.

Besides providing insights into the physics, the OE framework simultaneously retrieves
SST, WS, TCLW and TCWV, and offers several options for assessing the quality and
sensitivity of the individual retrievals. These outputs can provide valuable information
on pixel level about the retrieval quality, and can be used directly to identify and discard
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erroneous SST retrievals (e.g. resulting from rain scattering, side-lobe contamination from
land/ice, extreme wind, atmospheric attenuation and emission, sun-glint, RFI, imperfect
calibration etc.). An example of this was seen in ESA CCI SST project, where we examined
(mainly before my PhD start) the impact by atmospheric components such as cloud cover,
aerosols and cloud ice and water content using observations from the active sensor CALIOP
(Cloud-Aerosols Lidar and the Infrared Pathfinder) and MODIS from 2010 (Høyer et al.,
2019). It was found that cloud cover and aerosols had no impact on the OE and RE SST
retrievals, while deep convective clouds (and the related total ice water content) showed
a degradation in the retrieval performance. The RE uncertainty was not able to capture
the effect, while the OE algorithm showed great potential for identifying and screening
the observations influenced by deep convective clouds, both by using the retrieved TCLW
and the theoretical OE uncertainty. The capability of the theoretical OE uncertainty is
also seen in Nielsen-Englyst et al. (2021a) (Paper III, Figure 5), where it provides an
equally good uncertainty indicator for the OE and RE algorithm. The higher flexibility
of ML models may allow them to account for part of the contamination e.g. from deep
convective clouds and RFI. An example of this is seen in Alerskans et al. (2022) (Paper
II, Figure 4), where the two ML models seem to be more robust against RFI compared to
the RE algorithm, e.g. near Ascension Island, which is known for both ground-based and
satellite-based RFI (Gentemann & Hilburn, 2015).

The largest standard deviations against in situ measurements are generally observed in
high latitudes (i.e. cold waters), conditions with strong winds, and in regions with large
spatial SST gradients, with the latter being partly attributed to the difference in spatial
sampling of the satellites and buoy measurements (Alerskans et al., 2020; Castro et al.,
2012) (Paper I). The increased uncertainties in cold waters are related to the reduced
sensitivity to SST for the low frequency channels as seen in Nielsen-Englyst et al. (2021a)
(Paper III, Figure 2a) as well as in Kilic et al. (2018) and Prigent et al. (2013). In
Nielsen-Englyst et al. (2021a) (Paper III, Figure 6a), the OE algorithm clearly shows
elevated uncertainties for cold and rough waters for all channel combinations. This is in
contrast to the RE algorithm, for which increased uncertainties in cold and rough waters
are most pronounced for the two-frequency combinations without 18 GHz, while more
(>2) frequencies provide enough information to balance the lower sensitivity in cold and
rough waters (Nielsen-Englyst et al., 2021a) (Paper III, Figure 6b).

Part of the uncertainty in cold waters may also arise in the modelling of the higher fre-
quency channels, where the sensitivity to SST to a large extent originates from in cold
waters (with decreasing brightness temperatures for increasing SST) (Nielsen-Englyst et
al., 2021a) (Paper III, Figure 2). As suggested in Nielsen-Englyst et al. (2021a) (Paper
III), this effect could possibly be reduced to some extent by including the covariances
(off-diagonals) between the geophysical parameters in the OE algorithm. Since these are
currently not well known, future work should aim at estimating these in a similar way
as done in Merchant et al. (2020) for the IR domain. In Merchant et al. (2020) a bias
correction and the error covariance parameters are retrieved as a part of the state vec-
tor using matches of satellite observations to in situ reference measurements (refereed to
as Bias Aware OE, BAOE). The aim is to bring the OE framework closer to optimality
which is characterised by well-known error covariances and on the errors in the prior,
measurements and RTM being zero mean (Merchant et al., 2008). This work has been
initiated in this PhD study, where a set of simulated brightness temperatures have been
used to test the BAOE framework instead of the actual satellite observations. To replace
the satellite observations, simulated brightness temperatures are calculated by running
the forward model once with the prior state vector from ERA-I. In the BAOE retrieval,
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simulated brightness temperatures have been used with bias and/or noise added to one
or more channels. The BAOE setup succeeded in reproducing both the noise and bias
(individually and simultaneously) added to the brightness temperatures (individually and
simultaneously for the channels) in a test case, where the simulated brightness tempera-
tures were not updated for each iteration. More work is needed to extend the current OE
implementation to be bias-aware, which however, is an important step towards inter-sensor
consistency in a future OE PMW SST CDR.

The RE PMW SST CDR shows good inter-sensor consistency (Alerskans et al., 2020) (Pa-
per I, Figure 12), and this can likely also be obtained for the ML models if the sensors are
referenced to the same in situ network (as is the case for the RE algorithm). This approach,
however, has the risk of introducing biases related to inadequacies in the observational
network. In Alerskans et al. (2020) (Paper I), this effect is attempted to be minimized e.g.
by ensuring a balanced geographical distribution, and it appears small as the validation
against Argo floats confirms the validation results against drifting buoys. Future work
should aim at establishing and maintaining SI-traceability (i.e. traceability of the mea-
surement standards and measuring instruments to the International System of Units, SI)
of global, independent and fully characterized in situ measurements (Fiducial Reference
Measurements, FRM) for satellite-observed PMW SSTs as has been established for SST
retrievals from IR satellite sensors (e.g. Barton et al., 2004; Minnett, 2010; Theocharous
et al., 2019) to support both the algorithm development and validation.

From above review of the different retrieval algorithms developed/tested in this PhD study,
it is evident that each type of retrieval algorithm has its own strengths and weaknesses.
The choice of retrieval algorithm should be based on careful consideration of the particular
situation i.e. the retrieval requirements, availability of in situ observations, performance
timeliness requirements, instrument characterization, forward model accuracy, availability
of auxiliary information from the satellite observations, and stability/consistency.

Both the RE and ML algorithms can easily be adapted to CIMR, taking into account the
improved NEdTs and higher spatial resolution at low frequencies as well as the addition of
the 1.4 GHz (L-band) channels. The OE algorithm requires an extension of our forward
model to include 1.4 GHz channels, which requires that salinity is also retrieved, and ideally
a fully BAOE implementation to retrieve bias correction and error covariance parameters.

Future development could consider combining retrievals e.g. by using RTM simulations to
determine regression coefficients and/or retrieval uncertainties, or using the OE retrieved
state as input to the RE and/or ML models to obtain higher consistency (compared
to using external auxiliary information e.g. from ERA5/ERA-I). This could potentially
include the development of an integrated ocean and sea ice OE processor (similar to
Melsheimer et al., 2009; Pedersen, 1994; Scarlat et al., 2017, although their focus were on
sea ice parameters) to obtain higher consistency. However, an integrated accurate retrieval
requires improvements to the existing snow and sea-ice emissivity models, but initially, it
could be considered to use the information from the integrated retrieval to identify open
water, and use a separate SST retrieval in these regions (e.g. using the SST from the
integrated retrieval as first guess). This would still increase the consistency, and could
potentially enable PMW SST retrievals closer to the sea ice. Other methods could also be
explored in order to allow SST retrievals closer to the sea ice and coasts e.g. using similar
methods as used for salinity retrievals in Meissner and Manaster (2021) and Olmedo et al.
(2017).

Considering the ML models developed/tested in this PhD study, the neural network seems
most promising considering both the validation and sensitivity results. Moreover, it is
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flexible, easy to implement and train, and it is able to capture the non-linear relations.
Future work, should investigate the performance against in situ observations when using
different subsets of the features from Alerskans et al. (2022) (Paper II) in the retrieval (to
supplement the feature analysis) in order to get a better understanding of different model
designs as well as identifying the optimal features to be included for PMW SST retrievals.

All algorithms have been developed to retrieve subskin SST, but derived for cases not
affected by diurnal warming (since these matchups were filtered out). This enabled the
use of SST observations from drifting buoys (with a nominal depth of 20 cm) and Argo
observations (with a depth of 5 m) for testing and validating the retrieval algorithms,
since the subskin and depth temperatures are the same on average in the absence of
diurnal warming (Gentemann & Minnett, 2008; Minnett & Kaiser-Weiss, 2012). Due to
the high SST sensitivity, SST can also be retrieved during daytime conditions with diurnal
warming, but accurate validation requires a method or model to account for the subskin
to 20 cm or 5 m differences. Such a model is likewise required in order to combine SST
retrievals made at different depths (Donlon et al., 2007). To ease the user uptake and
facilitate blended SST products, the PMW SST CDR from Alerskans et al. (2020) (Paper
I) has been adjusted using such a model to represent the temperature at 20 cm depth
(available at http://gws-access.ceda.ac.uk/public/esacci-sst/PMW2.0_release/AMSR/L2P)
for consistency with the ESA-CCI IR SST retrievals (Embury et al., 2012; Merchant et al.,
2019).

The PMW SST algorithm development and analysis in this chapter demonstrate the
strengths and weaknesses of the retrieval algorithms and the impact of using different
channels selections. These are important steps to prepare for future PMW satellite mis-
sions and to fully benefit from the past and current PMW satellite sensors. In this relation,
the first European PMW SST CDR has also been produced and demonstrated consistent
and promising validation results. Overall, the findings of this chapter indicate that PMW
SST retrievals have a large potential to supplement the IR SSTs in the Arctic. This will
be investigated and discussed in the following chapter (Section 3.3) and in Nielsen-Englyst
et al. (2023a) (Paper V).
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CHAPTER3
Arctic Surface Temperatures

One of the key indicators of climate change is the rapid decline in Arctic sea ice extent
(e.g. Cavalieri & Parkinson, 2012; Onarheim et al., 2018; Stroeve & Notz, 2018) with the
largest downward trend observed during the end of the melt season in September (Serreze
& Meier, 2019). Due to the temporally varying sea ice coverage, the most consistent way to
monitor the surface warming of the Arctic oceans is by combining sea and sea-ice surface
temperatures. This is in contrast to the existing global gridded observational datasets,
which typically combine SST with near-surface air temperatures (T2m) in sea ice covered
regions.

This chapter investigates how SST observations can be integrated with sea ice parame-
ters in a multi-sensor gap-free (L4) combined sea and sea-ice surface temperature climate
dataset for the Arctic (>58◦N). This work was initiated with an assessment of the con-
sistency between satellite-observed SST and sea-ice products, and the construction of a
consistent and accurate sea ice concentration (SIC) field of the Arctic (Section 3.1), which
is important for the generation of a combined L4 SST and IST product. Section 3.2
summarizes the development, generation and validation of the first IR satellite-based L4
SST/IST CDR (including uncertainties) of the Arctic presented in Nielsen-Englyst et al.
(2023b) (Paper IV). Since, IR satellite observations are obstructed by clouds, there is a
large potential in including the almost all-weather PMW SSTs in the Arctic. Therefore,
Section 3.3 describes the work that has been done towards combining IR and PMW SSTs
in order to improve the Arctic SST estimation (Nielsen-Englyst et al., 2023a) (Paper V).

Currently, no satellite observed ISTs are included in the existing global gridded observa-
tional datasets (or dynamical reanalyses) over sea ice, and the estimates are thus based on
a very limited number of in situ observations leading to large uncertainties. To compen-
sate for the lack of in situ measurements, Section 3.4 brings an investigation of how the
satellite-observed ISTs can be used to derive T2m in the Arctic (Nielsen-Englyst et al.,
2021b) (Paper VI). The satellite-derived T2m product provides multiple usages e.g. for
assimilation, evaluation and as a supplement to existing surface temperature estimates.
Section 3.5 provides an example of one application in which the satellite-derived T2m
estimates are used for benchmarking ERA5 and climate models in the Arctic (Tian et al.,
2023) (Paper VII). Finally, Section 3.6 provides a discussion of the results, limitations,
applications and suggestions for future work.
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3.1 Consistent Sea Ice Product
With the sea ice diminishing and becoming more fragmented, consistency between SST
and sea ice variables becomes more important. Traditionally SST and sea ice products
have been developed individually to fulfill the requested user requirements over time.
Several studies have compared the different SIC records and evaluated their performances
using information from ice charts and ice drift observations (e.g. Cavalieri & Parkinson,
2012; Kern et al., 2019; Onarheim et al., 2018; Serreze & Meier, 2019; Stroeve & Notz,
2018). Similarly, different SST products have been compared in several previous studies
and compared to in situ observations in the Arctic (e.g. Castro et al., 2016; Dash et al.,
2012; Vazquez-Cuervo et al., 2022).

In this PhD study, the consistency between satellite-observed sea ice and SST products
is investigated (Nielsen-Englyst et al., 2023b) (Paper IV), with the overall aim to derive
an accurate and consistent SIC product (referred to as DMI-SIC), which is the basis for
both SST and IST retrievals as well as for the generation of a combined L4 SST and IST
product of the Arctic.

The DMI-SIC is generated using SIC information from the EUMETSAT OSI-SAF global
SIC products OSI-450 and its interim extension OSI-430b (hereafter referred to as OSI-
450 for the whole time series), which are based on coarse resolution (30–60km) PMW
satellite data, and the ESA CCI programme SICCI-25km product, which is derived from
medium-resolution (15–25 km) PMW satellite data. These are resampled onto a 0.05◦
regular latitude longitude grid and compared to the ESA CCI SSTs (Merchant et al., 2019;
Merchant et al., 2009) from 1982 to 2010, and the Operational Sea Surface Temperature
and Sea Ice Analysis (OSTIA; Donlon et al., 2012; Good et al., 2020) from 2011 and
onwards. The largest number of potentially inconsistent cases with ”warm” (> 3◦C) SST
and at the same time sea ice (SIC>15%), are found in the marginal ice zone and coastal
areas during summer. The coarser resolution OSI-450 product shows more of these cases
due to more pronounced land and sea-ice spill-over contamination compared to SICCI-
25km (Kern et al., 2022; Lavergne et al., 2019).

The DMI-SIC uses the SICCI-25km whenever it is available and OSI-450 otherwise. To
improve OSI-450 and to increase the consistency of the merged SIC product, a number
of filters have been applied using information from the higher resolution SST products.
Nielsen-Englyst et al. (2023b) (Paper IV) provides the details of the SIC filters and the
generation of the DMI-SIC. Figure 3+4 in Nielsen-Englyst et al. (2023b) (Paper IV) show
examples of the improved consistency, and reduced spurious sea ice from land contami-
nation in OSI-450, which is obtained after filtering. As an effect of the coarse resolution
PMW sensors, both SICCI-25km and OSI-450 have coastal challenges in the Baltic region,
and for that reason we use a high resolution SIC product based on manual ice charts from
the SMHI (1982–2011) and the CMEMS 1 km SIC fields (2012–present) in this region
(Høyer & Karagali, 2016).

The derived DMI-SIC feeds directly into the L4 Arctic SST/IST CDR described in Sec-
tion 3.2 and Nielsen-Englyst et al. (2023b) (Paper IV). It can also be used for assimilation
as well as model evaluations of which two examples are provided in the following section.

3.1.1 Assimilation and Evaluation
The consistent DMI-SIC product described in Section 3.1 and Nielsen-Englyst et al.
(2023b) (Paper IV), has turned out to be useful for multiple applications. Firstly, an
earlier (and slightly different) version of it has been ingested into the Copernicus Arctic
Regional Reanalysis (CARRA) which covers two domains of the European Arctic with 2.5
km horizontal resolution from 1991 to present, with regular updates planned to be provided
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until June 2025 (Yang et al., 2020). It is the plan to include the updated DMI-SIC from
Nielsen-Englyst et al. (2023b) (Paper IV, Section 3.1) in the second generation of the Arc-
tic reanalysis, CARRA2, which will have a pan-Arctic coverage. This is under development
and the production is planned to start in 2024, with release of the full data set (∼1991–
2025) in 2026 (https://climate.copernicus.eu/copernicus-arctic-regional-reanalysis-service).

Secondly, the derived DMI-SIC has been used to evaluate the capability of the improved
and recently-launched DMI sea ice operational forecast system (DMI-HYCOM-CICE) to
predict the sea ice edge (Ponsoni et al., 2023) (Paper VIII). The DMI-SIC is included as one
out of three different observational references with the other two being manual ice charts
and Automated Sea Ice Products (ASIP). In that relation, an inter-comparison of the
three observational references is also conducted to provide an estimate of the observational
uncertainty. In general, the DMI-SIC shows very good agreement with manual ice charts
except from off the southeastern Greenlandic coast during summer, where the DMI-SIC
reports lower SICs than the manual ice charts (Ponsoni et al., 2023) (Paper VIII, Figure
10+11). Part of this discrepancy may be linked to melt ponds being interpreted as open
water in the microwave observations. In general, the daily DMI-SIC proved to be very
valuable for identifying and evaluating the impact of different changes made to the forecast
system.

3.2 Sea and Sea-Ice Surface Temperature Reanalysis
Due to the varying location and extent of sea ice, the most consistent way to monitor the
surface temperature change of the Arctic oceans is by blending sea and sea-ice surface
temperatures. This section summarizes the development, construction and validation of
the first L4 Arctic (>58◦N) combined SST and IST CDR (1982-2021), which is presented in
Nielsen-Englyst et al. (2023b) (Paper IV). The underlying algorithm combines multiple IR
satellite observations and performs a statistical optimal interpolation (OI) to obtain daily
gap-free fields with a 0.05 degrees resolution. Each daily L4 SST/IST field is accompanied
by an uncertainty estimate, which is a direct output of the OI processing scheme.

The L4 SSTs represent the daily mean temperature at a depth of 20 cm (as the SST input
data; Merchant et al., 2019). Validation of the L4 SST shows mean differences of 0.01◦C,
0.04◦C and 0.04◦C and standard deviations of 0.54◦C, 0.56◦C and 0.51◦C, against in situ
measurements from drifting buoys, moored buoys and Argo floats, respectively (Nielsen-
Englyst et al., 2023b) (Paper IV, Table 2). The drifting buoys have been used for a static
mean bias correction (+0.16◦C) of the L4 SST analysis, while moored buoys and Argo
floats provide independent observations.

The L4 ISTs are clear-sky averages and a clear-sky bias correction of +0.85◦C (following
Nielsen-Englyst et al., 2019) has been added over sea ice (>70%) and linearly scaled
towards 0◦C over open ocean (using the DMI-SIC from Section 3.1 as scaling factor). The
L4 ISTs have been compared with KT-19 measurements from IceBridge flights (IAKST1B
v2) with a mean difference of 1.52◦C and standard deviation of 3.12◦C, as well as with
T2m measurements from the North Pole (NP) ice drifting stations, ECMWF distributed
buoys and CRREL buoys, with mean differences of –2.35◦C, –3.21◦C and –2.87◦C and
standard deviations of 3.12◦C, 3.34◦C and 3.36◦C, respectively (Nielsen-Englyst et al.,
2023b) (Paper IV, Table 2). The physical difference between IST and T2m introduces
a temperature difference, which may be up to several degrees (Nielsen-Englyst et al.,
2019), which is also included in these results. This effect is further investigated in Nielsen-
Englyst et al. (2021b) (Paper VI) where a method is also developed to derive T2m from
satellite-observed IST.
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The resulting combined surface temperature product covering ocean, sea ice and the
marginal ice zone is the first of its kind and it can be used as a consistent climate in-
dicator for monitoring day-to-day variations as well as long-term climate trends in the
Arctic oceans. The combined sea and sea-ice surface temperature of the Arctic (>58◦N)
has increased with 4.5◦C for the period 1982–2021, with a peak warming in the north-
eastern Barents Sea of around 10◦C (Nielsen-Englyst et al., 2023b) (Paper IV, Figure 14).
The exceptional warming of the Barents Sea is in agreement with most recent findings
(AMAP, 2021; Isaksen et al., 2022; Rantanen et al., 2022), and is likely related to the
rapid diminishing winter sea ice extent in this region (Isaksen et al., 2022; Onarheim &
Årthun, 2017).

3.3 Impact of Microwave Sea Surface Temperatures
The frequent and persistent cloud cover in the Arctic limits the extent to which SST
can be retrieved from IR satellite sensors. Due to the almost all-weather capability of
PMW sensors, there is a large potential of supplementing the IR SSTs with PMW SSTs
in the Arctic. Therefore, it is important to investigate how to best combine IR and
PMW SST retrievals in the Arctic in a gap-free analysis. This is done in Nielsen-Englyst
et al. (2023a) (Paper V), which uses the IR-based L4 Arctic SST/IST CDR developed
in (Nielsen-Englyst et al., 2023b) (Paper IV) as baseline and investigates the impact of
including observations from the ESA-CCI PMW SST CDR, which was developed and
generated in Alerskans et al. (2020) (Paper I).

The different characteristics (e.g. footprint, spatial resolution and coverage) of IR and
PMW observations need to be taken into account in order to combine the two data sets
properly (Castro et al., 2016). Different methods have been tested using one year (2015)
of the data. The inclusion of PMW SSTs shows improved validation results against drifter
SSTs for all tested methods (Nielsen-Englyst et al., 2023a) (Paper V, Table 1). The PMW
SSTs show lower mean differences against drifters compared to the IR SSTs, which in
general are too cold. For climate analyses, it is important to correct for systematic biases
in the IR and PMW SSTs relative to each other. For consistency with time periods without
Arctic PMW SSTs, the PMW SSTs have been adjusted to IR SSTs using a dynamic high-
latitude bias correction adapted from Høyer et al. (2014) to generate a consistent IR and
PMW Arctic SST CDR for the ESA-CCI PMW SST CDR period (2002-2017).

The inclusion of PMW SST reduces the standard deviations from 0.54◦C, 0.55◦C and
0.47◦C to 0.47◦C, 0.54◦C and 0.41◦C against drifters, moorings and Argo floats, respec-
tively (Nielsen-Englyst et al., 2023a) (Paper V, Table 2). The improvements are seen in
almost all regions including those already covered by IR-observations (Paper V, Figure
11b), but with the largest improvements in IR data sparse regions (Paper V, Figure 12b).
The mean theoretical uncertainty decreases by 0.08◦C, which is in good agreement with
the observed reduction in standard deviation against drifters. Generally, the results are
very promising and they will very likely improve even further in the future with the launch
of AMSR3 and CIMR, which are highly complementary. CIMR will enable PMW SST
retrievals with lower uncertainties and much closer to coasts and sea ice (where the largest
uncertainties are found) than possible today, while the combination of AMSR3 and CIMR
will provide unprecedented coverage and revisit time of the Arctic oceans.

3.4 Near-Surface Air Temperatures from Satellites
Daily Arctic near-surface air temperatures (T2m) derived from satellite observations have a
large potential to increase the information and quality of the existing gridded observational
surface temperature estimates and to supplement contemporary reanalyses. Therefore,
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Nielsen-Englyst et al. (2021b) (Paper VI) investigates the potential of using satellite ISTs
to derive T2m over ice surfaces based on the understanding of the empirical relationships
between in situ observed skin temperatures and T2m from Nielsen-Englyst et al. (2019).
The work presented in Nielsen-Englyst et al. (2019) and in Nielsen-Englyst et al. (2021b)
(Paper VI) is part of the EU Horizon 2020–funded EUSTACE project (2015–2019, www.
eustaceproject.org).

Nielsen-Englyst et al. (2021b) (Paper VI) introduces a methodology for estimating T2m
over the Arctic sea ice and the Greenland Ice Sheet (GrIS) based on daily clear-sky (L3)
observations from the Arctic and Antarctic Ice Surface Temperatures from thermal In-
frared satellite sensors (AASTI) version 1 (v1), covering the period 2000-2009. For each
day, the daily mean T2m and a corresponding uncertainty are provided on a 0.25 degree
regular latitude-longitude grid. The T2m satellite derivation is based on a linear regression
model tuned against in situ observed T2m. Different models were examined and a model
using the satellite skin temperature combined with a seasonal variation was selected to
predict corresponding T2m. Separate regression coefficients were derived and used for the
Arctic sea ice and the GrIS.

The satellite based T2m show mean differences of 0.30◦C and 0.35◦C and standard devia-
tions of 3.45◦C and 3.18◦C for the GrIS and Arctic sea ice, respectively. This is similar or
better performance compared to ERA-I and its successor ERA5 despite that these reanal-
yses actively assimilate available in situ observations. Both ERA-I and ERA5 suffer from
warm biases in the Arctic with mean differences of 2.03◦C (3.41◦C) and 2.19◦C (1.14◦C)
for ERA5 (ERA-I) over the GrIS and Arctic sea ice, respectively.

Days with too few observations (due to clouds) to resolve the daily temperature cycle are
excluded from the analysis and the satellite-derived T2m dataset has gaps in those places.
Whenever, the satellite-derived T2m is available, it provides an estimate of the daily
averaged (all-sky) T2m since it has been regressed towards all-sky in situ observations.
Figure 15a in Nielsen-Englyst et al. (2021b) (Paper VI) shows an increasing coverage over
time period (2000-2009), and seasonal minimum coverage over Arctic sea ice towards the
end of the summer (Figure 15b, Paper VI). Despite the gaps, the satellite-derived L3 T2m
provides a much better spatial coverage than the sparse in situ network in the Arctic.

The gaps can be filled using various methods e.g. using data assimilation in atmospheric
models, optimal interpolation (as in Nielsen-Englyst et al., 2023b) (Paper IV) or other
statistical techniques. In the EUSTACE project, in situ observed T2m and satellite-derived
L3 T2m estimates (over land, lakes, ocean, and ice), including uncertainty estimates, were
combined using an advanced statistical model to generate a global and gap-free daily
analysis of surface air temperatures from 1850 to 2015 (Rayner et al., 2020) (Paper IX).
The satellite-derived T2m product developed in Nielsen-Englyst et al. (2021b) (Paper VI)
is used directly as input to the EUSTACE surface air temperature analysis for the GrIS
and the Arctic sea ice presented in (Rayner et al., 2020) (Paper IX). The combination of
in situ measurements and satellite-derived temperatures provides a much more complete
global dataset of air temperature compared to global gridded observational datasets. It
is complementary to products from dynamical reanalyses and it moreover extents further
back in time than many of the dynamical reanalyses.

3.4.1 Gap-free Reanalysis
Nielsen-Englyst et al. (2023b) (Paper IV) also explores the potential of using the regression
model and coefficients from Nielsen-Englyst et al. (2021b) (Paper VI) to derive gap-free
T2m over the Arctic sea ice using the satellite ISTs from the L4 SST/IST CDR. In this
context, the clear-sky bias correction of the L4 IST is omitted since a clear-sky bias correc-
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tion is already incorporated in the IST-T2m regression model, which has been regressed
towards all-sky in situ T2m observations. It should be noted that this approach, using L4
IST to estimate L4 T2m, differs from the approach in Rayner et al. (2020) (Paper IX),
where L4 T2m is generated from L3 T2m (+in situ observations).

Using the satellite-derived L4 T2m estimates based on Nielsen-Englyst et al. (2023b),
Nielsen-Englyst et al. (2021b) (Paper IV+VI), the mean differences are reduced to 0.65◦C,
–0.45◦C and –0.17◦C when compared to T2m measurements from the NP ice drifting
stations, ECMWF distributed buoys and CRREL buoys, respectively, while the standard
deviations remain more or less the same.

These initial results indicate that it is possible to derive reliable T2m over sea ice based
on the satellite-observed L4 ISTs. The satellite-derived L4 T2m product provides an im-
portant supplement to the sparse in situ air temperature network in the Arctic and to the
existing model-based air temperatures. It has a large potential to be used for assimilation,
global surface temperature reconstructions or for evaluation of global reanalyses and cli-
mate models. One example of the latter is provided in the following section (Section 3.5),
which summarizes the work presented in Tian et al. (2023) (Paper VII), while additional
applications are discussed in Section 3.6.

3.5 Benchmark for Climate Models and Reanalyses
Traditionally, global reanalyses have been used for evaluating climate models (e.g. Bock
et al., 2020; Davy & Outten, 2020; IPCC, 2021). However, it is evident that many global
reanalyses have issues in simulating the extreme cold surface temperatures in large parts
of the Arctic Ocean with warm biases of ∼5–10◦C (Batrak & Müller, 2019). As recognized
in Batrak and Müller (2019), the widespread use of global reanalyses for model validation,
initialisation of prediction systems, forcing of ocean and sea-ice models, etc., makes it
crucial to take into account this warm bias.

This concern is also addressed in Tian et al. (2023) (Paper VII) in relation to the eval-
uation of global reanalyses and climate models in the Arctic. Tian et al. (2023) (Paper
VII) uses the monthly mean satellite-derived T2m estimates from Nielsen-Englyst et al.
(2023b) (Paper IV) and Section 3.4.1 as benchmark for evaluation of ERA5 and the latest
generation (phase 6) of the Coupled Model Inter-comparison Project (CMIP6) historical
simulations.

In agreement with the previous findings (Batrak & Müller, 2019; Wang et al., 2019), Tian
et al. (2023) (Paper VII, Figure 1) shows a widespread warm ERA5 in the central Arctic
Ocean, when compared with the satellite-derived T2m. In contrast, the CMIP6 shows a
very good agreement with the satellite-derived T2m in the central Arctic Ocean. Both
ERA5 and CMIP6 are colder than the satellite-derived T2m towards the sea ice margins,
with the largest deviations in the CMIP6, which are likely explained by an overestimation
of the CMIP6 sea ice extent, which is possible explained by an underestimation of the
northward ocean heat transport (Shu et al., 2020).

It is also evident that ERA5 has a warm offset throughout the period (1982-2020), while the
CMIP6 ensemble mean is in close agreement with satellite-derived T2m for the duration
of the CMIP6 historical simulations (1982-2014) in the central Arctic Ocean (SIC>70%).
In this region, it was also found that both ERA5 and CMIP6 underestimate the T2m
trend (by –0.23◦C decade−1 and –0.18◦C decade−1, respectively) compared to the satellite-
derived T2m estimate (Tian et al., 2023) (Paper VII, Figure 1).

These results highlight the importance of having accurate and absolute reference fields for
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evaluating and assessing the current as well as the next generation of dynamical reanalyses
and global climate models (CMIP7) in the Arctic oceans. This and other applications of
the satellite-derived T2m (and IST), as well as limitations to the current satellite-derived
T2m estimates, will be discussed in the following section (Section 3.6).

3.6 Discussion
The work presented in this chapter clearly demonstrates the advantages of combining IR
and PMW SSTs, to compensate each other’s deficiencies and complement each other, in
the generation of an Arctic L4 SST/IST product. The inclusion of high quality PMW
SSTs provides valuable information which results in a general and substantial reduction in
standard deviation against drifting buoys and Argo floats (Nielsen-Englyst et al., 2023a)
(Paper V, Table 3). The improvements are seen in almost all regions, including those
already covered by IR sensors (Paper V, Figure 11b), but it is also found that the reduction
in standard deviation increases as a function of the number of days since the last IR
observation was available in that particular grid cell (Paper V, Figure 12b). The results
emphasize that PMW sensors are an important part of the constellation of SST sensors
for monitoring the Arctic.

Considering the merged IR and PMW Arctic L4 SST/IST product there are still some
challenges to be considered in future development, and these are outlined in the following.

Generally, the largest L4 SST standard deviations and L4 SST uncertainties are found
close to the coasts and sea ice (Nielsen-Englyst et al., 2023a) (Paper V, Figure 11a+13a).
In these regions, sparse SST coverage from both PMW and IR sensors limits the extent to
which accurate SSTs can be estimated. Moreover, large spatial SST gradients usually exist
in these regions e.g. along the marginal ice zone (Carvalho & Wang, 2020). Part of the
elevated uncertainties in these regions will likely be mitigated in the future with the launch
of higher resolution sensors both in the IR and PMW domain. High resolution coastal IR
SST may be possible in the future with the planned Thermal InfraRed Imaging Satellite
for High-resolution Natural resource Assessment (TRISHNA) mission (Buffet et al., 2021)
and the ESA Copernicus Land Surface Temperature Monitoring (LSTM) mission (Koetz
et al., 2019), while the improved spatial resolution from CIMR will enable PMW SST
retrievals much closer to the coasts and sea ice than possible with previous and current
PMW radiometers. Future work should focus on improving the validation close to the
sea ice e.g. by using Saildrone observations (Gentemann et al., 2020; Jia et al., 2022;
Vazquez-Cuervo et al., 2022) and potentially improving the retrievals in this region. As
discussed in Section 2.5, recent studies have developed methods to reduce the land and
sea ice contamination in salinity retrievals to improve retrievals closer to coasts and sea
ice (Meissner & Manaster, 2021; Olmedo et al., 2017), and these methods may also be
applicable to SST. Moreover, a combined and simultaneous OE retrieval of ocean and
sea-ice parameters may also enable PMW SST retrievals closer to the sea ice. Both of
these opportunities could be investigated in the future.

In Nielsen-Englyst et al. (2023a) (Paper V, Figure 12b), it is found that regions rarely
observed by IR sensors (>60 days without IR observations) during fall and early winter
on average are provided with a too warm (first guess) SST. This is clearly seen for the
IR-only run, but much less pronounced when including the more frequent PMW SSTs.
This is explained by the setup of the OI scheme, where the previous day’s analysis is used
as first guess in long periods in grid cells where the neighboring observations are too far
away to provide any weight in the OI scheme. Since, most of existing and widely used
global L4 SST products are also based on OI (e.g. Castro et al., 2016; Vazquez-Cuervo
et al., 2022) and using previous day’s analysis as first guess (e.g. NOAA OI SST and

Surface Temperatures of the Arctic Oceans 27



Chapter 3. Arctic Surface Temperatures

REMSS MW-IR SST), it is likely that they also suffer from the same artefact. This is of
course undesirable and should be addressed in future updates of the Arctic L4 SST/IST
reanalysis as well as new Arctic and global L4 SST analyses in particular when only IR
observations are used, but also in combined IR and PMW analyses where the problem
likely persists close to coasts and sea ice.

In the current configuration of the merged IR and PMW Arctic L4 SST/IST reanalysis,
the L3 PMW SSTs have been adjusted to L3 IR SSTs for consistency with time periods
when no Arctic PMW SSTs are available (Nielsen-Englyst et al., 2023a) (Paper V). While
the IR SSTs are generally too cold, the PMW SSTs show a very good agreement with in
situ observations. Future work should consider using the PMW SST observations to adjust
the cold Arctic IR SSTs (extended to times when no PMW SSTs are available) e.g. by
using CIMR as a reference. In this relation, future work could also explore the potential
of joint retrievals, where the L2 IR data are tied to the L2 PMW data, e.g. through direct
referencing or through a common in situ reference data set, to increase the consistency
before entering the L4 generation.

As discussed in Nielsen-Englyst et al. (2023b) (Paper IV), the IR-based L4 SST meets the
CDR requirement for SST stability (GCOS, 2022; Ohring et al., 2005), but at the time of
the Paper IV writing, no stability requirements were available for IST. However, in 2022,
the IST was included as an ECV by GCOS, and corresponding stability requirements were
established. These are identical the GCOS stability requirements for land surface tem-
perature i.e. 0.3◦C decade−1 for the threshold stability and 0.1◦C decade−1 for the target
stability (GCOS, 2022), which are also referenced to in Nielsen-Englyst et al. (2023b)
(Paper IV). Considering the NP validation (which spans the longest period), the L4 IST
meets the target stability of a CDR according to GCOS (2022). Meeting the required
stability is important for studying and assessing long-term climate variability and change
(Minnett et al., 2020; Ohring et al., 2005). Nevertheless, as emphasized in Nielsen-Englyst
et al. (2023b) (Paper IV), the limited availability of high-quality long-term reference in
situ IST observations (with known and controlled stability) limits the extent to which
satellite ISTs can be evaluated for meeting the CDR requirements. Future work should
focus towards establishing and maintaining FRMs to support IST algorithm development
and validation, but also improving the capacity of the established (but sparse) in situ
network that can be used for validation of the satellite IST products. Future work should
also aim at providing in situ observations of the marginal ice zone, including activities that
are capable of providing estimates of the spatial variability and radiometric signals, such
as flight campaigns, to quantify the uncertainties, assess the performance of the surface
temperature estimates and potentially improve them.

Future work should also aim at improving the L4 IST e.g. by including other available
satellite IST products such as the MODIS IST (Hall et al., 2004), VIIRS IST (Key et al.,
2013; Liu et al., 2015), and a potential future SLSTR IST product. This PhD study has
only been concerned with IR ISTs, but future work could also investigate the potential use
of PMW ISTs, which has been increasingly available at daily temporal resolution based
on the vertically polarized 6.9-GHz channel AMSR-data (e.g. Comiso et al., 2003; Kilic
et al., 2019b; Le Traon et al., 2015). In contrast to the IR sensors which measure the
skin surface temperature, the derived emitting layer temperature from PMW sensors are
closer to the physical temperature of the snow/ice interface (Tonboe, 2010; Tonboe et al.,
2011; Ulaby et al., 1986). Combining IR and PMW ISTs is thus a challenging task and
requires a model or method to account for the large temperature gradients in the snow
during winter (e.g. Comiso et al., 1989; Comiso et al., 2003).
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Currently, Arctic surface temperatures are heavily under-sampled in terms of both satel-
lite and in situ observations, causing large uncertainties in current gridded observational
datasets, dynamical renanalyses as well as in global climate models (Cowtan & Way, 2014;
Lenssen et al., 2019; Morice et al., 2012; Rapaić et al., 2015). Both satellite and in situ
observations are subject to uncertainties and limitations, and there is a large potential in
combining the available information. Currently no satellite-observed surface temperatures
are included over the sea ice in reanalyses and global gridded observational datasets, and
the T2m estimates are thus derived using only a very limited number of in situ obser-
vations. The results of Nielsen-Englyst et al. (2021b) (Paper VI) demonstrate a great
potential of using L3 satellite IST to derive daily L3 T2m over the GrIS and the Arctic
sea ice to supplement the existing in situ network and to improve the surface tempera-
ture estimation of the Arctic. Moreover, the method developed in Nielsen-Englyst et al.
(2021b) (Paper VI) proved to be surprisingly good to derive L4 T2m estimates over sea
ice, when applied to the L4 ISTs from Nielsen-Englyst et al. (2023b) (Paper IV). Never-
theless, there are some limitations of the methodology that should be mentioned. First
of all, the regression model and coefficients are derived using an earlier version of the
AASTI data (v1) than used in the L4 SST/IST CDR (AASTI v2), which nevertheless is
based on the same satellite observations and algorithm. Secondly, the AASTI v1 data
only covers the period 2000-2009, which means that the regression model is only trained
on a limited portion of the CDR period, while being applied to both previous and later
decades experiencing different conditions (e.g. on average colder (warmer) temperatures
before (after) the AASTI v1 period). Another limitation is the sparse number of obser-
vations used to train the model in particular over sea ice. Repeating the analysis using
AASTI v2, which covers 1982-2019, will increase the number of observations substantially
and allow more robust IST-T2m relationships to be established. As already mentioned,
future efforts should also be put into expanding the current in situ network in particular
over sea ice, which would also increase the number of matchups available to determine the
relationships.

Other studies have shown strong but varying IST-T2m dependencies on the wind speed
for the GrIS and sea ice (e.g. Adolph et al., 2018; Nielsen-Englyst et al., 2019). However,
in contrast to our expectations, including the wind speed (from ERA-I) as predictor in
the regression model only showed limited improvements in the validation against in situ
observations. As discussed in Nielsen-Englyst et al. (2021b) (Paper VI), this is likely
explained by the quality of the ERA-I winds not being adequate for the relationship
model. Accurately representing the Arctic surface winds is a challenging task due to the
high resolution needed to represent the governing mechanisms (e.g. Steeneveld, 2014; Sterk
et al., 2013). More accurate wind speeds, e.g. from the regional high resolution CARRA
product (and the next generation CARRA2 with pan-Arctic coverage), may be able to
improve the regression model and hence the satellite-derived T2m estimates in the future.

Both the combined sea and sea-ice surface temperatures (Nielsen-Englyst et al., 2023b)
(Paper IV) and the corresponding regression-derived T2m (Nielsen-Englyst et al., 2023b;
Nielsen-Englyst et al., 2021b) (Paper IV+VI) are valuable supplements to model-based air
temperatures to be used for global surface temperature reconstructions, model evaluation
or assimilation into ocean, sea-ice and atmospheric models. The potential of assimilating
satellite-observed IST into a coupled ocean and sea-ice model was investigated in Ras-
mussen et al. (2018), and the experiments demonstrated an improved timing of the snow
melt onset after assimilation. Tian et al. (2023) (Paper VII) provides an example of how
the satellite-derived T2m can be used as benchmark when evaluating global reanalyses and
climate models in the Arctic. It is evident that CMIP6 agrees very well with the satellite-
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derived T2m compared to ERA5 (which is too warm) in the central Arctic Ocean, while
CMIP6 (and ERA5 to a smaller degree) underestimate the surface temperatures in the
marginal ice zone. As stated in Section 3.5, the colder temperatures of CMIP6 in the
marginal ice zone is likely related to an underestimation of the fast decline in Arctic sea
ice extent (Shu et al., 2020), which indicates that the climate models cannot fully capture
the response of the Arctic sea ice to the changes in the external forcing (Shen et al., 2021).

Batrak and Müller (2019) uses the winter L3 ISTs from Nielsen-Englyst et al. (2023b)
(Paper IV) as benchmark when evaluating several contemporary global reanalyses (i.e.
ERA5, MERRA-2, JRA-55 and NCEP-2). All reanalyses show warm biases of 5–10◦C
in the central Arctic Ocean, when using the L3 IST as reference. The warm biases (and
differences among the reanalyses) are attributed to a misrepresentation of the conductive
heat flux through the sea ice and snow due to missing snow layer and misrepresentation of
sea ice thickness (Batrak & Müller, 2019). The warm bias in ERA-5 and its predecessor,
ERA-I, is also seen in Nielsen-Englyst et al. (2021b) (Paper VI, Figure 11) and for ERA-5
in Tian et al. (2023) (Paper VII) where the ERA T2m estimates are compared with the
satellite-derived T2m. Recently, Zampieri et al. (2023) used the satellite-observed ISTs
(L2 AASTI v1) to correct the winter clear-sky temperature bias over the Arctic sea ice
in the ERA5 and JRA-55 reanalyses using a machine learning based correction, which
learns from the satellite ISTs. The bias correction turned out to be efficient in correcting
skin temperature bias affecting the current generation of atmospheric reanalyses and at
the same time increasing the physical understanding of the bias and the ice system, when
assessing the spatial and temporal evolution of the correction (Zampieri et al., 2023).
These applications demonstrate that the use of the satellite-derived surface temperatures
can be very informative and guide future development efforts to improve climate models
as well as reanalyses in the Arctic.

The model deficiency of atmospheric reanalyses (such as ERA5) will likely be addressed in
the future using fully coupled modelling systems and by assimilating new types of observa-
tions (Davy & Outten, 2020). CARRA already took the first step in this direction where
the snow on top of sea ice is modeled more accurately. It is part of the CARRA project
plan to use the satellite-derived T2m estimates from Nielsen-Englyst et al. (2023b) (Paper
IV) for validation of the next generation of the Arctic regional reanalysis, CARRA2, with
pan-Arctic coverage. It should also be noted that the satellite-derived T2m estimates are
independent of NWP models, and are accompanied with validated well-characterized es-
timates of uncertainty, and thus, a combination of NWP models and the satellite-derived
T2m could possible lead to even better T2m estimates in the future. The many applica-
tions of the satellite-derived IST and T2m estimates emphasize the value of having more
complete and accurate absolute benchmark fields in the Arctic.

The combined Arctic L4 SST/IST CDR also presents a new possibility for a more con-
sistent surface temperature monitoring compared to existing global gridded observational
datasets that usually combine SST with T2m estimates over sea ice. Because of the rapid
decline in sea ice extent some regions which were previously mapped as a T2m are now
shifted to SST in these products. An artefact of the varying variable and technique is
thereby introduced into the data record, which is clearly undesirable in the context of
climate monitoring (IPCC, 2021). This in particular affects the analyses using anomalies
in which a switch from T2m to SST causes a switch to a warmer climatology, resulting
in an underestimation of the warming compared to analyses using absolute temperatures
(IPCC, 2021; Richardson et al., 2018).

In addition to being more consistent, the Arctic L4 SST/IST also provides much more
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detailed spatial information over the sea ice covered regions, compared to the existing
global surface temperature datasets, which only rely on in situ observations in these re-
gions. The increased information content facilitates studies on physical processes like
sea-ice melt and refreeze, melt ponds, leads and associated sea-ice-air heat fluxes, as well
as studies concerned with the regional patterns and trends in the observed warming.

Recent studies have found that the Arctic warming of about twice the global average,
as previously reported by numerous studies (e.g. Graversen et al., 2008; Jansen et al.,
2020; Screen & Simmonds, 2010; Walsh, 2014), is a significant underestimate of the Arctic
warming e.g. the recent AMAP report found an Arctic temperature increase three times
the global average (AMAP, 2021) and Rantanen et al. (2022) reported a warming rate
of about four times the global average using several observational datasets (i.e. ERA5,
BEST, HadCRUT5 and GISTEMP), but with large differences in the regional trends in the
Arctic Ocean (Marquardt Collow et al., 2020; Rantanen et al., 2022). The varying spatial
coverage and different ways to account for the incomplete sampling can likely explain part
of the diversity in the estimates of the Arctic warming. Future work should include a
comprehensive and detailed comparison and common validation of the satellite-derived
estimates and the existing datasets in the Arctic to get a better understanding of the
differences and to guide future developments.

The recent study by Zampieri et al. (2023) shows that applying the bias correction based
on satellite-observed ISTs, leads to an increased warming trend (for the region north of
70◦N) of +0.16◦C decade−1 for ERA5. This is in good agreement with the findings in
Tian et al. (2023) (Paper VII), where ERA5 also showed a weaker warming trend com-
pared to the satellite-derived T2m (of –0.23◦C decade−1) over the central Arctic Ocean
(DMI-SIC>70%). If the ERA5 modelled T2m is replaced by the satellite-derived T2m es-
timates over Arctic sea ice, the estimated Arctic warming increases from 0.79◦C decade−1

to 0.89◦C decade−1 and the corresponding Arctic amplification increases from 3.8 to 4.2,
with the Arctic being defined as the area north of 66.5◦N as in Rantanen et al. (2022).
According to climate model simulations, incomplete data coverage suppresses the reported
Arctic warming with about 16% when considering HadCRUT4 data availability (Richard-
son et al., 2018). This may explain part of the suppressed warming trend in ERA-5 when
compared to the satellite-derived surface temperature trends as seen in Tian et al. (2023)
(Paper VII) and Zampieri et al. (2023). This should be investigated in greater detail
in the future. Nevertheless, these results indicate that the Arctic warming is even now
underestimated in ERA-5, and they demonstrate the value of having spatially detailed
satellite-derived surface temperatures of the Arctic sea ice. Including (or simply learning
from) the satellite-derived surface temperatures may improve the estimation of the Arc-
tic warming and thereby also improve the representation of the Arctic amplification in
reanalyses, observational data sets and global climate models.

Future work could consider expanding the satellite-derived surface temperature estimates
to global coverage, and possible including other large ice-surfaces such as the ice sheets
e.g. as demonstrated for the GrIS in Karagali et al. (2022) (Paper X).
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CHAPTER4
Conclusion

This PhD study is concerned with many of the challenges that arise when estimating
and monitoring the sea and sea-ice surface temperatures in the Arctic. These include the
limitations related to a persistent cloud cover, the mix of open water and sea ice (and the
temporally varying sea ice cover) and the sparse in situ network, which all complicate an
accurate and absolute surface temperature mapping and monitoring of the Arctic oceans.

The persistent Arctic cloud cover limits the extent to which SST can be retrieved from
thermal infrared satellite sensors. To improve the observational coverage of Arctic, this
PhD study investigates the potential of retrieving SST from PMW satellite sensors, which
are less impacted by clouds than the infrared sensors. Multiple PMW SST retrieval
algorithms have been developed and evaluated, and the first European global Level 2
PMW SST CDR has been produced providing almost complete daily global coverage.
To prepare for the future CIMR satellite mission, this PhD study also assesses the use
of different radiometer frequency channels in the PMW SST retrievals, with promising
results for the proposed CIMR constellation. Moreover, it has been investigated how to
best combine infrared and PMW satellite SSTs in an Arctic gap-free (L4) analysis. The
inclusion of PMW SSTs showed substantial improvements in the spatial observational
coverage as well as in the Arctic SST estimates, and the results are expected to become
even better in the future with the launch of AMSR3 and CIMR. CIMR will enable PMW
SST retrievals at lower uncertainties and better spatial resolution than what is possible
today, while the combination of AMSR3 and CIMR will provide unprecedented coverage
and revisit time. The PMW SST algorithm development, radiometer channel assessment
as well as the L4 integration assessment are all important steps in the preparation for future
satellite missions, such as AMSR3 and CIMR, and will allow for improved monitoring of
the Arctic.

Due to the varying sea ice coverage, the most consistent way to monitor the surface
temperature change of the Arctic oceans is by combining SST and IST estimates. This
PhD study presents the first infrared satellite-based Arctic (>58◦N) L4 combined SST and
IST CDR covering the period 1982-2021. The daily accurate and absolute L4 SST/IST
CDR presents a new possibility for consistent surface temperature monitoring of day-to-
day variations and well as long-term climate trends in the Arctic, and it provides much
more detailed spatial information over sea ice, compared to the existing global surface
temperature datasets. It shows that the combined sea and sea-ice surface temperature of
the Arctic has increased with 4.5◦C for the period 1982–2021, with a peak warming in the
northeastern Barents Sea of around 10◦C, which is likely associated with the fast decline
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in sea ice cover in this region.

The satellite-observed ISTs provide an important supplement to the sparse in situ network
due to the superior spatial coverage. To compensate for the lack of in situ measurements,
efforts have been done to relate the satellite ISTs to near-surface air temperature (T2m),
which is the variable measured in situ and usually used in temperature assessments of
global reanalyses, in situ based observational datasets, climate models as well as for forc-
ing field in sea ice and ocean models. The results show that it is possible to derive sur-
prisingly good T2m estimates above sea ice based on satellite observations, with improved
performance compared to ECMWF’s most recent reanalysis (ERA5). The satellite-derived
IST and T2m estimates provide an important supplement to the existing in situ network
and it has a large potential to be used for assimilation, evaluating and improving global
surface temperature reconstructions, atmospheric reanalyses as well as climate models.
Initial efforts show that an evaluation against the satellite-derived surface temperatures
can improve our physical understanding and guide future development efforts in global
climate models as well as reanalyses in the Arctic.

This PhD study contributes to an overall more accurate and more consistent surface tem-
perature mapping and long-term climate monitoring of the Arctic oceans, which enables
a better estimation and representation of the Arctic warming and amplification.

4.1 Outlook
The knowledge and insights gained during this PhD study led to the discovery of new
challenges, possibilities and ideas for future work and development in order to further
improve the surface temperature estimation and monitoring of the Arctic. These were
presented in Section 2.5 in relation to the PMW SST retrieval science, and in Section 3.6
in relation to a complete surface temperature estimation of the Arctic oceans. The main
recommendations for future work and development are summarized here:

• Improving the observational in situ network in the Arctic

Future work should focus on improving and expanding the existing (but sparse) in
situ network in the Arctic. For example by establishing and maintaining fiducial
reference measurements of IST and PMW SST. Efforts should be made to provide
in situ observations in the marginal ice zone, including activities that provide esti-
mates of the spatial variability and the radiometric signals such as flight campaigns,
to quantify the uncertainties, assess the performance, and potentially improve the
surface temperature estimates in this region.

• Improving and integrating surface temperature retrievals in the Arctic

Future work should aim at improving the PMW SST estimates e.g. in proximity
to sea ice and coasts. Future work could investigate the use of optimal estimation
for simultaneously retrieval of sea and sea-ice parameters to improve the consistency
and possibly enable PMW SST retrievals closer to the sea ice. To improve the
surface temperature estimation of sea ice, the potential of using snow-ice-interface
PMW ISTs to supplement the skin IR ISTs in a gap-free analysis, could also be
investigated.

• Evaluating the impact of using the satellite-derived surface temperatures in the
estimation of the Arctic warming and amplification

Future work should include a comparison and common validation of the satellite-
derived L4 SST/IST and SST/T2m data sets and global gridded observational
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datasets, dynamical reanalyses and global climate models in the Arctic. In addition,
the impact of assimilating or learning from the satellite-derived surface temperatures
in the estimation of the Arctic warming and amplification could also be assessed.
Finally, it could be considered to expand the satellite-derived Arctic L4 SST/IST
and SST/T2m climate datasets to global coverage and possible other ice surfaces,
such as the ice sheets.
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A B S T R A C T

A statistical regression-based microwave sea surface temperature (SST) retrieval algorithm has been developed
within the European Space Agency Climate Change Initiative (ESA-CCI) SST project. The retrieval algorithm was
used to generate a climate data record (CDR) of passive microwave (PMW) SST from the Advanced Microwave
Scanning Radiometer – Earth Observing System (AMSR-E) and its follow-on instrument AMSR2 for the period
June 2002–October 2017. Multisensor Matchup Datasets (MMDs), which includes satellite orbital data collo-
cated with in situ and auxiliary data, was used to derive consistent algorithms for AMSR-E and AMSR2. The
retrieval algorithms consist of wind speed (WS) retrievals and SST retrievals, with corresponding uncertainty
retrievals. The WS retrieval consists of a two-step regression model, where the second step is a localized algo-
rithm, trained to perform well over restricted WS intervals. A two-step multiple linear regression retrieval with
localized algorithms is used to retrieve SST. The first-stage algorithm is trained to perform well over restricted
latitude intervals for ascending and descending orbit, respectively, whereas the second-stage retrieval uses lo-
calized SST and WS algorithms. Furthermore, a new and effective method for detecting and screening for Radio
Frequency Interference (RFI) was developed.
Validation of the PMW SSTs against drifter in situ SSTs shows an overall bias of −0.02 K for quality level (QL)

4 and 5 AMSR-E retrievals with a standard deviation of 0.46 K. Validation results for QL 4 and 5 AMSR2 re-
trievals against drifter in situ SSTs give a bias of 0.002 K and a standard deviation of 0.45 K. The corresponding
mean modelled SST uncertainties, including in situ and sampling uncertainties, are estimated to 0.45 K for QL 4
and 5 AMSR-E retrievals and 0.44 K for QL 4 and 5 AMSR2 retrievals. Validation against near-surface tem-
perature measurements from Argo floats yielded comparable results, confirming the drifting-buoy validation.
The validation results demonstrate a consistent PMW SST CDR with accurate SST observations and reliable
uncertainty estimates.

1. Introduction

Global Sea Surface Temperatures (SSTs) are important inputs for
Numerical Weather Prediction (NWP) (Brasnett and Colan, 2016),
coupled models (Liang et al., 2017), ocean models (Le Traon et al.,
2015; Yang et al., 2015), SST analyses (Donlon et al., 2012), oceano-
graphic research (Gentemann et al., 2003), air-sea interaction research
(Monzikova et al., 2017; Ning et al., 2018), and of broad use in un-
derstanding changes to the marine and ecological environment
(Chacko, 2017; Ishizaki, 2014). While infrared (IR) satellite SSTs have
been available since 1981, the satellite microwave radiometer SST

record began in 1997 with the Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI, (e.g. Wentz et al., 2000)) and then
continued (with global data) with the launch of the Advanced Micro-
wave Scanning Radiometer for EOS (AMSR-E, (e.g. Chelton and Wentz,
2005)) and other follow-on instruments. SSTs may be obtained from IR
observations at a spatial resolution of typically 1–4 km with low un-
certainty (e.g. Embury et al., 2012; Gladkova et al., 2016), but IR re-
trievals are not possible in the presence of clouds and may be com-
promised in the presence of atmospheric aerosols (Merchant et al.,
2006, 1999) and are sensitive to the vertical distribution of water vapor
(Le Borgne et al., 2011; Minnett, 1986). Furthermore, the near-IR
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channels used by e.g. MODIS to retrieve SST are susceptible to solar
contamination (Brown and Minnett, 1999). Passive microwave (PMW)
SSTs are at a lower resolution (approximately 50 km) but can be re-
trieved in all weather conditions except rain. PMW SST data are not
used in the presence of Radio Frequency Interference (RFI) or typically
within ~100 km from sea ice or land where the impact of side-lobe
contamination in the vicinity of a typically large thermal contrast be-
comes a significant source of error. Another disadvantage of PMW SST
retrievals is their dependence on wind speed (e.g. Gentemann et al.,
2004). The influence of PMW SST on water vapor is more readily
minimized than in the IR, PMW retrievals are designed to account for
the influence of liquid water path, and retrievals are not affected by
aerosols to which the PMW wavelengths are transparent (e.g. Ulaby
et al., 1981). Assuming calibration stability over a mission lifetime,
these important features of PMW SSTs mean they have great value for
developing time series for climate applications and as a complement to
traditional satellite IR SST climate data records (CDRs).

PMW SST retrieval algorithms have been developed by several
groups and differ in their approaches. There are statistical regression
algorithms, developed through comparisons between measured
brightness temperatures and collocated in situ SSTs (Chang et al., 2015;
Shibata, 2006), physically-based regression retrieval algorithms devel-
oped through radiative transfer modeling (Meissner and Wentz, 2012),
and optimal estimation algorithms developed using an iterative for-
ward-model, environmental data, and in situ observations (Nielsen-
Englyst et al., 2018). The statistical and physically-based regression
algorithms commonly use a multi-stage regression to account for non-
linearities in the brightness temperatures’ dependence on retrieved
variables. The existing algorithms have typically been derived for one
satellite at the time and for a limited time period or with a limited in
situ observational database for the tuning and validation.

In this paper we describe a statistical regression-based SST retrieval
algorithm, which has been developed within the European Space
Agency Climate Change Initiative (ESA-CCI) SST project (Merchant
et al., 2014) to generate a PMW SST CDR. The retrieval algorithm has
been derived consistently for AMSR-E and AMSR2 using a large amount
of in situ observations. All SST retrievals are accompanied by an un-
certainty value and extensive validation has been performed for both
the retrievals and the uncertainty estimates. The approach taken in this
paper ensures a consistent and reliable multi-satellite SST CDR based
only upon microwave observation that facilitates the uptake within the
many applications of SSTs. The PMW SST CDR is available from the
Centre for Environmental Data Archival (CEDA) at http://gws-access.
ceda.ac.uk/public/esacci-sst/PMW2.0_release/AMSR/L2P/.

The paper is structured first with a description of the satellite, in situ
and auxiliary data in Section 2, as well as the matchup database used
for algorithm development and validation. Thereafter, the retrieval
algorithms are described in Section 3. The validation results are pre-
sented in Section 4. Section 5 discusses the results and Section 6 con-
tains conclusions and ideas for future work.

2. Data

2.1. In situ observations

In this study we use in situ measured sea surface temperature ob-
servations from the International Comprehensive Ocean-Atmosphere
DataSet (ICOADS) version 2.5.1 (Woodruff et al., 2011), and mea-
surements from the Met Office Hadley Center Ensembles dataset version
4.2.0 (EN4 (Good et al., 2013),). Measurements from drifting buoys are
the main source of observations but measurements from Argo free-
drifting profiling floats (Argo, 2018; Roemmich et al., 2009) have also
been used. The drifting buoys measure the sea surface temperature at a
depth of about 20 cm in calm water with an accuracy of approximately
0.2 °C (O'Carroll et al., 2012, 2008). The drifting buoy sea surface
temperatures have been quality checked, as described in Atkinson et al.

(2014). The quality flags are provided with the data. For Argo floats,
the uppermost temperature measurement has been used, which is
measured at a typical depth of about 5m (Gille, 2008), with an accu-
racy of 0.002 °C (Abraham et al., 2013; Kennedy, 2014). The quality
control of the Argo sea surface temperatures is described in (Good et al.,
2013). Sea surface temperatures from drifting buoys and Argo floats
have previously been used for algorithm development and validation
studies (see e.g. Embury et al., 2012; Høyer et al., 2012; Merchant et al.,
2012; Nielsen-Englyst et al., 2018; Udaya Bhaskar et al., 2009).

2.2. AMSR-E data

The Advanced Microwave Scanning Radiometer for EOS (AMSR-E)
is a twelve-channel, six-frequency microwave radiometer supplied by
the Japan Aerospace Exploration Agency (JAXA) for the National
Aeronautics and Space Administration's (NASA's) Earth Observation
System Aqua platform. It measures brightness temperatures at 6.9,
10.7, 18.7, 23.6, 36.5 and 89.0 GHz at both horizontal and vertical
polarization and at an Earth incidence angle of approximately 55°. A
1.6 m offset parabolic reflector antenna collects the microwave radia-
tion and results in spatial resolutions ranging from approximately
60 km at 6.9 GHz to approximately 5 km at 89.0 GHz. The 89.0 GHz
channels are sampled every 5 km, all other channels every 10 km. The
dataset used in the present study consists of spatially resampled
brightness temperatures at the resolution of the 6.9 GHz channel
(Ashcroft and Wentz, 2013) and covers the period June 2002 to October
4, 2011.

2.3. AMSR2 data

The Advanced Microwave Scanning Radiometer 2 (AMSR2) is an
instrument on JAXA's Global Change Observation Mission 1st – Water
(GCOM-W1) platform. GCOM-W1 was launched in May 2012 and began
collecting data on July 4, 2012. AMSR2 measures brightness tempera-
tures at 6.9, 7.3, 10.7, 18.7, 23.6, 36.5 and 89.0 GHz at both horizontal
and vertical polarization and at an Earth incidence angle of approxi-
mately 55°. Note the addition of the 7.3 GHz channels relative to AMSR-
E, added for RFI mitigation. AMSR2 uses a 2m offset parabolic antenna
to obtain a spatial resolution ranging from 4 km at 89.0 GHz to ap-
proximately 50 km at 6.9 and 7.3 GHz. The 89.0 GHz channels are
sampled every 5 km, all other channels every 10 km. We use the Dataset
of Brightness Temperature Modified Using the Antenna Pattern Matching
Technique (Maeda et al., 2016) which contains similar spatially re-
sampled brightness temperatures to the AMSR-E dataset.

2.4. Auxiliary data

Several different datasets have been included in the retrieval and
analysis to improve and interpret the retrieved parameters. Information
of Total Column Water Vapor (TCWV), Total Cloud Liquid Water
(TCLW), surface winds and sea ice concentration has been used from
the atmospheric reanalysis ERA-Interim (Dee et al., 2011), which has a
spatial resolution of 79 km. An additional surface wind speed (WS)
dataset was included from the Cross-Calibrated Multi-Platform (CCMP)
gridded surface vector winds, which is a product that combines many
different satellite and in situ observations (Atlas et al., 2011). The
product used here is version 2.0, which has a spatial resolution of 0.25°.

2.5. Matchup database

2.5.1. ESA CCI multisensor matchup dataset
The calibration and validation of the retrieval algorithm have been

performed using the Multisensor Matchup Datasets (MMDs), which
have been developed within the ESA-CCI SST project and contain pairs
of in situ and satellite observations that are within 20 km and 4 h from
each other. Subregions of 21 by 21 AMSR-E and AMSR2 pixels have
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been extracted around the central matchup positions (corresponding to
approximately± 100 km from the central matchup) and the auxiliary
information have been extracted for the central points for a 5x5 sub-
region (corresponding to approximately± 160 km from the central
matchup). Separate MMDs have been created for the AMSR-E and the
AMSR2 datasets, but they follow the same specifications in terms of
data content and format. For more information on the generation of
MMDs, see (Block et al., 2018; Nielsen-Englyst et al., 2018). The AMSR-
E MMD includes matchups for the period June 2002–October 2011 and
the AMSR2 MMD includes matchups for the period July 2012–De-
cember 2016.

2.5.2. Training and validation subsets
The performance of the retrieval algorithm is closely linked to the

quality of the satellite observations and auxiliary data used. It is
therefore essential to exclude erroneous matchups from the training
data. The following paragraphs describe the quality control procedures
implemented during algorithm development.

The quality control flags for the AMSR-E and AMSR2 data (“satellite
scan quality” and “6–36 GHz channel quality”) were used to check the
quality of the satellite pixels. If either of these flags indicated bad data,
the corresponding matchups were flagged as erroneous. In addition,
matchups with brightness temperatures outside the accepted range
(0–320 K) were flagged. For valid oceanographic retrievals, the v-pol
brightness temperature should always be larger than the h-pol. Hence,
to remove obviously bad observations, data were flagged if the differ-
ence between the h-pol and v-pol brightness temperature for the
18–36 GHz channels was negative. This check was only performed for
the 18–36 GHz channels since they are the channels for which the at-
mospheric contribution is largest. Furthermore, to exclude low-quality
brightness temperature observations, the spatial standard deviation of
the 23 V and H and the 36 V and H brightness temperatures were cal-
culated in the 21 by 21 pixel extract surrounding each pixel. Different
approaches were used for AMSR-E and AMSR2 data. For AMSR-E
matchups, data were flagged as unusable if the standard deviation of
the above-mentioned channels exceeded 55, 35, 25 and 25 K, respec-
tively. Due to differences in the distribution of brightness temperatures,
the same limits were not applicable for AMSR2 matchups. Thus, to
perform a comparable flagging for AMSR2, the 1% of AMSR2 matchups
with the highest standard deviation were considered to be of low
quality and flagged accordingly.

The quality of the in situ and auxiliary data was also considered.
Matchups with an in situ quality control flag indicating bad data were
flagged as erroneous. Moreover, matchups with an in situ or ERA-
Interim SST less than −2 °C or greater than 34 °C were excluded.
Similarly, matchups with ERA-Interim or CCMP WS greater than
20ms−1 were also flagged. Together, the above-mentioned checks on
the satellite, in situ and auxiliary data constitute quality control checks
(denoted “Quality control checks” in Table 1) which ensure that the
input data are of sufficient quality for the algorithm development and
validation.

Further checks are necessary as both atmospheric and surface effects
can contaminate the signal and lead to erroneous retrievals. Sea ice and
land affect the retrieval due to antenna side-lobe contamination. The
satellite land/ocean flag and ERA-Interim sea ice fraction was used to
flag matchups. If land was detected within the 21x21 pixel extract
surrounding each pixel, the matchup was flagged. Correspondingly
matchups for which sea ice was detected within the 5x5 ERA-Interim
pixel extract surrounding each pixel were flagged. Diurnal warming
effects were accounted for by flagging daytime AMSR-E matchups with
wind speeds less than 4ms−1. For AMSR2, the wind speed limit was
increased to 6ms−1 as inspection of the results revealed that diurnal
warming effects were not completely removed when using the lower
limit of 4ms−1. The lower limit of 4ms−1 was kept for AMSR-E in
order to retain as many valid matchups as possible. Furthermore, pre-
cipitating clouds compromise the PMW retrievals and these effects must

therefore be excluded. To account for contamination due to rain, data
were flagged if the 18 GHz v-pol brightness temperature exceeded
240 K. Sun glitter contamination was accounted for by flagging data
with a sun glint angle of less than 25°. To avoid contamination due to
RFI, two different approaches were used. For AMSR-E, ground-based
and space-based RFI was masked out using Table 2 in Gentemann and
Hilburn (2015) together with observation location and geostationary
reflection longitude and latitude, respectively. AMSR2 has an addi-
tional channel at 7.3 GHz, which is specifically designed for detection of
RFI. Both the 6.9 GHz and 7.3 GHz channels on AMSR2 suffer from RFI
contamination, however, the geographical distributions are different,
making it possible to use the two channels for RFI detection. Based on
this, the absolute difference between the 6.9 and 7.3 GHz channels
(both polarizations) was used to mask out RFI if the difference exceeded
3 K. However, the latter of these methods does not completely mask out
all RFI and a large signal could still be seen around Ascension Island. To
be sure to mask out all RFI-contaminated data, all matchups in the area
around Ascension Island (24°W to 6°W longitude and 18°S to 2°S lati-
tude) were masked out for the AMSR2 matchups. Additional steps to
further remove RFI-contaminated data will be introduced in Section
3.4. As a last quality control, obviously erroneous in situ SSTs were
excluded using a 3-σ filter, which removed all matchups that deviated
more than three standard deviations from the mean difference between
the ERA-Interim reanalysis and in situ SST differences.

Finally, to obtain a more latitudinally representative dataset, the
number of matchups per degree of latitude was restricted. Individual
limits were imposed for the different years due to the widely varying
number of matchups amongst years. In addition, a limit on the number
of matchups per year was imposed. Since each year consists of very
different numbers of matchups, a limit of 1 million matchups per year
was imposed to get a more temporally representative dataset. However,
if the number of filtered matchups was less than 700,000 for a year, the
even-out-data-by-year restriction was set to 70% of the total number of
good matchups to ensure that data from years with fewer matchups are
represented in all subset (see Fig. 1). The summary statistics for the

Table 1
The number of matchups after filtering and the percentage of matchups the
filtering step removes. The statistics are shown for both the AMSR-E and
AMSR2 datasets. The footnotes indicate to which subset the percentage of
matchups removed is relative to; 1 to all MMD matchups (“No filter”); 2 to the
number of matchups which passed the “Quality control checks” step; 3 to the
number of matchups which passed the “All above checks” step; 4 to the number
of matchups which passed the “All checks” step; and 5 to the number of
matchups which passed the “Even-out-by-latitude” step.

AMSR-E AMSR2

Filter N % removed N % removed

No filter 40,480,306 – 27,796,093 –
Quality control checks 1 34,340,715 15.2 25,658,424 7.7
Rain 2 34,088,030 0.7 25,114,008 2.1
Sun glint 2 32,269,911 6.0 24,286,797 5.3
RFI 2 31,832,433 7.3 25,295,077 1.4
Land 2 31,285,364 8.9 22,790,471 11.2
Sea ice 2 30,852,455 10.2 22,627,223 11.8
Diurnal warming 2 30,034,321 12.5 18,975,850 26.0

All above checks 1 22,319,646 44.9 14,821,726 47.5

3-σ filter on reanalysis and in
situ SST diff. 3

21,972,506 1.6 14,588,260 1.6

All checks 1 21,972,506 45.7 14,588,260 47.5

Even-out-by-latitude 4 16,322,299 22.9 9,880,565 32.3
Even-out-by-year 5 8,460,292 50.0 4,918,012 50.2

Total 1 8,460,292 79.1 4,918,012 82.3
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different filtering processes and their effect on the number of matchups
are listed in Table 1. The quality control checks and the checks to ac-
count for atmospheric and surface effects are performed for all
matchups. The latitudinal and temporal filtering, however, are only
performed for selected subsets of the two MMDs (see Fig. 1 and de-
scription of the subset division).

To obtain an independent validation, the MMDs are divided into 7
subsets each (see Fig. 1);

• WS1_TRAIN: training subset for step 1 of the WS retrieval algorithm;
• WS2/SST_TRAIN: overall training subset for step 2 of the WS re-
trieval algorithm and the SST retrieval algorithm (divided into se-
parate training subsets subsequently);
• WS2_TRAIN: training subset for step 2 of the WS retrieval algorithm;
• SST_TRAIN: training subset for the SST retrieval algorithms;
• SST/WS_TEST: combined validation subset for the SST retrieval al-
gorithms and the WS retrieval algorithms;
• UNCERT_TRAIN: training subset for the SST uncertainty retrieval
algorithm; and
• UNCERT_TEST: validation subset for the SST uncertainty retrieval
algorithm.

Fig. 1 shows the filtering procedures and subsequent subset division
of the AMSR-E and AMSR2 MMDs. The “Filtered MMD”-box represents
the filtered MMDs where erroneous data have been excluded and the
subsets have been made latitudinally and temporally representative. As
shown in Fig. 1, the filtered MMD is then divided into two subsets;
WS1_TRAIN and WS2/SST_TRAIN, through random selection of

matchups. These subsets are used for training of the first step of the WS
retrieval algorithm and for the second step of the WS algorithm and the
SST algorithm, respectively (see Section 3.1 and 3.2). One sixth of the
filtered MMD matchups are used for WS1_TRAIN and the rest for the
combined training subset, WS2/SST_TRAIN. Following this, the WS2/
SST_TRAIN subset is divided into two subsets; WS2_TRAIN (1/4 of
WS2/SST_TRAIN) and SST_TRAIN (3/4 of WS2/SST_TRAIN). The divi-
sion is again performed through random selection of matchups. The
WS2_TRAIN subset is used to train the second step of the WS algorithm,
whereas the SST_TRAIN subset is used for training of the SST retrieval
algorithm. The fifth subset, SST/WS_TEST, is constructed from the
matchups removed by the application of the even-out filters on the good
data when constructing the WS and SST training subsets (see Fig. 1).
Imposing a restriction on the number of matchups per degree of latitude
for these data gives us the SST/WS_TEST subset, which is used as a
validation subset for the retrieved SSTs and WSs. An upper limit on the
number of matchups per year is not imposed for the SST/WS_TEST
subset, since as many valid matchups as possible should be used for the
validation. The total number of matchups in the AMSR-E and AMSR2
SST/WS_TEST subsets is 9,916,606 and 6,279,359, respectively. Fi-
nally, the SST/WS_TEST subset is divided, through random selection of
matchups, into two subsets for training and validation of the SST un-
certainty retrieval; UNCERT_TRAIN (9/10 of SST/WS_TEST) and UN-
CERT_TEST (1/10 of SST/WS_TEST).

The geographical distribution of matchups per square kilometer and
the latitudinal distribution of drifter matchups for the combined AMSR-
E and AMSR2 SST/WS_TEST subsets are shown in Fig. 2. The number of
matchups per year is shown in Fig. 3. Fig. 2 demonstrates the spatial

Fig. 1. Schematic of the subset division for the AMSR-E and AMSR2 MMDs. The numbers denote the total number of matchups in each AMSR-E/AMSR2 subset.
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distribution of the in situ matchup database, with the North Atlantic
Ocean having the largest number of collocations and the Indian Ocean
the least. The annual distribution of matchups (Fig. 3) shows few
matchups in 2002 and another decrease in 2012. In 2002, AMSR-E data
does not start until June, and the instrument failed in October 2011. In
2012, AMSR2 data was first available from July.

3. Algorithm development

The regression retrieval algorithms described here have been de-
veloped within the ESA-CCI SST project to retrieve subskin SST from
AMSR-E and AMSR2 and to generate a climate data record of PMW
SSTs. The MMDs used for algorithm development and validation only
covers the period June 2002 to December 2016, whereas the PMW SST
CDR covers an extended period, from June 2002 to December 2017.
Two retrieval algorithms have been developed; one for wind speed
(WS) and one for SST. A two-step multiple linear regression model is
used to retrieve WS given satellite brightness temperatures, NWP re-
analysis fields and CCMP data. In the first stage, a global algorithm is

used, whereas in the second stage, localized algorithms, here for re-
stricted wind speed intervals, are used. The SST retrieval algorithm
described here is a two-step multiple linear regression model with lo-
calized retrieval algorithms. In the first stage, the algorithm is trained to
perform well over restricted latitude intervals for ascending and des-
cending orbits, respectively, whereas in the second stage, the applied
algorithms are localized for restricted SST and WS intervals, using the
first stage retrievals. The localized algorithms are used to address the
non-linearity problem arising from the non-linear relationship between
the geophysical parameters in question (SST or WS) and brightness
temperature.

3.1. WS retrieval algorithm

A global regression model is used in the first stage of the wind speed
retrieval process to retrieve an initial estimate of wind speed (WSa). The
definition of “global” is here taken to mean that only one set of re-
gression coefficients is used for all wind speeds. The wind speed re-
trieval algorithm is inspired by the National Oceanic and Atmospheric

Fig. 2. a) Geographical distribution of drifter matchups per square kilometer; and b) latitudinal distribution of drifter matchups for the combined AMSR-E and
AMSR2 SST/WS_TEST subsets. The geographical statistics have been gridded using a grid size of 2°, with a minimum of 50 matchups per grid cell.

Fig. 3. Number of drifter matchups per year for the AMSR-E and AMSR2 SST/WS_TEST subsets.
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Administration (NOAA) AMSR2 wind speed retrieval algorithm (Chang
et al., 2015) and expresses wind speed in terms of brightness tem-
perature (TB) and Earth incidence angle (θEIA)

= + + +
=
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=t T 150 for all channels except the 23.6 GHz channelsi Bi

(2)

=t Tln (290 ) for the 23.6 GHz channelsi Bi (3)

= 55EIA (4)

The coefficients a0, a1, a2 and a3 are regression coefficients, denoted
Bglobal, the summation index i represents the summation over 10
brightness temperature channels; 6.9, 10.7, 18.7, 23.6 and 36.5 GHz
(vertical and horizontal polarization), and TBi denotes the brightness
temperature for the ith channel. To obtain a more consistent WS re-
trieval between AMSR-E and AMSR2, the AMSR2 7.3 GHz brightness
temperature channel is not used in the retrieval. The regression coef-
ficients are obtained through training on the WS1_TRAIN subset, using
the least-squares method. Two sets of Bglobal regression coefficients are
obtained; one for AMSR-E and one for AMSR2.

The relationship between brightness temperature and wind speed is
non-linear and the first-stage retrieval is not able to represent these
non-linearities. Hence, a second-stage retrieval needs to be performed
where these non-linearities are taken into account. This is done by using
localized wind speed retrieval algorithms. With “localized” we mean
that the algorithm is trained to perform well over different subsets of a
parameter, in this case over fixed wind speed reference intervals.
Hence, one set of regression coefficients, BWS, is obtained for each re-
ference interval, using the least-squares method. The coefficients are
derived through training on subsets of the WS2_TRAIN subset, con-
sisting of a minimum of 50 matchups each. For bins consisting of less
than 50 matchups, the coefficients from the closest bin are used. To
avoid discontinuities in the retrievals, the wind speed bins were defined
with a 50% overlap during training. Two sets of BWS regression coef-
ficients are obtained; one for AMSR-E and one for AMSR2.

The localized wind speed algorithms are defined for fixed wind
speeds in the interval 0 to 20ms−1, with a bin size of 1ms−1. The upper
limit was chosen as 20ms−1 to ensure enough matchups for a robust fit
for the regression. This gives a total of 20 localized wind speed algo-
rithms. When performing the retrieval, regression coefficients are se-
lected from the correct wind speed bin based on the retrieved WS from
the first-stage retrieval (WSa). Like the first-stage retrieval, brightness
temperature and incidence angle are used to retrieve the second-stage
wind speed
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where k denotes the reference wind speed bin, ranging from 0 to
20ms−1, and the coefficients b0, b1, b2 and b3 are regression coeffi-
cients, denoted BWS. The final retrieved wind speed, WSr, is obtained
through linear interpolation between the wind speed obtained for the
current WS bin and for the closest neighboring WS bin. For wind speeds
outside the defined bins the regression coefficient for the closest wind
speed bin is used.

3.2. SST retrieval algorithm

In the first stage of the SST retrieval algorithm, a preliminary esti-
mate of SST (SSTa) is retrieved using a regression model with localized
latitude algorithms for ascending and descending orbits. This means
that the algorithm is trained to perform well over fixed reference

latitudes and for ascending and descending orbit, respectively. The al-
gorithm is separately fit for latitude to account for the latitudinal de-
pendence of the geographic distribution of SST. The partitioning of
ascending and descending orbits is to account for the differing quality
of daytime (ascending) and nighttime (descending) data. One set of
regression coefficients, BLAT,ORB, is therefore obtained for each latitude
and for ascending and descending orbits, respectively. The localized
algorithms are derived for reference latitudes in the interval −72 to
82°, with a bin size of 2°, and descending (0) or ascending (1) orbit. This
gives a total of 156 localized latitude and orbit algorithms. As with the
localized WS algorithms, the latitude bins were defined with a 50%
overlap during training to avoid discontinuities. For the retrieval pro-
cess, regression coefficients are selected from the correct latitude and
orbit bin using satellite latitude (φLAT) and orbit. The SST retrieval
algorithm is inspired by the Remote Sensing System (RSS) AMSR-E SST
retrieval algorithm (Wentz and Meissner, 2007). SST is expressed in
terms of brightness temperature (TB), Earth incidence angle (θEIA), wind
speed (WSr) and the relative angle between satellite azimuth angle and
wind direction (ϕREL)
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+ +
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where

=t T 150 for all channels except the 23.6 GHz channelsi Bi (7)

=t Tln (290 ) for the 23.6 GHz channelsi Bi (8)

= 55EIA (9)

and l denotes the reference latitude, ranging from −72 to 82°, and m
denotes the reference orbit (0 for descending and 1 for ascending orbit).
The coefficients c0, c1, c2, c3, c4, c5 and c6 are regression coefficients,
denoted BLAT,ORB, the summation index i represents the summation
over 12 brightness temperature channels; 6.9, 10.7, 18.7, 23.6, 36.5
and 89.0 GHz (each with dual polarization), and TBi denotes the
brightness temperature for the ith channel. As with the WS retrieval, the
AMSR2 7.3 GHz brightness temperature channel is not used in the SST
retrieval (neither the preliminary nor the final retrieval step). This is to
obtain a more consistent retrieval between AMSR-E and AMSR2. The
regression coefficients are obtained through training on subsets of the
SST_TRAIN subset, consisting of a minimum of 100 matchups each. The
bins consisting of less than 100 matchups were assigned the coefficients
from the closest bin. Two sets of BLAT,ORB regression coefficients are
obtained; one for AMSR-E and one for AMSR2. The least-squares
method is used to derive the coefficients. To avoid discontinuities in the
retrieval, the final preliminary retrieved SST is obtained through linear
interpolation of the SST retrieved for the current latitude and orbit bin
and the SST retrieved using the closest latitude and orbit bin.

Wind speed influences the sea surface roughness, which affects the
emissivity and therefore also the brightness temperature (Hollinger,
1971; Meissner and Wentz, 2002). These effects are very complex and
to account for this non-linear impact on the brightness temperature, a
second-stage SST retrieval is performed. Here, a regression model with
localized SST and WS algorithms is used to retrieve SST. The localized
algorithms are defined for reference SSTs in the interval −2 to 34 °C,
with a bin size of 2 °C, and reference wind speeds in the interval 0 to
20ms−1, with a bin size of 2ms−1. This gives a total of 209 localized
SST and WS algorithms. The SST and WS bins were defined with a
1ms−1 and 1 °C overlap, respectively, during training to avoid dis-
continuities in the retrieval. When performing the retrieval, the correct
regression coefficients are found based on retrieved wind speed (WSr)
and first-stage retrieved SST (SSTa). The second-stage SST retrieval al-
gorithm is formulated in the same way as the first-stage retrieval.
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Brightness temperature, Earth incidence angle, retrieved wind speed
and the relative angle between satellite azimuth angle and wind di-
rection are used to retrieve SST

= + + + +

+ +
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where n denotes the reference SST, ranging from −2 to 34 °C, and p
denotes the reference wind speed, ranging from 0 to 20ms−1. The re-
gression coefficients d0, d1, d2, d3, d4, d5 and d6 are referred to as
BSST,WS. The localized algorithms are trained on subsets of the
SST_TRAIN subset, consisting of a minimum of 100 matchups each, and
the coefficients are obtained using the least-squares method. For bins
consisting of less than 100 matchups, the coefficients from the closest
bin are used. Separate BSST,WS regression coefficients are obtained for
AMSR-E and AMSR2 due to training on different SST_TRAIN subsets.
The final retrieved SST, SSTr, is obtained through bi-linear interpolation
between the SST obtained for the current SST and WS bin and for the
three closest neighboring bins.

3.3. SST uncertainty retrieval algorithm

An important part of a climate data record is the inclusion and
validation of realistic uncertainties (Merchant et al., 2017). These fa-
cilitate the use of the SSTs within ocean and atmosphere models. In this
study, we have chosen to follow the approach within the ESA-CCI SST
project (Bulgin et al., 2016; Rayner et al., 2015), where the total un-
certainty is a combination of three uncertainty components, each with
different characteristics. The total uncertainty for the retrieved SST,
εSSTr, is thus divided into three independent components; a random
component (εrandom), a local systematic component (εlocal), and a global
systematic component (εglobal). The total uncertainty is given by

= + +SSTr random local global
2 2 2

(11)

These three components have been chosen due to their different
behavior when aggregating the observations. When aggregating in time
or space, it is assumed that εrandom will reduce as N1/ , where N is the
number of observations. Similarly, εlocal will reduce as N1/ where N*
is the effective number of observations, taking into account a synoptic
timescale of 2–5 days and spatial distances of 500–1000 km. The εglobal
component is assumed to be systematic and not to be reduced, even for
large spatial and temporal averaging scales.

Both the local systematic uncertainty component and the random
uncertainty component are obtained through the use of a global re-
gression model. The global systematic uncertainty component, on the
other hand, is assumed to be small and therefore set to zero. The
variables in the algorithms for the local systematic and random un-
certainty components have been selected through analysis of the vali-
dation results and express the uncertainty in terms of retrieved SST
(SSTr), retrieved wind speed (WSr), latitude (φLAT), and solar zenith
angle (θSZA)
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where the coefficients e0, e1, e2, e3, e4, e5, e6, e7 and e8 are regression
coefficients, determined through training on the UNCERT_TRAIN
subset. Two sets of regression coefficients are obtained for AMSR-E and
two for AMSR2; one for the local systematic uncertainty component
(Blocal) and one for the random (uncorrelated) uncertainty component
(Brnd).

The uncorrelated uncertainty, Brnd, is used to represent the

uncertainty due to radiometric noise, which is represented by the noise
equivalent differential temperature (NEdT). To estimate the uncertainty
on the retrieved SST due to uncorrelated effects, an NEdT on the Tbs of
0.1 K (Wentz and Meissner, 2000) was propagated through the retrieval
algorithm and a new set of SSTs was generated (SSTr,rnd). Hereafter, a
pre-binning was performed using the UNCERT_TRAIN subset, where
data was binned for retrieved SST, retrieved WS, latitude, and solar
zenith angle. The intervals and bin sizes used for the pre-binning are
shown in Table 2. For each bin consisting of more than 50 matchups,
two standard deviation estimates were calculated;

• σΔSSTr: the standard deviation of the SSTr minus in situ SST differ-
ences; and
• σΔSSTr,rnd: the standard deviation of the SSTr minus SSTr,rnd differ-
ences.

The first standard deviation, σΔSSTr, is used to represent local effects
on the total uncertainty and includes drifter uncertainty and sampling
effects, whereas the second standard deviation, σΔSSTr,rnd, is used to
represent random and uncorrelated effects. To obtain regression coef-
ficients for the random uncertainty component, the retrieval algorithm
was trained against σΔSSTr,rnd. For the local systematic uncertainty
component, the retrieval algorithm was trained against the part of the
uncertainty attributed only to local variations, σlocal. Hence both sam-
pling effects and drifter uncertainty needed to be removed from σΔSSTr,
in order to only get the local variations. The drifter uncertainty was set
to 0.2 K whereas the sampling effect was calculated as a function of
latitude. The sampling effect in this context was assumed to be pri-
marily spatial (Høyer et al., 2012) and has been estimated by calcu-
lating the pixel-to-footprint variability for one year of GHRSST Level 4
DMI_OI Global Foundation Sea Surface Temperature Analysis with a
spatial resolution of 0.05° (see e.g. Dash et al., 2012; Høyer et al., 2014;
Høyer and She, 2007).

3.4. Improved RFI mask

Radio Frequency Interference (RFI) is a rapidly increasing problem
for geophysical SST and WS retrievals using 6.9, 10.7 and 18.7 GHz.
While these are protected frequencies for scientific use (International
Telecommunication Union, 2012), the bandwidth of these channels
exceed the protected bands. RFI can be divided into three categories (in
order of occurrence); space-based ocean-reflected, satellite-to-satellite
interference and ground-based RFI. The main source of surface reflected
space-based RFI is media broadcasts (TV and radio) from geostationary
satellites and satellite downlinks, which affect mostly the 6.9, 10.7 and
18.7 GHz channels. Satellite-to-satellite RFI is a growing problem with
an unclear solution. Ground-based RFI is related to land-based micro-
wave link communication systems on oil rigs, near cities, and in regions
with military activities and mostly affects the 6.9 GHz channel.

Gentemann and Hilburn (2015) developed an RFI mask which uses
observation location and geostationary reflection latitude and longitude
to check for RFI contamination. This method was used as an initial RFI
mask to screen for potentially contaminated RFI matchups in the data
filtering process (Section 2.5.2). Here we present an alternative RFI
filtering method, based on two additional SST retrieval algorithms. The

Table 2
Pre-binning intervals and bin sizes for the uncertainty retrieval training dataset,
UNCERT_TRAIN.

Variable Bin size Min Max

Retrieved SST 2 °C −1 °C 33 °C
Retrieved WS 2ms−1 1ms−1 19ms−1

Latitude 10° −85° 85°
Solar zenith angle 15° 7.5° 172.5°
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two new algorithms are formulated exactly as the baseline algorithm
with the exception that one excludes the 10 GHz channels (−10 GHz
algorithm) and the other excludes the 18 GHz channels (−18 GHz al-
gorithm). As for the baseline retrieval algorithm, the two-step regres-
sion model is used to retrieve SST for the −10GHz and −18GHz al-
gorithms. Even though the 6.9 GHz channels are the ones that are most
affected by RFI, we do not exclude them because this could introduce a
strong SST dependency in the filter due to the large temperature var-
iation in the sensitivity of the 10 GHz channel (Gentemann et al., 2010).
Fig. 4a) shows the performance of the baseline retrieved AMSR-E PMW
SST as a function of the difference between the AMSR-E PMW SST re-
trieved using the −18GHz algorithm and the baseline retrieved AMSR-
E PMW SST. Similarly, Fig. 4b) shows the performance of the retrieved
PMW WS versus CCMP WS against the difference between the AMSR-E
PMW SST retrieved using the −18GHz algorithm and the baseline re-
trieved AMSR-E PMW SST.

The standard deviation of baseline retrieved PMW SST minus in situ
SST increases as the difference between the −18GHz retrieved PMW
SST and the baseline retrieved PMW SST grows, with the largest values
found at the tails of the distribution. Furthermore, the magnitude of the
mean also increases with increasing difference between the −18GHz
retrieved PMW SST and the baseline retrieved PMW SST. The behavior
of the dependence of the SST difference against −10GHz retrieved
PMW SST minus baseline retrieved PMW SST is similar and is therefore
not shown. Similarly, the results for the AMSR2 retrievals resemble
those for the AMSR-E retrievals and are therefore not included here.
Fig. 4b) shows a similar behavior for the mean and standard deviation
with increased (absolute) values with increased difference between the
−18GHz retrieved PMW SST and the baseline retrieved PMW SST. The
results for the WS difference against the −10GHz retrieved PMW SST
difference and the results for AMSR2 resemble the results shown in

Fig. 4b) and are therefore not included.
Based on these results indicating that the performance of the SST

retrieval is linked with the differences between the baseline SST re-
trieval and the −10 GHz and −18GHz, respectively, a new combined
RFI and quality control mask is proposed. The new mask uses a 3-σ
filter to detect RFI and erroneous data and flag if any of the following
expressions are true

>SST SST µ( ) 3r baseline r GHz GHz GHz, , 10 10 10 (13)

>SST SST µ( ) 3r baseline r GHz GHz GHz, , 18 18 18 (14)

where SSTr,-10GHz, SSTr,-18GHz and SSTr, baseline are the final retrieved
SST using the −10GHz, −18 GHz and baseline algorithms, respec-
tively. μ-10GHz and μ-18GHz denote the mean of the difference
SST SSTr GHz r baseline, 10 , and SST SSTr GHz r basesline, 18 , , respectively,
whereas σ-10GHz and σ-18GHz denote the standard deviation of the cor-
responding differences. Hereafter, when referring to the baseline re-
trieved PMW SST we will drop the reference to the retrieval algorithm
and simply write PMW SST. The mean and standard deviation of dif-
ferences used for the proposed RFI mask are shown in Table 3.

Fig. 5a) and b) show the geographical distribution of the gridded
mean and standard deviation of the combined AMSR-E and AMSR2

Fig. 4. a) Baseline retrieved AMSR-E PMW SST minus in situ SST as a function of the difference between the −18GHz retrieved AMSR-E PMW SST and the baseline
retrieved AMSR-E PMW SST; and b) retrieved AMSR-E PMW WS minus CCMP WS as a function of the difference between the −18GHz retrieved AMSR-E PMW SST
and the baseline retrieved AMSR-E PMW SST. Top panel shows the mean (solid) and standard deviation (dashed) of differences for each bin. The heat plot in the mid
panel shows the distribution of matchups, and the bottom panel shows the number of matchups (blue) and the cumulative number of matchups (orange) in each bin.
A minimum of 10 matchups per bin was used for the statistics calculation. (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

Table 3
Mean and standard deviation of differences for retrieved SSTs using the
−10GHz and −18GHz algorithm minus baseline retrieved SST for AMSR-E and
AMSR2.

Sensor μ-10GHz (K) μ-18GHz (K) σ-10GHz (K) σ-18GHz (K)

AMSR-E 0.0024 0.0071 0.192 0.138
AMSR2 −0.0087 0.0043 0.170 0.130
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PMW SST minus in situ SST without application of an RFI mask. The
region with a strong negative bias and a high standard deviation over
Western Europe is a well-known region with large RFI contamination,
both from space-based and ground-based RFI sources. The effect of RFI
in this region here results in colder PMW SSTs compared to in situ SSTs.
Ascension Island is another well-known region which is strongly in-
fluence by ground-based RFI, as is most evident in the increased stan-
dard deviation but also in the slightly negative mean. Yet another re-
gion which is well-known for being contaminated by RFI is the
Mediterranean Sea, where the RFI contamination here results in
warmer PMW SSTs compared to in situ SSTs. The application of the
proposed RFI mask successfully removes RFI in all of the above-men-
tioned regions, as is evident in Fig. 5c) and d). In addition to removing
RFI-contaminated data, the combined RFI and quality control mask also
removes those matchups that deviates significantly (more than three
standard deviations) from the mean. For this reasons, matchups, which
most likely are not RFI-contaminated but otherwise possibly erroneous,
are also removed from e.g. the dynamical ocean regions (such as the
Gulf Stream, the Kuroshio and the Agulhas current). For comparison,
Table 4 shows the performance of the SST retrieval algorithm with and
without application of the new RFI mask. Application of the proposed

RFI mask results in a decrease of the global standard deviation of the
PMW SST minus in situ SST difference by 0.02 and 0.03 K for AMSR-E
and AMSR2, respectively, compared to without application of an RFI
mask. Hereafter, the new RFI mask has been used instead of the initial
mask.

4. Results

The filtering steps described in Section 2.5.2 and the RFI mask de-
scribed in Section 3.4 only ensures that the input data to the retrieval
algorithm is of sufficient quality. It is also important to ensure that the
retrievals used in the validation are of sufficient quality and to flag
erroneous output. Therefore, additional filtering was performed where
PMW SST retrievals outside the accepted range (−2 to 34 °C) and PMW
WS retrievals outside the accepted range (0 to 20ms−1) were flagged as
erroneous. The results shown in this section include the filtering steps
outlined in Section 2.5.2, but with the new RFI mask instead of the
initial one, as well as the checks on the retrieval output as outlined
above. For the generation of the climate data record, the PMW SST
retrievals follow the GHRSST GDS 2.0 data specification (GHRSST
Science Team, 2010) for L2P and each retrieval has been assigned a

Fig. 5. Top panel shows the geographical distribution of a) mean and b) standard deviation of the SST bias (AMSR-E and AMSR2 PMW SST minus in situ SST) without
application of an RFI mask. Bottom panel shows the distribution of c) the difference between the mean of the SST bias (AMSR-E and AMSR2 PMW SST minus in situ
SST) without RFI mask minus the mean the SST bias with the proposed RFI mask; and d) the difference between the standard deviation of the SST bias (AMSR-E and
AMSR2 PMW SST minus in situ SST) without RFI mask minus the standard deviation of the SST bias with the proposed RFI mask. The statistics have been gridded
using a grid size of 2°, with a minimum of 50 matchups per grid cell.

Table 4
Mean and standard deviation of PMW SST minus in situ SST, number of matchups removed by the RFI mask and the total number of matchups left in the drifter
validation subset, SST/WS_TEST, after all checks have been performed (see Section 2.5.2). Additional filtering was performed after application of the RFI mask to
exclude obvious erroneous retrievals. Retrievals with a PMW SST outside the accepted range (−2 to 34 °C) or with a PMW WS outside the accepted range (0 to
20ms−1) were therefore excluded.

Sensor RFI mask Mean (°C) Std (°C) No. of matchups removed by RFI filter No. of matchups

AMSR-E No RFI mask −0.012 0.54 – 10,067,979
3-σ filter −0.0099 0.52 154,344 9,916,606

AMSR2 No RFI mask 0.0027 0.54 – 6,384,638
3-σ filter 0.0067 0.51 107,096 6,297,359
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quality level (QL) from 0 (no data) to 5 (best quality) to indicate the
quality of the individual retrievals. Table 5 shows the definition of the
different QLs and according to what rules they are assigned.

The quality controls and various checks for surface and atmospheric
effects referred to in the definition of QL 1 are the same as the filtering
procedures defined in Section 2.5.2 (new RFI mask instead of initial
mask), with few exceptions. The QL 1 check for the PMW SST CDR re-
trievals does not include any of the in situ SST-related checks, nor does it
include a check for diurnal warming effects. On the other hand, it includes
an additional check where the retrieved SST is compared to a background
SST (ERA-Interim). If the retrieved SST deviates more than 10 °C from the
background, the retrieval is assigned QL 1. QL 2 PMW SST retrievals in
the CDR are assigned based on the total SST retrieval uncertainty and on
an extended sea ice and land mask, which is based on the proximity of the
retrieval to sea ice and land, respectively. In the production of the climate
data record, the extended sea ice mask is based on the ERA-Interim sea ice
cover product and if any sea ice is detected within±200 km the retrieval
is assigned QL 2. Similarly, if any land is detected within±100 km, the
retrieval is also assigned QL 2. Note that in the final production of the
CDR, a larger ice and land mask was applied than what was feasible using
the MMD due to the validation results shown later.

The regression retrieval has been run for the AMSR-E and AMSR2
validation subsets (SST/WS_TEST) defined in Section 2.5.2. The overall
summary statistics of the PMW SSTs against drifter in situ SSTs for
different QLs are shown in Table 6. The AMSR-E QL 3–5 PMW SSTs give
a bias of −0.01 K and standard deviation of 0.52 K when compared
against in situ SSTs. By contrast, the QL 4 and 5 AMSR-E retrievals give
SSTs with a bias of −0.02 K and a standard deviation of 0.46 K. Com-
paring the AMSR2 QL 3–5 PMW SSTs against in situ SSTs gives a bias of
0.007 K and a standard deviation of 0.51 K. The mean and standard
deviation of the AMSR2 QL 4 and 5 PMW SST retrievals are smaller,
0.002 K and 0.45 K, respectively.

To obtain a completely independent validation, the retrieved SSTs
were also validated against SSTs from Argo floats. The Argo floats are not
as numerous as the drifters and therefore, the AMSR-E and AMSR2 Argo
validation subsets only consist of 148,895 and 154,715 matchups,

respectively. The comparison of AMSR-E and AMSR2 QL 4 and 5 retrievals
against Argo SSTs shows a slightly better performance than the compar-
ison with drifters. The AMSR-E QL 4 and 5 retrievals give a bias of
−0.009 K and a standard deviation of 0.44 K when compared against Argo
floats. Similarly, comparing the AMSR2 QL 4 and 5 PMW SSTs against
Argo floats gives a bias of 0.01 K and a standard deviation of 0.43 K.

The retrieved PMW WSs are validated against CCMP WSs and the
overall summary statistics for different QLs are shown in Table 7. The
performance of the WS retrieval algorithm is very similar for AMSR-E
and AMSR2 with only minor differences. The AMSR-E QL 3–5 PMWWS
retrievals give a bias of 0.002ms−1 and a standard deviation of
0.86ms−1. The corresponding results for AMSR2 QL 3–5 give retrieved
WSs with a bias of −0.002ms−1 and standard deviation of 0.86ms−1.
Comparing AMSR-E QL 4 and 5 WS retrievals against CCMP WSs gives a
bias of 0.01ms−1 and a standard deviation of 0.76ms−1. The mean and
standard deviation of the AMSR2 QL 4 and 5 WS retrievals are com-
parable, −0.002ms−1 and 0.76ms−1, respectively.

Fig. 6 shows the geographical distribution of the gridded mean and
standard deviation of the AMSR-E and AMSR2 PMW SST minus drifter in
situ SST based on the combined AMSR-E and AMSR2 SST/WS_TEST
subsets, consisting of in total 16,195,965 QL 3–5 drifter matchups. The
distribution of the mean shows a positive bias for high latitudes, espe-
cially in the southern hemisphere. This has been confirmed to be linked to
undetected sea ice. Furthermore, a warm bias is seen for the west coast of
America and the east coast of Asia. A negative bias is seen for e.g. the
Pacific warm pool area and the Arabian Sea. No clear latitudinal depen-
dence can be discerned for the mean bias. However, for the geographical
distribution of the standard deviation a latitudinal dependence is ob-
served. Lower standard deviations are found at low latitudes and higher
standard deviations at higher latitudes. Furthermore, higher standard
deviation is observed in the dynamical ocean regions, such as the Kur-
oshio Current, the Gulf Stream Extension and the Agulhas Current. These
are highly dynamical regions with large SST gradients over smaller scales.
When the large satellite footprints (43x75 km and 35x62 km for the

Table 5
Definition of quality levels and rules for assignment.

Quality Level (QL) Definition Rules

0 No data
1 Bad data Quality controls and various checks for

atmospheric and surface effects (see Section
2.5.2)

2 Worst-quality
useable data

• SST uncertainty≥ 1
• Proximity to sea ice
• Proximity to land

3 Low quality 0.5 < SST uncertainty < 1
4 Acceptable quality 0.35 < SST uncertainty≤ 0.5
5 Best quality SST uncertainty≤ 0.35

Table 6
Performance of the SST retrieval algorithm for AMSR-E and AMSR2 drifter and Argo subsets. The table shows the mean and standard deviation of PMW SST minus in
situ SST and number of matchups contributing to the statistics for different subsets.

Sensor QL Mean Drifter (K) Std Drifter (K) No. of matchups Mean Argo (K) Std Argo (K) No. of matchups

AMSR-E 3 0.02 0.64 2,763,087 0.007 0.62 39,939
4 −0.01 0.51 4,399,894 −0.002 0.50 60,398
5 −0.03 0.37 2,753,625 −0.02 0.36 48,558
3–5 −0.01 0.52 9,916,606 −0.004 0.50 148,895
4–5 −0.02 0.46 7,153,519 −0.009 0.44 108,956

AMSR2 3 0.02 0.64 1,729,073 0.03 0.62 37,273
4 0.006 0.52 2,549,348 0.02 0.51 57,343
5 −0.003 0.35 2,000,938 0.004 0.34 60,089
3–5 0.007 0.51 6,279,359 0.02 0.48 154,705
4–5 0.002 0.45 4,550,286 0.01 0.43 117,432

Table 7
Performance of the WS retrieval algorithm for AMSR-E and AMSR2 against
CCMP WS. The table shows the mean and standard deviation of PMWWS minus
CCMP WS and number of matchups contributing to the statistics for different
subsets.

Sensor QL Mean (ms−1) Std (ms−1) No. of matchups

AMSR-E 3 −0.02 1.07 2,763,087
4 −0.03 0.80 4,399,894
5 −0.01 0.69 2,753,625
3–5 0.002 0.86 9,916,606
4–5 0.01 0.76 7,153,519

AMSR2 3 −0.003 1.09 1,729,073
4 0.02 0.81 2,549,348
5 −0.003 0.68 2,000,938
3–5 −0.002 0.86 6,279,359
4–5 −0.002 0.76 4,550,286
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AMSR-E and AMSR2 6.9 GHz resolution, respectively) are compared
against in situ SST observations, which are point measurements, the SST
differences are enhanced. Hence, the higher standard deviations in these
regions are not a measure of the quality of the PMW SST retrievals but
rather related to the large SST variability in these regions.

The performance of the PMW SST against drifter in situ SST as a
function of SST, wind speed and latitude has been investigated
(Figs. 7–9). A dependence can be seen for both cold and warm SSTs. The
warm bias for cold SST (SSTs < 0 °C) was investigated and found to be
related to sea ice contamination, which was accounted for by extending

the sea ice masking, when generating the final CDR. The reason for the
cold bias for warm SST (SST > 29 °C) is not yet understood, but might
be related to contamination from rain not being discarded. The stan-
dard deviation, on the other hand, decreases with warmer SST. Wind
speed affects the sea surface roughness, which impacts the emissivity of
the ocean and therefore also the brightness temperature in the re-
trievals. The dependence of the retrieved SST on wind speed therefore
reflects the dependence on sea surface roughness. The binned statistics
of the performance against wind speed shows a cold bias for wind

Fig. 6. The geographical distribution of a) mean and b) standard deviation of QL 3–5 AMSR-E and AMSR2 PMW SST minus drifter in situ SST. The statistics have been
gridded using a grid size of 2°, with a minimum of 50 matchups per grid cell.

Fig. 7. AMSR-E and AMSR2 PMW SST minus drifter in situ SST as a function of
average SST ((PMW SST + in situ SST)/2). Top panel shows the mean (solid)
and standard deviation (dashed) of differences for each bin. The heat plot in the
mid panel shows the distribution of matchups, and the bottom panel shows the
number of matchups (blue) and the cumulative number of matchups (orange) in
each bin. A minimum of 50 matchups per bin was used for the statistics cal-
culation. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 8. AMSR-E and AMSR2 PMW SST minus drifter in situ SST as a function of
average WS ((PMWWS+ CCMPWS)/2). Top panel shows the mean (solid) and
standard deviation (dashed) of differences for each bin. The heat plot in the mid
panel shows the distribution of matchups, and the bottom panel shows the
number of matchups (blue) and the cumulative number of matchups (orange) in
each bin. A minimum of 50 matchups per bin was used for the statistics cal-
culation. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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speeds in the range 5–8ms−1 and otherwise a small warm bias for both
high and low wind speeds. The standard deviation is lowest for low
wind speeds and increases for increasing wind speeds. As was evident in
the geographical distributions of the gridded statistics (Fig. 6) a lati-
tudinal dependence is seen for the SST performance against in situ SSTs.
The overall variations are coupled to the latitudinal variations in both
the SST and wind speeds. Lower standard deviation is found at lower
latitudes and higher standard deviation is found for higher latitudes. A
cold bias is seen for matchups located between 15°S and the equator,
which corresponds to the cold bias seen for the Pacific warm pool area.
The negative bias seen for matchups centered around 60°N corresponds
to the cold bias seen just south of Iceland, in the North Atlantic Ocean.
Furthermore, a warm bias is seen for matchups at the higher latitudes.
This has been confirmed to be an effect of sea ice contamination.

4.1. Sensitivity

An important characteristic of an SST retrieval is the SST sensitivity,
which measures the change in retrieved SST per unit change in true SST
(Merchant et al., 2009). Sensitivity can be estimated via simulation and
is a useful discriminator between SST retrieval methods (Petrenko et al.,
2014) The SST sensitivity ideally is 1 K K−1, however, there are several
geophysical factors affecting the microwave retrieval, such as water
vapor, cloud water and surface roughness (quantified through wind
speed) that may lower sensitivity to the true SST variations.

The sensitivity of the retrieved SST with respect to changes in true
sea surface temperature was investigated. A subset of AMSR-E versus
drifter matchups for the year 2010, consisting of 4,642,710 good drifter
matchups, was used to generate two sets of simulated brightness tem-
peratures. The simulated brightness temperatures were generated using
an updated version of the forward model developed by Wentz and
Meissner (2000), as described in Nielsen-Englyst et al. (2018). Both sets
use WS, TCLW and TCWV input from the ERA-Interim reanalysis and
SST input from drifting buoys. The first set was simulated with in situ
SST plus 1 °C (SST+1), while the second set of brightness temperatures
was simulated with in situ SST minus 1 °C (SST-1), with NWP reanalysis
input held constant for both sets. The resulting brightness temperatures
were subsequently propagated through the regression retrieval algo-
rithm to derive the corresponding SST-1 and SST+1 estimates. The

Fig. 9. AMSR-E and AMSR2 PMW SST minus drifter in situ SST as a function of
latitude. Top panel shows the mean (solid) and standard deviation (dashed) of
differences for each bin. The heat plot in the mid panel shows the distribution of
matchups, and the bottom panel shows the number of matchups (blue) and the
cumulative number of matchups (orange) in each bin. A minimum of 50
matchups per bin was used for the statistics calculation. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 10. The geographical distribution of sensitivity with respect to changes in SST for an AMSR-E subset consisting of matchups from year 2010. The statistics have
been gridded using a grid size of 2°, with a minimum of 50 matchups per grid cell.
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sensitivity was then calculated based on the retrieved SSTs and the
overall mean sensitivity was estimated to 0.90.

The geographical distribution of sensitivity is shown in Fig. 10. The
sensitivity is mostly larger than 0.85 but there are areas with lower
sensitivity, such as the Pacific warm pool area and the Arabian Sea, with
minimum sensitivities just below 0.5. The Pacific warm pool area is
characterized by high TCWV content, whereas the Arabian Sea is a re-
latively dry area in comparison. There are also areas of relatively lower
sensitivity, such as south of Greenland and in a belt around Antarctica.
These regions are characterized by high wind speeds, persistent cloud
cover and rain. The dependence of the sensitivity on TCWV, TCLW and
WS was investigated (not shown). A small dependence for very high
TCWV was found but nothing for TCLW or WS. The geographical dis-
tribution of sensitivity for the initial estimate of SST (i.e. the latitude and
ascending/descending retrieval), was also investigated to see if an ex-
planation for the low sensitivity could be found. In addition, a global
regression model, using the same regression algorithm, but with only one
set of regression coefficients for all data, was used to estimate the sen-
sitivity. For the latitude and ascending/descending retrieval, lower sen-
sitivities were found in a narrow band just north of the Equator, as well
as for high latitudes (not shown). The global model exhibited a mean
sensitivity of 0.92, with higher sensitivities for low latitudes and lower
sensitivities for high latitudes (not shown). Based on this, we reason that
the low sensitivities seen for the two-stage retrieval algorithm are pri-
marily an artefact of the localized retrieval tuning for subsets of the data.
The binning performed in both the first-stage and second-stage retrievals
might result in bins with very small SST variability. For these bins, e.g.
wind speed and water vapor might vary more and thus the regression
algorithm will instead correct for those contributions. Hence, the sensi-
tivity of the algorithm to changes in true SST will be lower.

4.2. SST uncertainty

Validation of the derived uncertainty is essential for the usefulness
of the uncertainty estimate (Bulgin et al., 2016; Merchant et al., 2017).
Here, the satellite SST retrievals versus drifter in situ observations have
been used for validating the total uncertainty estimates. Only

independent drifter matchups have been used for the validation. Fig. 11
shows the observed AMSR-E and AMSR2 PMW SST uncertainty against
drifters versus the modelled uncertainty, i.e. the estimated PMW SST
uncertainty (see Section 3.3). The ideal uncertainty is given by the
dashed lines, which in addition to the satellite SST uncertainty, also
includes the drifter in situ uncertainty and sampling effects. The drifter
uncertainty is estimated to 0.2 K whereas the sampling effect is defined
as a latitude dependent function. As shown in Høyer et al. (2012), the
sampling effect of these matchup windows is primarily spatial, with
only a small temporal component. Based on this, the sampling effect has
been estimated by calculating the pixel-to-footprint variability for one
year of GHRSST Level 4 DMI_OI Global Foundation Sea Surface Tem-
perature Analysis (Dash et al., 2012; Høyer et al., 2014; Høyer and She,
2007). Subtracting these estimates, the mean retrieved AMSR-E and
AMSR2 SST uncertainty is estimated to 0.42 K and 0.41 K, respectively.
The validation results for the observed satellite SST uncertainties show
good agreement with the retrieved uncertainties (see Fig. 11).

4.3. Temporal consistency

The temporal stability in a climate data record is essential for later
use and analysis. As the algorithms for the two satellite datasets have
been derived using the same reference in situ dataset (drifting buoys),
we expect that there are no large inconsistencies between the two da-
tasets. Fig. 12 shows the seasonal averaged independent validation
statistics. It is clear from the figure that the performance of the two

Fig. 11. AMSR-E and AMSR2 PMW SST uncertainty validation against drifter in
situ SST. The top panel shows the observed PMW SST minus drifter in situ SST
uncertainty versus the modelled uncertainty, i.e. the retrieved PMW SST un-
certainty. The dashed lines indicate the ideal uncertainty, in which drifter SST
uncertainty and sampling errors have been included. The red asterisks denote
the mean bias and the solid blue lines mark one standard deviation of the PMW
SST minus drifter in situ SST difference for each 0.02 K bin. The bottom panel
shows the number of matchups (blue) and the cumulative percentage of
matchups (red) per bin. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 12. AMSR-E and AMSR2 QLs 4 and 5 PMW SST minus drifter in situ SST as
a function of time (season). Top panel shows the mean (solid) and standard
deviation (dashed) of differences for each bin. The heat plot in the mid panel
shows the distribution of matchups, and the bottom panel shows the number of
matchups (blue) and the cumulative number of matchups (orange) in each bin.
A minimum of 50 matchups per bin was used for the statistics calculation. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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datasets is very similar. One excursion is the beginning of the AMSR2
period, where we see a cold bias larger than 0.1°. The reason for this is
not clear to us. RFI and geographical sampling effects were investigated
but not found to be responsible for this deviation. It is, however, pos-
sible that the cold bias seen at the beginning of the AMSR2 record could
be due to problems with the calibration of the AMSR2 instrument.

5. Discussion

In the retrieval presented above, we train and test our wind speeds
against the CCMP winds that are based upon observations from passive
and active Microwaves (see e.g. Atlas et al., 2011). This implies that
information from the AMSR-E and AMSR2 are already included in the
CCMP and that it cannot be regarded as a truly independent wind es-
timate. However, since the CCMP also includes information from other
sensors, such as in situ observations and models, we decided to use this
product for the algorithm validation, as it gave significantly better SST
results, when we used the CCMP winds than using the ERA-Interim
wind speeds.

The global SST validation results with a standard deviation of 0.46
and a bias of −0.02 for QL 4 and 5 retrievals are comparable to or even
better than previous validations of AMSR-E PMW SST retrievals
(Gentemann, 2014; O'Carroll et al., 2008). Validation results for QL 4
and 5 AMSR2 retrievals give SSTs with a bias of 0.002 K and a standard
deviation of 0.45 K. Gentemann and Hilburn (2015) reported a standard
deviation of 0.55 K and a bias of −0.04 K for validation of AMSR2
against in situ buoy measurements for the same period (2012–2016).
We have also derived an uncertainty for each PMW SST retrieval and
the uncertainty validation results against in situ measurements indicate
a good agreement, with a mean uncertainty of 0.42 K and 0.41 K for
AMSR-E and AMSR2 PMW retrievals, respectively. The mean of the
modelled uncertainties, including the in situ uncertainty and sampling
effects are estimated to 0.45 K and 0.44 K for AMSR-E and AMSR2 QLs 4
and 5 retrievals, respectively.

The performance of the SST retrieval algorithm shows a latitudinal
dependence in the satellite – in situ standard deviation, with higher
values for higher latitudes. This is in line with the findings reported in
Gentemann (2014). Furthermore, our results show an increase in
standard deviation in the dynamical ocean regions, which are regions
with large mesoscale activity and large SST variability over smaller
scales. This is not believed to be related to the performance of the al-
gorithm, but arise from elevated spatial sampling errors that are in-
troduced in dynamical regions due to the large satellite footprint
compared to the pointwise in situ observation. Similar latitudinal de-
pendences was reported by Nielsen-Englyst et al. (2018).

It was evident from Figs. 6 and 9 that we saw some sea ice con-
tamination in the high latitudes. Due to the construction of the MMD,
we were only able to mask out ice within 160 km in the algorithm
development and validation, which is probably too low for the sea ice
product used here. The effect on the global validation statistics pre-
sented here is limited but when generating the full CDR, an ice mask
distance of 200 km was chosen to minimize the impact from sea ice.
These residual effects from the sea ice could probably be reduced using
an embedded sea ice retrieval, where the sea ice information is based
upon a retrieval using the observations and not relying on an external
product. No coastal effects were seen in the validation, indicating that
the coastal mask was adequate.

The performance of the PMW SST retrievals is comparable to the
good infrared satellite SST retrievals, in particular when the sampling
errors are taken into account. The difference in footprint size between
the IR (1 km) and the PMW SSTs (40–70 km) will introduce a larger
sampling difference. Furthermore, cloud contamination has a sig-
nificant impact on infrared SST retrievals since IR satellite instruments
are unable to see the surface through clouds (e.g. Jones et al., 1996;
Reynolds et al., 2002). In addition, biasing from both aerosols (Diaz
et al., 2001; e.g. Vásquez-Cuervo et al., 2004) and through water vapor

attenuation (Emery et al., 1994) affect the IR retrievals. PMW SSTs do
not suffer from contamination due to either of these factors, but they
are limited by precipitating clouds. The availability of PMW SSTs in
regions characterized by persistent cloud cover should therefore be
much higher than the availability of IR SSTs. Table 1 indicates the
global coverage, defined as the number of good matchups in relation to
all matchups and assuming that the full matchup dataset represents
daily coverage. However, the filtering procedure described in Section
2.5.2 includes flagging of not only the quality of the satellite data but
also flagging based on in situ and auxiliary data, as well as flagging to
remove diurnal warming effects. By excluding the filters which do not
pertain to the quality of satellite data, a global coverage of PMW SSTs
can be obtained. For the tropical Indian Ocean (80–100°E,15°S-20°N),
which is a region dominated by clouds (Rossow, 1993) and heavy rain
(Arkin and Janowiak, 1993), the coverage was found to be 71%,
meaning that 71% of the matchups can be used. The performance of the
PMW SSTs against drifter in situ observations in this region was found
to be −0.04 ± 0.36 K. The majority of matchups were of QL 5, with
only some QL 4 data. This is in line with findings reported by Guan and
Kawamura (2003), where the annual mean availability of PMW SSTs in
the tropical Indian Ocean was estimated to 73%. The availability of IR
SSTs in the same region was reported to be 35% (Guan and Kawamura,
2003).

Nielsen-Englyst et al. (2018) reported sensitivities ranging from 0.4
to up to 0.6, with the lowest values found for high latitudes. Similar
results were found by Gentemann et al. (2010). In contrast, we have
reported sensitivities ranging from just below 0.5 up to close to 1.0,
with the lowest sensitivities found at low latitudes. The latitudinal
dependency was opposite expectations because of the temperature de-
pendency of the Tb sensitivity to SST changes, where warm SSTs have
higher Tbs sensitivity than cold waters (Prigent et al., 2013). The sen-
sitivity to changes in true SST for IR retrievals should be close to 1 (i.e.
perfect sensitivity) (Merchant et al., 2009). Merchant et al. (2009) re-
ported an average sensitivity of 0.93, with minimum sensitivities in
areas of high TCWV such as the equatorial Atlantic and Pacific Oceans,
in particular the Pacific Warm Pool area. Similarly, Embury and
Merchant (2012) reported sensitivities close to unity. The binning
performed in both the first-stage and the second-stage retrieval is
thought to be the reason for this difference in latitudinal dependency.
When performing the regression, we divide the data into different bins.
If the SST variability within a bin is small, the algorithm corrects for
other factors, such as wind speed (through its impact on surface
roughness), water vapor, etc. instead of SST. Hence, the sensitivity to
changes in true SST will be lower.

The CDR generated here showed a good inter-sensor consistency, as
they have been referenced to the same in situ observational network.
The use of in situ observations for SST algorithm developments has a
risk of introducing biases related to inadequacies in the observational
network. This effect was attempted to be minimized with the geo-
graphical even-out-by-latitude and appeared to be small for our algo-
rithm, as the Argo validation confirms the validation results from
drifting buoys. However, the approach of using physically based re-
trievals is preferred for the IR retrievals as discussed in (Merchant et al.,
2008; Merchant and Le Borgne, 2004) and have also shown promising
results for AMSR-E (Nielsen-Englyst et al., 2018). Future developments
could include forward modelling in the inter-sensor adjustment and
algorithm developments.

A High Priority Candidate Mission (HPCM) called the Copernicus
Imaging Microwave Radiometer (CIMR (Donlon, 2019),) is now being
studied at the European Space Agency. CIMR proposes a conically
scanning radiometer having a swath> 1900 km and will include
channels at 1.4 GHz (~60 km), 6.9 and 10.65 GHz (< 15 km) 18.8 GHz
(5–6 km) and 36.5 GHz (4–5) km on the same platform in a high in-
clination dawn-dusk orbit coordinated with the MetOp-SG(B) (offering
opportunities for synergy with the Microwave Radiometer (MWI) and
Scatterometer (SCA)). Our algorithms can easily be adapted to the
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CIMR frequencies, taking into account the enhanced spatial resolution,
improved NEdT and addition of an L-band channel that can help in
wind speeds much greater than 20ms−1.

6. Conclusions

Retrieval algorithms have been developed with the purpose of
generating an SST climate data record from the AMSR-E and AMSR2
passive microwave satellite observations for the period June
2002–October 2017. The algorithms include WS and SST retrievals,
with corresponding SST uncertainty retrievals and a new and effective
method for detecting and removing RFI contamination. The results
show an overall bias and standard deviation for QLs 4 and 5 AMSR-E
and AMSR2 PMW SSTs against drifter in situ SSTs of −0.02 ± 0.46 K
and 0.002 ± 0.45 K, respectively. These results are comparable or even
better than previous validations of both AMSR-E and AMSR2 SST re-
trievals (Gentemann, 2014; Gentemann and Hilburn, 2015; O'Carroll
et al., 2008). The modelled SST uncertainty, including in situ un-
certainty and sampling effects, are estimated to 0.45 K and 0.44 K, re-
spectively. These retrieved SST uncertainties are, to our knowledge, a
new feature and distinguishes the presented PMW SST CDR from other
PMW SST products. The thorough validation results against in-
dependent in situ observations demonstrate that the algorithms devel-
oped here generate a consistent climate data record, with very good
performance and reliable uncertainty estimates. Furthermore, the SST
sensitivity of 0.9 for the algorithm ensures retrievals that are able to
represent the true variability in the SST. The PMW SST CDR is pub-
lically available at http://gws-access.ceda.ac.uk/public/esacci-sst/
PMW2.0_release/AMSR/L2P/.

To conclude, the PMW SST CDR has been shown to provide accurate
and consistent SST retrievals which can be used in non-precipitating
conditions for global monitoring and assessment of the oceans. With the
uncertainties in the funding for future microwave satellite missions, it is
therefore highly recommended that a fully operational multi-frequency
passive microwave satellite mission, such as CIMR, should be part of the
future satellite constellation to monitor the world oceans.
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A B S T R A C T

Two machine learning (ML) models are investigated for retrieving sea surface temperature (SST) from
passive microwave (PMW) satellite observations from the Advanced Microwave Scanning Radiometer –
Earth Observing System (AMSR-E) and auxiliary data, such as ERA5 reanalysis data. The first model is the
Extreme Gradient Boosting (XBG) model and the second is a multilayer perceptron neural network (NN).
The performance of the two ML algorithms is compared to that of an existing state-of-the-art regression (RE)
retrieval algorithm.

The performance of the three algorithms is assessed using independent in situ SSTs from drifting buoys.
Overall, the three models have similar biases; 0.01, 0.01 and −0.02 K for the XGB, NN and RE, respectively.
The XGB model performs best with respect to standard deviation; 0.36 K. While the NN model performs slightly
better than the RE model with respect to standard deviation, 0.50 and 0.55 K, respectively, the RE model is
found to be more sensitive to changes in the in situ SST. Moreover, the XGB model is the least sensitive with
an overall sensitivity of 0.78, compared to 0.90 for the RE model and 0.88 for the NN model.

The good performance of the two ML algorithms compared to the state-of-the-art RE algorithm in this
initial study demonstrates that there is a large potential in the use of ML algorithms for the retrieval of SST
from PMW satellite observations.

1. Introduction

Sea surface temperature (SST) is an essential climate variable (Bo-
jinski et al., 2014) used in various applications such as climate monitor-
ing (e.g. Merchant et al., 2019), numerical weather prediction (NWP;
Chelton and Wentz, 2005; Brasnett and Colan, 2016), ocean and cou-
pled models (Le Traon et al., 2015; Yang et al., 2015; Liang et al.,
2017) and in the understanding of air–sea interactions (Monzikova
et al., 2017; Ning et al., 2018). SST has been measured in situ for
more than 150 years, initially from ships and oceanographic profiles
and later from moored and drifting buoys (Rayner et al., 2006). SST
retrieved from Earth-orbiting satellites is a crucial supplement to the in
situ network due to the more complete temporal and spatial coverage
from satellites (Minnett et al., 2019). Thermal infrared (IR) satellite
observations have been available since 1981, but these observations
are biased from aerosols and limited by their inability to observe
the surface through clouds (Merchant et al., 1999, 2006). Observa-
tions from passive microwave (PMW) sensors are widely recognised

∗ Corresponding author.
E-mail address: ea@dmi.dk (E. Alerskans).

1 Previous address: Physics of Ice, Climate, and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.

as an important supplement to IR observations since PMW observa-
tions of the surface are not prevented by non-precipitating clouds
and the impact from aerosols is small (Wentz and Meissner, 2000;
Chelton and Wentz, 2005). They are, however, impacted by precipi-
tation (Gentemann et al., 2010) and sun glint contamination, which
increases the swath gaps (Gentemann and Hilburn, 2015). The first
global accurate PMW SST data using the 6 GHz channels became
available in 2002 from the Advanced Microwave Scanning Radiometer
– Earth Observing System (AMSR-E; Kawanishi et al., 2003; Chelton
and Wentz, 2005), carried onboard the National Aeronautics and Space
Administration’s (NASA’s) Earth Observation System Aqua platform.
AMSR-E ceased normal operations in October 2011 and was followed
by the currently operational AMSR2 on the Global Change Observing
Mission (GCOM-W1; Maeda et al., 2015), launched in May 2012. An
AMSR2 follow-on mission (AMSR3) is planned by Japan Aerospace
Exploration Agency (JAXA) (Maeda et al., 2020) and the Copernicus
Imaging Microwave Radiometer (CIMR) is prepared by the European

https://doi.org/10.1016/j.rse.2022.113220
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Space Agency (ESA) as a part of the Copernicus Expansion Program of
the European Union (http://www.cimr.eu/; Donlon, 2020).

Different PMW SST retrievals have been developed and refined over
the years using different frequency channels and approaches. Two types
of retrieval algorithms have generally been used to retrieve SST from
PMW observations; statistical algorithms and physically based algo-
rithms. The most common approach to generate PMW SST products is
by using a statistical retrieval algorithm (e.g. Shibata, 2006; Wentz and
Meissner, 2007; Gentemann et al., 2009; Chang et al., 2015; Alerskans
et al., 2020). Statistical retrieval algorithms are developed by com-
parisons of satellite measured brightness temperatures and collocated
and temporally matched in situ observations and model data, such as
atmospheric and oceanic reanalysis data of wind speed, atmospheric
water vapour content and SST. The second type of retrieval algorithm
uses a radiative transfer model (RTM) to simulate the top of atmo-
sphere brightness temperatures. This approach requires instrument
information (azimuth/earth incidence angles, frequency and polarisa-
tion) and environmental information (SST, sea surface salinity, wind
speed/direction, water vapour density, liquid water density, pressure,
and atmospheric profiles of temperature). Optimal estimation (OE)
theory is an example of an approach that makes use of an RTM (forward
model). In OE models, the RTM is inverted in order to retrieve SST
from satellite measured brightness temperatures (Nielsen-Englyst et al.,
2018). The inversion is performed using a priori information about the
ocean and atmosphere (and corresponding uncertainties) to constrain
the retrievals.

The OE retrieval allows for indication of measurement errors, such
as imperfect calibration and channel contamination (Minnett et al.,
2019). This also means that the performance of OE algorithms is con-
strained by the accuracy of the RTM as well as the representativeness
of the observation and prior error covariances (Merchant et al., 2020).
Moreover, measurement errors require ad-hoc corrections to the geo-
physical retrievals in the OE type of algorithms (Meissner and Wentz,
2012; Nielsen-Englyst et al., 2018). In contrast, statistically based al-
gorithms may account for some of the measurement errors through the
coefficient derivation process, but they are limited by the established
statistical relationships between the variables. Hence, both physical and
statistical models make a series of considerable assumptions about the
nature of the radiative transfer process, which are provided directly
by the RTM in physical models, whereas statistical models rely on
established assumptions of how the geophysical quantities can be used
as proxies for the actual physical processes that influence the surface
emissivity and the radiative transfer through the atmosphere.

Machine learning (ML) models may improve or supplement exist-
ing retrieval algorithms through their higher flexibility and capability
of recognising meaningful patterns and structures in complex prob-
lems (Lee et al., 2017; Azodi et al., 2020). Compared to both physical
models and statistical models, there are much fewer assumptions about
the functional form of how the geophysical quantities are related to
the predicted quantity in ML models. This may allow development of
complex functional forms that more closely approximate the actual
physical processes and thereby provide a more accurate SST retrieval.
ML models may also be a good alternative in situations where obser-
vation characteristics and the structure of the uncertainty components
are not well known, e.g. during a commissioning phase of a new
instrument such as CIMR. Therefore, there is a need for insight into the
performance of different ML models for retrieving SST. Until recently,
the use of ML techniques has been very limited within the field of
SST retrievals, but investigations using ML to improve the accuracy
of SST algorithms is listed as one of the priority recommendations
provided by the SST community (O’Carroll et al., 2019). There has been
an increasing amount of research applying ML techniques to specific
parts of retrieval algorithms, such as for cloud detection (Paul and
Huntemann, 2021), bias correction (Saux Picart et al., 2018), error
estimation (Kumar et al., 2021), identification of eddies (Moschos et al.,
2020) and ocean extremes (Prochaska et al., 2021). A recent study

also used ML techniques to retrieve daily cloud-free IR SSTs from the
MODIS Aqua sensor (Sunder et al., 2020). In addition, ML techniques
have also been used for retrieval of other satellite-derived geophysical
variables, such as soil moisture (Rodriguez-Fernandez et al., 2015) and
precipitation (Sanò et al., 2016, 2018).

In this paper two types of ML SST retrieval techniques have been
assessed and compared against an existing state-of-the-art statistical
regression model retrieval algorithm. The first is the decision tree-based
algorithm Extreme Gradient Boosting (XGBoost, here XGB; Chen and
Guestrin, 2016), and the second is a multilayer perceptron (MLP) neural
network (NN; Haykin, 1999; Nielsen, 2015). These methods differ in
architecture and represent two of the main ML categories; decision-
trees and neural networks. The XGB is a relatively new algorithm which
has shown good performance for retrieval and bias correction of other
geophysical variables (e.g. Just et al., 2018, 2020; Liu et al., 2021). The
MLP is a fully-connected feed-forward NN and is one of the simplest and
most used neural network architectures.

The paper is structured with a description of the dataset, as well as
pre-processing and dataset splitting in Section 2. This is followed by a
presentation of the three retrieval algorithms and model optimisation
of the two ML algorithms in Section 3. The results are presented in
Section 4 and discussed in Section 5 before the final concluding remarks
are provided in Section 6.

2. Data

2.1. ESA CCI Multisensor Matchup Dataset (MMD)

The ESA climate change initiative (CCI) Multisensor Matchup
Dataset (MMD), described in Nielsen-Englyst et al. (2018) and Aler-
skans et al. (2020), is the basis for this work. The MMD consists of
quality controlled in situ measured SST observations from the Inter-
national Comprehensive Ocean-Atmosphere DataSet (ICOADS) version
2.5.1 (Woodruff et al., 2011) and the Met Office Hadley Centre (MOHC)
Ensembles dataset version 4.2.0 (EN4; Good et al., 2013). Brightness
temperatures from the AMSR-E Level 2 A (L2 A) swath data product,
AMSR-E V12 (Ashcroft and Wentz, 2013), spatially re-sampled to the
6.9 GHz resolution (75 × 43 km), are also included. The in situ and
satellite observations are matched by imposing a maximal geodesic
distance of 20 km and a maximal time difference of 4 h. The MMD
includes matchups from the period June 2002–October 2011.

Additional data included in the MMD are information from both
the ERA-Interim reanalysis (Dee et al., 2011) and the ERA5 reanaly-
sis (Hersbach et al., 2020) on SST, total column water vapour (TCWV),
total cloud liquid water (TCLW), wind speed (WS) and sea ice concen-
tration (SIC). Sea surface salinity (SSS) from the GLOBAL-REANALYSIS-
PHY-001-030 reanalysis product, provided by the Copernicus Marine
Environment Monitoring Service (CMEMS; http://marine.copernicus.
eu) is also included in the MMD. Additional wind data from the
Cross-Calibrated Multi-Platform (CCMP) gridded surface wind vector
product (Atlas et al., 2011) version 2.0 was included. The additional
data were collocated in time and space with the MMD matchups using
the nearest neighbour interpolation. For a list of the MMD variables
extracted for this study and considered as input features to the two ML
retrieval algorithms see Table 1.

2.2. Pre-processing

To ensure an accurate derivation of the retrieval algorithms erro-
neous in situ, satellite and auxiliary data are excluded. The quality
of the brightness temperatures were assessed using the L1 AMSR-E
instrument quality flags and low-quality data were excluded. Moreover,
brightness temperatures outside the accepted range (0–320 K) were
flagged. In addition, data were excluded if the difference between ver-
tical (V) and horizontal (H) polarisations for the 18–36 GHz brightness
temperatures were negative, as this indicates invalid oceanographic
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Table 1
MMD variables considered as input features to the ML retrieval algorithms. The asterisk
marks the features used in the XGB model (see Section 3.2).

Feature Acronym Source

AMSR-E orbit (asc./desc.) orbit AMSR-E
Latitude∗ lat AMSR-E
Longitude∗ lon AMSR-E
Solar zenith angle solza AMSR-E
Satellite zenith angle∗ satza AMSR-E
Satellite azimuth angle sataz AMSR-E
Sun glint angle sga AMSR-E
Brightness temperature, channel 6V∗ tb6V AMSR-E
Brightness temperature, channel 6H∗ tb6H AMSR-E
Brightness temperature, channel 10V∗ tb10V AMSR-E
Brightness temperature, channel 10H∗ tb10H AMSR-E
Brightness temperature, channel 18V tb18V AMSR-E
Brightness temperature, channel 18H tb18H AMSR-E
Brightness temperature, channel 23V tb23V AMSR-E
Brightness temperature, channel 23H tb23H AMSR-E
Brightness temperature, channel 36V∗ tb36V AMSR-E
Brightness temperature, channel 36H∗ tb36H AMSR-E
Brightness temperature, channel 89V∗ tb89V AMSR-E
Brightness temperature, channel 89H∗ tb89H AMSR-E
Wind speed∗ WS ERA5
Wind direction 𝜙𝑊 ERA5
Relative angle between sataz and 𝜙∗

𝑊 𝜙𝑅𝐸𝐿 ERA5/AMSR-E
Total column water vapour∗ TCWV ERA5
Cloud liquid water∗ CLWT ERA5

retrievals. To exclude low-quality brightness temperatures possibly
contaminated by e.g. rain and sea ice, an additional quality control
check for the AMSR-E 23 and 36 GHz brightness temperatures were per-
formed. The spatial standard deviation was calculated over a 21 × 21
pixel subregion around each matchup in order to exclude matchups
with an anomalously high standard deviation. Data were flagged if
the standard deviations of the 23 V and H and 36 V and H channels
were larger than 55, 35, 25 and 25 K, respectively. These thresholds
were chosen based on the distribution of the spatial standard deviations
in order to exclude matchups in the end tails, as they have a very
high and anomalous spatial standard deviation and therefore likely are
contaminated. The chosen thresholds resulted in exclusion of less than
1% of the matchups. Low quality in situ data and matchups with an
in situ or ERA5 SST outside the range −2–34 ◦C were also excluded,
where the lower limit of −2 ◦C is used in order to exclude matchups
potentially contaminated by sea ice. Furthermore, matchups with an
ERA5 WS greater than 20 ms−1 were also flagged. The upper wind
speed limit is based on the fact that extreme surface roughness and the
existence of foam on the surface caused by high wind speeds impact the
brightness temperatures and make the SST retrievals uncertain (Kilic
et al., 2018). Together, these checks constitute the gross error checks
in Table 2, which are performed to remove obviously erroneous satel-
lite, in situ and auxiliary data. To exclude matchups that might have
been contaminated due to atmospheric or surface effects, additional
checks were performed. Matchups contaminated by sea ice or land
were excluded using the AMSR-E land/ocean flag and the ERA5 sea
ice fraction. To account for contamination due to rain, matchups were
removed if the 18 V GHz brightness temperature was greater than 240
K. Sun glitter contamination was avoided by excluding matchups with a
sun glint angle less than 25◦. Diurnal warming effects were accounted
for by excluding daytime matchups with ERA5 WS less than 4 ms−1.
Matchups potentially contaminated by ground-based and space-based
RFI were excluded using observation location and reflection longitude
and latitude according to Table 2 in Gentemann and Hilburn (2015).
Lastly, obviously erroneous in situ SSTs were removed using a 3-sigma
filter, based on the mean difference between ERA5 and in situ SSTs. To
ensure a balanced and latitudinally representative dataset, such that
the models are trained and validated on data not only from a few
specific regions in which in situ observations are dense, the number
of matchups per latitude degree was restricted. As the number of

Table 2
Number of matchups remaining after each check and the percentage of matchups each
check removes. The percentages removed for checks 1–8 plus the summary checks
(‘‘Checks 1–7’’, ‘‘Checks 1-8’’ and ‘‘All checks 1–9’’) are with respect to all matchups.
The percentage of matchups removed by the SST 3𝜎-filter, on the other hand, is with
respect to ‘‘Checks 1–7’’ and the even-out-by-latitude check is with respect to ‘‘Checks
1–8’’.

Filter No. of matchups Percentage of matchups
removed (%)

(0) All matchups (no filter) 40,480,306 –
(1) Gross error checks 31,070,944 23.24
(2) Rain 401,42,612 0.83
(3) Sun glint 38,145,778 5.77
(4) RFI 37,387,456 7.64
(5) Land 34,839,510 13.93
(6) Sea ice 31,390,993 22.45
(7) Diurnal warming 37,311,599 7.83

Checks 1–7 19,397,886 52.08

(8) SST 3𝜎-filter 18,999,399 2.05

Checks 1–8 18,999,399 53.07

(9) Even-out-by-latitude 15,316,989 19.38

All checks 1–9 15,316,989 61.16

matchups increase with time, the restriction is temporally dependent
with different number of matchups allowed for different years. For
2002, which is the year with fewest matchups, a maximum of 2,000
matchups per latitude degree were allowed, whereas for 2011, which is
the year with the most matchups, a maximum limit of 20,000 matchups
per latitude degree was used. The percentage of matchups removed and
the total number of matchups left after each filtering check is shown in
Table 2. Furthermore, the geographical distribution of satellite versus
drifting buoy matchups after filtering for the validation dataset is
shown in Fig. 1.

The MMD is divided into six subsets in order to perform all steps on
independent data. A random splitting of the data is performed such that
all datasets retain the same distribution for each variable. The number
of matchups in each subset, as well as the percentage of data with
respect to the filtered dataset, is indicated in parentheses.

1. Training dataset: used for training the NN and XGB models
(6,126,795/40.0%).

2. Test dataset: used for evaluating the performance of the ML
models during training (1,021,133/6.7%).

3. Hyperparameter optimisation dataset: used for optimising model
hyperparameters (see Section 3.4; 3,063,398/20.0%).

4. Feature selection dataset: used for selecting input variables for
the NN and XGB models (see Section 3.1; 1,021,133/16.7% of
the training dataset).

5. Validation dataset: used for validating the performance of the
NN, XGB and RE models (5,105,663/33.3%).

6. Sensitivity dataset: used for the estimating the SST sensitivity of
the NN, XGB and RE models (1,021,133/20.0% of the validation
dataset).

Another important part of the pre-processing step in order to ensure
a good performance for the ML retrieval algorithms is data normali-
sation (Kotsiantis et al., 2006; Huang et al., 2020). Normalisation of
the data is a transformation of the data in order to transform the data
to the same scale. Different methods can be used for normalisation
of the data. Here, we have used quantile transform normalisation.
This method uses quantile information in order to transform the data
to follow a uniform distribution and as it reduces the impact from
outliers it is a robust normalisation method. It has previously been
used for feature normalisation within satellite-based applications and
for classification (Ferreira et al., 2019; Sismanidis et al., 2021). Other
popular methods include min–max normalisation and standardisation.
It should be mentioned that no universal normalisation method exists
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Fig. 1. Spatial distribution of satellite matchups with drifting buoys for the validation dataset. The statistics have been calculated on a 2 × 2 degree grid with a minimum of 50
matchups per grid cell.

and that the performance of models might vary depending on the
normalisation method and the problem.

3. Retrievals

In this section the three models used for retrieving SST will be
introduced. First the selection of input variables (also called input
features) is presented, followed by a description of the two ML models,
XGB and NN, and the optimisation thereof. Lastly, the state-of-the-art
regression retrieval model used as a benchmark is presented.

3.1. Feature selection

Table 1 shows the 24 features that were extracted from the MMD
and considered as input to the two ML models. To exclude redun-
dant features and only select the important ones, such that the di-
mensionality of the input data is reduced and the risk of overfitting
likewise is reduced (Goodfellow et al., 2016), a feature importance
analysis was performed in order to obtain the explanatory power of
each input feature. The analysis was based on the SHapley Additive
exPlanations (SHAP) values (Lundberg and Lee, 2017). SHAP uses
shapley values (Shapley Ll, 1953), which are based on cooperative
game theory and are used in many state-of-the-art feature attribution
methods (Ribeiro et al., 2016; Shrikumar et al., 2016, 2017). SHAP is
based on the idea that the performance of all possible combinations of
input features should be considered when determining the importance
of a single feature on a single prediction. To determine the importance
of each feature, the ML model to be used (here XGB and NN) is trained
for each combination of input features and the marginal contribution
of each feature is evaluated. The marginal contribution is defined as
the difference between the performance of the model which includes
the feature to be assessed and the model in which the feature is
excluded. The marginal contribution of a feature is therefore obtained
by considering the difference between all models in which this feature
is present and all models in which it is excluded. From this, the average
contribution of a single feature can be obtained. Based on this, an
importance is assigned to each feature for each prediction and from
this the average explanatory power of each feature can be estimated.
For a further explanation of SHAP see Lundberg and Lee (2017).

The SHAP analysis is performed on the XGB and NN base models,
i.e. the models with default settings. For XGB the default settings
are given by its python implementations using scikit-Learn (Pedregosa
et al., 2011), whereas for the NN model the corresponding default
parameters were used, with the exception of number of hidden layers

Fig. 2. SHAP feature importance analysis for XGB (black) and NN (red) with the
average magnitude of impact on the model prediction (in percentage points) on the
ordinate. Each bar represents the importance of a single input feature.

and neurons, which were chosen as 2 layers and 20 and 15 neurons,
respectively (see Section 3.3). Therefore, the SHAP feature importance
analysis might be slightly different after the ML model settings have
been optimised. However, performing the optimisation using all fea-
tures might also yield different results than performing it on the subset
of selected features. As the purpose of the feature analysis is to estimate
the explanatory power of the input features and perform a feature
selection we therefore perform the SHAP analysis before optimising the
models. Fig. 2 shows the SHAP values for each input feature for the
two models. In both models the most dominant feature is the vertical
polarisation of the 6 GHz brightness temperature (tb6V), on average
changing the predicted values by 23 percentage points (pp) and 21
pp for XGB and NN, respectively. Other than tb6V, the SHAP values
of the different input features differ greatly between the two models.
Furthermore, the general magnitudes of importances are very different
for the two models, with lower average importances in the XGB model.
Therefore, the choice is made to keep all features in the NN model
and only reduce the number of features in the XGB model by using
a threshold of 0.1 pp. The features with an average impact on the XGB
model predictions higher than this threshold are therefore included in
the XGB model. These are marked with an asterisk in Table 1.
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Fig. 3. Example of a neural network with an input layer consisting of two input
neurons, two hidden layers with three and four neurons, respectively, and an output
layer consisting of one neuron.

3.2. XGBoost

Extreme Gradient Boosting (XGBoost, here referred to as XGB) is a
supervised machine learning model for when working with tabulated
data. It has shown to provide state-of-the-art results on both classifi-
cation and regression problems (Zhang et al., 2017; Liu et al., 2020).
Here, a brief introduction of XGB is given and for a more detailed
description the reader is referred to e.g. Chen and Guestrin (2016).

XGB is a so-called tree-based ML model, which means that it consists
of decision trees (Breiman et al., 1984). A decision tree divides the
input data into different regions with separate parameters for each
region, such that the structure of the model resembles that of a tree.
In XGB, trees are built sequentially, which allows a tree to learn from
previous trees through a method called gradient boosting (Friedman,
2001). XGB is based on extreme gradient boosting, which is a highly
scalable gradient boosting method with a sophisticated sparsity-aware
algorithm for parallel tree learning (Chen and Guestrin, 2016). In
gradient boosting algorithms, prior knowledge of trees and splitting is
used to build better trees, since every tree is validated as it is built.
Thus, each new tree will be better than the previous. All trees then
contribute to the final prediction through a weighted average. The
extreme gradient boosting algorithm uses a learning rate (also called
shrinkage) to update the trainable model parameters in the same way
as a neural network (Chen and Guestrin, 2016).

A well-known issue with machine learning is the risk of overfit-
ting, which means that the model becomes good only at predicting
data from the training dataset and performs poorly when presented
to unseen data, i.e. the generalisation ability of the model becomes
poor (Goodfellow et al., 2016). The problem of overfitting in tree-based
models is a well-studied topic, with several different methods suggested
for preventing overfitting, such as pre-pruning, post-pruning and early
stopping (Esposito et al., 1997; Ying, 2019). To avoid overfitting in
the XGB model early stopping, based on the mean absolute difference
(MAD) metric of a test dataset, is used in the training of the model.

3.3. Neural network (NN)

Neural networks (NNs) are inspired by the functionality of the
neural system and are one of the most well-known ML techniques for
supervised learning. Here, a short description of the neural network
used in this study is given. For a more comprehensive and detailed
description of neural networks see e.g. LeCun et al. (2015), Nielsen
(2015) and Goodfellow et al. (2016).

Fig. 3 shows an illustration of an NN, which consists of an input
layer, two hidden layers and an output layer. Each layer consists of
one or more neurons (also called nodes or units). It is through the
input layer that the NN receives its input and the output layer produces
the output of the model. The number of neurons corresponds to the
number of inputs and outputs, respectively. In Fig. 3, the NN receives
two inputs and as the output layer only consists of one neuron, only one

output is produced. The layers in between the input and output layers
are called hidden layers as they are neither input nor output layers,
but are hidden in between. The connections between neurons in the
different layers each has a weight associated with it, which indicates
the weight given to the respective input information. Furthermore, the
connections between the neurons in the hidden layer(s) are associated
with an activation function. The purpose of the activation function is to
introduce non-linearity to the system, as well as to allow for variable
importance and to introduce an on–off behaviour in the response of
the model to the input data. In this study, we have used the multilayer
perceptron model, which is a fully-connected feed-forward NN, apply-
ing the backpropagation method (Hecht-Nielsen, 1992) during training.
The NN retrieval algorithm used in this study is implemented using the
TensorFlow interface (Abadi et al., 2015). As for the XGB model, early
stopping is applied to ensure that the NN is not overfitting.

3.4. Optimisation

ML models have two types of parameters; (i) parameters which the
ML model estimates during the training process; and (ii) hyperparam-
eters, which need to be assigned prior to the model training. These
hyperparameters can be tuned in order to improve the performance of
the model. This is done through a process called hyperparameter opti-
misation (HPO). There exist several methods for performing HPO, two
of them being through gridded and randomised searches (Liashchynskyi
and Liashchynskyi, 2019; Yang and Shami, 2020). The gridded search
offers a thorough scan of the entire desired parameter space, whereas
the randomised search only scans a fraction of the desired parame-
ter space, based on the chosen hyperparameter distribution function,
thereby decreasing the computational cost.

HPO for the XGB model is performed using the scikit-learn Random-
izedSearchCV. For the NN model, on the other hand, the scikit-learn
GridSearchCV was used. The reason for this was that it was difficult
to define the parameter space and obtain a satisfactory performance
with the randomised algorithm for the NN model. Hence, a gridded
search was performed instead. The parameter space was easier to
define for the XGB model, which is why a randomised algorithm was
used in order to reduce the computational cost. To ensure that the
models are not overfitting to the training data in the HPO, k-fold cross-
validation (e.g. Grimm et al., 2017; Berrar, 2018) in five folds is used.
The hyperparameters considered, their prior distributions and the final
value for each hyperparameter obtained from the HPO is shown in
Table 3. It should be noted, that the entire possible hyperparameter
space has not been investigated. Searching for more combinations in an
extended space, might alleviate the strong link currently seen between
the prior distributions and their final chosen values.

3.5. Regression model

The statistical regression model retrieval algorithm described in
Alerskans et al. (2020) is used as benchmark in order to compare the
performance of the ML retrievals. The regression (RE) model consists of
a two-stage WS regression model followed by a two-step SST retrieval
regression model. The first step uses a global algorithm to retrieve
an initial estimate of wind speed. In the second step, these initial
estimates are used to derive localised retrieval algorithms. Both steps
in the WS retrieval algorithm use AMSR-E brightness temperatures and
are regressed against CCMP wind speeds. The SST retrieval algorithm
applies localised retrievals for both steps. In the first step, regres-
sion coefficients are derived locally for fixed latitude intervals and
ascending and descending passes, respectively, whereas the second step
uses localised SST and WS algorithms. Both steps in the SST retrieval
algorithm use AMSR-E brightness temperatures, Earth incidence angle,
retrieved wind speeds from the WS retrieval algorithm, and the relative
angle between satellite azimuth angle and wind direction. For more
information on the RE model, see Alerskans et al. (2020).
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Table 3
The hyperparameters optimised for the XGB and NN models, their prior distributions and final values obtained through the HPO. The prior
distributions for the XGB randomised HPO include a uniform distribution, with the minimum and maximum values specified, a Poisson
distribution, with the expected separation indicated, and a normal (Gaussian) distribution, with the mean and standard deviation indicated. For
the NN, the gridded HPO search intervals are shown.

Hyperparameter Prior distribution Final value

Number of gradient boosted trees Poisson(100) 103
Maximum tree depth Poisson(25) 22
Minimum number of incidences in a final leaf uniform(1,5) 3

XGB Subsamplinga norm(0.6,0.1) 0.58
Subsampling by treeb norm(0.6,0.1) 0.7
Subsampling by levelc norm(0.6,0.1) 0.63
Learning rated norm(0.1,0.03) 8.5 ⋅ 10−2

Hyperparameter Search range Final value

Number of hidden layers 1–3 2
Number of neurons in each hidden layer [15,20,25,30] 20 (1st layer) 15 (2nd layer)

NN Activation function in the hidden layers [ReLU, tanh] tanh
Optimisere [Adam, SGD] Adam
Initial learning ratef 0.0001–0.01 8 ⋅ 10−4

aFraction used to randomly select a subset of training data.
bFraction used to randomly select features to train each tree.
cFraction used to randomly select a subsample of the features for every new depth level reached in a tree.
dThe rate at which the trainable model parameters are updated during the training process.
eAlgorithm by which the weights are optimised in order to minimise a loss function.
fAdam uses an adaptive learning rate, hence the initial value of the learning rate is optimised here.

The RE model was developed using a previous MMD version, in
which ERA-Interim data was used instead of ERA5 data, as it had
not been produced yet. The subsetting for the RE model is therefore
different from the two ML retrieval algorithms, also due to different
needs for number of subsets. Therefore, the same data are not used
for training of the RE and ML models. The two training dataset are,
however, representative of each other and the RE and ML models are
therefore trained on similar data. The RE model is, on the other hand,
validated on the same subset as the ML models. However, this means
that the validation of the RE model is likely not performed on com-
pletely independent data as some matchups in the RE training dataset
likely are included in the validation dataset. However, as validation on
the same data makes the results more comparable the RE model was
validated on the same subset as the two ML models.

4. Results

4.1. Overall

The two ML models and the RE retrieval algorithm have been
run for the validation dataset introduced in Section 2.2. The overall
performance of the three retrieval algorithms, as validated against
drifter in situ SSTs (SSTinsitu), is shown in Table 4. The overall bias
of the retrieved AMSR-E PMW SSTs is 0.01, 0.01 and −0.02 K for the
XGB, NN and RE models, respectively. The standard deviation of the
retrieved PMW SSTs versus drifter in situ SSTs is 0.36, 0.50 and 0.55
K for the XGB, NN and RE models, respectively. The XGB retrieval
algorithm performs the best, with a small bias and lowest standard
deviation, whereas the NN and RE retrievals perform more similarly,
where the NN model has a slightly smaller standard deviation. Overall,
the XGB model shows better performance with respect to the other
verification metrics as well and the NN and RE models show more
similar overall results, with the NN model performing slightly better.

Fig. 4 shows the geographical distribution of mean and standard
deviation of retrieved minus in situ SSTs for the XGB, NN and RE
models. For the XGB model, only few areas have biases and these
are generally small, as can be seen in Fig. 4(a). At higher latitudes,
especially in the Southern Ocean, areas with a slight warm bias can
be seen. Small cold biases, on the other hand, can be seen for e.g. the
Arabian Sea and the Pacific warm pool area. The corresponding results
for the NN model (Fig. 4(c)) show more and larger areas with both
warm and cold biases. Most notable are the areas of large warm biases

Table 4
Overall performance of the three retrieval algorithms. The table shows the mean
difference (MD), standard deviation of the difference (STD), mean absolute difference
(MAD), mean squared difference (MSD) and the R2 score of retrieved minus in situ SST.
The overall sensitivity of the three models to changes in situ SST (see Section 4.3) is
shown as well.

NN XGB RE

MD [𝐾] 0.01 0.01 −0.02
MSD [𝐾2] 0.25 0.13 0.30
MAD [𝐾] 0.37 0.24 0.42
STD [𝐾] 0.50 0.36 0.55
R2 0.997 0.998 0.996
Sensitivity 0.88 0.78 0.90

in the Southern Ocean. The XGB model also show a warm bias for some
of these areas, although not a as wide-spread nor as large. Cold biases
can be seen for the NN model for e.g. the higher northern latitudes and
close to the tip of South America, as well as for the Arabian Sea. The
RE model (Fig. 4(e)) also has a larger warm bias in the high latitudes,
especially for the southern hemisphere, which was confirmed to be
linked to undetected sea ice. This area is the same area where both
the XGB and NN models also exhibit warm biases. In addition, areas
of large warm biases are seen for the west coast of North and Central
America. Furthermore, the RE model also exhibits a similar cold bias
for the Arabian Sea and the Pacific warm pool area, much like the two
ML models, however more pronounced and wide-spread. Otherwise,
areas of both warm and cold biases can be seen. In general, no clear
latitudinal pattern for the spatial distribution of bias can be seen for
any of the models.

The geographical distribution of standard deviation, on the other
hand, shows a clear latitudinal pattern for all three models. Higher
standard deviations are seen for the higher latitudes, and lower stan-
dard deviations are found at lower latitudes. Furthermore, all three
models exhibit higher standard deviations for the dynamical ocean
regions, such as the Gulf Stream extension, the Aghulas Current and the
Kuroshio Current, as well as off the east coast of Argentina. These dy-
namical ocean regions are areas with large SST gradients over smaller
scales. Comparing the retrievals from AMSR-E, which has a resolution
of several kilometres, with a point observation in one of these regions
will therefore add to the discrepancies, as discussed in Alerskans et al.
(2020) and Nielsen-Englyst et al. (2018). Higher standard deviations
are therefore expected for the dynamical ocean regions and is not
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Fig. 4. The geographical distribution of mean and standard deviation of SST𝑟 minus in situ SST for XGB (a) and b)), NN (c) and d)) and RE (e) and f)). The statistics have been
calculated on a 2 × 2 degree spatial grid with a minimum of 50 matchups per grid cell.

necessarily an indication of the quality of the retrievals. Overall, the
XGB model shows smaller standard deviations, whereas the magnitude
of the standard deviation for the NN and RE models are more similar.
However, local areas with high standard deviations are seen for the
RE model. Most notably is the relatively larger area of higher standard
deviation in the South Atlantic. Neither the NN nor the XGB model
shows such high standard deviations for this area, although they seem
to have locally slightly larger standard deviations for the same area.

4.2. Dependencies

To further investigate the performance of the three retrievals, the
dependency of the retrieved minus in situ SST as a function of in situ
SST and WS is shown in Fig. 5. The dependence of the retrieved SSTs on
wind speed reflects the change in the sea surface roughness and hence
the emissivity of the ocean. It should be noted here that the wind speed
used for the XGB and NN models is the ERA5 wind speed, whereas
the wind speed used for the RE model is the CCMP wind speed, which
is also what was used in the RE retrieval algorithm (Alerskans et al.,
2020).

The binned statistics for retrieved SST minus in situ SST as a func-
tion of in situ SST (Fig. 5a) show a warm bias for cold SSTs (SSTinsitu <
1 ◦C) and a cold bias for warm SSTs (SSTinsitu > 30 ◦C) for all three
models. The standard deviation can be seen to decrease with increasing
SST, except for very warm SSTs where a sharp increase can be seen, at
least for the two ML models. This is the same interval for which the cold
bias is seen. Overall, all three models show similar biases. In general,
the XGB model has slightly lower standard deviation, whereas the NN
and RE models both have similar standard deviations. However, for the
edges of the SST interval, all three models exhibit a sharp increase in
standard deviation for very cold temperatures, whereas for very warm

temperatures a large increase in standard deviation is seen only for the
two ML models.

Fig. 5b shows no significant dependence of the retrieved SST for
the XGB and NN models as a function of WS with respect to bias.
Only a small bias can be seen for high wind speeds for both models.
For the RE model, on the other hand, a small bias can be seen for
wind speeds of around 4–8 ms−1, as well as for high wind speeds. The
standard deviation increases with increasing wind speed for all three
models, most notably for the NN and RE models which show standard
deviations of up to almost 1 ms−1 for very high wind speeds. Overall,
the XGB model has smaller standard deviations, with the NN and RE
models exhibiting larger standard deviations.

4.3. Sensitivity

The SST sensitivity is a measure of the change in retrieved SST
per unit change in the true SST (Merchant et al., 2009). Ideally, the
SST sensitivity is 1 K K−1, however, several geophysical factors can
have an impact on the sensitivity, such as water vapour, cloud water
and sea surface roughness. Here, a modified version of the forward
model developed by Wentz and Meissner (2000) (Nielsen-Englyst et al.,
2018) is used to estimate the SST sensitivity of each of the retrieval
algorithms. The forward model relates the relevant geophysical factors
to brightness temperatures, and the sensitivities to the geophysical
factors show good agreement with those found by Prigent et al. (2013)
using the fast radiative transfer model, RTTOV (Nielsen-Englyst et al.,
2021). Two sets of brightness temperature simulations were performed
for the sensitivity subset. The first set used ERA5 TCLW, TCWV and
WS input together with modified drifting buoy SSTs, where 1 ◦C was
added (SST+1). The second set, on the other hand, used the same
ERA5 data, but now together with modified drifting buoy SSTs where
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Fig. 5. Retrieved SST minus in situ SST as a function of (a) in situ SST and (b) wind speed. Solid lines show the mean and dashed lines show the standard deviation for the XGB
(black), NN (red), and RE (blue) retrieval algorithms. A minimum of 50 matchups were used for the statistics calculations. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. The geographical distribution of sensitivity with respect to changes in SST for (a) the XGB, (b) the NN, and (c) the RE retrieval algorithms. The statistics have been
calculated on a 2 × 2 degree spatial grid with a minimum of 50 matchups per grid cell.

1 ◦C was subtracted (SST−1). These two subsets of simulated brightness
temperatures were propagated through the retrievals to obtain new
SSTs - SST𝑟,+1 and SST𝑟,−1. The sensitivity was then calculated based on
these new SST retrievals, such that the sensitivity is given by (SST𝑟,+1−
SST𝑟,+1)∕2, which ideally should be 1 as the two retrieved SSTs ideally
should differ by 2 ◦C. The average sensitivity for the XGB, NN and RE
models were found to be 0.78, 0.88 and 0.90, respectively.

Fig. 6 shows the geographical distribution of sensitivity for the
three models. Both the XGB and NN models have higher sensitivities
for lower latitudes and smaller sensitivities for higher latitudes. Areas
with relatively lower sensitivities can be seen in the Pacific warm
pool area as well as in the Arabian Sea. The two ML models show
the same geographical patterns in the sensitivity results, however,
overall the sensitivity for the NN model is higher than for the XGB
model. The RE model shows some similar geographical dependencies
as the other two models, such as lower sensitivities for the Pacific
warm pool area and the Arabian Sea, where minimum sensitivities
of 0.50 can be found. Overall, higher sensitivities are mainly found
for lower latitudes, however, areas with lower sensitivities are also
present at lower latitudes. Furthermore, high sensitivities are also found
for higher latitudes. Hence, the same clear latitudinal pattern as for
the other two models is not present for the RE model. Overall, the
sensitivity of the RE model is slightly higher compared to the NN
model, especially for the higher latitudes.

The dependency of the sensitivity on in situ SST is shown in Fig. 7.
Here, a clear dependence can be seen, with lower sensitivities for colder
SSTs and higher sensitivities for warm SSTs. However, a sharp decrease
in sensitivity can be seen for very warm SSTs for all three models.
The XGB model shows lowest sensitivity for all SSTs, with minimum
sensitivities of less than 0.5 seen for the very cold SSTs. The NN model
can be seen to have consistently higher sensitivities than the XGB
model; more than 0.2 for colder SSTs where the largest difference can
be seen. The RE model, however, has consistently higher sensitivities
than the NN model, except for very warm SSTs. Furthermore, the RE
model does not exhibit the same dependence on SST as for the other
two models. Instead, a more consistent sensitivity with SST can be seen,
except for very warm SSTs for which the sensitivity drops significantly.

5. Discussion

The XGB model provides the lowest bias and standard deviation
with a mean bias of 0.01 K and standard deviation of 0.36 K. The
NN and RE models have biases of 0.01 and −0.02 K and standard
deviations of 0.50 and 0.55 K, respectively. The results obtained here
for all three models are comparable to, and in the case of the XGB
model even better than, previous validation results of AMSR-E PMW
SST retrievals. O’Carroll et al. (2008) report a bias of 0.02 K and a
standard deviation of 0.46 K, whereas Gentemann (2014) obtained
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Fig. 7. Sensitivity as a function of in situ SST for the XGB (black), NN (red), and RE
(blue) retrieval algorithms. A minimum of 50 matchups were used for the statistics
calculations. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

retrieved SSTs with a bias of −0.05 K and a standard deviation of 0.48
K. Both Nielsen-Englyst et al. (2018) and Alerskans et al. (2020) report
similar validation results with biases ±0.02 K and standard deviations
of around 0.46 K.

All three retrieval algorithms exhibit warm biases for higher lati-
tudes, especially in the Southern Ocean. The areas close to the poles
have previously been confirmed to be partly related to sea ice con-
tamination (Alerskans et al., 2020). Furthermore, it is also believed
that wind induced effects could play a role in the larger biases. Fig. 5
showed an increase in bias for strong wind speeds and since the
Southern Ocean is characterised by very strong wind speeds (Young,
1999) it is likely that the retrievals are effected. Furthermore, the RE
model, and the NN model to some extent, have a cold bias in the
Arabian Sea, as well as in the Pacific warm pool area. These regions
are characterised by warm temperatures and the RE model especially
has a cold bias for very warm SSTs (Fig. 5). However, neither the NN
nor the XGB models show the same cold bias for the Pacific warm pool
area, which indicates that the RE model is impacted by other factors
and at the moment it is still unclear why this large cold bias is seen.

A latitudinal distribution of the standard deviation of the retrieved
minus in situ SSTs is seen for all three models, with lower values
for low latitudes and higher values for high latitudes. Gentemann
(2014) reported similar results, with lowest standard deviation between
40◦S and 40◦N and higher values for increasing latitude. The PMW
SST validation results of Alerskans et al. (2020) and Nielsen-Englyst
et al. (2018) both show the same latitudinal dependence as shown
in Fig. 4. The greater variability near the poles can be attributed
to the presence of sea ice, which can contaminate the microwave
observations (see e.g. Alerskans et al., 2020) and the fact that the
sensitivity of the brightness temperature to SST is lower for colder
temperatures compared to warmer temperatures (Prigent et al., 2013).
Higher standard deviations are also seen for the dynamical ocean
regions, with a very similar pattern reported in Nielsen-Englyst et al.
(2018) and Alerskans et al. (2020). This increase is not believed to
be due to the performance of the models but rather due to sampling
errors in these large variability regions. The large AMSR-E footprint
(43 × 75 km for the 6.9 GHz resolution) is compared against point
measurements from drifting buoys. The maximum allowed geodesic
distance of 20 km and maximum allowed temporal difference of 4 h
between the matchups of AMSR-E and buoy data will contribute to the
discrepancies seen. A high-resolution IR based SST reference has been
used to calculate the variability within an AMSR-E microwave footprint
and a similar pattern in the variability was found in the dynamical
regions. This indicates that the increased standard deviation seen in
Fig. 4 is related to the larger variability found in these regions and
sampling errors, and not to poor model performances.

A higher standard deviation is also seen for the RE model for a small
area in the South Atlantic Ocean. In addition, a slightly larger cold bias

is seen as well. Neither the NN nor the XGB models show the same clear
pattern, although for the XGB a slight increase in standard deviation
can be seen. This area is a known region with strong RFI (Gentemann
and Hilburn, 2015). The pre-processing of the data included an RFI
mask, which has previously been applied and successfully removed
RFI (Gentemann and Hilburn, 2015; Nielsen-Englyst et al., 2018). Aler-
skans et al. (2020) showed that it is also possible to exclude RFI
contaminated matchups by comparing the baseline retrieved SSTs to
additionally retrieved SSTs, for which the 10 GHz and 18 GHz channels
were excluded. A similar filter could be applied here. Neither the NN
nor the XGB models show the same pronounced increase in standard
deviation, which indicates that they might not be as sensitive to RFI
contamination. Further work is needed to investigate this.

The dependence of the retrieved minus in situ SST on in situ SST
(Fig. 5) shows elevated bias and standard deviations for very warm
and very cold SSTs for all three models. The behaviour for cold SSTs
is believed to be partly due to sea ice contamination, as previously
discussed. Furthermore, it is well-known that ML models have a hard
time predicting extreme values (Ribeiro and Moniz, 2020). If not
enough training data for a certain range, e.g. cold SSTs, are included,
the ML models will have a hard time learning how to predict these
cold SSTs. In both the NN and XGB, the optimisation is performed
based on the minimisation of a loss function. As this loss function
measures the average performance of the model across the domain
of the target variable, the most abundant cases will have the largest
impact on the model performance. Rare cases will have an almost
negligible effect and the performance of the model for these cases will
therefore suffer (Ribeiro and Moniz, 2020). As such, the ML models
will have a hard time retrieving SSTs for the very cold and very warm
SSTs, as there are not many matchups for these cases. In addition,
extrapolation of predictions for data outside the training data ranges
poses a problem for ML models (Xu et al., 2020). To improve the
results of the ML models for the extreme ends, more training data is
needed for these cases. Another option would be to modify the loss
function by scaling it during the training process such that a wrong
prediction of the rarer cases would have a larger impact on the model.
The uneven distribution of the training data could therefore perhaps
be partly offset. Yet another possibility is to train the ML models in a
similar way as the RE model. By training separate instances of the ML
models for e.g. the very cold and very warm SSTs a better performance
might be obtained. The RE model is also seen to perform worse for the
very cold and very warm SSTs. In this case, it is most likely related
to the training of the model. As the last step of the RE model uses
local SST and wind speed retrievals, the training data was binned into
SST and wind speed bins. For the extreme ends, there are not many
training examples and a minimum number of matchups for each bin
was required in order to obtain robust statistics. Therefore, if there
were not enough matchups in a bin, the regression coefficient from the
closest SST and wind speed bin is used instead. Hence, for the very
cold and very warm SSTs, as well as for the very high wind speeds, the
regression coefficients are obtained from nearby bins, which might not
accurately represent the relationship for the current bin.

All three models show an increase in standard deviation with wind
speed, as well as a slightly higher bias for very high wind speeds. The
increased uncertainty in retrieved SST for larger wind speeds is well
known (see e.g. Alerskans et al. (2020)). It is likely to be related to the
surface roughness and the physical characteristics that the sensitivity of
the brightness temperature to wind speed increases as the wind speed
(i.e. surface roughness) increases and when white foam appears on the
surface (Kilic et al., 2018).

The geographical pattern of sensitivities for the NN and XGB mod-
els, with higher sensitivities for lower latitudes and lower sensitivities
for higher latitudes, is similar to what was reported by Nielsen-Englyst
et al. (2018) using an OE algorithm. As the sensitivity of the bright-
ness temperatures to SST decreases with colder SSTs (Prigent et al.,
2013; Nielsen-Englyst et al., 2021) higher latitudes are expected to
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be associated with lower sensitivities and lower latitudes with higher
sensitivities. Gentemann et al. (2009) reported sensitivities of 0.39 for
SSTs of 0 ◦C and 0.65 for SSTs of 30 ◦C. The geographical distribution
of sensitivity for the two ML models are therefore consistent with the
expected distribution. The RE model, on the other hand, does not show
such a clear latitudinal pattern. There are regions with both relatively
higher and lower sensitivities found at lower latitudes. As discussed
in Alerskans et al. (2020), the absence of a clear latitudinal dependence
is thought to be related to the retrieval algorithm itself, more specifi-
cally to the binning performed. The RE model is trained on binned data
such that separate regression coefficients are obtained for each bin. If
the SST variability within a bin is small, the RE algorithm will fit very
well to the SST but may experience a lower sensitivity (Alerskans et al.,
2020).

It was seen in Fig. 2 that the input feature which impacts the output
of the XGB model the most is, by far, tb6V. The other input features
are at least an order of magnitude less important. For the NN model,
tb6V is also the most important feature, however, several other features
also contribute significantly to the model performance, such as tb10V,
tb18V and tb23V. All of the channels have a relatively large impact on
the performance of the NN model and are therefore included, whereas
all channels except the 23 and 18 GHz channels are included in the
XGB model. Nielsen-Englyst et al. (2021) has previously investigated
the importance of different frequency channels using both a physically
based and a statistically based retrieval algorithm by including different
subsets of the AMSR-E frequency channels (considering the 6–36 GHz
frequency range) and validating the resulting SST retrievals against
independent drifting buoy observations. Nielsen-Englyst et al. (2021)
found that the most important channels for SST retrievals are the 6 GHz
channels, which is in agreement with the feature importance analysis
for both the NN and XGB models. Following the 6 GHz channels, the
10 and 18 GHz channels were found to be the most important using
both the physically and statistically based models (Nielsen-Englyst
et al., 2021). The statistical algorithm showed a clear improvement
in performance when more channels are included, while the physical
algorithm showed less variation among the channel subsets, and it
actually performed quite well by only including 6 and 10 GHz. This is
similar to the XGB model, which also relies mostly on the 6 and 10 GHz
channels (see Fig. 2). The NN model, on the other hand, is more similar
to the regression based algorithm in the sense that it performs better
when more information is included, as is evident on the more even
distribution of importances.

The XGB model was found to perform best with respect to standard
deviation but worst with respect to sensitivity. This might be related
to a poor generalisation ability of the XGB model, which implies a
problem with overfitting. However, as mentioned in Section 3.2, the
XGB model is run with early stopping in order to prevent overfitting
and no overfitting was observed when analysing the training and gen-
eralisation errors. To investigate this issue further, simpler XGB models
could be trained and a comparison between performances with respect
to standard deviation, bias and sensitivity could be made in order to see
if the problem is related to overfitting. The low sensitivity might also
be related to the input features used. Even though a feature importance
analysis was performed in order to only select the most important
input features, the exclusion of some input features might negatively
influence the performance of the XGB model. Nielsen-Englyst et al.
(2021) found that the 18 GHz channels were important for the both
a physically based and a statistically based model. The XGB model
includes neither the 18 GHz channels nor the 23 GHz channels, the
latter which have been found to be sensitive to atmospheric water
content (Nielsen-Englyst et al., 2021). To investigate if the inclusion
of some of the excluded features could affect the performance of the
model, several new instances of the XGB model could be trained where
some of the now-excluded input features are included. The performance
of these models could then be compared with the performance of the
current XGB model, especially with respect to sensitivity.

The RE and the two ML models are all statistically based retrieval
algorithms. However, the RE model used here is constrained to pre-
defined linear relationships (although it can be expanded to include
non-linearities), whereas the ML models allow non-linear relationships
between input features and retrieved SST. The main advantage of ML
models is that they allow approximation of complex functions as they
are considered universal approximators (Hornik et al., 1990; Cybenko,
1989; Hornik, 1991). They therefore allow for the learning of new rela-
tionships without prior assumptions. This is one of the main advantages
of ML-based models in comparison to more traditional regression-
based algorithms. On the other hand, one of the disadvantages of ML
models is related to the computational cost. The HPO of the models
for example, is very computationally heavy, especially if opting for the
gridded search. However, not performing an HPO can have an impact
on the performance of the model, as there is no optimal model structure
that suits all problems (Yang and Shami, 2020). Moreover, the training
of the ML models is also more computationally expensive than the
training of a linear regression based model such as the RE. Furthermore,
the more complex the model, e.g. the larger the architecture and the
more input features used, the slower the optimisation and training is.
This not only applies to the ML models but also to the RE model. For
retrieving SSTs, on the other hand, the ML models are equally as fast
as the RE model.

In this study, we focused on the retrieval of PMW SSTs from AMSR-
E, however, it is also possible to apply ML models to retrievals of
SSTs from other satellite sensors. Initial validation results using AMSR2
show good performances with biases of 0.01 and −0.08 K and standard
deviations of 0.34 and 0.44 k for an XGB and an NN model, respec-
tively. The better validation results of AMSR2 compared to AMSR-E
is in agreement with those reported in Alerskans et al. (2020). The
retrieval of satellite SSTs from PMW observations using ML can also be
extended to future satellite missions, such as CIMR, which is currently
prepared by the ESA as a part of the Copernicus Expansion Program of
the European Union (http://www.cimr.eu/; Donlon, 2020) and to the
retrieval of IR satellite SSTs (Sunder et al., 2020).

The uncertainties of the retrieved SSTs have not been considered
in this study but it is an important aspect that needs to be addressed
in the future as uncertainties are important for a wide variety of
applications, such as the use of SSTs within oceanic and atmospheric
models (Merchant et al., 2017). Therefore, future work should aim at
estimating the uncertainties of the retrieved SSTs for each of the two
ML models. Statistical models have previously been used to estimate the
uncertainty in SST retrievals, such as a regression based algorithm for
the estimation of the uncertainty of the RE SSTs (Alerskans et al., 2020).
More recently, Kumar et al. (2021) investigated the use of two ML
models for estimating the uncertainty in satellite derived IR SSTs. Good
results were obtained, showing the usefulness of ML based algorithms
in uncertainty estimates. Another approach could be to train multiple
algorithms to obtain an ensemble from which the uncertainties can
be estimated. Future work on estimating the uncertainties of the XGB
and NN SST retrievals could therefore include an investigation of these
approaches.

6. Conclusions

In this study, two types of machine learning (ML) models have
been assessed for the retrieval of SSTs using passive microwave (PMW)
satellite observations from AMSR-E. The results have been compared
with an existing state-of-the-art regression (RE) retrieval algorithm. The
ML models considered were the decision tree-based algorithm Extreme
Gradient Boosting (XGB) and a multilayer perceptron neural network
(NN). The performance of the models was evaluated using independent
in situ observations of SST from drifting buoys. The performance of
the RE and NN retrieval algorithms with respect to bias and standard
deviation is similar, with the NN generally performing slightly better.
The XGB model performs significantly better than both the RE and
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NN models with respect to standard deviation and has a similar bias.
However, the SST sensitivity of both the RE and NN models is signif-
icantly higher than that of the XGB model, with the RE model having
the highest sensitivity. This demonstrates the importance of including
the sensitivity in the validation analysis. It is not yet understood why
the XGB model performs well with respect to standard deviation but
significantly worse than the other two models with respect to sensi-
tivity. This should be further investigated, especially with respect to
overfitting and selected input features.

This is an initial study meant to investigate the possibilities of using
ML based algorithms for retrieval of SST from PMW observations. It
shows that there is a large potential for the use of ML models but
also that further work is needed in order to explore the full potential
of ML based retrievals. The NN used here is a very simple form of
a neural network and does not represent the full spectrum of neural
networks. In order to investigate the use of neural networks for PMW
SST retrievals, a study comparing different types of neural networks
is needed. Similarly, more work is needed for evaluating the potential
of the XGB model and other decision tree based ML models, especially
with respect to sensitivity.

The main strength of ML models is that they allow for the approxi-
mation of complex functions without prior assumptions. For statistical
based algorithms, such as the RE, the relationship between the input
and output variables needs to be explicitly specified in the model
formulation. For ML models, on the other hand, the model itself will
find the best relationship between input and output variables without
prior assumptions.

The ML methodology, where the algorithms select the important
features based on the information in the observations and the training
dataset may also be of great value in complex problems where not
all physical or instrumental effects are well determined e.g. in the
commissioning phase of new satellites and instruments. This initial
study demonstrates that there is a large potential in the use of ML
algorithms for the retrieval of SST from PMW observations.
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A B S T R A C T   

Two retrieval algorithms developed as a part of the European Space Agency Climate Change Initiative (ESA-CCI) 
project are used to assess the effects of withholding observations from selected frequency channels on the 
retrieved subskin Sea Surface Temperature (SST) from AQUA’s Advanced Microwave Scanning Radio-
meter—Earth Observing System (AMSR-E) and to evaluate a Copernicus Imaging Microwave Radiometer (CIMR) 
like channel configuration. 

The first algorithm is a statistical regression-based retrieval algorithm, while the second is a physically based 
optimal estimation (OE) algorithm. A database with matching satellite and drifting buoy observations is used to 
test the performance of each channel configuration using both retrieval algorithms to identify the most optimal 
channel selection for accurate SST retrievals. The evaluation against in situ observations allows identification of 
the strengths and weaknesses of the two retrieval algorithms, and demonstrates the importance of using in situ 
observations to evaluate existing theoretical retrieval uncertainty studies. Overall, the performance increases as 
expected when more channels are included in the retrieval. In particular, more channels allow a better perfor-
mance for the range of different observing conditions (e.g. cold waters). The two retrieval algorithms agree that 
for a three-channel configuration, the 6, 10, 18 GHz (V and H polarization) is better than the 6, 10, 23 GHz 
configuration (V and H polarization). This is demonstrated for different geographical regions and throughout all 
seasons. Of the different combinations tested here, it is evident that withholding observations from the 23 and 36 
GHz channels from the retrieval has the least impact on the SST performance. Overall, this analysis shows that 
the CIMR like channel configuration performs very well when compared to an AMSR-E like constellation using 
both retrieval algorithms.   

1. Introduction 

Global sea surface temperature (SST) observations are crucial for 
climate monitoring (e.g. Merchant et al., 2019), numerical weather 
prediction (NWP; Brasnett and Colan, 2016; Chelton and Wentz, 2005), 
ocean and coupled models (Liang et al., 2017; Le Traon et al., 2015; 
Yang et al., 2015) and in understanding and predicting the state of the 
ocean and the atmosphere (Gentemann et al., 2003; Monzikova et al., 
2017; Ning et al., 2018; O’Carroll et al., 2019). Global sampling of SST is 
only possible through satellite remote sensing, and SST was one of the 
first ocean variables to be observed from earth observing satellites (see 

e.g. Minnett et al. (2019) for a detailed overview of the latest progress in 
satellite SST retrievals). SST has been derived from infrared (IR) satellite 
observations since 1981, with a typical spatial resolution of 1–4 km 
(Embury et al., 2012; Gladkova et al., 2016; Merchant et al., 2019; 
Reynolds et al., 2002). However, the IR observations are biased from 
aerosols and the temporal/spatial sampling is problematic in regions 
with persistent cloud cover (such as the Polar and Tropical regions), 
since IR wavelengths are unable to observe the surface through clouds 
(Merchant et al., 1999, 2006; Vázquez-Cuervo et al., 2004). 

Observations from passive microwave (PMW) sensors are important 
alternatives to IR observations as PMW measurements are not prevented 
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by non-precipitating clouds or biased by aerosols (Donlon et al., 2007, 
2010; Ulaby et al., 1981; Wentz et al., 2000). The first space borne 
microwave radiometer capable of measuring SST was the Scanning 
Multichannel Microwave Radiometer (SMMR) carried on Seasat 1 and 
Nimbus 7, both launched in 1978 (Lipes, 1982; Milman and Wilheit, 
1985). However, SST retrievals from Nimbus-7 SMMR suffered from 
significant calibration problems, resulting in SST errors as high as 
1.12 ◦C (Milman and Wilheit, 1985) as well as very coarse spatial res-
olution of approx. 150 km, limiting its usefulness. The high quality PMW 
SST record began in 1997 after the launch of the Tropical Rainfall 
Measuring Mission (TRMM) Microwave Imager (TMI; e.g. Kummerow 
et al., 1998; Wentz, 2015; Wentz et al., 2000) (10 GHz channel), which 
provided SST observations from 1998 to 2014 between 40◦N/S. The 
TRMM mission was followed by the Global Precipitation Mission (GPM) 
Microwave Imager (GMI; Bidwell et al., 2005; Draper et al., 2015), 
which was launched in 2014, and uses a larger antenna compared to TMI 
resulting in a better spatial resolution. The first global PMW SST data 
became available in 2002 by AQUA’s Advanced Microwave Scanning 
Radiometer – Earth Observing System (AMSR-E; e.g. Chelton and Wentz, 
2005; Kawanishi et al., 2003), using the channels at 6 GHz. The in-
strument ceased normal operations in October 2011 and was followed 
by the currently flying Advanced Microwave Radiometer 2 (AMSR2), 
flown on the Global Change Observing Mission 1st – Water (GCOM-W1), 
which was launched in 2012 (Imaoka et al., 2010). AMSR2 has a larger 
antenna compared to AMSR-E, which provides improved spatial reso-
lution and the additional channel at 7 GHz allows for better identifica-
tion of Radio Frequency Interference (RFI). PMW SST estimates using 
the 6.9 and 10.7 GHz channels have a typical spatial sampling of about 
10 km, a resolution of 50–60 km and an uncertainty of about 0.4 ◦C 
(Gentemann, 2014; Gentemann et al., 2010; Nielsen-Englyst et al., 2018; 
Wentz et al., 2000). The uncertainty is mainly attributed to mismatches 
in time and space of observations, differences in measurement depth, 
and errors in satellite estimates and in situ observations. 

The current microwave imagers do not capture the subscale to 
mesoscale variability and are contaminated near (~100 km) coasts and 
in the marginal ice zone at the 6.9 GHz channels, due to the large field of 
view (e.g. AMSR2 has a 64 × 32 km field of view at 6.9 GHz). The spatial 
resolution of SST retrievals is limited by the ratio of the wavelength of 
measurement to the antenna diameter, the satellite altitude and the 
incidence angle (Wentz and Meissner, 2000). A larger antenna is 
therefore required to obtain a high spatial resolution (e.g. for a resolu-
tion of ~10 km at 10 GHz an antenna of ~6 m is required assuming a 
satellite altitude of 830 km. Improving the spatial resolution of the 
measurements obtained by the 6.9 and 10.7 GHz channels could lead to 
substantial improvements of PMW SST estimates and their information 
content in global products and regional analysis systems. 

A sustained continuity of PMW imagers, which can provide mea-
surements at higher spatial resolution and with high radiometric fidelity 
to retrieve SSTs that meet the current operational needs, is a major 
concern within the SST community (O’Carroll et al., 2019). The Chinese 
Microwave Radiometer Imager onboard the HaiYang-2B (HY-2B) is a 
future PMW mission with a 6.9 GHz channel (Zhang et al., 2020), while 
the FengYun-3 series (FY-3D and FY-3F) also has a 10.65 GHz channel. 
However, their spatial resolutions are three times lower compared to 
AMSR2. In addition, the AMSR2 follow-on mission (AMSR3) is officially 
approved as a project to be installed on the Global Observation SATellite 
for Greenhouse gases and Water Cycle (GOSAT-GW) to be launched in 
2023 by JAXA (Hirabayashi, 2020). AMSR3 will be of almost equivalent 
capability to that of AMSR2, but with addition of high-frequency 
channels (166 and 183 GHz) (Hirabayashi, 2020). 

A new radiometer, the Copernicus Imaging Microwave Radiometer 
(CIMR), is currently being studied by the European Space Agency (ESA) 
for the Copernicus Expansion program of the European Union 
(http://www.cimr.eu/). CIMR is a polar mission, designed to observe 
all-weather, high-resolution, high-accuracy, sub-daily observations of 
SST and sea ice as the primary variables (Donlon, 2019). It is the 

intention to include the radiometer channels 6.9, 10.7, 18.7 and 36.6 
GHz common with AMSR-E and AMSR2, but also the 1.4 GHz channel, 
providing continuity to the current Soil Moisture and Ocean Salinity 
(SMOS; Kerr et al., 2010) and the Soil Moisture Active Passive (SMAP; 
Fore et al., 2016) missions. The anticipated spatial resolution of CIMR is 
shown in Table 1 and compared to the spatial resolution of AMSR-E. The 
higher spatial resolution at the lower frequency channels enables re-
trievals of SST and other surface parameters at a higher resolution and 
lower uncertainty than possible with the current missions. 

Studies have been conducted to assess the expected impact of CIMR 
observations on retrievals and applications for: sea ice, snow depth and 
sea surface salinity (Braakmann-Folgmann and Donlon, 2019; Ciani 
et al., 2019; Scarlat et al., 2020). Theoretical information content studies 
have been made with the aim of identifying the role of different channel 
combinations and the expected CIMR performance for SST (Kilic et al., 
2018, 2019; Pearson et al., 2018, 2019; Prigent et al., 2013). Kilic et al. 
(2018) derive a mean global SST retrieval uncertainty of 0.2 ◦C at a 
spatial resolution of 15 km using the intended CIMR channel configu-
ration, which is a clear improvement in performance compared to 
AMSR2. They also show that the estimated CIMR retrieval uncertainty 
varies strongly with SST (from 0.15 ◦C for warm SSTs and up to 0.45 ◦C 
for cold SSTs) and wind speed (larger uncertainties for higher wind 
speeds), but is only weakly impacted by the total column water vapor 
content and total cloud liquid water content. However, a comparison of 
the theoretical retrieval error standard deviations obtained for AMSR2 
by Kilic et al. (2018) (Figs. 5 and 6) and the standard deviations of 
retrieved versus drifting buoy SSTs in Alerskans et al. (2020) (Figs. 7 and 
8) shows significant differences between the theoretical and the 
observed uncertainties. These differences can arise due to the different 
retrieval methods (physical versus statistical) or due to limitations in the 
forward models ability to simulate the real conditions. Kilic et al. (2019) 
compared some of the ocean forward models used in the theoretical 
studies and found large differences between the models and significant 
disagreement with observations, in particular for high wind speeds and 
cold SSTs. 

With the discrepancies among the forward models, it is thus impor-
tant to apply several types of retrieval algorithms for different channel 
configurations and to evaluate them against a common in situ reference 
data set to supplement the existing theoretical studies. The aim of this 
study is to determine the impact of using different channel selections on 
retrieved SST and to assess the realistic performances of a physically 
based optimal estimation (OE) algorithm and a statistical regression 
(RE) based algorithm against in situ observations. The use of in situ 
observations can inform us about deficiencies and strengths of different 
types of retrieval algorithms as well as evaluate the impact of different 
channel combinations. In addition to the preparation for the CIMR 
mission, it is also important to investigate the effects of different channel 
combinations in a realistic scenario, where future ITU frequency allo-
cations may contaminate some of the specific frequency bands used for 
PMW observations of the ocean. Furthermore, this study can also be 
used to assess the impact during an instrument failure, where the de-
tector or electronics for one or several channels fail during operations. 
Finally, the results can aid in the construction of long-term climate data 
records (CDRs) and harmonization of PMW satellite missions with 

Table 1 
The frequency channels of the AMSR-E and CIMR mission and their respective 
spatial resolutions.  

Frequency 
(GHz)  

1.4 6.9 10.6 18.7 23.8 36.5 89.0 

Spatial 
Resolution 
(3 dB 
footprint 
size) (km x 
km) 

AMSR- 
E 

– 75 
×

43 

51 
× 29 

27 
× 16 

32 
× 18 

14 
× 8 

6 ×
4 

CIMR 64 
×

36 

19 
×

11 

13 
× 7 

6 ×
4 

– 5 ×
3 

–  
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different channel configurations. 
For the investigations conducted here, a physical and a statistical 

retrieval algorithm will be applied, where the physically based algo-
rithm is a type of retrieval algorithm similar to the ones used for the 
information content studies (Kilic et al., 2018, 2019; Pearson et al., 
2018; Prigent et al., 2013) and the statistical algorithm resembles the 
retrievals currently used to generate many existing PMW satellite SST 
products (Alerskans et al., 2020; Chang et al., 2015; Gentemann et al., 
2010; Shibata, 2006; Wentz and Meissner, 2007). 

The two different retrieval algorithms used here are developed 
within the ESA Climate Change Initiative (CCI) for SST (Merchant et al., 
2014). The first algorithm is an optimal estimation algorithm (Nielsen- 
Englyst et al., 2018), which inverts a forward model to retrieve different 
geophysical parameters including SST from AMSR-E observations. The 
second retrieval algorithm is a purely statistical retrieval, consisting of a 
regression model, which retrieves wind speeds and SSTs using AMSR 
brightness temperatures (Alerskans et al., 2020). In this study, we test 
different subsets of the channels available in AMSR-E, which means that 
we do not consider the 1.4 GHz channels, the actual noise equivalent 
differential temperatures (NEdTs) from CIMR and the higher spatial 
footprints. However, the results give valuable insight to the relative 
performance of the different channel combinations, and the differences 
between the two different types of retrieval algorithms for real condi-
tions using a well-known instrument. This study is therefore an impor-
tant extension to existing theoretical studies that investigate and prepare 
for new PMW missions like the CIMR. 

The paper is structured such that Section 2 includes a description of 
the matchup database used for algorithm development and validation. 
The retrieval algorithms are described in Section 3.1 while Section 3.2 
describes the different channel selections and filters, which have been 
tested. The retrieval results from using different channel selections in 
both retrieval algorithms are presented in Section 4. Section 5 contains a 
discussion and Section 6 presents recommendations for future work. 
Finally, conclusions are given in Section 7. 

2. Data 

2.1. ESA CCI multisensor matchup dataset (MMD) 

This work is built on the ESA CCI Multi-sensor Matchup Dataset 
(MMD), which is described and used in Nielsen-Englyst et al. (2018) and 
Alerskans et al. (2020). It includes brightness temperatures from the 
Level 2A (L2A) swath data product AMSR-E V12 (Ashcroft and Wentz, 
2013), with the spatial resampling to the 6.9 GHz resolution (75 × 43 
km). The L2A AMSR-E V12 product also includes a satellite scan quality 
flag, channel quality flags and the incidence- and azimuth angles. The 
brightness temperatures have been matched with quality controlled in 
situ measurements from the International Comprehensive Ocean- 
Atmosphere Dataset (ICOADS) version 2.5.1 (Woodruff et al., 2011), 
the Met Office Hadley Centre (MOHC) Ensembles dataset version 4.2.0 
(EN4; Good et al., 2013) by requiring a maximal geodesic distance of 20 
km and a maximal time difference of 4 h. The 20 km was chosen to 
ensure that the in situ measurement is located within an AMSR-E foot-
print, while the maximal time difference balances the need for accurate 
collocated data with the need for a sufficient number of useable 
matches. The MMD also includes SST, Total Column Water Vapor 
(TCWV), Total Cloud Liquid Water (TCLW), and Wind Speed (WS) in-
formation from the ERA-Interim (ERA-I) reanalysis data (Dee et al., 
2011). For sea surface salinity (SSS), we have included data from the 
GLOBAL-REANALYSIS-PHY-001-030 reanalysis product provided by the 
Copernicus Marine Environment Monitoring Service (CMEMS; http://m 
arine.copernicus.eu). 

The MMD has been filtered for erroneous satellite, in situ and 
auxiliary data. Erroneous satellite measurements include those 
contaminated by precipitation and RFI from ground-based sources, 
geostationary satellites and communication satellites that are identified 

and flagged in order to obtain accurate SST retrievals (e.g. Gentemann 
and Hilburn, 2015). Low quality AMSR-E pixels and brightness tem-
peratures outside the accepted range (0− 320 K) were also flagged as 
erroneous. In addition, data were flagged if the difference between the 
measurements in vertical (V) and horizontal (H) polarization for the 
18–36 GHz channels was negative. The standard deviations of the 23 
and 36 GHz channels (both polarizations) were calculated over a 21 ×
21 subregion surrounding the retrieval pixel and were used to flag low 
quality data. Low quality in situ data and matchups with an in situ or 
ERA-I SST outside the accepted range (− 2–34 ◦C) were flagged as 
erroneous. Similar, matchups with ERA-I wind speeds greater than 20 m 
s− 1 were flagged. Further checks were included to account for situations 
where the SST retrievals could be compromised due to land and sea ice 
contamination, diurnal warming effects, precipitation and sun glitter 
contamination, and RFI. Land and sea ice contamination was accounted 
for by using the AMSR-E land/ocean flag and ERA-I sea ice fraction. To 
avoid diurnal warming effects, daytime matchups with ERA-I wind 
speeds less than 4 m s− 1 were removed. Rain contamination was 
accounted for by removing data if the brightness temperature of the 18 V 
channel exceeded 240 K. Contamination from sun glitter was accounted 
for by removing data with sun glint angles below 25 degrees. Potential 
contamination due to RFI was accounted for by using Table 2 in Gen-
temann and Hilburn (2015), as well as the observation location (for 
ground based RFI) and the reflection longitude and latitude (for geo-
stationary RFI). As a last control, a 3-σ filter was applied on the ERA-I 
and in situ SST difference. The number of matchups per latitude band 
is limited in order to ensure a better balance of data across the different 
latitude bands. For further details on data filtering see Alerskans et al. 
(2020). 

The focus of this study is the year 2010. To obtain an independent 
validation data set, the matchups from 2010 were divided into four 
subsets to accommodate the fact that the regression model (see Section 
3.1.2) needs to be trained and afterwards validated on independent data. 
The first three subsets are used exclusively for the training of the 
regression model whereas the validation subset is used to validate the 
results from both retrieval algorithms. For a more detailed description 
on the division into subsets see Alerskans et al. (2020). 

The filtered validation subset consists of 1,514,985 matchups from 
2010, which are used to compare the performance of the different 
channel configurations for both retrieval algorithms. Fig. 1 shows the 
geographical distribution of the validation subset, with the largest 
number of matchups in North Atlantic Ocean. There is no significant 
seasonal variation in the matchup distribution. In Section 3.2, different 
filters are established to be used during the comparison of different 
channel configurations. 

3. Methods 

3.1. Retrieval algorithms 

3.1.1. Optimal estimation (OE) retrieval algorithm 
The OE algorithm used in this study is based on the retrieval algo-

rithm described in Nielsen-Englyst et al. (2018), which is built upon the 
forward model described in Wentz and Meissner (2000) that relates the 
observed top of atmosphere brightness temperatures to the relevant 

Table 2 
The number of matchups (N) left after filtering and the percentage of matchups 
removed by each filter. Convergence is also required by F1 + F2.  

Filter N % Removed 

No filter 1,514,985 – 
OE convergence passed 1,246,425 18 
F1: TB RMSE < 0.25 K 694,473 54 
F2: TB RMSE < 0.5 K 1,137,765 25 
F3: 3RSTD 1,080,336 29  
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geophysical parameters as given by the state vector, x = [WS, TCWV, 
TCLW, SST]. These are by experience the most important geophysical 
parameters influencing the amount of microwave radiation received by 
the satellite antenna at frequencies in the microwave part of the spec-
trum over open-ocean (Wentz and Meissner, 2000). Following Nielsen- 
Englyst et al. (2018), we use a regression model to correct for the for-
ward model residuals, which depends on SST and WS from the previous 
iteration and the ERA-I wind direction relative to the azimuthal look, φr. 
One way to examine the impact of the different channels on the retrieved 
parameters is to investigate the change in brightness temperature for a 
perturbation in the individual geophysical parameters (i.e. the Jacobian 
matrix). The sensitivity of the brightness temperatures to the geophys-
ical parameters varies with both frequency and polarization. The 
sensitivity of the forward model to SST is shown in Fig. 2a for the AMSR- 
E frequencies up to 36 GHz. It illustrates that the sensitivity is larger for 
the vertical polarizations, where 6.9 V GHz provides the highest sensi-
tivity with maximum changes in brightness temperature of 0.5 K/◦C. For 
6.9 and in particular the 10.7 GHz, the sensitivity decreases for cold 
SSTs, indicating that SST retrievals are more difficult in cold waters 
compared to warm waters. The WS influences the sea surface roughness, 
which affects the surface emissivity and hence the observed brightness 
temperatures (Hollinger, 1971; Meissner and Wentz, 2002, 2012). 
Fig. 2b shows the sensitivity to WS (wind induced surface roughness) 
with larger sensitivities to horizontal than vertical polarization. There is 
a distinct change in the slopes at WS of about 7 m s− 1 where foam starts 
to form, which increases the emissivity for both polarizations. The effect 
of water vapor is weak at low frequencies, and peaks at 23 GHz (Fig. 2c). 
Fig. 2d shows the change in brightness temperature over a range of 
TCLWs, with the main influence at the 36 GHz channels. The SSS has a 
small effect and the influence is largest at low frequencies (Fig. 2e). 
These dependencies are similar to the sensitivities found by Prigent et al. 
(2013) using the fast radiative transfer model RTTOV, but differ from 
those found by Pearson et al. (2018). For consistency, the sensitivity to 
the relative wind direction (φr) is shown in Fig. 2f, with the largest 
impact at the vertical polarizations at angles of 100–250◦. 

The OE technique presented by Rodgers (2000) has been used to 
retrieve WS, TCWV, TCLW and SST from AMSR-E observations by 
inverting the forward model. In the inversion, the forward model is 
constrained by a priori information about the expected mean and 
covariance of the geophysical parameters. A priori information from 
ERA-I has been used for SST, WS, TCWV and TCLW. We use a similar 
setup as in Nielsen-Englyst et al. (2018), but with an increased diagonal 
covariance matrix element for SST to increase the sensitivity of the 
retrieved SST to true changes in SST and to ensure the independency 
from the first guess SST information from ERA-I. The covariance of the a 

priori state xa (the a priori guess of the ocean and atmospheric state x), is 
therefore given as: 

Sa =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e2
WS 0 0 0
0 e2

TCWV 0 0
0 0 e2

TCLW 0
0 0 0 e2

SST

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(1)  

where eWS = 2 m s− 1, eTCWV = 0.9 mm, eTCLW = 1 mm and eSST = 4 ◦C. 
The uncertainties on WS, TCWV and TCLW are best estimates based on 
available published validation results (Chelton and Freilich, 2005; Dee 
et al., 2011; Jakobson et al., 2012; Jiang et al., 2012; Li et al., 2008) and 
the covariances are assumed zero following Nielsen-Englyst et al. 
(2018). As in Nielsen-Englyst et al. (2018), we use the 5 lower fre-
quencies: 6.9, 10.7, 18.7, 23.8, 36.5 GHz from AMSR-E for the retrieval. 
The Se is listed in Appendix A and the constant bias correction of the 
forward model ranges from − 0.72 K on 10 GHz H to 0.64 K on 18.7 GHz 
V. 

In the OE retrieval method, the error on the retrieval is given by the 
retrieval error covariance matrix: 

S =
(
S− 1

a + KT
i S− 1

ϵ Ki
)− 1 (2)  

where K is the Jacobian of the forward model. The square root of the S 
matrix provides the theoretical retrieval error standard deviation. Fig. 3 
shows the theoretical retrieval error standard deviation of SST as a 
function of SST for different WS, TCWV and TCLW conditions using an 
incidence angle of 55◦. The figures show that the theoretical retrieval 
error is largely dependent on the SST and WS, with largest errors for cold 
waters and high wind speeds. In comparison, the impact from TCWV and 
TCLW is very limited. This is in agreement with previous results (Kilic 
et al., 2018; Prigent et al., 2013). 

The OE algorithm also directly provides the sensitivities of the 
retrieved parameters to the true state through the averaging kernel 
matrix, which is given by: 

Aij =
dxi

dxt
j

(3)  

where xt is the true state. Using the validation subset as described in 
Section 2.1 and a filter requiring the root mean squared difference of 
simulated versus observed brightness temperatures (TB RMSE) less than 
0.5 K, the mean sensitivities of the retrieved parameters to the true state 
are given as: 0.99, 1.00, 1.00 and 0.99 for WS, TCWV, TCLW and SST. 
The increased sensitivity to SST, compared to the mean value of 0.5 in 

Fig. 1. (a) The geographical distribution of the matchups using a grid size of 5 × 5 degrees and (b) the latitudinal distribution of matchups, for the filtered vali-
dation subset. 
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Fig. 2. The change in top-of-atmosphere brightness temperature as a function of a) SST, b) WS, c) TCWV, d) TCLW, e) SSS and f) φr as simulated by the forward 
model for the state defined above the individual plots. 
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Nielsen-Englyst et al. (2018), is a result of the increased uncertainty on 
the first guess SST from ERA-I. For the same subset (TB RMSE<0.5 K), 
the standard deviation of retrieved SST versus in situ observed SST is 
0.66 ◦C. 

This setup has been used to run the OE algorithm for a number of 
different channel selections (see Section 3.2). The forward model sim-
ulates brightness temperatures for all channels, but only the selected 
channels (and the corresponding measurement and forward model un-
certainties) are included in the inversion, when different channel com-
binations are tested. 

3.1.2. Regression (RE) model 
The statistical retrieval algorithm consists of a two-step WS regres-

sion model followed by an SST regression model. Both steps in the WS 
retrieval algorithm use AMSR-E brightness temperatures, where the first 
step applies a global algorithm and the second step applies a localized 
algorithm for fixed WS intervals, using the first-step retrieved WSs. The 
SST retrieval algorithm applies a global algorithm to retrieve SST using 
AMSR-E brightness temperatures, the retrieved wind speeds from step 
two of the WS retrieval algorithm and information from ERA-I. The SST 
retrieval is very similar to the one described in Alerskans et al. (2020), 
except that the coefficients are derived globally in this study. Alerskans 
et al. (2020) used a two-stage retrieval algorithm to retrieve SST, where 
the first-stage coefficients were derived locally for fixed latitude in-
tervals and ascending and descending passes, respectively, and the 
second-stage coefficients were derived locally for fixed WS and SST 

intervals. The approach with global coefficients was chosen in this study 
to ensure a consistent comparison of the different channel selections and 
to minimize effects from localized algorithm coefficient derivations. The 
global performance of the retrieved SST compared to drifter SST is 
0.62 ◦C using the frequency range 6–36 GHz and a filter of TB RMSE less 
than 0.5 K, as derived for the OE retrieval (see Section 3.2). In this study, 
we are considering the relative differences between the different chan-
nel selections and we are therefore not concerned with the slightly larger 
retrieval errors. 

3.2. Selection of channels and subsets 

Different channel combinations have been tested by selecting 
different subsets of the channels available in AMSR-E and a configura-
tion where all channels (except the 89 GHz channels) are included. As 
the focus of this study is SST retrievals, the main focus will be on the 15 
different channel selections that all include the 6 GHz channels, as 6 GHz 
is the primary frequency for global SST retrievals (Wilheit, 1979). 
However, it is beneficial to know the effect of excluding the 6 GHz 
channels, as the GMI instrument could be a potential bridging data set 
between AMSR2 and future PMW missions (Bidwell et al., 2005; Draper 
et al., 2015). The importance of the 6 GHz channel is clear when the two 
channel combinations 6, 10, 18, 23 and 36 GHz and 10, 18, 23 and 36 
GHz are compared, where the removal of the 6 GHz channels results in 
an increase in the uncertainty of the retrieved SST from 0.66 ◦C to 
0.75 ◦C for the OE algorithm and from 0.62 ◦C to 0.86 ◦C using the RE 

Fig. 3. The simulated retrieval error, S, as a function of SST for different a) WSs, b) TCWVs and c) TCLWs.  
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algorithm and the TB RMSE<0.5 K filter. 
In this study, we will refer to the AMSR-E channel selection as the 

one including: 6, 10, 18, 23 and 36 GHz (without the 89 GHz channels), 
following Nielsen-Englyst et al. (2018). Alerskans et al. (2020) uses the 
89 GHz channels, but the inclusion only resulted in slight improvements 
in the performance. We will refer to the CIMR channel selection as the 
one including: 6, 10, 18 and 36 GHz (in contrast to the expected 
configuration, which also includes the 1.4 GHz frequency). It is assumed 
that the V and H polarizations are always available (or not available) at 
the same time. In Section 4.1, the 15 different channel selections have 
been tested on the same validation subset for both the OE and RE 
retrieval algorithms. It is important to select a suitable selection filter 
that enables a comparison of the different retrievals. Here, the subsets 
have been obtained by applying a common filter based on the matchups 
for which the OE AMSR-E channel configuration has reached conver-
gence and another filter based on TB RMSE also obtained from the OE 
AMSR-E channel configuration. Differences in the simulated and 
observed brightness temperatures can usually be attributed to forward 
model errors or measurement errors (due to e.g. imperfect calibration or 
channel contamination). Nielsen-Englyst et al. (2018) showed a close 
relationship between the TB RMSE and the SST retrieval performance. 
Table 2 shows the number of matchups removed by applying different 
filters. Of all matchups, 82% reached convergence as defined in Nielsen- 
Englyst et al. (2018). The next two filters (F1 and F2) include the 
convergence criterion as well, but also additional filters with TB RMSE 
less than 0.25 K and 0.5 K, respectively. The F2 filter removes 25% of the 
matchups (including the ones that did not reach convergence), while the 
F1 filter removes 54%. Using the simulated brightness temperatures 
from the AMSR-E channel configuration for filtering will favor this 
configuration over the other selections, but ensure that the same subset 
is used for all channel configurations and that the worst retrievals are 
excluded. The TB RMSE filters have been used in Section 4.1. 

In Section 4.2, the analysis focuses on four of the above-mentioned 
channel configurations: a) 6, 10, 18 GHz, b) 6, 10, 23 GHz, c) 6, 10, 
18, 36 GHz, and d) 6, 10, 18, 23, 36 GHz. These configurations have 
been chosen because they represent the effect of including the 23 GHz 
channels through a direct comparison against the 18 GHz channels and 
through a comparison of the CIMR and AMSR-E channel configurations. 
Furthermore, selection a) and c) allow us to examine the effects of the 
36 GHz channels. For this analysis, another filter (F3) has been applied 
to ensure that the filtering does not favor any of the four channel con-
figurations, and still retains enough matches to make robust validation 
statistics. The F3 filter removes matchups if the simulated minus 
observed brightness temperatures exceeds three times the robust stan-
dard deviation (3RSTD) for any of the channels in each of the four 
channel configurations. This filter removes 29% of the matchups, most 
of which are the same as those removed by the F2 filter, with 99% of the 

matchups removed by the F3 filter also removed by the F2 filter. A total 
of 98% of the matchups removed by the F1 filter are also removed by the 
F3 filter. Fig. 4 shows the geographical distribution of the removed 
matchups using the F1 and F3 filter, respectively. Most of removed 
matchups are located in the areas, where the largest number of 
matchups is present (see Fig. 1) and the two filters agree on the locations 
where most matchup are removed. 

4. Results 

4.1. Performance for all channels 

The validation subset (described in Section 2.1) has been used for 
both retrieval algorithms (RE and OE) to assess the overall impact of 
using different channel combinations. Fig. 5 shows the robust standard 
deviation (rstd) of retrieved SST – in situ SST for the OE and RE algo-
rithms, using the 15 different channel combinations, where the F2 and 
F1 filters have been applied, removing 25% and 54% of the matchups, 
respectively (see Section 3.2). The channel configurations are ranked 
from the highest standard deviations to the lowest using the RE model 
results and the F1 filter to determine the order. This ranking order of the 
channels will be used for all figures in this section. Adding more chan-
nels leads to a better performance of the RE model, with the 6, 10, and 
18 GHz channels being the most important. Using the F1 filter improves 
the RE performance for all channel configurations, with limited changes 
in the ranking order compared to the F2 filter. The TB RMSE filtering 
shows improvements in the RE retrieval of comparable magnitude as 
when using the OE algorithm. This shows the value of the TB RMSE 
factor as an uncertainty indicator. The OE algorithm shows less variation 
among the different channel combinations compared to the RE algo-
rithm, and the OE algorithm performs quite well by only including 2 
frequencies, where it outperforms the RE algorithm. 

The differences and similarities between the RE and OE algorithms 
have been investigated further by looking at the performance during 
different weather and surface conditions, using the F2 filter. This filter 
was chosen to keep sufficient matchups in the different categories and to 
minimize effects from filtering on the results. Fig. 6a–b show the per-
formance of the retrieved SST for calm or strong winds (calm or rough 
sea), cold or warm SSTs, and dry or humid conditions for the OE and RE 
algorithm, respectively. Using 500 bootstrap samples with replacement 
(same size as N), the average width of the 90% confidence intervals is 
0.0030 ◦C, when considering both algorithms and all the different 
weather/surface conditions and channel selections. The maximum 
width of the 90% confidence intervals is 0.0075 ◦C and calculated for the 
RE WS > 10 m s-1 and the 6, 18 GHz channel selection data subset. 
Warm, calm waters and humid conditions show a good and similar 
performance for the different channel selections for both algorithms. 

Fig. 4. The number of matchups removed by a) the F1 (TB RMSE<0.25 K) filter and b) the F3 (3RSTD) filter using 5 × 5 degree bins.  
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Rough and cold waters provide equally high standard deviations, when 
compared to the relatively low standard deviations observed for warm 
and calm waters. Both algorithms show a good performance for high 
TCWV conditions, but this effect is likely related to the good perfor-
mance in warm waters, with 96% of the high water vapor matchups 
located in warm waters (>15 ◦C). By including more channels, the al-
gorithms tend to retrieve better SSTs in cold and rough waters, reducing 
the overall spread and thus allowing the algorithms to better represent 
all observing conditions. One of the key differences between the two 
algorithms is seen in the variability among the different weather and 
surface conditions. The OE algorithm shows significant increases in 
uncertainty for cold and rough waters, but a very good performance in 
warm and calm waters for all channel configurations. In contrast, the RE 
model shows limited variability among the different weather and sur-
face conditions, especially when more channels are included. This 
demonstrates the strength of the statistical RE model, which always 
maximizes the amount of information in the channels available for 
retrieval based upon the information in the training data. In few of the 
RE channel combinations (6, 10 GHz and 6, 36 GHz), the information is 
limited resulting in inadequate representation of all conditions. These 
channel selections work for warm waters, but they all show weak per-
formance in cold and rough waters for the RE algorithm. A good per-
formance should not only be judged on the overall performance, since it 
depends on the number of matchups representing the given conditions, 
but it should also consider the spread in performance between the 
different observing conditions. 

The overall improvement in SST performance (i.e. decrease in rstd 
when compared to drifter SST) of including the different frequencies (V 
and H polarization) can be seen in the first two columns of. 

Table 3. These are based on the difference in performance between 
the algorithm that includes the frequency considered and the same 
channel configuration excluding the frequency considered. The im-
provements by adding the 6 GHz channels are thus based on the com-
parison of the 10, 18, 23, 36 GHz against the AMSR-E configuration, 
while the statistics on each of the other channels are based on a com-
parison of 7 pairs of channel configurations (all including the 6 GHz 
channels). The channels with the largest impact have been marked as 
bold in the table. The table shows that the OE and the RE algorithm 
agree that (not surprisingly) the most important channels for SST re-
trievals are the 6 GHz channels, followed by the 10 and 18 GHz 

channels. 
Fig. 7 shows the sensitivity (Eq. (3)) to SST obtained using the OE 

algorithm for the different channel configurations during the different 
weather and surface conditions. The sensitivities to SST are generally 
high (mean value of 0.98) and the variations are small, but significant. 
Using 500 bootstrap samples with replacement (same size as N), the 
average width of the 90% confidence intervals is 2.44e-05 when 
considering the different weather/surface conditions and channel se-
lections. The maximum width of the 90% confidence intervals is 8.77e- 
05 and calculated for the WS > 10 m s− 1 and the 6, 10 GHz channel data 
subset. The high sensitivities are explained by the increased uncertainty 
on first guess SST. As more channels are included the sensitivity in-
creases (in particular for cold waters), with the 6, 10 GHz configuration 
having the lowest sensitivity. This should be viewed in context of the 
performance of the retrieved SST against in situ SST in Fig. 6a, where 
increased number of channels improves the performance over the range 
of different observing conditions. The lowest sensitivity is generally seen 
for cold SST and high wind speeds, which explains the poor OE perfor-
mance in these conditions using all channel configurations (Fig. 6a). 

The sensitivity to TCLW (not shown) is likewise very high (mean 
value of 1.00) across the 15 channel selections, due to relative high 
uncertainty on ERA-I TCLW, which means that the retrieved TCLW is 
independent of the first guess from ERA-I. The sensitivity to WS and 
TCWV (also not shown) vary across the different channel selections 
depending on the information available in the selected channels, with 
the mean values of 0.93 and 0.44, respectively. The increase in sensi-
tivities with inclusion of different frequencies (V and H polarization) can 
be seen in the last four columns of. 

Table 3. The addition of the 36 GHz channels shows the largest in-
crease in both the WS and TCLW sensitivity, followed by the 18, 23 and 
10 GHz channels, while the 6 GHz channels give the smallest increase in 
sensitivity. For the TCWV sensitivity, the 23 GHz channels show the 
largest increase, followed by the 36 and 18 GHz channels and with 
limited impact from the 6 and 10 GHz channels. For the SST sensitivity, 
the 6 GHz channels show the largest increase, and leave the remaining 
channels with a small impact on the sensitivity in comparison. 

4.2. Geographical dependencies for selected channel configurations 

Fig. 8 shows the global performance of retrieved SST when compared 

Fig. 5. Robust standard deviation of retrieved SST against drifter SST for different channel selections using the OE and RE algorithm and the filters F1 (TB 
RMSE<0.25 K) and F2 (TB RMSE<0.5 K), respectively. The channel configurations are ranked from the highest to the lowest standard deviations using F1 filtering 
and the RE algorithm. 
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to drifters for the RE and OE algorithms, respectively, for the AMSR-E 
channel configuration using the F3 filter. In general, the best perfor-
mance is seen for low latitudes, while the high latitude and high vari-
ability regions show increased standard deviations. This is consistent 
with the fact that ∂TB/∂SST is smaller for cold waters compared to warm 
waters, as is also shown in Fig. 2a. Sea ice and a much smaller Rossby 
radius (compared to low latitudes), resulting in much smaller scale of 
eddies and fronts, further complicate SST retrievals in high latitudes. 
Better spatial resolution (as expected by CIMR) will make it easier to 
detect these features and therefore improve high latitude retrievals. The 
large standard deviations in the Sea of Japan are evident for all channel 

combinations and both types of retrieval algorithms, and are likely ef-
fects from RFI at 6 GHz and RFI at 10 and/or 18 GHz, which are not 
removed by the applied RFI filters (see Section 2.1). Larger standard 
deviations are seen both with and without the 6 GHz channels, indi-
cating that some matchups are contaminated at 6 GHz, while others are 
contaminated at 10 GHz and/or 18 GHz. Therefore, more sophisticated 
RFI filtering may be required, such as being planned for on-board 
implementation on CIMR. Since, the effect is seen in all channel selec-
tions it will not change the conclusions drawn in this study. The OE 
algorithm shows larger latitudinal differences in performance, with a 
better performance than the RE algorithm in the region between 25 N 

Fig. 6. Robust standard deviation of retrieved SST against drifter SST for different conditions and channel selections using a) the OE algorithm and b) the RE al-
gorithm. The F2 (TB RMSE<0.5 K) filter has been applied for both the OE and RE algorithm and N is the number of matchups in each subset. The channel con-
figurations are ordered from the highest to the lowest standard deviations using “all” conditions/matchups after F1 filtering (TB RMSE<0.25 K) for the RE algorithm. 
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and 25 S, but a decrease in the performance at latitudes above 40◦. The 
smaller latitudinal dependence in the RE algorithm indicates that the 
statistical model finds a way to compensate for the reduced sensitivity in 
colder waters using information from the other channels and the co-
variances between the geophysical parameters that have an impact on 
the observed brightness temperatures. 

Fig. 9 shows how the performance of the three channel selections: 6, 
10, 18 GHz, 6, 10, 23 GHz, and CIMR differs from the performance using 
the AMSR-E channel configuration for the OE and RE algorithm, 
respectively. Using the 6, 10, 18 GHz channels improves the perfor-
mance in the equatorial region (and mid-latitudes for the OE algorithm) 
compared to the AMSR-E configuration. However, in the high latitudes 
(and further into the mid-latitudes for the RE algorithm) the AMSR-E 
configuration outperforms the 6, 10, 18 GHz configuration. The 

Table 3 
Improvements in SST retrievals compared to drifters for the OE and RE algo-
rithms (column 1–2), and the increase in sensitivities (column 3–6), by including 
information from individual frequencies (both V and H polarization) using the 
F2 (TB RMSE < 0.5 K) filter. The largest increases in SST performances and 
sensitivities have been marked with bold.   

OE SST RE SST ΔA1,1 ΔA2,2 ΔA3,3 ΔA4,4 

(WS) (TCWV) (TCLW) (SST) 

6 GHz 0.2402 0.0907 0.0210 0.0140 0.0000 0.0145 
10 GHz 0.0876 0.0148 0.0372 0.0913 0.0002 0.0013 
18 GHz 0.0811 0.0117 0.0431 0.2762 0.0017 0.0007 
23 GHz 0.0309 0.0089 0.0339 0.5984 0.0011 0.0007 
36 GHz 0.0289 0.0114 0.0950 0.4939 0.0039 0.0011  

Fig. 7. The sensitivity to SST for the different channel selections and different weather/surface conditions using the same ranking order as in the previous figures and 
the F2 (TB RMSE < 0.5 K) filtering. N is the number of matchups in each subset. 

Fig. 8. Retrieved SST performance (robust standard deviations, rstd) against drifter SST using the AMSR-E (6, 10, 18, 23, 36 GHz) channel selection for a) the OE 
algorithm and b) the RE algorithm, using the F3 (3RSTD) filter. The geographical statistics have been gridded using a grid size of 5 degrees, with a minimum of 50 
matchups per grid cell. 
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largest reductions in performance (compared to AMSR-E) are seen in the 
comparison of the 6, 10, 23 GHz configuration for both algorithms, with 
the most pronounced degradation for the RE algorithm. For both algo-
rithms, the degradations are concentrated in the high latitudes (and mid 
latitudes for the RE algorithm), while the 6, 10, 23 GHz configuration 
seems to perform slightly better in the equatorial region. Both the OE 
and RE algorithms show the best agreement between the CIMR and 

AMSR-E channel selections, with the smallest differences using the OE 
algorithm. These findings have been summarized in Table 4 for the nine 
regions shown in Fig. 10. 

Table 4 shows the performance of the four channel configurations 
using the OE and RE algorithms for each of the nine regions. For all 
channel selections, the best performance is seen in the equatorial region, 
with decreasing performance towards the poles. This latitudinal 

Fig. 9. Difference in robust standard deviations (retrieved minus drifter SST) (rstd) between channel configurations 6, 10, 18 GHz and the AMSR-E channel 
configuration using a) the OE algorithm, and b) the RE algorithm. Similar, the differences in rstd between 6, 10, 23 GHz and AMSR-E are shown for the OE (c) and RE 
(d) algorithms and the differences in rstd between CIMR and AMSR-E for the OE (e) and RE (f) algorithms. The F3 (3RSTD) filter has been used in all figures. The 
geographical statistics have been gridded using a grid size of 5 degrees, with a minimum of 50 matchups per grid cell. 
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dependence is more pronounced for the OE algorithm compared to the 
RE algorithm, in all configurations. The 6, 10, 18 GHz combination 
shows very good performance in particular for the OE algorithm, where 
it outperforms the AMSR-E selection in most regions (except for the high 
latitudes). The AMSR-E and CIMR configurations show very similar 
performance in all regions. 

Fig. 11 shows the seasonal cycle of the robust standard deviations of 
retrieved minus drifter SST for the same four channel selections using 
both retrieval algorithms in the nine different regions. The high latitudes 
show a clear seasonal cycle, with the lowest standard deviations during 
local summer (warm SST) for both algorithms. The high latitude regions 
also show the largest differences between the RE and OE performance, 
which is particularly true during local winter time, where the RE algo-
rithm performs better than the OE algorithm. For most regions, the 6, 10, 
23 GHz configuration gives the highest standard deviations for both 
retrieval algorithms. The RE algorithm shows very similar seasonal 
performance for the 6, 10, 18 GHz, CIMR and AMSR-E channel config-
urations for all regions. However, large differences between these con-
figurations and the 6, 10, 23 GHz configuration are observed using the 
RE algorithm, especially at high latitudes during winter, where signifi-
cant improvements are seen when replacing the 23 GHz with the 18 GHz 
channels. 

5. Discussion 

This study shows that the inclusion of more channels and more 

information in the retrieval reduces the uncertainty in the SST retrievals. 
This is clearly seen for the RE algorithm, while the OE algorithm shows 
less variability in overall performance among the different channel se-
lections. This difference can be explained by the fundamental difference 
in the two types of retrieval algorithms. The statistical retrieval is based 
solely on the information available in the selected satellite channel ob-
servations. Conversely, the OE types of retrieval algorithm use a priori 
information to constrain the retrievals. If limited information is avail-
able in a given set of channels, the sensitivity will decrease and as a 
result, the algorithm will put more weight on the first guess. The largest 
decreases in the wind speed (i.e. sea surface roughness) sensitivity are 
seen for retrievals in cases, where 36, 23 or 18 GHz are left out from the 
OE retrieval. Theoretically, the sensitivity to WS is largest at 10 and 18 
GHz (Fig. 2b). In the approach used here however, the fact that indi-
vidual channels are sensitive to other parameters is turned to an 
advantage by the simultaneous use of all channels. The largest decrease 
in water vapor sensitivity is seen for retrievals, where the 23 and 36 GHz 
observations are left out. In particular, the retrieved water vapor will in 
these cases be dominated by the first guess from ERA-I, which therefore 
will keep the OE retrievals close to the true state even with limited in-
formation from the brightness temperatures. This will be the case in a 
realistic scenario, as the one considered here, where WS and TCWV in-
formation is available from NWP at a similar quality as ERA-I to be used 
as first guess for the OE algorithm. The OE retrieval algorithm is thus 
more robust towards different channel combinations, compared to the 
statistical RE algorithm. 

Table 4 
The retrieved versus drifter SST robust standard deviations (◦C) within each region using the OE and RE algorithm, for each of the four channel selections using the F3 
filter.  

Region RE algorithm OE algorithm 

6, 10, 18 6, 10, 23 CIMR AMSR-E 6, 10, 18 6, 10, 23 CIMR AMSR-E N 

Arctic 0.70 0.82 0.69 0.67 0.92 0.96 0.90 0.89 109,493 
Subpolar North Atlantic 0.67 0.75 0.68 0.66 0.82 0.85 0.82 0.82 43,160 
North Atlantic 0.62 0.68 0.63 0.62 0.57 0.60 0.59 0.59 110,870 
North Pacific 0.64 0.71 0.65 0.63 0.58 0.62 0.60 0.60 163,072 
Equatorial Region 0.53 0.57 0.55 0.55 0.44 0.44 0.48 0.47 188,331 
South Atlantic 0.61 0.69 0.62 0.61 0.60 0.63 0.61 0.61 76,185 
South Pacific 0.58 0.65 0.58 0.57 0.53 0.56 0.55 0.54 116,675 
South Indian Ocean 0.63 0.70 0.63 0.61 0.63 0.65 0.65 0.65 83,632 
Southern Ocean 0.68 0.79 0.67 0.65 0.83 0.87 0.82 0.83 174,069 
All regions 0.62 0.70 0.63 0.62 0.63 0.66 0.66 0.66 1,065,487 

Bold indicates the lowest robust standard deviation among the channel selections for each region and both algorithms. N is the number of matchups within each region. 

Fig. 10. The matchups in the nine selected regions for which the algorithms have been evaluated.  
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By including more channels both algorithms show a better repre-
sentation over the range of the different observing conditions. The 
performance of the OE algorithm (and the different channel selections) 
is sensitive to the atmospheric and oceanic conditions with elevated 
uncertainties for cold and rough waters for all channel selections. The 
increased uncertainties in cold waters are related to the decreased 
sensitivity to SST for the low frequency channels (in particular at V 
polarization) as seen in Fig. 2a. Kilic et al. (2019) found that cold SSTs 
are a general source of disagreement between simulated and observed 
brightness temperatures in the emissivity models and they explained this 
in part by uncertainties in the modelling of the dielectric constants of sea 
water, but also by inaccuracy in the reanalysis data and high wind speed 
effects in colder areas. Fig. 2a shows that the sensitivity to SST in cold 
waters to a large extent originates from the higher frequency channels, 
with decreasing brightness temperatures for increasing SST. This suggest 
that the increased uncertainties for cold SST could also be attributed to 
uncertainty in modelling the higher frequencies due to e.g. imperfec-
tions in the atmospheric emissivity model. This effect could possibly to 
some extent be reduced by including the covariances (off-diagonals in 
Sa) between the geophysical parameters in the OE algorithm. However, 
these are currently not well known and it is a complete study to estimate 
them (see recommendations for future work in Section 6). Using the RE 
algorithm, the increased uncertainties for cold waters and strong surface 
roughness is most pronounced for the two-frequency configurations 
without 18 GHz, while more (>2) frequencies provide enough infor-
mation to balance the lower sensitivity in cold and rough waters. This 
indicates that the statistical RE algorithm compensates for the reduced 
sensitivity of the low frequency channels in colder waters by using in-
formation from the higher frequency channels and possibly the co-
variances between the geophysical parameters influencing the 
observations. These results demonstrate the importance of using in situ 
observations and several types of SST retrievals to assess the relative 
performance of the different channel selections. Information content 
studies are typically performed using the OE type of algorithms, but 
different conclusions might be reached using other types of retrieval 
methods, as indicated here. 

Both the OE and RE algorithms agree that in a three frequency se-
lection, the 6, 10, 18 GHz combination is better than 6, 10, 23 GHz, 
considering the nine different regions in Table 4 and performance 
throughout the year (Fig. 11). In general, the results for the OE and RE 
algorithms consistently show that the CIMR channel selection performs 
very well compared to the AMSR-E configuration. It should be noted that 
the presented results do not correspond to the expected CIMR perfor-
mance, as e.g. the CIMR NEdTs will be different from the AMSR-E NEdTs 
and the CIMR footprints will be significantly smaller than the AMSR-E 
footprints. Neglecting these observational characteristics for the CIMR 
instrument, means that the absolute performance of the CIMR retrievals 
is expected to be significantly better than shown here due to smaller 
NEdTs and smaller footprints, which better resolve spatial variability at 
the key frequencies. However, as we focus on the differences between 
the channel combinations, we consider the AMSR-E NEdTs suitable for 
the current study. Using the AMSR2 observations instead of AMSR-E 
observations would very likely resemble the results presented here, as 
it was shown in Alerskans et al. (2020) that the retrievals from the two 
instruments showed very similar performance and uncertainty 
characteristics. 

The very good performance of the 6, 10 and 18 GHz combination 
shown here support the channel selection for the CIMR mission, as the 
CIMR requirement of the NEdT for the 36 GHz is elevated (Donlon, 
2019) and therefore is likely to contribute with limited information to 
the SST retrievals. Also, note that the CIMR configuration referred to in 
this paper is without the 1.4 GHz channels (L-band). This could intro-
duce a difference in the wind speed behavior, particularly for high wind 
speeds (Meissner et al., 2017; Reul et al., 2012, 2016, 2017), and also on 
the impact of salinity. However, for the winds considered here (<20 m 
s− 1) it was shown in Alerskans et al. (2020) that sufficient information 
was available in the AMSR-E observations to perform an accurate wind 
speed retrieval. 

To obtain realistic retrieval estimates using the OE algorithm, an 
accurate forward model is needed to account for the brightness tem-
perature dependencies to the relevant geophysical parameters. The 
forward model used is based on an earlier version of the RSS (Remote 

Fig. 11. Retrieved SST performance against drifters for the four different channel selections: 6, 10, 18 GHz, 6, 10, 23 GHz, 6, 10, 18, 36 GHz, and 6, 10, 18, 23, 36 
GHz as a function month for the different regions using the F3 filter for both retrieval algorithms. 
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Sensing Systems) model (Wentz and Meissner, 2000), which showed the 
least discrepancy with observations in Kilic et al. (2019). The im-
provements applied to the forward model (Nielsen-Englyst et al., 2018) 
results in even better agreement with observations and consequently 
good SST retrievals. The forward model sensitivities presented in this 
paper (see Fig. 2) indicate a close relationship with Prigent et al. (2013) 
and Kilic et al. (2018), whereas the use of RTTOV and FASTEM (FAST 
microwave Emissivity Model) in Pearson et al. (2018) shows signifi-
cantly different emissivity/brightness temperature dependencies with 
respect to wind speed and sea surface salinity. 

One of the strengths of the OE algorithm is that it offers several 
possibilities to obtain realistic error estimates and in fact it directly 
provides a theoretical error estimate for each retrieval. The theoretical 
uncertainties presented in Section 3.1.1 are in good agreement with 
those found in Prigent et al. (2013) and Kilic et al. (2018). A validation 
of the estimated theoretical uncertainties is shown in Fig. 12, where the 
OE versus drifter SST differences are displayed against the theoretical 
uncertainties obtained from Eq. 2. The dashed lines represent the ideal 
uncertainty under the assumptions that drifting buoys have a total un-
certainty of 0.2 ◦C and that the mean global point to footprint sampling 
uncertainty is 0.15 ◦C, derived as in Alerskans et al. (2020) taking into 
account the footprint of the AMSR-E instrument. The figure shows 
reasonable agreement between the observed uncertainties and the 
theoretical uncertainties, which is computed for each retrieval in the OE 
algorithm, but also demonstrates that the theoretical retrieval un-
certainties are not representing the true uncertainties for all conditions, 
demonstrating the need for use of in situ observations for this type of 
assessment. 

6. Future work 

This study shows that the statistical retrieval algorithm is more 
robust over the range of observing conditions, when compared with the 
physically based OE algorithm that can include information from first 
guess fields. Future work should therefore aim at improving the OE al-
gorithm. This can be done in several ways. One way is to improve the OE 
statistics for PMW observations e.g. by including the error covariances 
for the geophysical variables in the retrieval. The error covariances for 
the geophysical variables influencing passive microwave observations 
are currently not well known and it is a complete study to estimate these. 
One recent study has been conducted to estimate error covariance 

parameters (and a bias correction) using IR observations (Merchant 
et al., 2020) and it looks very promising. Repeating the work done by 
Merchant et al. (2020) should be the focus of future work to improve the 
OE algorithm. Another way to improve the OE algorithm is to update the 
forward model to more accurately model the emissivity over the given 
frequency range and accounting for the different observing conditions. 
As also recognized in Kilic et al. (2019), current ocean emissivity models 
have issues particularly in cold and rough waters, and future efforts 
should thus be devoted to address these issues. The addition of the 1.4 
GHz channels in the retrieval to prepare for the CIMR observations is 
another interesting task that would add information about the salinity 
and high wind speeds to the channel combinations considered here. 
Note, however, that the spatial resolution of the 1.4 GHz channels on the 
CIMR will be significantly coarser than e.g. the 6 GHz observations, 
which adds a complication to the use of the 1.4 GHz channels. 

Both retrieval algorithms agree that the 6, 10, 18 GHz is better than 
the 6, 10, 23 GHz combination. Although the 23 GHz should be 
considered the best channel to account for uncertainties due to water 
vapor variability, these results show that it might add more noise being 
in the absorption band, while the 18 GHz channels are able to correct for 
the relative small uncertainties in the 6 GHz channels due to water vapor 
variability. If 10 GHz is used as the primary frequency for SST retrievals, 
the 23 GHz may be needed as the 10 GHz channels are affected more by 
water vapor than the 6 GHz channels. Future studies could extend this 
study to investigate other channel combinations, including those omit-
ting the lowest frequency(ies) in order to obtain better spatial 
resolution. 

Additional future tasks could also be to examine the impact on the 
results shown here by using a different forward model or by using ERA5 
(Copernicus Climate Change Service (C3S), 2017) instead of ERA-I 
reanalysis data for training the RE algorithm and for first guess in the 
OE algorithm, respectively. Irrespective of the different improvements 
made to the retrievals and the forward models, this study demonstrates 
the importance of comparing different types of retrieval algorithms 
(physical versus statistical) using in situ observations before deter-
mining the best suitable SST retrieval for a new instrument, such as 
CIMR. 

7. Conclusion 

The aim of this study is to analyze the impact of using different 
channel selections on retrieved sea surface temperature (SST) and to 
assess the performance of two different types of retrieval algorithms. 
The first algorithm is a physically based optimal estimation (OE) algo-
rithm (Nielsen-Englyst et al., 2018), which inverts a forward model to 
retrieve SST, wind speed (WS), total column water vapor (TCWV) and 
total cloud liquid water (TCLW), while the second algorithm is a sta-
tistical regression (RE) based algorithm, which retrieves WS and SST 
(Alerskans et al., 2020). Here, we use AMSR-E brightness temperatures 
from 2010 to retrieve SST using different channel combinations in both 
algorithms, which are then compared to independent in situ SSTs. 

This study demonstrated similarities with Kilic et al. (2018) using the 
OE algorithm, but it also demonstrated the importance of using two 
different types of retrieval algorithms. Information content studies are 
typically performed using the OE type of algorithms, and the current 
forward models have issues reproducing observations in cold waters 
(Kilic et al., 2019). Conversely, statistical retrievals, such as the RE al-
gorithm, are the often used for generating operational and climate data 
records of PMW SST. The RE algorithm used here is able to compensate 
for the decreased sensitivity for cold SSTs, due to the nature of the sta-
tistical algorithm. This study also highlights the importance of assessing 
the retrievals against real reference observations, to ensure that all the 
different uncertainties contributions are included when drawing con-
clusions on the impact of using different channels for SST retrievals. 

Both algorithms show (as expected) an increase in performance 
when more channels are included in the retrieval, since more channels 

Fig. 12. Theoretical uncertainty validation with respect to drifter SST for the 
OE algorithm. Dashed lines show the ideal uncertainty model accounting for 
uncertainties in drifter SST and the sampling error. Solid black lines show one 
standard deviation of the retrieved minus drifter differences for each 
0.03 ◦C bin. 
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allow a better representation of the different observing conditions (e.g. 
cold waters). Both algorithms agree that the 6, 10, 18 GHz channel 
configuration is better than 6, 10, 23 GHz for SST retrievals. Further-
more, it is evident that withholding observations from the 23 and 36 
GHz channels from the retrieval has the least impact on the SST per-
formance. The proposed CIMR constellation (not considering the 1.4 
GHz channels) has proven to perform very well when compared to an 
AMSR-E like constellation (excluding the 89 GHz channels) using both 
the OE and RE algorithm. The actual CIMR performance is expected to 
be significantly better than shown here due to smaller NEdTs and 
footprints. The proposed CIMR constellation includes observations at 
1.4 GHz (L-band), which will further add information to both SST and 
WS retrievals (Reul et al., 2012, 2017), but with decreased spatial res-
olution and with larger influence from sea surface salinity and the 
ionosphere (i.e. Faraday rotation). 

The comparison of the two retrieval algorithms demonstrates 
strengths and weaknesses related to their use. One of the strengths of the 
RE algorithm is its ability to compensate for the decreased sensitivity to 
SST in cold waters as mentioned above. The OE algorithm, on the other 
hand, shows very good capability during conditions with fewer chan-
nels. This can become very useful e.g. in case of instrument failure and 
we believe that this capability will be useful to develop alternative plan 
for emergency status of the instrument. Another advantage of the OE 
algorithm is, that it can be used to retrieve SST from day 1 for all channel 
combinations, while the RE algorithm requires significant number of 
matchups for training each combination of channels before it can be 
used for retrievals. This is important to consider for potential day 1 SST 

products from e.g. CIMR. All of above needs to be considered before an 
algorithm is selected for a given application and multiple utilization of 
the two algorithms is definitely an advantage. 

Overall, new insights have been gained into the performance of the 
SST retrievals for different channel combinations. This is important for 
designing and evaluating new satellite configurations or for assessing 
the impact of existing satellite observations in the case of failing chan-
nels or RFI contaminated retrievals. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The two SST retrieval algorithms have been developed within the 
ESA-CCI SST project and this analysis has been carried out as a part of 
the ESA CIMR contract no. 4000125255/18/NL/AI. ICOADS data are 
available at https://icoads.noaa.gov/. EN4 version 4.2.0 is available at 
https://www.metoffice.gov.uk/hadobs/en4/. The resampled L2A data 
product AMSR-E V12 is produced by Remote Sensing Systems (RSS) and 
distributed by NASA’s National Snow and Ice Data Center (NSIDC). Data 
are available at https://nsidc.org/data/ae_l2a. The ERA-Interim rean-
alysis data is available at https://www.ecmwf.int/en/forecasts/datase 
ts/reanalysis-datasets/era-interim.  

Appendix A. Appendix   

0.094 0.106 0.023 − 0.042 − 0.002 − 0.119 0.092 0.002 0.081 − 0.008  
0.106 0.302 − 0.067 − 0.105 − 0.075 − 0.220 0.129 0.039 0.135 0.006  
0.023 − 0.067 0.127 0.048 0.113 − 0.011 0.092 − 0.071 0.084 − 0.059  
− 0.042 − 0.105 0.048 0.090 0.026 0.047 0.005 − 0.025 0.000 − 0.028 

Se= − 0.002 − 0.075 0.113 0.026 0.243 0.073 0.101 − 0.148 0.132 − 0.107  
− 0.119 − 0.220 − 0.011 0.047 0.073 0.275 − 0.154 − 0.052 − 0.130 − 0.011  
0.092 0.129 0.092 0.005 0.101 − 0.154 0.271 − 0.101 0.231 − 0.089  
0.002 0.039 − 0.071 − 0.025 − 0.148 − 0.052 − 0.101 0.118 − 0.101 0.076  
0.081 0.135 0.084 0.000 0.132 − 0.130 0.231 − 0.101 0.286 − 0.120  
− 0.008 0.006 − 0.059 − 0.028 − 0.107 − 0.011 − 0.089 0.076 − 0.120 0.076  
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A B S T R A C T   

The surface temperature is one of the main parameters for assessing climate change. Temperature change is most 
pronounced in the Arctic, and therefore, it is crucial to accurately estimate sea and sea ice surface temperatures 
in this region. The availability of in situ observations is limited in the Arctic, thus, increasing the need for satellite 
observations to estimate surface temperatures. We present the first Arctic (>58◦N) gap-free climate dataset 
covering the surface temperatures of the ocean, sea ice and the marginal ice zone from 1 January 1982 to 31 May 
2021 based on observations from infrared satellite sensors. The underlying algorithm combines the multi- 
satellite observations and performs a statistical optimal interpolation to obtain daily gap-free fields, with a 
spatial resolution of 0.05◦ in latitude and longitude. In situ observations have been used to derive consistent 
validation statistics over the ocean and sea ice. Comparison of the derived sea surface temperatures against in 
situ measurements from drifting buoys, moored buoys and Argo floats shows mean differences of 0.01 ◦C, 0.04 ◦C 
and 0.04 ◦C and standard deviations of 0.54 ◦C, 0.56 ◦C and 0.51 ◦C, respectively. Over sea ice, the derived ice 
surface temperatures have been compared with KT-19 measurements from IceBridge flights, showing a mean 
difference of 1.52 ◦C and standard deviation of 3.12 ◦C, and with air temperatures from the North Pole (NP) ice 
drifting stations as well as ECMWF distributed buoys and CRREL buoys, with mean differences of − 2.35 ◦C, 
− 3.21 ◦C and  –2.87 ◦C and standard deviations of 3.12 ◦C, 3.34 ◦C and 3.36 ◦C, respectively. The combination of 
sea and sea-ice surface temperature provides a consistent dataset for climate analysis, which is crucial for 
studying climate change and trends in the Arctic. The combined sea and sea-ice surface temperature of the Arctic 
has risen with about 4.5 ◦C over the period 1982–2021, with a peak warming of around 10 ◦C in the northeastern 
Barents Sea.   

1. Introduction 

The surface temperature is one of the main variables for assessing 
climate change (Bates and Diaz, 1991; Bojinski et al., 2014; Folland 
et al., 2001; Kaplan et al., 1998). This is also true for the Arctic, where 
positive feedback mechanisms, e.g. the ice-albedo feedback, amplify 
climate change (AMAP, 2021; Comiso and Hall, 2014; Graversen et al., 
2008; Hall et al., 2004; IPCC, 2019; Pithan and Mauritsen, 2014; Ran-
tanen et al., 2022; Richter-Menge et al., 2017). In the Arctic Ocean, the 
surface temperatures play a crucial role for the heat exchange between 
the ocean and atmosphere, sea ice growth and melt processes (Key et al., 
1997; Maykut, 1986) as well as in weather and sea ice forecasts through 

assimilation into ocean and atmospheric models (Carton et al., 2000; 
Larsen et al., 2007; Oke et al., 2008; Rasmussen et al., 2018; Rayner, 
2003; Song and Yu, 2012). Therefore, it is important to accurately es-
timate the surface temperature of the Arctic Ocean, which consists of 
open ocean, sea ice and a marginal ice zone (MIZ), i.e. the transitional 
region between the open ocean and pack ice. The extreme environment 
and the poor accessibility (especially in the winter season) make in situ 
observations challenging and sparse in the Arctic (Centurioni et al., 
2019; Donlon et al., 2012). Polar orbiting satellites offer a very good 
alternative and addition to the in situ observations through their high 
spatial and temporal coverage of the Arctic. 

A large number of global gap-free (optimally interpolated) gridded 
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sea surface temperature (SST) products (Level 4, L4, analyses) have been 
developed based on a variety of different satellite observations and 
sometimes including in situ observations as well (Donlon et al., 2012; 
Good et al., 2020; Merchant et al., 2014, 2019; Reynolds et al., 2002, 
2007; Roberts-Jones et al., 2012). Differences are known to exist among 
the analyses due to varying input data (both infrared and microwave 
satellite and in situ), quality control procedures, cloud-masks, land/ice 
masks, interpolation techniques and related configurations (e.g. corre-
lation scales and grid sizes). Several inter-comparison studies have been 
performed to understand the consistency and discrepancy of the 
different L4 SST analyses (Dash et al., 2012; Fiedler et al., 2019; Martin 
et al., 2012; Okuro et al., 2014; Yang et al., 2021). The L4 SST analyses 
perform fairly uniformly globally, with accuracies better than 0.5 ◦C in 
clear-sky conditions (Martin et al., 2012; Petrenko et al., 2014; Wang 
et al., 2016), but large uncertainties and significant differences are 
found at high latitudes in particular in coastal and dynamic regions 
(Castro et al., 2016; Dash et al., 2012; Vazquez-Cuervo et al., 2022). The 
extreme atmospheric and oceanographic conditions, sparsely distrib-
uted in situ observations, and persistent cloud cover complicate accurate 
SST satellite retrievals in the Arctic (Donlon et al., 2010; Høyer et al., 
2012). Specialized high latitude algorithms have been developed and 
shown to outperform the global analyses in these regions (Jia and 
Minnett, 2020; Vincent et al., 2008a, 2008b). Improving the SST data 
quality in the Arctic has been identified by the SST community as being 
of high priority for future SST research and developments (O’Carroll 
et al., 2019). 

The presence of both seawater and ice, and the large seasonal and 
inter-annual fluctuations in the sea ice cover, lead to increased 
complexity in the SST mapping of the Arctic region. Traditionally, global 
gridded SST products use independent satellite observed sea ice con-
centration (SIC) to derive an ice mask. Few products simply do not 
report SST in ice covered waters, while most products provide a foun-
dation or mixed layer temperature of the sea water just below the ice, 
which is assumed to be at the freezing point of seawater (− 1.8 ◦C for 
salinities around 35 psu) for high SICs. Different methods and empirical 
relationships have been used to generate proxy SSTs from SICs in the 
MIZ (Banzon et al., 2020), which in some cases are blended with the 
closest open water SSTs (Rayner, 2003; Reynolds et al., 2007, 2002). 

However, the use of under ice SSTs in the MIZ and in sea ice covered 
regions does not represent the surface temperature as very large tem-
perature gradients can exist through the sea ice and snow (Tonboe et al., 
2011). These products cannot be used to estimate the surface heat ex-
change with the atmosphere, and thus, not appropriate for use as 
boundary conditions in e.g. atmospheric models or to assess the surface 
temperature changes in the Arctic Ocean. Combining SST and ice surface 
temperature (IST) is identified as the most appropriate method for 
determining the surface temperature of the Arctic (Minnett et al., 2019). 

Ice surface temperature retrievals from satellites are based on ther-
mal infrared (IR) data, which implies that satellite IST products repre-
sent clear sky temperatures. However, automatic cloud screening over 
Arctic sea ice is challenging due to the resemblance of ice and cloud top 
temperatures. Undetected clouds or atmospheric ice/water typically 
results in larger IST errors than for SST retrievals, including a cold bias 
(Dybkjær et al., 2012; Hall et al., 2004). A number of satellite-based IST 
products are available (Hall et al., 2004; Key et al., 1994, 1997, 2013; 
Maslanik et al., 1997) and some combine Arctic SST and IST (Dybkjær 
et al., 2012; Vincent et al., 2008b), while few products include land 
surface temperatures as well (Comiso, 2003; Comiso and Hall, 2014; 
Dodd et al., 2019). A Near-Real-Time (NRT) gap-free (all-sky) combined 
SST, IST and MIZT product (L4 SST/IST) has been produced for a few 
years within the Copernicus Marine Service (CMEMS; doi: https://doi. 
org/10.48670/moi-00130), however, no L4 SST/IST reanalysis or 
climate data record (CDR) has previously been generated for the Arctic 
Ocean, based on IR satellite observations. Significant differences in 
surface temperatures are observed during all-sky and clear-sky condi-
tions (Nielsen-Englyst et al., 2019; Walsh and Chapman, 1998). 

Therefore, to study climate trends, it is important with an effective way 
to fill in the gaps (due to clouds) since inter-annual variations in cloud 
cover may impact the accuracy of the trends observed when only clear- 
sky data are used (Liu et al., 2008). 

Previously, climate trends have been estimated individually for SST 
and IST records (e.g. (Bulgin et al., 2020; Comiso, 2003; Comiso and 
Hall, 2014; Merchant et al., 2019; Wang and Key, 2005). However, this 
is problematic in the Arctic region due to the large temporal variability 
in the sea ice cover including the overlying northward migration of the 
ice edge on decadal timescales, and thus, the resulting climate trends are 
not easy to interpret (Comiso, 2003). A combined surface temperature 
dataset of the ocean, sea ice and the MIZ provides a consistent climate 
indicator, which is important for studying climate trends in the Arctic 
region. 

This paper presents the generation, validation and analysis of the 
first gap-free, combined sea and sea-ice surface temperature climate 
dataset, with CDR-like temporal consistency, for the Arctic (>58◦N) 
covering the period from 1 January 1982 to 31 May 2021. It is based on 
IR satellite products of surface temperatures from the European Space 
Agency’s Climate Change Initiative (ESA CCI), the Copernicus Climate 
Change Service (C3S) and the Arctic and Antarctic ice Surface Tem-
peratures from thermal Infrared (AASTI). A multiplatform optimal 
interpolation (OI) scheme has been used to combine these data sources 
and fill the gaps due to clouds. It has been developed considering the 
conditions that apply in the Arctic with special attention to the MIZ, 
where it produces a combination of open water SST and IST. Each sur-
face type (i.e. sea ice, open ocean and MIZ), has its own characteristics, 
and thus, it is very important with an accurate SIC product to identify 
the different regions. Because of this, a combination of several SIC 
products and additional filtering and consistency checks between the 
SST and SIC fields have been developed to reduce erroneous SIC ob-
servations and produce an improved SIC product in particular close to 
the coasts. 

The paper is organized such that Section 2, describes the satellite and 
in situ data used for construction and validation of the dataset. In Sec-
tion 3, the methods and processing steps of the SIC and the L4 SST/IST 
fields are described. The results, validation, and analysis of the L4 SST/ 
IST are provided in Section 4, while discussion and conclusions are given 
in Section 5 and Section 6, respectively. 

2. Data 

Multiple sources of satellite observations are used over the sea and 
sea ice surfaces in the Arctic in order to provide IST and SST information 
for the L4 SST/IST processing. Fig. 1 shows the temporal coverage of the 
individual SST/IST satellite products used as input to the Danish 
Meteorological Institute Optimal Interpolation (DMIOI) L4 processing 
system and the in situ observations used for validation. Moreover, it 
shows the temporal coverage of the input SIC products and the auxiliary 
data used in the generation of the OI SIC product (see Section 3.a). 
Details about each data source are provided below. 

2.1. Satellite data 

2.1.1. Sea and sea ice surface temperature 

2.1.1.1. SST CCI L2P. The SST CCI version 2.1 data are used for the 
period 1982–2016, and they are obtained through the ESA CCI project 
(Merchant et al., 2019). The SST CCI data include observations from the 
ATSR 1 instrument on board the ERS-1 satellite, ATSR 2 on board the 
ERS-2 satellite, and the AATSR on board ENVISAT, and the AVHRR on 
board the NOAA and Metop satellites. The CCI SST retrievals provide the 
temperature at 20 cm depth at the nearest of 10:30h or 22.30h local 
time to best represent the daily mean (Embury et al., 2012; Merchant 
et al., 2019). 
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2.1.1.2. C3S SST. For the period 2017–2021, SST observations from 
C3S are used. From 2017 to August 31, 2019, the C3S data are provided 
in satellite swath coordinates, referred to as Level 2 (L2), while the data 
are provided as gridded single L2 files, referred to as Level 3 uncollated 
(L3U) files after this period. The C3S data is obtained from Owen 
Embury (personal communication, 2018) and corresponds to the L3U 
data files available from https://cds.climate.copernicus.eu/ except for 
the higher spatial resolution. The C3S data include observations from 
the SLSTR A/B instruments on board the Sentinel 3 satellites and the 
AVHRRs on board the NOAA and Metop satellites. 

2.1.1.3. AASTI + OSI-205 IST. IST observations are obtained by 
combining two data sources; a climate dataset and data from a NRT data 
stream. The Arctic and Antarctic ice Surface Temperatures from thermal 
Infrared satellite climate dataset version 2 (AASTI v2) covering the 
period 1982–2014 (Dybkjær et al., 2014, 2022) and data from the 
operational OSISAF IST product (OSI-205) covering the period from 
2015 and onwards (Dybkjær et al., 2018). The AASTI and OSI-205 data 
are retrieved by identical algorithms from a single sensor type, the 
AVHRR sensors, where the applied algorithms are calibrated specifically 
for each sensor. The data format for the two datasets differ, as AASTI 
uses the Global Area Coverage (GAC) and the OSI-205 uses the Local 
Area Coverage (LAC), at approximately 4 and 1 km resolution, respec-
tively. In Dybkjær et al. (2018) the retrieval system is described in detail. 

A critical step for IST retrievals is the cloud detection procedure. For 
this purpose, the cloud mask from the EUMETSAT Nowcasting Satellite 
Application Facility (NWCSAF) Polar Platform System version 2014 
(PPS2014) is used (Dybbroe et al., 2005a, 2005b; SMHI, 2014). The PPS 
has for years been used for automatic cloud masking for AVHRR and 
other sensors (Dybbroe et al., 2005b). However, cloud mask quality over 
ice during non-sunlit hours is low due to the similarity of cloud tops and 
ice surfaces at IR wavelengths. 

2.1.2. Sea ice concentration 
The sea ice concentration (SIC) field uses the EUMETSAT OSISAF 

Global SIC CDR v2 product OSI-450 covering the period 1979–2015, and 
the OSI-430b the Interim CDR extension from 2016 onwards. The 
product is derived from coarse resolution (30-60 km) passive microwave 
(PMW) satellite data (SMMR, SSM/I and SSMIS). We hereafter label 
this whole time series as OSI-450, although the OSI-430b period is 
involved as well. In addition, we use data from the ESA CCI programme 

SICCI-25km product, which uses medium-resolution (15–25 km) PMW 
satellite data from AMSR-E (June 2002 to October 2011) and AMSR2 
(July 2012 to May 2017). An extension of the SICCI-25km processing 
has been performed to provide consistent SIC fields after May 2017 
using AMSR2 data. We hereafter label both the SICCI-25km and its 
extension as SICCI-25km. OSI-450 and SICCI-25km share the same al-
gorithms, processing chains and data format (Lavergne et al., 2019), and 
continue earlier work by Andersen et al. (2007) and Tonboe et al. 
(2016). Both OSI-450 and SICCI-25km are presented at 25 km grid 
spacing. However, the true spatial resolution of OSI-450 is coarser due to 
the larger footprints of the SMMR, SSM/I and SSMIS channels used by 
the algorithm. The true spatial resolution of the SICCI-25km product is 
on the order of its grid spacing: 25 km. As other such SIC CDRs based on 
PMW satellite data, OSI-450 and SICCI-25km have challenges in coastal 
regions (Lavergne et al., 2019). For that reason, the SIC fields for the 
Baltic Sea consist of a SIC product based on ice charts from the Swedish 
Meteorological and Hydrological Institute (SMHI; 1982–2011) and the 
CMEMS 1 km SIC fields (2012-present), which include high resolution 
sea ice information from the Swedish and Finnish ice services. These 
Baltic Sea SIC products are similar to those used in the regional SST and 
IST CDR produced for the Baltic region (Høyer and Karagali, 2016). 

2.1.3. Auxiliary data 
An independent daily SST product has been used to filter the SIC 

product. SST from ESA SST CCI L4 Analysis CDR v2.1 is used from 1982 
to 1990 (Good et al., 2019; Merchant et al., 2019), while the ESA SST 
CCI Analysis Long Term Product (Merchant et al., 2016) is used for the 
period 1991 to 2010, and the Operational Sea Surface Temperature and 
Sea Ice Analysis (OSTIA; Donlon et al., 2012; Good et al., 2020) is used 
from 2011 and onwards. These auxiliary products are obtained from the 
CMEMS catalogue (https://marine.copernicus.eu/) and they have a 
spatial resolution of 0.05◦ in latitude and longitude. The combined and 
independent SST product will be referred to as OSTIA/CCI in this paper. 
The OSTIA/CCI product is only included for filtering the SIC products 
and not as an input to the L4 SST generation. 

2.2. In situ data 

2.2.1. Sea surface temperature 
For the SST validation, data from drifting buoys, moored buoys and 

Argo floats are obtained from the Hadley Centre Integrated Ocean 

Fig. 1. Temporal coverage of the input satellite IST and SST data, the in situ IST and SST observations as well as the input SIC products and the auxiliary data used for 
the OI SIC generation. 
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Database (HADIOD; Atkinson et al., 2014) version 1.2.0.0. The Argo and 
drifter observations are well represented in the Arctic region open wa-
ters, while the moorings are concentrated in the North Atlantic and 
Greenland Sea. 

2.2.2. Ice surface temperature 
For validation of IST, we use data from 116 drifting buoys obtained 

from the Meteorological Archival and Retrieval System (MARS) at the 
European Centre for Medium-Range Weather Forecasts (ECMWF) 
covering the period 1993–2015 (hereafter referred to as ECMWF buoys). 
These are supplemented with data from 96 U.S. Army Cold Regions 
Research Engineering Laboratory (CRREL) mass balance buoys for the 
period 2001–2017 (Perovich et al., 2016; Richter-Menge et al., 2006) as 
well as measurements from 14 Russian North Pole (NP) drifting ice 
stations mainly for the period 1982–1989 but also some for the period 
2003–2012 (RU/FSR/HME/AARI and NSIDC, 1993). The temperature 
observations from NP, ECMWF and CRREL are air temperatures 
measured at different heights (typically around 2 m above the surface) 
depending on e.g. snow accumulation, snow drift and snow melt. These 
temperature observations have been inspected and quality controlled 
manually for data artefacts. The ECMWF and CRREL observations have 
previously been used for validation of satellite ISTs and corresponding 2 
m air temperature estimates within the European Union’s Horizon2020 
project EUSTACE (EU Surface Temperatures for All Corners of Earth; 
Nielsen-Englyst et al., 2021; Rayner et al., 2020). 

We also access 117 NASA IceBridge (IAKST1B) flights covering the 
period 2012–2019, typically conducted during March–May (version 2; 
Studinger, 2020). The surface temperatures are converted from IR ra-
diation measurements from a Heitronics KT-19 IR Radiation Pyrometer 
by assuming an emissivity constant of 0.97. The surface temperatures 
are provided by IceBridge at a spatial resolution of about 15 m, and here 
they have been averaged for every fifth kilometer to remove the small 
scale variability, which cannot be represented by the coarser resolution 
L4 IST product. 

3. DMIOI L4 processing system 

This section presents the full DMIOI L4 processing system, which 
integrates individual, single sensor, swath based SST and IST observa-
tions to a multi-sensor interpolated (gap-free) field. The processing 
sequence is outlined in Fig. 2. The OI SIC field (derived and described in 
Section 3.a) is used as input to identify the different surface types (i.e. 
ocean, sea ice and the MIZ) for each day during the record. The surface is 
considered as open water when SIC≤15%, ice covered when SIC>70% 
and as MIZ when 15 < SIC≤70%. Together with the land mask the SIC is 

used to construct a dynamic surface mask. This dynamic surface mask is 
used during the pre-processing of the input L2 + L3 IST/SST to L3 Super- 
collated (L3S) data, which is described in detail in Section 3.b. The 
surface mask is also used during the derivation of the error statistics and 
covariances for each surface type, which are used in the OI method for 
analysis of the observations (see Section 3.c). In the end, the OI method 
produces the daily L4 SST/IST and the corresponding uncertainties. The 
L4 SST/IST generation and post-processing are described in Section 3.d. 

3.1. Processing of OI Sea ice concentration 

The OI SIC field (used as input for the DMIOI L4 Processing System) 
is based on different sources of sea ice information, which have been 
resampled onto the final L4 0.05◦ regular latitude longitude grid. As 
stated in Section 2.a.2), the SMHI/CMEMS products (Høyer and Kar-
agali, 2016) are used within the Baltic Sea, while the SICCI-25km and 
OSI-450 SIC fields are used outside of the Baltic Sea. The SICCI-25km 
product is used whenever it is available and the OSI-450 product 
otherwise. The days with missing data are listed in the product user 
guides, and for these days the SIC field closest in time is used to construct 
a SIC record for all days from 1982 to May 2021. The SIC field has been 
extrapolated along the coasts to cover the fjords with SIC values. Low 
SIC (≤15%) is defined as no ice and the SIC is set to 0% in these grid 
cells. 

Even though a land-spillover correction procedure is already applied 
in the SIC processing for SICCI-25 and OSI-450, erroneous ice is still 
common along ice-free coasts since the PMW brightness temperatures 
from ocean grid cells close to the coast often contain a mixture of the 
microwave emission from land and ocean (due to the large field of view). 
This land-spillover effect is more pronounced for the coarser resolution 
OSI-450 product than the SICCI-25km product (Kern et al., 2022; Lav-
ergne et al., 2019). The resampling of the SIC products to the L4 0.05◦

grid results in oversampling of the coarse resolution SIC data, which also 
requires some filtering of the resampled SIC data to comply with the 
higher resolution SST data. To improve the resampled SIC fields (in 
particular the coarser resolution OSI-450) and to increase the consis-
tency of the full SIC record, two filters have been used to minimize the 
effects from erroneous ice along the coasts. Both filters use a spatial 15 
× 15 grid point filter around each 0.05◦ L4 grid cell. The first filter (F1) 
removes sea ice from the center grid cell if the group of 15 × 15 grid cells 
contains at least one land and one ocean grid cell. This approach is 
similar to the NOAA/NSIDC Bootstrap Land-Spillover Correction (Cho 
et al., 1996; Meier, 2012) for which the center grid cell is replaced by the 
minimum non-land value within the group of grid cells if at least one of 
the grid cells is land. The second filter (F2) removes sea ice from the 

Fig. 2. Schematic diagram illustrating the processing steps of the DMIOI L4 Processing System.  
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center grid cell if any of the grid cells within the 15 × 15 group is land 
and the SST (from the OSTIA/CCI product) of the center grid cell at the 
same time exceeds 3 ◦C. The rationale for this is that the SST fields in 
general have fewer coastal issues as they are based on the higher reso-
lution IR observations. 

To examine the consistency between the different products, the 
resampled OSI-450 and SICCI-25km have been compared for 2018 with 
and without the filters. The Baltic Sea has been excluded in this com-
parison since the SMHI/CMEMS SIC products have been used here. In 
general, the largest differences between the resampled OSI-450 and 
resampled SICCI-25km are found along the coasts, where the resampled 
OSI-450 has numerous occurrences of sea ice grid cells, which are not 
seen in the resampled SICCI-25km. This is explained by the larger un-
corrected land spill-over effects in OSI-450 compared to SICCI-25km. 

Fig. 3 shows the distribution of sea ice as a function of SST (OSTIA/ 
CCI) for OSI-450 and SICCI-25km during July 2018 in the case of no 
filter and both filters (F1 + F2) applied. July has been chosen as example 
month since it is one of the months with largest disagreement between 
OSI-450 and SICCI-25km as well as the month with most cases of 
coinciding sea ice and SST > 3 ◦C. As shown in Fig. 3a-b, OSI-450 has 
many cases of sea ice with SIC up to 60% in warm (6–15 ◦C) waters 
(before filtering) which are not seen in SICCI-25km. The OSI-450 and 
SICCI-25km agree much more after applying the two filters (F1 + F2), 
but with some remaining differences for warm SSTs (>10 ◦C). 

A final filter (F3) has been applied to remove all sea ice in grid cells 
with OSTIA/CCI SST exceeding 8 ◦C. This SST threshold is more relaxed 
than what has previously been used (Hurrell et al., 2008; Markus and 

Cavalieri, 2009) and observed during in situ campaigns (Chiodi et al., 
2021) to minimize the removal of true ice in regions with large SST 
gradients. 

Before applying any filters, the resampled OSI-450 has more ice grid 
cells (SIC>15%) than the resampled SICCI-25km ranging from 0.88% 
more in March to 3.34% more in July. These ranges reduce to 0.84% in 
March and 2.84% in July after applying all filters (F1 + F2 + F3). The 
number of grid cells with SIC>15% and SST>3 ◦C is only a small fraction 
of all ice grid cells. Without any filters this fraction ranges from 0.018 to 
0.639% and 0.002–0.162% for OSI-450 and SICCI-25km, respectively. 
After applying all the filters, these ranges are reduced to 0.002–0.197% 
and 0.000–0.140% for OSI-450 and SICCI-25km, respectively. 

Fig. 4 provides detail of the number of ice grid cells with SST>3 ◦C 
for the entire SIC range (0<SIC≤100%) during July for the resampled 
OSI-450 and SICCI-25km in the cases where no filter, F1, or F1 + F2 + F3 
has been applied. The filters remove limited sea ice in SICCI-25km 
compared to OSI-450. In OSI-450, F1 primarily removes sea ice with 
concentrations below 20% while adding F2 leads to removal of sea ice 
with SICs up to 80%. F3 removes very limited cases in comparison with 
F1 and F2. After filtering, the distribution of sea ice (with SST> 3◦C) in 
OSI-450 looks more similar to the distribution in SICCI-25km. 

The filtering method derived here removes many of the errors due to 
land spill-over, in particular in OSI-450, but some errors likely remain 
and likewise some true sea ice may be removed through the filtering. 
However, overall the filters have proven to be beneficial to reduce 
spurious ice and to reach higher consistency in the resulting combined 
and filtered SIC record (referred to as OI SIC). The preprocessed OI SIC 

Fig. 3. OSTIA/CCI SST versus SIC from OSI-450 (right) and SICCI-25km (left) during July 2018 without filtering (top) and with both F1 and F2 filters applied 
(bottom). The average distribution is shown as asterisks with related error-bars showing the standard deviations considering bins with >30 members. 
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field is used as input to the DMIOI L4 processing system for the L4 SST/ 
IST generation (see Fig. 2). 

3.2. Preprocessing of SST/IST satellite data 

The input L2 SST and IST satellite data have been aggregated into 
L3S data by considering the available data within 24 h from the analysis. 
The L3S SST fields have been calculated as a noise weighted average of 
all available ATSR, AVHRR and SLSTR observations. Based on results 
from validation against in situ observations and the statistics from 
ingestion in the L4 analysis, we use the following uncertainties for ATSR, 
AVHRR, SLSTR and AASTI: 0.3 ◦C, 0.4 ◦C, 0.4 ◦C and 1.0 ◦C. AASTI ISTs 
are used over the MIZ and sea ice regions. 

Only satellite data classified as cloud free by the cloud mask were 
included. Satellite observations processed using an IST algorithm in 
areas where the OI SIC field is zero were discarded. A minimum quality 
flag of 4 was used for all observations except from those from SLSTR, 
where a quality flag of 5 was required. 

3.3. The optimal interpolation (OI) method 

The aim of the OI method is to take an irregular distribution of ob-
servations, which may have different uncertainties and spatial resolu-
tions, and provide the best possible estimate on a regular grid. This 
should be done by extracting the maximum information from all avail-
able observations and combining these using the proper weight of each 
observation. OI attempts to accomplish this by minimizing the mean- 
square interpolation error for a large ensemble of analysis situations. 
The OI method was first introduced by Gandin (1963) to produce grid-
ded maps of meteorological variables, while oceanic applications was 
introduced by Bretherton et al. (1976) and has since then been widely 
used for mapping of SST (e.g. Høyer and She, 2007; Reynolds and Smith, 
1994; White, 1995). The OI methodology used in this paper follows the 
high latitude SST DMI processing scheme (Høyer et al., 2014; Høyer and 
She, 2007). For the OI estimation, we assume that f̂ i represents the ith 
observation of the field and can be written as 

f̂ i = fi + εi (1)  

where fi is the true representative value of the field and εi is the obser-
vational error. 

The construction of the OI field employs a first guess field, which in 
this case is provided as the analysis field from the previous day. The 
deviation of the estimated field from the first-guess field is calculated as 
a weighted sum of the nearby observed departures (anomalies) from the 

first guess: 

f
′

0 =
∑n

i=1

(
f
′

i + εi
)
pi + I0, (2)  

where pi are the weighting factors, I0 is the interpolation error, n is the 
number of observations selected for the interpolation and the primes 
indicate anomalies from the first-guess field. Working with anomalies 
ensures that the first guess is preserved in regions with limited or no 
observations. It is assumed that the first guess is unbiased and that the 
noise on one observation is not correlated with the true value or with the 
noise of other observations (Bergman, 1978). The optimal weights 
should be chosen such that ε is minimized and this is obtained by 
differentiating ε partially with respect to each of the pj and equate them 
to zero. By assuming that the variances are homogenous and the co-
variances are both homogenous and isotropic (i.e. only depending on the 
distance) the following set of linear equations can be derived: 

∑n

j=1
Ci,jpj + τ2

i pi = C0,i, (3)  

where pi denotes the optimal weights, which need to be determined, 

Ci,j =
f i̇
′ f j̇

′

σ2 is the correlation function between the individual observa-

tions and C0,i =
f ′0f i̇

′

σ2 is the correlation function between the observations 

and the estimation point, and τ2
i =

σ2
ε,i

σ2 with σεi
2 being the error variance of 

the ith observation and σ2 representing the variability. The OI method 
directly provides the mean-square interpolation error, which can be 
estimated in all grid points by 

εmin = σ2

(

1 −
∑n

i=1
C0,ipi

)

. (4) 

From this, it follows that the mean-square interpolation error never 
exceeds the variance of the anomalies in the estimation point. Both the 
weights and the interpolation error depend on the scales of the corre-
lations Ci,j and C0,i, on the variance, and on the random observational 
error, σε, i. These are calculated prior to the prediction and assumed to be 
constant in time. 

3.3.1. OI statistical parameters 
The analysis field from the previous day is used as first guess and the 

corresponding first guess error variances are derived from a test run, 
where the L3 observations were compared against the previous day 
analysis and the standard deviations were calculated from the 

Fig. 4. The number of ice grid cells (SIC>0%) with SST>3 ◦C during July 2018 for a) SICCI-25km and b) OSI-450 in case where no filter, F1, or F1 + F2 + F3 filters 
have been applied, respectively. 
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anomalies. For IST, the first guess variance and error covariance have 
been derived using one year of Metop AVHRR L3 IST observations. For 
each day, the L4 field of previous day were subtracted from the L3 IST 
observations. The anomaly time series were then used to calculate the 
standard deviations for every grid point in order to obtain a spatial two 
dimensional field of standard deviations (Høyer et al., 2014). The first 
guess variance and error covariance for SST are the same as those used in 
Høyer et al. (2014), and Høyer and She (2007). In the MIZ (15% <
SIC≤70%), the first guess variance and error covariance are calculated 
through a weighted linear combination of SST and IST values, using the 
OI SIC as a weighting factor. 

Spatially varying correlation functions in the latitudinal and longi-
tudinal directions have been derived empirically from the observations 
(i.e. one year (2018) of anomalies) by assuming steady state. For IST, L3 
observations from METOP AVHRR were used, while L3 VIIRS observa-
tions (e.g. Liang and Ignatov, 2013) were used for SST due to the higher 
accuracy and higher spatial resolution (~750 m). The correlations are 
calculated by correlating time-series of anomalies within 10 × 10◦ bins. 
Separate functions were derived for open ocean, sea ice and the MIZ, due 
to the different variabilities in the temperature of the different surface 
types, but they share the same form: 

Ci,j = exp
(
− λ • distγ

i,j
)

(7)  

where disti, jγ is the distance between two observations, and λ and γ are 
the two empirically determined parameters that vary throughout the 
domain. 

The true correlations will be larger than the observed correlation 
near zero lag because of the random noise in the observations. The 
difference in correlation resulting from the random noise (μ) has been 
estimated by measuring the drop in correlation from the estimation 
point (correlation = 1) to a small distance (2.5 km) for both IST and SST. 
Thereby, it is assumed that at distances smaller than 2.5 km from the 
estimation point, the drop in correlation can be fully attributed to the 
random noise. For the MIZ, the random noise has been estimated by 
assuming that the error of MIZT observations is equal to the error on IST 
observations. The estimated effect from the random noise has been 
removed before fitting the correlation functions. The fit results in 2D 
spatial fields of λ and γ for each of the three surface types. Fig. 5 shows 
the spatial 2D mean observed correlations including the random noise 
component for SST and IST using all available observations. They are 
calculated by correlating time-series of anomalies within 10 × 10◦ bins 
and ordering the results according to the distance in latitude and 
longitude. 

Fig. 6 shows the best fit mean correlation models for SST, IST and 
MIZT in the latitudinal direction with the corresponding average values 
of λ and γ as listed in Table 1. The fitted mean correlations only include 
observations with >30 pairs of anomalies. The derived e-folding scales 
are shown in Table 1. 

3.4. L4 SST/IST generation and post-processing 

The derived OI statistical parameters have been used for the gener-
ation of the gap-free L4 SST/IST climate dataset. The correlations of all 
observations within the search radius (100 km) around the estimation 
point have been estimated and the observations used by the OI have 
been selected by taking the one with largest correlation within each 
quarter around the estimation point (if available). This has been 
repeated until the maximum number of observations (20) is reached or 
no more observations are available. On average, the selected number of 
observations used in the OI is 18.6, indicating good coverage. The 
coverage increases over time (with annual means ranging from 16.3 to 
19.8) and reaches a maximum during winter (DJF) with a mean 
coverage of 19.1 and a minimum during summer (JJA) with a mean 
coverage of 17.6. 

The interpolated anomalies have been added to the first guess field to 
provide the surface temperatures. Any anomalies exceeding ±9.9 ◦C 

Fig. 5. Spatial mean of observed correlations (all 10 × 10◦ bins) for SST (left) and IST (right) with the estimated random noise added to the observations.  

Fig. 6. The best fit mean spatial correlation in the latitudinal direction for SST, 
IST and MIZT. 
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were reset to this value. Surface temperatures outside the accepted 
range (− 60 to +35C◦) have been reset to the closest of the two tem-
perature limits. 

The input satellite observations are all thermal IR observations 
which can only be utilized during clear-sky conditions. Here, the gaps 
due to clouds are filled using OI, but the aggregated and averaged daily 
surface temperatures are clear-sky averages, which may differ from the 
all-sky averaged surface temperature. For SST, the difference is small but 
over ice the clear-sky averaged IST is typically colder than the all-sky 
averaged IST (referred to as the clear-sky bias). Nielsen-Englyst et al. 
(2019) found an average cold clear-sky bias of 0.85 ◦C, using in situ 
observations over Arctic sea ice and a cloud mask derived from the 

Table 1 
The average covariance parameters, λ, γ, first guess error variance, σ2, (◦C), 
random noise, μ, and e-folding scale, e− 1 (km) of each domain.   

SST (SIC≤15%) IST (SIC>70%) MIZT (15% < SIC≤70%) 

λ 0.18 0.05 0.16 
γ 0.47 0.58 0.37 
σ2 0.18 5.15 3.17 
μ 0.24 0.29 0.47 
e− 1 69.5 276.1 344.4  

Fig. 7. An example of a) the combined L3S SST/IST field, b) the optimally interpolated L4 SST/IST field, c) the L4 surface mask, and d) the derived L4 uncertainty 
field for August 1, 2018. 
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longwave-equivalent cloud cover fraction. To minimize the clear-sky 
bias over ice in the L4 SST/IST product, we have introduced a con-
stant bias correction over sea ice (SIC>70%) of +0.85 ◦C, which are 
linearly scaled towards 0 ◦C for open ocean using the SIC as a weighting 
factor. 

No clear-sky bias correction has been applied to the SST in open 
water grid points (SIC≤15%), but a constant bias correction of 0.16 ◦C 
has been applied based on the validation against drifting buoys. It has 
been added to all open water grid points and the value is linearly scaled 
towards zero for 100% sea ice cover using the SIC as a weighting factor. 

4. Results 

The DMIOI L4 processing system has been used to generate a daily 
gap-free combined SST and IST reanalysis covering the Arctic (>58◦N) 
with a spatial resolution of 0.05◦ for the period 1st of January 1982 to 
31st of May 2021. An example of the combined SST and IST L3S field, 
the L4 SST/IST field, the L4 surface mask, and the L4 uncertainty field is 
shown in Fig. 7 for August 1, 2018. 

4.1. Validation 

The L4 SST and IST fields have been validated separately using the 
independent in situ observations listed in Section 2.b. The OI SIC field is 
only used as a mask for ocean/ice identification, and it will not be 
validated. Table 2 shows the overall validation statistics against inde-
pendent in situ observations for SST and IST. The statistics are divided 
into the different sources of in situ observations due to differences in 
type and error characteristics. For both SST and IST, matchups with L4 – 
in situ temperature differences deviating more than three times the 
standard deviation (i.e. 3σ) from the mean L4 – in situ temperature 
difference have been excluded. This has been done for the individual 
observation types to avoid effects from outliers. The results of the SST 
and IST validation are discussed separately in the two following 
sections. 

4.1.1. Sea surface temperature 
The L4 SST (SIC≤15%) have been validated against drifting buoys, 

moored buoys, and Argo floats. Matchups with in situ SST or L4 SST 
colder than − 1.8 ◦C have been excluded from the validation statistics. 
Table 2 shows that the L4 SST have mean differences <0.05 ◦C and 
standard deviations <0.6 ◦C, and correlations above 0.98 when 
compared against drifting buoys, moored buoys, and Argo floats. The 
Argo floats and moored buoys provide independent validation statistics 
while the drifting buoys have been used to adjust the L4 SST (see Section 
3.d). The mean differences are lower than those reported by Castro et al. 

(2016) where nine different SST analyses and two single sensor satellite 
products were compared with independent observations from Upper 
Temperature of the polar Oceans (UpTempO) buoys deployed in the 
Beaufort Sea in 2012 and 2013. The standard deviations reported here 
are slightly lower than in Castro et al. (2016) for most cases, but higher 
than those reported for the most northern UpTempO buoys where SSTs 
were very uniform and lower than for those observations that coincided 
with a summer storm over the Arctic Ocean. 

Fig. 8 shows the seasonal (3-month) mean L4 SST differences (L4 SST 
– in situ SST) and standard deviations for the period 1982–2021, when 
compared to drifting buoys, moored buoys, and Argo Floats. It should be 
noted that the amount of drifting and moored buoys are much lower in 
the beginning of the time period compared to the latest years, which 
makes the validation statistics against drifter and moorings less reliable 
in the beginning of the record. The Argo floats are only available from 
May 2001. The statistics are only calculated for 3-month periods with 
>45 matchups available. Overall, the mean difference and standard 
deviation are both quite stable over the period of time for all three types 
of in situ observations. The combined trend in the mean difference is 
plotted (Fig. 8) and the corresponding overall trend is − 0.0002 ◦C/yr 
indicating a very stable performance. The trends for the individual in 
situ types are − 0.0001 ◦C/yr, − 0.0019 ◦C/yr and 0.0027 ◦C/yr for 
drifters, moorings and Argo floats, respectively. 

4.1.2. Ice surface temperature 
The validation of the L4 IST (SIC>15%) is limited by the sparse 

number of in situ observations as well as increased in situ uncertainties 
in the ice covered regions compared to the open ocean. The L4 IST is 
colder than in situ measurements from NP, ECMWF and CRREL, while 
the L4 IST is warmer than KT-19 measurements from IceBridge flights. 
NP, ECMWF and CRREL do not provide the surface temperature, but the 
air temperatures measured at a varying height, typically of about 2 m 
(T2m). Nielsen-Englyst et al. (2019) found an average IST-T2m differ-
ence of − 1.25 ◦C during all-sky conditions over sea ice. This IST-T2m 
difference is a real temperature difference between the snow surface 
and the air above it. This explains part of the temperature differences 
observed in the validation results against NP, ECMWF and CRREL 
(presented in Table 2), which is not related to the performance of the L4 
IST. In Section 5, this topic is further discussed. Fig. 9 shows the seasonal 
mean L4 IST difference and standard deviation against NP, ECMWF and 
CRREL observations, respectively. The statistics are only calculated for 
the 3-month periods with >45 matchups available. The combined trend 
in the mean difference is − 0.0166 ◦C/yr, while the individual trends are 
0.0047 ◦C/yr, − 0.0391 ◦C/yr, and 0.0676 ◦C/yr for NP, ECMWF buoys 
and CRREL buoys, respectively. A seasonal cycle is present both in the 
mean difference and the standard deviation. The larger standard de-
viations during winter are explained mainly by the larger temperature 
variability during winter, but also by the higher uncertainties in the 
cloud masking during winter (Nielsen-Englyst et al., 2019). The seasonal 
variation in the mean difference is corresponding to what was observed 
in the L3 IST validation and in Nielsen-Englyst et al. (2021). 

The L4 IST validation against IceBridge includes 117 IceBridge 
flights, which provide measured surface temperatures in the period 
2012–2019. The IceBridge data are smoothed for every fifth kilometer if 
>30 observation points were available. Fig. 10 shows an example of the 
validation against one single IceBridge flight from March 2012. Despite 
the smoothing of the data, there are still large fluctuations in the IST 
measured by IceBridge, which are not captured by the L4 IST. These are 
results of warm leads (open or newly refrozen) in the sea ice and some of 
the largest ones are actually captured to some extent by the L4 IST. 
Overall, the figure shows a quite good agreement between IceBridge and 
the L4 IST in this particular example, with a mean difference of 1.24 ◦C 
and a standard deviation of 1.11 ◦C. Considering all 117 IceBridge 
flights, and weighting all observations equally, the IST validation shows 
a mean difference of 1.52 ◦C, standard deviation of 3.12 ◦C and corre-
lation of 0.92 (see Table 2) using the 3σ filter on the differences. The 

Table 2 
Overall validation statistics of the L4 SST and IST against in situ observations. 
The mean difference is given by L4 SST/IST minus in situ SST/IST. Notice that 
the NP, ECMWF and CRREL do not measure the surface temperature, but the air 
temperature (T2m). For both the SST and IST validation a 3σ filter has been 
applied before calculating the statistics. The table shows the mean difference 
(MD), standard deviation of the difference (std), root mean squared error 
(RMSE), correlation (corr) and the number of observations (Nobs).  

Type Parameter MD std RMSE corr Nobs 

Drifting buoys SST (◦C) 0.00 0.54 0.54 0.99 3,062,549 
Moored buoys SST (◦C) 0.03 0.56 0.56 0.98 76,052 
Argo SST (◦C) 0.03 0.51 0.51 0.99 32,953 
NP drifting ice 

stations (T2m) 
IST (◦C) − 2.35 3.12 3.91 0.98 7665 

Drifting buoys 
ECMWF (T2m) 

IST (◦C) − 3.21 3.34 4.63 0.96 55,288 

Drifting buoys 
CRREL (T2m) 

IST (◦C) − 2.87 3.36 4.42 0.96 22,979 

IceBridge KT-19 
(IST) 

IST (◦C) 1.52 3.12 3.48 0.92 36,638  
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IceBridge observations have standard deviations of the 5 km averages 
ranging from 0.81 ◦C to 5.41 ◦C for the different flights and an average 
value of 2.52 ◦C. Part of the bias against IceBridge may be explained by 
the missing cloud screening of IceBridge observations. If clouds are 
present between the flight and the surface, the radiometer will provide 
the temperature of the (usually colder) clouds instead of the surface 
temperature. Furthermore, IceBridge provides “snap-shots” of the sur-
face temperature, while the L4 SST/IST provides daily means, which 
have been adjusted by using the 24 h average clear-sky bias correction 
(see Section 3.d). 

4.1.3. Uncertainties 
Each daily L4 SST/IST is accompanied with an uncertainty estimate, 

which is a direct output of the OI method (see Eq. 4). The uncertainties 
for the L4 SST have been validated against drifters. The validation re-
sults are shown in Fig. 11, where the actual L4 SST minus drifter SST 
differences are plotted as a function of the OI derived uncertainty esti-
mates. This uncertainty validation approach is similar to what is done in 
Alerskans et al. (2020) and Nielsen-Englyst et al. (2018). The dashed 
lines represent the ideal uncertainty based on the assumption that 
drifters have a total uncertainty of 0.2 K (Kennedy, 2014). The figure 
shows a good agreement between the estimated uncertainties and the L4 
SST uncertainties for low uncertainties, but overestimated uncertainties 
for the higher uncertainties. This approach is unfortunately not appli-
cable for the IST validation results due to the lack of good quality in situ 
reference observations that makes the spatial sampling component very 
large in comparisons between the L4 IST and the in situ measured near 
surface air temperatures. 

4.2. Climate analysis 

The derived L4 SST/IST product is the first gap-free combined SST 
and IST reanalysis product for the Arctic. The combination of sea ice and 
ocean surface temperatures in the Arctic provides a consistent climate 
indicator, which can be used to monitor day-to-day variations as well as 
long-term climate trends. Fig. 12 shows the average seasonal variation 
of the daily surface temperature and the sea ice to open water ratio of the 
Arctic (>58◦N). The daily surface temperature reaches a maximum in 
August with average surface temperature around the melting point and 
minimum temperatures in February/March with average temperatures 
around − 24 ◦C. During the minimum in September, only 30% of the L4 
SST/IST region is covered with sea ice (and 70% open ocean), while the 
fraction increases to almost 70% during winter (30% for open ocean). 
The largest variability in temperature is seen during winter. Part of this 
is explained by stronger cyclones and anticyclones in contrast to the 
summer (Serreze et al., 1993), when the variability moreover is limited 
by the upper temperature limit around the melting point for the ice 
covered regions. For regions covered by seasonal sea ice, the SSTs usu-
ally also stay around the melting point during summer, when the sea ice 
has retreated(e.g. Timmermans and Labe, 2020), limiting the summer 
SST variability in these regions as well. The large variability in winter 
temperatures as well as in the sea ice coverage, shown in Fig. 12, is also 
explained by the increasing temperatures and decreasing sea ice extent 
throughout the data record (1982–2021). 

Fig. 13 shows the monthly mean surface temperature anomaly for 
the period 1982–2021 when compared against the monthly mean of the 
30-year-long reference period, 1991–2020. The large fluctuations 
illustrate large monthly variations in sea and ice surface temperatures of 
the Arctic. The solid black curve represents the yearly mean and the 
dashed black curve is the linear fit. During the period from 1982 to 2021 

Fig. 8. Seasonal (3-month) mean L4 SST difference (top) and standard deviation (middle) against sea surface temperatures measured by drifting buoys, moored 
buoys and Argo floats. The bottom plot shows the seasonal mean number of matchups for each in situ source. The linear trend in the mean difference is calculated 
considering all in situ types. The seasonal difference, standard deviation and trend are only calculated if >45 matchups are available. 
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the linear trend is 0.114 ◦C/yr, and the surface temperatures of the 
Arctic Ocean (>58◦N) have thus increased by about 4.5 ◦C in 39 years. 
The trend increases with latitude and the total temperature increase to 
about 5 ◦C north of 70◦N. Fig. 14 shows the corresponding two dimen-
sional trend in the monthly Arctic surface temperatures for the entire 

period, 1982–2021. On average, the temperature has increased in most 
regions, with the largest increase in the northeastern Barents Sea, which 
shows a peak temperature increase of about 10 ◦C over the 1982–2021 
period. The trend pattern is in agreement with the most recent findings 
based on combined observed and modelled data over the Arctic Ocean 

Fig. 9. Seasonal (3-monthly) mean L4 IST difference (top) and standard deviations (middle) against air temperatures from NP, ECMWF, CRREL. The bottom panel 
shows the seasonal mean number of matchups for each in situ type. The linear trend in the mean difference is calculated considering all in situ types. The seasonal 
mean difference, standard deviation and trend are only calculated if >45 matchups are available. 

Fig. 10. An example of the validation against one Icebridge flight during March 29, 2012. Figure a) shows the flight path, while b) shows a comparison of the 
smoothened IceBridge IST and the L4 IST, with a mean temperature difference of 1.24 ◦C and a standard deviation of 1.11 ◦C. 
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for the period 1979–2019 (AMAP, 2021) and a combination of four 
observational datasets covering the period 1979–2021 (Rantanen et al., 
2022). The largest temperature increases are coinciding with those re-
gions where the number of open water days have increased the most 
(Tonboe et al., 2016). In general, the surface temperature increases 
observed in Fig. 14 are slightly larger than the air temperature increases 
observed in AMAP (2021) and (Rantanen et al., 2022), who find 
maximum temperature increases of around 6–8 ◦C in the northeastern 
Barents Sea. The largest surface temperature trends are found during fall 
(September–November) and winter (December–February) with average 
trends of 0.148 ◦C/yr and 0.142 ◦C/yr, respectively, leading to an 
average temperature increase of >5.5 ◦C from 1982 to 2021 considering 
these months. During summer (June–August), limited increase in the 
surface temperature (0.037 ◦C/yr) is observed. The small trend during 
summer is mainly explained by the upper constrain of the sea ice surface 

temperature to the melting point and the fact that the SSTs usually stay 
around the melting point during summer in regions where the seasonal 
sea ice has retreated (e.g. Timmermans and Labe, 2020). 

5. Discussion 

In order for a dataset to be categorized as a CDR it needs to have 
sufficient length, accuracy and stability to enable study and assessment 
of long-term climate variability and change (Minnett et al., 2020). A 
dataset with excellent absolute accuracy is important for understanding 
climate processes, but not necessary for determining long-term changes 
or trends as long as the dataset has the required stability (Ohring et al., 
2005). Based on the expected magnitude of a climate change signal (per 
decade), the requirements of an SST CDR are an accuracy of 0.1 ◦C and a 
stability (per decade) of 0.04 ◦C according to Ohring et al. (2005). The 

Fig. 11. L4 SST uncertainty validation against independent in situ 
observations from drifters. The dashed lines show the ideal uncertainty 
when accounting for uncertainties in the drifter SSTs and the sampling 
error. The solid black lines show one standard deviation of the L4 SST 
minus drifter SST differences for each 0.02 K bin and the red asterisks 
mark the mean difference. The bottom plots show the number of 
matchups (blue) and the cumulative percentage of matchups for each 
bin (red). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)   

Fig. 12. Seasonal cycle of daily mean L4 SST/IST (blue) and daily mean sea ice – open water ratio in percentage of the total L4 SST/IST coverage (red) considering all 
years, 1982–2021. The shaded regions show one standard deviation. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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observed accuracy and stability of the L4 SST meet these SST CDR re-
quirements. For land surface temperature (LST), including land surfaces 
covered with snow and ice, the CDR requirements are 0.3 ◦C/decade for 
the threshold stability and 0.1 ◦C/decade for the target stability (GCOS, 
2016). The L4 IST meets the target requirements when considering the 
NP validation (which spans the longest time period). Currently, no GCOS 
requirements have been established for sea ice surface temperature, 
because this variable is not recognized as an Essential Climate Variable 
(ECV). Introducing IST as an official GCOS ECV is highly recommended 
in order to facilitate a common community consensus on IST re-
quirements for climate applications (Lavergne et al., 2022). Moreover, 
the limited availability of long-term high quality reference in situ IST 

observations (with known and controlled stability), complicates vali-
dation and hence, the extent to which satellite IST products can be tested 
for meeting the CDR requirements. 

In CDRs, quantitative uncertainty information should also be pro-
vided with the observations (Merchant et al., 2017). Here, each daily L4 
SST/IST is accompanied with an uncertainty estimate derived directly 
from the OI method. The validation of the L4 SST uncertainty estimates 
(see Section 4.a.3) shows that the OI method is capable of deriving 
reliable uncertainty estimates for SST. 

The validation of the L4 SST shows differences smaller than 0.05 ◦C 
and standard deviations <0.6 ◦C against drifters, moorings and Argo 
floats. The L4 IST is colder than in situ measurements from NP, ECMWF 
and CRREL, and warmer than KT-19 measurements from IceBridge 
flights with an average difference of 1.52 ◦C. The L4 IST differences were 
in the range from − 3.21 ◦C to − 2.35 ◦C and standard deviations of about 
3.4 ◦C against T2m measurements from NP, ECMWF and CRREL. A large 
fraction of these differences can be attributed to the temperature dif-
ference between the in situ air temperatures measured about 2 m height 
and the actual surface temperature provided by the L4 IST product. 
Nielsen-Englyst et al. (2021) derived a simple regression model to 
convert satellite observed ISTs to 2 m air temperatures (T2m) over ice 
surfaces. Using the sea ice regression model and coefficients from 
Nielsen-Englyst et al. (2021) to derive T2m from the L4 ISTs, the abso-
lute differences against CRREL, ECMWF and NP reduce to below 0.7 ◦C, 
while the standard deviations remain more or less the same. These initial 
results indicate that it is possible to derive reliable T2m above the sea ice 
on basis of satellite derived L4 ISTs in order to supplement the sparse in 
situ air temperature network in the Arctic. 

Traditionally, gridded and gap-free satellite SST products provide 
the temperature of the sea water just below the ice in ice covered regions 
and this is also the case for the OSTIA/CCI and the NOAA Optimum 
Interpolation SST (OI SST v2; Reynolds et al., 2007, 2002), which are 
used in the comparison here. The NOAA OI SST v2 shows an overall 
warming trend in the Arctic Ocean (>65◦N) of 0.036 ± 0.03 ◦C/yr 
considering the period from 1982 to 2018 (Carvalho and Wang, 2020), 
while a trend of 0.015 ± 0.003 ◦C/yr is found using OSTIA/CCI for the 
same region and time period. Considering the L4 SST/IST region 
(>58◦N) and period (1982–2021), OSTIA shows an overall warming 
trend of 0.016 ± 0.001 ◦C/yr. To enable a comparison against the L4 
product derived here, the OSTIA SST has been compared with the L4 SST 
product for regions that never experience sea ice (considering both 
products). The two products show very similar spatial trend fields, and 
the average trend is 0.019 ◦C/yr for OSTIA and 0.022 ◦C/yr for the L4 
SST product, indicating a good agreement in those regions where both 

Fig. 13. Monthly mean surface temperature anomalies for the period 1982–2021. The anomalies represent the difference between the monthly mean surface 
temperature and the monthly mean surface temperature of the reference period, 1991–2020. The yearly mean anomalies are shown as the solid black curve, while the 
dashed black curve is the linear fit, which has a slope of 0.114 ◦C/yr. 

Fig. 14. The average rate of surface temperature change (◦C) per year based on 
the monthly mean L4 SST/IST from January 1, 1982 to May 31, 2021. The black 
dots indicate regions where trends are not significant. 
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products always report the temperature of the ocean surface. 
In ice covered regions, limited variation is seen in the sub-ice SSTs, 

and this is not representative for the actual surface conditions. Instead, 
T2m is normally used in global reanalyses in ice covered regions in 
combination with SST over the ocean (Dee et al., 2011; Hersbach et al., 
2020; Kobayashi et al., 2015; Simmons, 2004). A combination of 
modelled and observed data for a 49-year long period (1971–2019) 
showed an average increase in annual near-surface air temperature of 
0.063 ◦C/yr (AMAP, 2021). Marquardt Collow et al. (2020) compared 
12 reanalyses of the central Arctic Ocean and found an average trend in 
SST/T2m of 0.09 ± 0.01 ◦C/yr for the period 1979–2017 with large 
spread among the reanalyses (estimated standard deviation of the 
regression coefficient of 0.2 K). Using the derived T2m estimates from 
the L4 IST (following Nielsen-Englyst et al., 2021) together with our L4 
SST, the combined SST/T2m trend in the Arctic is 0.100 ± 0.005 ◦C/yr 
for the region above 58◦N and 0.111 ± 0.006 ◦C/yr above 70◦N. This is 
in good agreement with the average estimate of the 12 reanalyses in the 
central Arctic Ocean. 

Currently, global reanalyses only assimilate in situ measured air 
temperatures over ice. As a consequence, the global reanalyses usually 
show large uncertainties and significant differences in the Arctic due to 
the limited number of in situ observations in this region (Cowtan and 
Way, 2014; Lenssen et al., 2019; Marquardt Collow et al., 2020; Rapaić 
et al., 2015). Marquardt Collow et al. (2020) concludes that more in situ 
and remote sensing observations as well as a better use of existing sat-
ellite observations are needed in order to represent the characteristics of 
the entire Arctic region in both reanalyses and numerical models. 
Therefore, the L4 SST/IST product as well as a satellite derived T2m 
dataset based on the L4 IST product have a large potential to supplement 
existing in situ measurements and improve the current surface air 
temperature estimates over the Arctic sea ice (Nielsen-Englyst et al., 
2021). The L4 SST/IST product has been derived for the Arctic, and the 
same procedures can be applied to the Antarctic. 

Future work should aim at improving the L4 SST/IST product. One 
possible way of improving the L4 IST could be to include other available 
IST satellite products such as the MODIS IST data (Hall et al., 2004) or 
the VIIRS IST product (Key et al., 2013; Liu et al., 2015). More and 
higher quality in situ observations will also increase the possibilities of 
improving the satellite derived IST products and also allowing a better 
parameterization of the constant clear-sky bias, which is believed to 
have a seasonal variation. In general, there is a need for good quality 
reference data over sea ice, and in particular observations that also cover 
the MIZ, to improve retrieval derivation and validation. 

In relation to SST, inclusion of other SST products may lead to im-
provements e.g. those based on PMW observations. The IR observations 
used as input to the L4 SST/IST product are severely limited by clouds, 
which are particularly extensive over the Arctic during summer (Intrieri, 
2002; Key, 1990). PMW SST observations may provide an important 
supplement to the IR observations, since they are not prevented by non- 
precipitating clouds (Chelton and Wentz, 2005; Wentz et al., 2000). A 
number of different retrieval algorithms have been developed to retrieve 
SST from PMW observations (Alerskans et al., 2022, 2020; Chang et al., 
2015; Meissner and Wentz, 2012; Milman and Wilheit, 1985; Nielsen- 
Englyst et al., 2018; Shibata, 2006; Wentz and Meissner, 2000). Hence, 
future work should investigate the possibilities of including PMW SST 
observations in the L4 SST/IST product derived here. This is particular of 
interest since the Copernicus Imaging Microwave Radiometer (CIMR), 
currently being implemented by ESA as a Copernicus Expansion Mission, 
will provide high-accuracy, high resolution PMW observations of the 
Polar Regions, which can be used to improve SST and SIC products in the 
future (Donlon, 2020). 

6. Conclusion 

This paper presents the first gap-free (L4) surface temperature 
climate dataset covering the ocean, sea ice and the marginal ice zone 

(MIZ) of the Arctic (>58◦N) for the period from 1982 to May 2021. The 
dataset is based on thermal infrared observations from A(A)TSR, AVHRR 
and SLSTR, which have been combined using optimal interpolation (OI). 
Due to differences in the variability over ice, ocean and the MIZ, the OI 
statistical parameters have been derived separately for each surface 
type. 

The derived L4 sea surface temperature (SST) and sea ice surface 
temperature (IST) product has been compared with different sources of 
in situ observations. The validation of the L4 SSTs shows mean differ-
ences of 0.01 ◦C, 0.04 ◦C and 0.04 ◦C and standard deviations of 0.54 ◦C, 
0.56 ◦C and 0.51 ◦C for drifting buoys, moored buoys and Argo floats, 
respectively. The L4 ISTs have been compared with KT-19 measure-
ments from 117 IceBridge flights, showing a mean difference of 1.52 ◦C 
and standard deviation of 3.12 ◦C, and with air temperatures (typically 
measured at about 2 m height) from the North Pole (NP) ice drifting 
stations as well as ECMWF distributed buoys and CRREL buoys, with 
mean differences of − 2.35 ◦C, − 3.21 ◦C and –2.87 ◦C and standard 
deviations of 3.12 ◦C, 3.34 ◦C and 3.36 ◦C, respectively. The large 
temperature differences against NP, ECMWF and CRREL are linked to 
the physical temperature difference between the skin ISTs provided here 
and the air temperatures measured in situ. The observed stability is 
− 0.0001 ◦C/yr and 0.0047 ◦C/yr against drifters (SST) and NP (IST) 
observations, respectively, indicating a very stable performance 
throughout the record. 

Traditionally, climate surface temperature trends have been esti-
mated individually for SST and IST satellite based records. This is 
problematic in the Arctic region due to the large variability in the sea ice 
cover on decadal timescales, and the resulting climate trends are not 
easy to interpret. A combined surface temperature dataset of the ocean, 
sea ice and the MIZ provides a consistent climate indicator, which is 
important for monitoring day-to-day variations as well as climate trends 
in the Arctic region. The combined sea and sea ice surface temperatures 
of the Arctic have increased by around 4.5 ◦C between 1982 and 2021, 
with a peak warming of around 10 ◦C in the northeastern Barents Sea. 
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Abstract

The frequent and persistent cloud cover in the Arctic limits the extent to which sea surface temperature (SST)

can be retrieved from thermal infrared (IR) satellite sensors. Passive microwave (PMW) observations provide

highly complementary information to IR, enabling measurements through non-precipitating clouds, although

at a coarser spatial resolution. The differences in coverage, accuracy, footprint size, spatial resolution and

error characteristics between IR and PMW SSTs require a systematic assessment of how to best combine IR

and PMW SST retrievals. This is provided in this study on the basis of the ESA-CCI PMW SST climate

data record (CDR) and an existing IR-based gap-free sea and sea ice surface temperature CDR covering

the Arctic (>58◦N), where cloud cover is a serious limitation to IR sensors. An important step towards a

combined IR and PMW SST CDR is to correct for systematic biases in the PMW and IR SST datasets

relative to each other. The PMW SSTs show reduced biases against in situ SSTs compared to the IR SSTs,

but for consistency with time periods when no Arctic PMW SSTs were available, the PMW SSTs have been

adjusted to the IR SSTs in this study. This is done using a dynamic bias correction to generate a consistent

combined IR and PMW Arctic SST CDR for the period 2002-2017. Including PMW SSTs reduces the

standard deviations from 0.54◦C, 0.55◦C and 0.47◦C to 0.47◦C, 0.54◦C and 0.41◦C against drifters, moorings

and Argo floats, respectively. The improved performance is seen in almost all regions (including those already

covered by IR observations), with the largest improvement in IR data sparse regions. The average theoretical

uncertainty reduces by 0.08◦C, which is in good agreement with the observed improvement in the standard

deviation against drifters. The results are very promising and expected to improve even further in the future

with the launch of the Copernicus Imaging Microwave Radiometer (CIMR), which will enable PMW SST

retrievals with lower uncertainties and much closer to coasts and sea ice (where the largest uncertainties

arise) than what is possible with previous and current PMW radiometers.

Keywords: Arctic, infrared satellite observations, passive microwave satellite observations, sea surface

temperature (SST), AMSR-E, AMSR2
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1. Introduction

The sea surface temperature (SST) is an Essential Climate Variable (ECV) used for monitoring, under-

standing and predicting climate change (Bojinski et al., 2014). The Arctic is warming more rapidly than the

global average, due to a number of amplifying feedback mechanisms (e.g. AMAP, 2021; Pithan and Maurit-

sen, 2014; Meredith et al., 2019; Rantanen et al., 2022), which makes it a very important region to monitor.5

The extreme environment and the poor accessibility make in situ observations challenging and sparse in the

Arctic (Centurioni et al., 2019; Donlon et al., 2012).

Satellite observations are an important tool for monitoring the Arctic due to the high spatial and temporal

coverage. There are several global satellite-based gap-free (i.e. Level 4, L4) SST products (e.g. Reynolds et al.,

2007; Merchant et al., 2019; Donlon et al., 2012), but these usually show large uncertainties and diversity in10

the Arctic (Dash et al., 2012; Castro et al., 2016; Vazquez-Cuervo et al., 2022), where extreme environmental

conditions, limited in situ data, persistent cloud cover and a varying length of the sunlit part of the day

round the year complicate accurate SST retrievals from satellites (Donlon et al., 2009; Høyer et al., 2012;

Minnett et al., 2019). Improving the Arctic SST data has been identified as being of ”high priority” for future

SST research and developments (O’Carroll et al., 2019). Specialized high latitude algorithms have previously15

been developed and shown to surpass the global L4 SST products in the Arctic (Jia and Minnett, 2020;

Vincent et al., 2008b,a). Moreover, infrared (IR) satellite observations have recently been used to produce

the first satellite-based L4 climate data record (CDR) of combined ocean and sea ice surface temperature

in the Arctic (>58◦N), which enables consistent climate monitoring of the Arctic warming (Nielsen-Englyst

et al., 2023).20

The IR SST observations are hampered by clouds, and data gaps usually remain after combining different

IR SST datasets. Two common methods used to fill in the data gaps are temporal extension (e.g. Reynolds

and Smith, 1994) and spatial interpolation techniques (e.g. Reynolds and Smith, 1994; Thiébaux et al.,

2003; Donlon et al., 2012; Nielsen-Englyst et al., 2023). In the Arctic, frequent and persistent cloud cover

results in long periods without surface coverage from IR sensors, and the cloud-contaminated observations are25

often difficult to identify. Therefore, the IR SST analyses usually rely heavily on the choice of interpolation

technique and cloud masking in the Arctic, resulting in large sampling errors (Liu and Minnett, 2016). SSTs

derived from passive microwave (PMW) observations have the potential to fill in large and persistent data

gaps in the IR coverage, since PMW observations are less impacted by clouds and aerosols (Donlon et al.,

2007, 2009; Ulaby et al., 2014; Wentz and Meissner, 2000) than IR sensors which nevertheless tend to provide30

higher spatial resolution. SSTs retrieved from IR sensors usually have spatial resolutions of about 1-4 km and

uncertainties of 0.2-0.4◦C (Donlon et al., 2007; Merchant et al., 2019; Reynolds et al., 2002; Embury et al.,

2012), while PMW SSTs have spatial resolutions of about 50 km and uncertainties of 0.4-0.5◦C, with the

largest uncertainties in high latitudes (Nielsen-Englyst et al., 2018; Alerskans et al., 2020, 2022; Gentemann,

2014; Wentz et al., 2000; Shibata, 2006).35

Current and previous PMW sensors do not capture subscale to mesoscale SST features and are influenced
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by land near (∼100 km) coasts and sea ice due to the large field of view. Improved spatial resolution of the 6.9

and 10.7 GHz channels could lead to substantial improvements of PMW SST retrievals and their information

content in global and regional SST products (O’Carroll et al., 2019). This is one of the primary objectives of

the Copernicus Imaging Microwave Radiometer (CIMR) by the European Space Agency (ESA) as a part of40

the Copernicus Expansion program of the European Union (http://www.cimr.eu/). CIMR will provide high-

accuracy, high resolution PMW observations of the Polar Regions, which will enable retrievals of SST and

other surface parameters at a higher spatial resolution and lower uncertainty than what is possible with the

current PMW missions (Donlon, 2020). In addition to CIMR, the Advanced Microwave Scanning Radiometer

2 (AMSR2) follow-on mission (AMSR3) is currently being prepared by Japan Aerospace Exploration Agency45

(JAXA) (Kasahara et al., 2020).

The large potential of including high latitude PMW SST retrievals with frequent updates from previous,

current and future PMW missions, makes it important to investigate how to best combine IR and PMW SST

retrievals in an Arctic analysis. Many global L4 SST analyses already include PMW SST observations e.g.

the NOAA Optimum Interpolation (OI) SST V2 (Reynolds et al., 2007; Huang et al., 2021), Operational Sea50

Surface Temperature and Sea Ice Analysis (OSTIA; Donlon et al., 2012; Good et al., 2020), Canadian Meteoro-

logical Center (CMC) SST analysis (Brasnett, 2008), Remote Sensing Systems (REMSS) MW-IR SST product

(http://www.remss.com/measurements/sea-surface-temperature/oisst-description), and the Multi-

scale Ultra-high Resolution (MUR) SST analysis (Chin et al., 2017). Prior systematic efforts have investi-

gated the impact of including satellite SST retrievals from the IR Advanced Very High Resolution Radiometer55

(AVHRR), the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) and the

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) to an existing in situ data based

global analysis (Reynolds et al., 2004, 2007), and later the impact of further adding the IR Advanced Along

Track Scanning Radiometer (AATSR) and PMW TMI satellite SST retrievals (Reynolds et al., 2010). The

AMSR-E data was found to have a strong impact in the mid-latitudes particularly in large gradient regions60

e.g. the Gulf Stream, because of the improved data coverage (Reynolds et al., 2007). This impact was not

seen by adding TMI SSTs, because accurate TMI SST retrievals are limited to the tropics (Reynolds et al.,

2010). Similarly, Brasnett and Colan (2016) showed clear improvements when assimilating AMSR2 SSTs in

the CMC SST analysis. Other studies have put efforts into characterizing the errors of IR and PMW satel-

lite SST products (O’Carroll et al., 2008; Gentemann, 2014; Ricciardulli and Wentz, 2004) and developing65

bias corrections to facilitate improved merging of the products using moored and drifting buoys as reference

(Castro et al., 2008).

This study presents the first systematic assessment of the impact of including PMW SST observations

in an Arctic SST analysis. The PMW SSTs are from the ESA Climate Change Initiative (ESA-CCI) PMW

SST CDR (Alerskans et al., 2020) based on AMSR-E and AMSR2 observations. As reference, we use the70

recently generated Arctic (>58◦N) L4 combined SST and sea ice surface temperature (IST) CDR, which

uses IR-sensors only (Nielsen-Englyst et al., 2023). Several methods of including satellite PMW SSTs have
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been tested using one year of data, 2015, in order to identity the best way to combine the SST observations

from IR and PMW sensors in the Arctic. One method has been selected and used for including the PMW

SST data in the Arctic reanalysis for the entire ESA CCI PMW SST period (2002-2017). The paper is75

organized as follows. Section 2 briefly describes the IR-based L4 Arctic SST/IST CDR, the PMW SSTs,

and the in situ observations used for validation. Section 3 provides a description of the different methods

tested for including the PMW SSTs in the Arctic L4 SST/IST dataset. Section 4 presents the impact on

satellite coverage, validation results and the effective spatial resolution of the different test runs during 2015.

Section 5 provides the validation results and uncertainty estimates based on the combined IR and PMW80

Arctic L4 SST CDR (2002-2017). Section 6 discusses the results and provides suggestions for future work

and finally, the conclusions are provided in Section 7.

2. Data

2.1. L4 Arctic SST/IST

This study uses the combined L4 Arctic (>58◦N) SST/IST climate dataset (described in Nielsen-Englyst85

et al., 2023) as baseline. The long term (1982-2021) climate dataset was generated by combining IR observa-

tions from A(A)TSR, AVHRR and SLSTR (Sea and Land Surface Temperature Radiometer), and applying

a statistical OI method to obtain daily gap-free fields, with a spatial resolution of 0.05◦ in latitude and longi-

tude. To be included in the OI processing, a minimum quality level (QL) of 4 was required for all observations

except from those from SLSTR, where a QL of 5 was required following Nielsen-Englyst et al. (2023). Each90

daily L4 SST/IST field comes with a theoretical uncertainty estimate, which has been derived directly from

the OI method (Nielsen-Englyst et al., 2023). Validation of the OI-derived L4 SST uncertainties against

drifting buoy observations showed that the OI method is capable of deriving reliable uncertainty estimates

for SST (Nielsen-Englyst et al., 2023).

Figure 1: Example of the total number of open water days during one year (2015).
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The L4 SST/IST CDR covers both sea and sea-ice surfaces in the Arctic, with open ocean being defined95

by sea ice concentration (SIC) ≤ 15%, the marginal ice zone (MIZ) as 15% <SIC≤ 70%, and ice covered

when SIC> 70%. Figure 1 shows an example of the number of open water days during one year (2015), while

Figure 2 shows the corresponding seasonal variation in the open water fraction (dark blue + light blue).

During winter and spring, only 20% of the (non-land) surface is open water, while the open water coverage

increases to almost 60% during September.100

Figure 2 also illustrates the relative percentage of SST and IST satellite observations that are available

and missing for each day during 2015, which was chosen as a test year. About 75% of the sea ice covered grid

cells are covered with observations during winter, while the IST satellite coverage drops to below 10% during

summer due to an extensive summer cloud cover. On average only 21.7% of the open ocean is covered with

satellite observations. During winter, only ∼10% of the open ocean grid cells are covered by observations,105

while the open ocean satellite coverage reaches a maximum in summer of about 35%. This means that the

L4 SST/IST CDR is actually based on a very limited set of satellite observations during long periods of the

year. In this study, the focus is on the open ocean regions because of the variable sea ice emissivity, and

the fact that thermal microwaves penetrate into the snow-cover on sea ice (Ulaby et al., 1986; Tonboe et al.,

2011). The penetration in sea ice means that the IST measured by IR and PMW radiometers is not the same110

(Lavergne et al., 2022), which complicates a blend of the two (see Section 6).

In 2015, the L4 SST CDR is based only on IR satellite observations from AVHRR sensors (Nielsen-Englyst

et al., 2023). Figure 3a shows an example of the SST coverage during one day (i.e. September 1, 2015), with

large regions being unobserved. Figure 3b shows the total number of days with IR SST observations in each

grid cell during 2015, and it is evident that IR observations of the surface are limited by clouds in many115

regions for more than half of the year.

Figure 2: Example of the percentage of satellite data with SST, missing SST, IST/MIZT and missing IST/MIZT for each day

during one year (2015).
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Figure 3: Examples of the L3 SST coverage during one day i.e. September 1 2015 using a) IR and c) PMW observations, and

the total number of days with SST observations during 2015 from b) IR and d) PMW sensors.

2.2. PMW data

We use the Level-2 (L2) data from the PMW SST CDR described in Alerskans et al. (2020) and developed

within the ESA-CCI SST project (Merchant et al., 2014). The L2 PMW SST CDR is generated using

a statistical regression-based retrieval algorithm, which uses observations from AMSR-E and AMSR2 for120

the period June 2002–October 2017 (Alerskans et al., 2020). The PMW SSTs have been adjusted to best

represent the daily mean temperature at 20 cm depth for consistency with the ESA-CCI IR SST retrievals

(Embury et al., 2012; Merchant et al., 2019). The resulting L2 PMW SST CDR is provided with a 10

km grid resolution and is available from the Centre for Environmental Data Archival (CEDA) at http:

//gws-access.ceda.ac.uk/public/esacci-sst/PMW2.0_release/AMSR/L2P/.125

In this study, only PMW SST observations assigned QL 3-5 are used. For these QLs, no PMW SSTs are

retrieved if any sea ice is detected within ±200 km (using the ERA-Interim SIC), or if land is detected within
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±100 km (Alerskans et al., 2020). This is done to exclude PMW SST retrievals which may be contaminated

by land and sea ice due to the large satellite footprint at low frequencies. Figure 3c shows an example of the

coverage from the PMW observations during one day, while Figure 3d shows the total number of days with130

PMW observations during one year (2015), when included in the OI in a similar way as the IR observations.

The large band with no PMW observations along the coasts and the sea ice edge is explained by the fact that

only the highest (3-5) QLs are used. In larger distances from coasts and sea ice, the PMW SST observations

show superior coverage compared to the IR SST retrievals, which are limited by cloud cover. This illustrates

the large potential there may be in combining IR and PMW observations for the SST mapping of the Arctic.135

2.3. In situ observations

In situ observations from drifting buoys, moored buoys and Argo floats are used for validation as in

Nielsen-Englyst et al. (2023). The in situ observations are obtained from the Hadley Centre Integrated

Ocean Database v. 1.2.0.0 (HADIOD, Atkinson et al., 2014). The drifters are well represented in the Arctic

open ocean region. The Argo floats show good coverage in the North Atlantic and Greenland Sea while the140

moorings which are concentrated in certain regions of the North Atlantic and southern Greenland Sea. The

in situ observations are only used for validation and have not been included in the analysis nor used for bias

correction of the analysis as was done using the drifters in Nielsen-Englyst et al. (2023).

3. Methods

Satellite IR and PMW radiometers measure top-of-the-atmosphere up-welling thermal emission. However,145

the IR and PMW satellite SST observations have very different characteristics in terms of spatial resolution

and sensitivity to noise sources, which need to be taken into account in order to combine the two data sets

properly (Castro et al., 2016). One difference is, as already mentioned, the almost all-weather capability of

PMW observations compared to the clear-sky only capability of IR observations. The penetration depth of

IR and PMW sensors also differs, with IR measuring the skin SST and PMW sensors measuring the subskin150

temperature (Donlon et al., 2007; Minnett and Kaiser-Weiss, 2012). However, here both the IR and PMW

SST retrievals are adjusted to best represent the daily mean at the same depth (of 20 cm). The IR and PMW

observations are also subject to different sources of uncertainty. The Arctic IR SST uncertainties arise mainly

due to undetected clouds and insufficient representation of the atmospheric attenuation (e.g. by water vapor)

(Castro et al., 2008), while large PMW SST uncertainties usually are related to rain, strong winds (>20 m155

s−1), sun-glint, radio frequency interference (RFI), sidelobe contamination near (typically within ∼100 km)

land and/or sea ice (Gentemann, 2014; Gentemann and Hilburn, 2015). Other differences are related to the

different grid and spatial resolutions. The IR observations have a grid resolution of 0.05◦, which is close the

the actual spatial resolution of the observations. On the other hand, the L2 PMW SST observations are

provided with a 10 km grid resolution, while the actual spatial resolution is in the order of 50 km due to the160

large satellite footprint at low frequencies. Because of the large PMW footprint, PMW SSTs are not retrieved
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close to coasts and sea ice (for QL 3-5), and in these areas, the IR observations are thus the only source of

SST observations (Alerskans et al., 2020). The different PMW and IR footprint sizes make it important to

assess the impact on the effective spatial resolution when blending PMW and IR SSTs.

In this study, different test runs have been designed to assess the best method to include the PMW165

SST observations in the Arctic L4 SST/IST reanalysis taking into account the differences in the observation

characteristics between the IR and PMW observations. All test runs were processed of 2015 using the DMI OI

L4 processing system, which is described in detail in Nielsen-Englyst et al. (2023). The DMI OI L4 processing

system takes the L2 satellite observations as input and averages these into single sensor daily Level-3 (L3)

fields. The L3 fields are afterwards aggregated into L3 super-collocated (L3S) fields by calculating the noise170

weighted average of the available observations within 24 hours from the analysis. The IR SSTs are assumed

to have uncertainties of 0.3◦C (ATSR), 0.4◦C (AVHRR), 0.4◦C (SLSTR) (following Nielsen-Englyst et al.,

2023), while the PMW SSTs are assumed to have uncertainties of 0.5◦C (Alerskans et al., 2020). The L4

fields are generated using the same OI statistical parameters as in Nielsen-Englyst et al. (2023) for all test

runs. Table 1 provides an overview of the different test runs processed for 2015, while a description of each175

test run is provided below.

3.1. IR only (IR)

Test run IR is identical to the Arctic SST/IST CDR described in Nielsen-Englyst et al. (2023) except that

the temporally and spatially constant bias correction (of +0.16◦C) against drifters has been excluded here.

This IR-only test run is used as reference for the following test runs, which all include PMW observations.180

3.2. PMW only (PMW)

Test run PMW excludes all IR SST data and is based only on the PMW SST data. In this case, the

PMW observations have been included using the same approach as was done for the IR observations in the

first test run. When aggregating to single sensor L3 fields, this leaves gaps in approximately every second

grid cell of the L3 PMW field, since the L2 PMW observations are provided at a 10 km grid (in contrast to185

the L4/L3 0.05 degree grid), and a given satellite observation is only included once in the current DMI OI

L4 processing scheme.

3.3. IR and PMW (IR PMW)

Test run IR PMW is the first attempt to combine IR and PMW SST observations in the DMI OI L4

processing scheme. The IR and PMW observations have been included as in the first two test runs, leaving190

gaps in approximately every second grid cell of the L3 PMW field. IR PMW will be the baseline of the

following test runs, which all combine the IR and PMW observations using slightly different approaches.
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3.4. IR and averaged PMW (IR PMW AVG)

IR PMW AVG is tested to see the effect of a more complete PMW SST field. The setup is similar to

IR PMW, but differs in the way the L3 PMW field is aggregated. Instead of only allowing each satellite195

observation to be included once, each L2 PMW satellite observation is included in all L3 grid cells within a

radius of 5 km. This allows observations in all grid cells covered by the PMW footprints of the L2 observations

and increases the number of L2 PMW observations available in each L3 grid cell in general. Each L3 PMW

field is thus an average of more L2 PMW observations.

3.5. IR and subsampled PMW (IR PMW SUB)200

Two problems arise in the previous test runs including PMW SST. Firstly, the L3 PMW SST grid cells

are substantially over-sampled (with the L2 grid resolution being much higher than the PMW footprint) and

each L3 PMW SST grid cell is thereby not independent but noise-correlated with its neighboring grid cells

(within the satellite footprint of ∼50 km). Moreover, there is a risk of PMW flooding in the OI scheme, and

thus, minimizing the impact of the much less frequent IR SSTs. Test run IR PMW SUB investigates the205

effect of sub-sampling the L2 PMW SST observations. In IR PMW SUB the L2 PMW SST observations

have been sub-sampled with a step of 4 in the longitude and latitude of the L2 grid before averaging to the

L3 PMW fields. This minimizes the dependence between the L3 PMW grid cells, and reduces the amount of

L3 PMW grid cells and the risk of L3 PMW SST flooding in the OI scheme.

3.6. IR and averaged, subsampled and IR-adjusted PMW (IR* PMW)210

The rationale behind IR* PMW is to use the averaged and complete L3 PMW fields from IR PMW AVG

but applying a mask (based on the IR PMW SUB L3 PMW fields) to minimize the dependence between the

PMW observations and the risk of L3 PMW SST flooding in the OI scheme. Therefore, only those L3 PMW

grid cells, which are included in IR PMW SUB are kept and included in the L3S and L4 generation. This

means that the number of days with observations is the same as in IR PMW SUB.215

IR* PMW also includes an inter-sensor bias correction, which has been implemented to correct for sys-

tematic biases in the IR and PMW SST data sets relative to each other. This is an important step towards a

combined IR and PMW dataset to avoid introducing biases when switching from one sensor to the other/or

both. Here, the L3 PMW SST data have been corrected using the L3 IR SST observations as references (the

”*” in IR* PMW denotes the reference field). The bias correction is described in more detail in Section 3.8.220

3.7. PMW-adjusted IR and averaged, subsampled PMW (IR PMW*)

IR PMW* is similar to IR* PMW, but instead of correcting the PMW SST observations against IR SST,

the IR SST observations have been corrected against the PMW SST observations.
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Table 1: Overview of the different test runs. The IR headline refers to IR being included as in Nielsen-Englyst et al. (2023), while

the PMW headline refers to PMW being included in a similar way as IR. PMW-AVG specifies that a complete and averaged

PMW field is included. In contrast, PMW-SUB corresponds to a sub-sampled PMW field being included. REF indicates if an

inter-sensor bias correction has been used and specifies the applied reference sensor. See Section 3.1-3.7 for a detailed description

of each test run.

Test run IR PMW PMW-AVG PMW-SUB REF

IR X

PMW X

IR PMW X X

IR PMW AVG X X

IR PMW SUB X X

IR* PMW X X X IR

IR PMW* X X X PMW

3.8. Inter-sensor bias correction

In test run IR* PMW and IR PMW*, an inter-sensor bias correction has been implemented to correct for225

systematic biases in the IR and PMW SST data sets relative to each other. The inter-sensor bias correction

method was developed in Høyer et al. (2014), where it was demonstrated to be very efficient in removing

biases throughout the year. The bias correction is assumed to be a smooth field, mainly accounting for slowly

varying systematic tendencies of each sensor retrieval.

Using IR as reference, the following approach is used to estimate the PMW SST bias correction (subtracted230

from the L3 PMW observations in IR* PMW). The IR SST reference field has been averaged onto coarser

grid (0.25◦) and aggregated using a temporal window of 7 days. A difference field is calculated for each day

by subtracting the IR reference field from the corresponding coarse resolution aggregated PMW sensor field.

This coarse resolution difference field is afterwards interpolated to high resolution (0.05◦) and smoothed over

500 km to reduce small scale noise. The resulting high resolution difference field has been used to bias-235

correct the L3 PMW SST fields. The bias correction has been subtracted from the L3 PMW observations

in IR* PMW. In IR PMW*, the bias correction is calculated in a similar way using PMW as reference field,

which corresponds to adding the PMW bias correction to the L3 IR SST observations. Figure 4 shows the

seasonal spatial variation of the coarse grid, smooth and extrapolated PMW SST bias correction field, while

Figure 5 shows the daily mean PMW SST bias correction throughout the year 2015. In all seasons, the bias240

correction is smallest in the North Atlantic. The average bias correction is 0.31◦C, with almost no correction

during winter and a maximum during summer of about 0.6◦C.
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a) b)

c) d)

Figure 4: Spatial variation of the mean coarse grid (and extrapolated) PMW bias correction field for the months a) December-

February, b) March-May, c) June-August, and d) September-November 2015. The PMW bias correction field is subtracted from

the PMW SST observations in IR* PMW (and added to the IR SST observations in IR PMW*).

Figure 5: Seasonal variation of the daily mean PMW bias correction field subtracted from the L3 PMW SST observations in

IR* PMW (and added to the IR SST observations in IR PMW*) during 2015.
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4. Test run results

This section investigates the impact on the satellite coverage, validation and the effective spatial resolution

by including PMW SST observations in the Arctic L4 SST/IST dataset using one year (2015) of the data245

and the setup from the test runs described in Section 3.

4.1. Satellite Coverage

The number of daily satellite observations included in the OI processing scheme varies among the test

runs. Figure 6 shows the change in the number of daily SST observations compared to the IR reference

test run for the individual test runs during 2015. In the case where only PMW observations are used250

(Figure 6a), no SST observations are available near coasts and sea ice, but more SST observations are

available everywhere else compared to test run IR. Combining PMW and IR observations as in IR PMW

(Figure 6b), most regions (away from coasts and sea ice) experience more SST observations compared to test

run IR. Performing the L3 PMW averaging by including more L2 PMW observations as in IR PMW AVG

allows many more days with SST observations compared to the other test runs (Figure 6c). Figure 6d shows255

the remaining number of days with SST observations after the L3 PMW fields have been sub-sampled to

only include the available L3 PMW grid cells from IR PMW SUB. The average daily SST coverage for the

different test runs are: 21.7% (IR), 33.9% (PMW), 55.6% (IR PMW), 73.8% (IR PMW AVG) and 25.2%

(IR PMW SUB/IR* PMW/IR PMW*) during 2015.

4.2. Validation260

The different test runs have been validated against drifting buoy SST observations, which provide the

best representation of the Arctic. Table 2 shows the validation results of the L4 SST fields, the aggregated

L3 super-collocated (L3S) SST fields, and the single sensor L3 PMW SST fields during 2015. Matchups

with drifter SST or L4/L3S/L3 SST below -1.8◦C and matchups with L4/L3S/L3 – drifter SST differences

deviating more than three times the standard deviation from the mean L4/L3S/L3 – drifter SST difference265

(referred to as a 3-sigma filter) have been excluded from the validation statistics. The filters are applied

to exclude erroneous in situ observations and to provide more representative validation statistics (without

dominance from outliers). Each filter removes about 2% of the L4 matchups. The varying satellite coverage

(as seen in Section 4.1) is reflected in the large variations in the number of L3S and L3 PMW matchups in

Table 2.270

For test run IR, a significant increase in standard deviation is seen from the L3S to L4 field, which

indicates that it is difficult for the OI processing to provide accurate SSTs in the poorly IR observed regions.

The L4 IR mean SST difference of -0.14◦C is close to the difference (of -0.16◦C), which was documented and

corrected for in the post-processing of the long-term climate dataset in Nielsen-Englyst et al. (2023). As

seen in Figure 5, the PMW observations are generally warmer than the IR observations, and the resulting275

mean difference against drifters is reduced for all test runs where PMW observations are included in the L4
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Figure 6: Differences in the total number of daily SST observations compared to test run IR for a) PMW, b) IR PMW, c)

IR PMW AVG and d) IR PMW SUB/IR* PMW/IR PMW* during 2015.

generation (and not referenced against the IR observations as in IR* PMW). All combinations of IR and

PMW observations show reduced L4 standard deviations compared to only using either IR or PMW SST

observations.

Table 2 also shows that it is possible to reduce the standard deviations of the L3 PMW observations by280

including more (of the surrounding) L2 PMW observations in the aggregation of the L3 PMW field. This also

allows more L3 grid cells to be assigned with a PMW SST and results in more L3 PMW matchups compared

to PMW/IR PMW. The opposite is the case when the L2 PMW fields are sub-sampled. Here the number of

grid cells with a L3 PMW SST is reduced, which results in fewer matchups than for PMW/IR PMW, and less

L2 PMW observations available for averaging the L3 PMW SST fields, resulting in a larger L3 PMW SST285

standard deviation. If the L3 PMW SST validation subset from IR PMW SUB (10,256 matchups) is used for

the IR PMW AVG L3 PMW SST validation, the standard deviation and bias reduce to 0.44◦C and -0.01◦C

(as also seen for IR* PMW/IR PMW*). This clearly shows that including more L2 PMW SST observations
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Table 2: Overall performance of the different test runs against in situ observations from drifting buoys during 2015. The

table shows the mean difference (MD), standard deviation (STD), root mean squared difference (RMSE), and the number of

observations (Nobs) for the L4, L3S and L3 PMW SST fields, respectively. A 3-sigma filter has been applied to remove outliers.

L4 L3S L3 PMW

Test run MD STD RMSE Nobs MD STD RMSE Nobs MD STD RMSE Nobs

IR -0.14 0.64 0.65 193,798 -0.10 0.47 0.48 41,312 - - - -

PMW -0.03 0.74 0.74 192,140 -0.01 0.57 0.57 97,648 -0.01 0.57 0.57 97,648

IR PMW -0.04 0.56 0.57 194,434 -0.03 0.54 0.54 119,014 -0.01 0.57 0.57 97,649

IR PMW AVG -0.03 0.56 0.56 194,457 -0.02 0.47 0.47 153,197 -0.00 0.48 0.48 140,401

IR PMW SUB -0.06 0.56 0.56 194,188 -0.08 0.51 0.51 49,506 0.00 0.63 0.63 10,256

IR* PMW -0.18 0.56 0.59 194,159 -0.12 0.47 0.48 49,450 -0.01 0.44 0.44 10,219

IR PMW* 0.05 0.56 0.56 194,532 0.12 0.48 0.49 49,456 -0.01 0.44 0.44 10,219

in the L3 PMW SST aggregation improves the L3 PMW SST performance substantially.

The improved L3 PMW and L3S standard deviations of IR* PMW/IR PMW* (and IR PMW AVG)290

are, however, not reflected in the L4 standard deviations, which do not vary among the test runs including

both PMW and IR SST observations. If only the L3S matchups of IR PMW AVG (153,197 matchups) are

considered in the L4 validation, all combined IR and PMW test runs provide equal same standard deviations

of 0.46◦C, while test run IR and test run PMW provide standard deviations of 0.53◦C and 0.55◦C, respectively

(not shown). This indicates that if both IR and PMW observations are included, the OI L4 processing is295

able to provide accurate SSTs for those 153,197 matchups despite the differences in the L3S and L3 PMW

fields.

Figures 7a and 7b show the geographical distribution of the standard deviations during 2015 when com-

pared to drifting buoy SST using IR and IR* PMW SST, respectively, with the latter being similar to

IR PMW* (not shown). In both cases, the largest standard deviations are found along the coasts and in300

the seasonal ice covered waters. The few or none satellite observations from the IR and PMW sensors in

these regions (see Figure 3) make it difficult for the OI method to provide accurate SSTs. Figures 7d and 7e

show the mean differences in 2015, when compared to drifting buoy SST for IR* PMW and IR PMW*,

respectively. Large differences are seen in the mean SST differences for IR* PMW and IR PMW*, which are

corrected against IR and PMW observations, respectively. IR* PMW is cold compared to drifters, with an305

increasing magnitude towards the sea ice edge. In contrast, IR PMW* shows varying mean differences, with

an average difference around zero, but also regions with SSTs warmer than drifters (e.g. the Beaufort and

Chukchi Sea). Figure 7c shows the distribution of the L4 matchups (with drifters) available for validation of

IR* PMW during 2015, which is similar to the matchup distribution of the other test runs (not shown). The

drifter matchups show good coverage of the open water regions with most matchups in the North Atlantic310

and southern Greenland Sea. Figure 7f shows the distribution of those IR* PMW L4 matchups that are
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a) b) c)

d) e) f)

Figure 7: The standard deviation (STD) against drifter SST for a) IR and b) IR* PMW (similar to IR PMW*) and the mean

differences (MD) between d) IR* PMW, e) IR PMW* and drifters. The last column shows the number of L4 matchups (Nobs)

for c) IR* PMW and f) IR* PMW which are not included in the IR PMW AVG L3S matchups. The statistics are calculated

for each 2x2 degree grid having more than 50 members during 2015.

not part of the IR PMW AVG L3S matchups i.e. those matchups that have no IR or PMW satellite SST

observations within the corresponding grid cells. These are concentrated along the coasts and sea ice edge.

In these regions, increased standard deviations are observed for both IR and IR* PMW (Figures 7a and 7b)

as well as for the other test runs (not shown). This will be discussed in greater detail in Section 6.315

The performances of IR* PMW and IR PMW* and IR are shown as a function of latitude (Figure 8a)

and time (Figure 8b) for 2015. Generally, IR* PMW/IR PMW* show smaller standard deviations, with the

largest improvement between 68◦N and 80◦N compared to test run IR. Test run IR and IR* PMW show

a gradual increase in the absolute mean difference with latitude. This is in contrast to IR PMW*, which

shows a mean difference centered around zero except from northwards of about 80◦N, where it is colder than320

drifters, but to a smaller degree than the IR and IR* PMW. IR PMW* also shows a smaller and more stable

mean difference as a function of time compared to test run IR and IR* PMW (Figure 8b). The dynamic bias

correction of IR against PMW is thus able to significantly reduce the latitudinal and seasonally discrepancy

observed in the IR SSTs.
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a) b)

Figure 8: Mean differences (MD) and standard deviations (STD) against drifter SST during 2015 for test run IR, IR* PMW

and IR PMW* as a function of a) latitude (◦N) and b) time, using bin sizes of 1◦ and 15 days, respectively, and a requirement

of minimum 30 matchups per bin.

4.3. Spectral Analysis325

Due to the differences in IR and PMW footprint sizes and coverage, it is important to assess the impact

on the effective spatial resolution on the L4 product, when ingesting the PMW SSTs into the IR-based

L4 SST/IST analysis. Therefore, a spectral analysis has been performed in the two sub-domains shown in

Figure 9 for the different L4 SST test runs. Comparisons of the spectral power will indicate added benefit

in resolving SST signals or degradation of the effective spatial resolution when including the coarser PMW330

observations.

The estimation of the power spectrum is performed using the standard FFT method in the zonal direction

(Thomson and Emery, 2014) and only open water points are included. The power spectrum per wave number

is computed for each latitude band and averaged into bins for the full year for each test run. Figure 10 shows

the zonal spectra for each test run (except from IR PMW* for which there was no visible difference from335

IR* PMW) during 2015 for sub-domains D1 (a) and D2 (b). The theoretical -2 and -5/3 (-1.6) curves for the

expected decrease of spectral power in the meso- to sub-mesoscale are also included for reference (Vazquez-

Cuervo et al., 2022; Castro et al., 2017). Note that the smallest scales are resolved only in the northernmost

region of the D2 domain, as the distance between meridionals becomes smaller towards the high latitudes.

This means that the results for the smallest scales are based on less data than for the larger scales. Therefore,340

to avoid noisy signals, only power spectra with wavelengths larger than 6 km are shown.

Figure 10 shows similar power spectra at scales larger than ∼60 km for D1 and scales larger than ∼20 km

for D2. The ”bump” in spectral power occurring for the PMW and IR PMW at approximately 12.5 km in

D1 (10.5 km in D2) is assumed to be associated with energy contribution from the smaller scales, probably

due to the mismatch between the resolution of the PMW data and the L4 grid spacing. PMW and IR PMW345

generally have more energy at small scales compared to the other test runs and their spectral slopes are

gentler, i.e. slower decrease in power as wavenumbers increase. This is likely explained by the fact that both

of these test runs include PMW SST observations (approximately for every tenth kilometer) in regions that
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Figure 9: Domain 1 (D1, blue) and 2 (D2, magenta) used for the calculation of the spectral power.

a) b)

Figure 10: Zonal spectra for the subdomains a) D1 and b) D2 for the different test runs during 2015.

were otherwise under-sampled by IR. This is in contrast to IR PMW SUB and IR* PMW, where the PMW

SSTs have been subsampled and the L4 output relies more on the interpolation capability in these regions350

resulting in a more smooth L4 field. This is manifested as an overall lower spectral power level and a rapid

decrease in the power as wavenumbers increase, i.e. steeper spectral slopes. In IR PMW AVG, the averaging

performed in the aggregation of the L3 PMW SST field also results in a more smooth L4 SST field. Except

from PMW and IR PMW, the test runs are closely aligned with the IR spectra, which is ideal in terms of

long-term consistency of a merged IR and PMW SST product.355

4.4. Selection for the CDR

Different ways of including PMW SST observations in the L4 Arctic SST/IST reanalysis have been

assessed. For all test runs, the inclusion of PMW SSTs reduces the L4 standard deviations against drifters
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compared to only using IR SST (and only using PMW SST).

The best L3 PMW validation result is obtained by allowing each L2 PMW observation to be included in360

all L3 grid cells in a radius of 5 km from the L2 PMW observation. This reduces the noise and provides more

robust L3 PMW SST estimates (see IR PMW AVG validation in Section 4.2). To reduce the dependence

between the L3 PMW observations and the risk of PMW flooding in the OI scheme, this L3 PMW field

(from IR PMW AVG) has been sub-sampled by only including those grid cells, which were also included

in IR PMW SUB. This is done in both IR* PMW and IR PMW* that differ only in the inter-sensor bias365

correction, which adjusts the PMW SST to IR SST in IR* PMW and IR SST to PMW SST in IR PMW*.

The smallest discrepancy against drifters is seen in the case where the IR SSTs are adjusted to PMW SSTs,

since the IR SSTs are generally too cold compared to drifters. However, the PMW observations span a much

shorter time scale than IR, which limits the extent to which the bias correction against PMW SSTs can be

applied. For climate analyses, the PMW SSTs could instead be adjusted to IR SSTs to ensure consistency370

and avoid jumps when introducing the PMW SSTs.

The spectral analysis revealed similar zonal spectra for all the test runs (and both domains) except from

PMW and IR PMW, which both have more energy in the small-scales compared to the other test runs. This

is explained by the fact that both of these test runs include PMW SST observation (approximately for every

tenth kilometer) in regions that were otherwise under-sampled by IR. The other test runs are closely aligned375

with the IR spectra, which is ideal in terms of long-term consistency of a merged IR and PMW SST product.

Based on above analyses, we decided to use the setup from IR* PMW to generate a blended IR and PMW

Arctic L4 SST CDR for the ESA CCI PMW SST CDR period extending from June 2002 to October 2017.

5. CDR Results

This section provides the validation and uncertainty results of the blended Arctic IR and PMW L4 SST380

CDR for the ESA CCI PMW SST period (2002-2017), hereafter referred to as IR* PMW (after the test

run, which it is based on). The results of the full IR* PMW SST CDR is compared to the IR-based Arctic

SST/IST CDR (described in Nielsen-Englyst et al., 2023) for this period, which will be referred to as IR

hereafter. In the PMW sensor gap between AMSR-E and AMSR2 (from October 4, 2011 to July 4, 2012)

the IR* PMW SST CDR is based only on IR observations, and is thus identical to the IR SST CDR for this385

period.

5.1. Validation

The long-term IR and IR* PMW runs have been validated against drifting buoys, Argo floats and moorings

for the years 2002-2017. The validation statistics are summarized in Table 3 for the L3S and L4 SST products.

For both drifters and Argo floats there is a substantial improvement in the L4 standard deviations, which390

reduce from 0.54◦C to 0.47◦C and from 0.47◦C to 0.41◦C, respectively, by including PMW SST observations.
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Table 3: Overall performance of IR and IR* PMW SSTs against drifting buoys, Argo floats and moorings for the years 2002-

2017. The table shows the mean difference (MD), standard deviation (STD), root mean squared difference (RMSE), and the

number of observations (Nobs). A 3-sigma filter has been applied to remove outliers.

L4 IR L4 IR* PMW L3S IR L3S IR* PMW

MD STD RMSE Nobs MD STD RMSE Nobs MD STD RMSE Nobs MD STD RMSE Nobs

Drifters -0.15 0.54 0.56 1.70e06 -0.15 0.47 0.49 1.70e06 -0.09 0.42 0.43 4.62e05 -0.11 0.42 0.43 5.31e05

Moorings -0.11 0.55 0.56 39,935 -0.12 0.54 0.56 39,935 -0.05 0.51 0.51 16,649 -0.06 0.52 0.52 17,304

Argo -0.07 0.47 0.48 19,847 -0.06 0.41 0.41 19,936 0.01 0.38 0.38 5,758 -0.00 0.38 0.38 6,578

Moorings show very limited variation in the L4 performances and this is explained by the fact that the

moorings are located only in specific parts of the North Atlantic and the southern Greenland Sea.

The L3S SST validation revealed limited variations in the statistics for IR and IR* PMW (for all in

situ types). Argo floats and drifters increase their number of L3S matchups with about 15% when PMW395

observations are added, while moorings only have 4% more matchups when including PMW observations.

These additional matchups are not available for the IR product, and if these matchups are excluded from the

L3S IR* PMW validation, the statistical parameters (provided in Table 3) of L3S IR and L3S IR* PMW are

the exact same (for all in situ types).

Figure 11a shows the geographical distribution of standard deviation against drifters for L4 IR* PMW,400

while Figure 11b shows the differences in standard deviation between L4 IR* PMW and L4 IR for drifters

during the period 2002-2017. The largest standard deviations are generally found along the coasts and sea

ice edge, where few IR and PMW SSTs are available. Compared to the IR run, the inclusion of PMW SSTs

provides reduced standard deviations in almost all regions with few exceptions which are likely related to sea

ice contamination and residual RFI (Gentemann and Hilburn, 2015).405

a) b)

Figure 11: a) Standard deviation (STD) against drifter SST for L4 IR* PMW and b) the difference in standard deviation

between L4 IR* PMW and IR for drifters, during the period 2002-2017. The statistics are calculated for each 2x2 degree grid

having more than 50 members.
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Figure 12a shows the annual mean and standard deviation of the L4 SST minus drifter SST for the period

2002-2017. In general, higher standard deviations are seen when no PMW SST observations are included. For

both IR and IR* PMW, the standard deviations are largest in the last part of the period (2011-2017), which

is characterized by fewer IR SST observations, since the (A)ATSR and SLSTR are not available (Nielsen-

Englyst et al., 2023; Merchant et al., 2019). For this period, we also notice a larger reduction in standard410

deviation when including PMW SSTs. At the same time, the mean difference differs slightly among the two

runs, which was unexpected as the PMW SSTs have been adjusted to the IR SSTs. To investigate this effect

in greater detail, Figure 12b shows the validation statistics as a function of the number of days since an IR

SST observation was last available in that particular grid point. For both IR and IR* PMW, the standard

deviations against drifters increase almost linearly with the number of days since an IR SST observation was415

last available. It is also seen that the reduction in standard deviation from including PMW SSTs increases

with the number of days since the last IR observation (i.e. the largest improvements are seen in IR data

sparse regions).

a) b)

Figure 12: Mean differences (MD) and standard deviations (STD) against drifter SST for IR and IR* PMW CDR SSTs as a

function of a) time and b) days since last IR observation, using bin sizes of one year and 3 days, respectively, and a requirement

of minimum 30 matchups per bin.

For those matchups (2%) where IR observations are lacking in more than 60 days, the mean difference

(against drifters) differs among the two runs, as the IR SSTs get a warm bias. This is a phenomenon occurring420

mainly from October through December, when long periods without observations result in the use of first

guess (previous day’s analysis) many days in a row resulting in the use of erroneously warmer (summer+fall)

SSTs. In principle, the OI should account for this by taking neighbor observations into account but what

we see is the residual effect from large areas with missing observations for a long time. This is of course

undesirable and will be discussed further in Section 6. The inclusion of the more frequent PMW SSTs reduces425

this effect as seen in Figure 12b. This is another advantage of including PMW observations with frequent

updates from past, current and future PMW radiometers.
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5.2. L4 Uncertainty

As described in Nielsen-Englyst et al. (2023) each daily L4 SST/IST is assigned with an uncertainty

estimate, which is a direct output of the OI method that depends on the data availability, the proximity of430

the observations and the uncertainty of the observations and the background field. Figure 13a shows the

geographical mean L4 SST uncertainty for IR* PMW for the period 2002-2017. The largest uncertainties are

found along the coasts and in the seasonal ice covered regions with maximum uncertainties (of ∼2◦C) north of

Svalbard. This is in agreement with the increased standard deviations observed against drifters (Figure 11a).

Figure 13b shows the reduction in L4 SST uncertainty when including PMW SST observations, with the435

largest reductions in the Barents Sea, Greenland Sea and the Labrador Sea.

a) b)

Figure 13: Spatial mean a) L4 SST uncertainty of IR* PMW and b) L4 SST uncertainty difference between IR* PMW and IR

calculated for grid cells with more than 90 days of open water in the period 2002-2017.

Figure 14 shows the yearly mean L4 SST uncertainty during 2002-2017 for IR and IR* PMW, respectively.

In both cases, the L4 SST uncertainty increases after 2011 as a result of fewer IR satellite observations which

is in agreement with the increased standard deviations observed in the end of the record in Figure 12a. At all

times, the IR* PMW provides lower L4 SST uncertainties than the IR run, with the largest improvements in440

the end of the period, which is also in agreement with Figure 12a. Overall, IR* PMW provides a reduction

in the L4 SST uncertainty of 0.08◦C compared to IR, which is comparable to the reduction in standard

deviation observed against drifters of 0.07◦C (see Table 3). Nielsen-Englyst et al. (2023) also showed good

agreement between L4 SST uncertainties and observed uncertainties using drifter SSTs as reference for the

full IR record (1982-2021). The reduced L4 SST uncertainty estimates obtained when including PMW SSTs445

are thus very promising results.

6. Discussion

The inclusion of PMW SST observations provides substantial reductions in the L4 standard deviations

compared to only using IR (and only using PMW) SST observations. The improved performance is mainly
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Figure 14: Yearly mean L4 SST uncertainty during 2002-2017 for IR and IR* PMW.

linked to the superior coverage from PMW observations in the Arctic (Figure 6). However, the independent450

and highly complementary uncertainty characteristics of PMW and IR observations (see Section 3) are likely

also part of the explanation for the observed improvements. The complementary uncertainty characteristics

reduce the risk of systematic biases (e.g. as seen for the IR) in a merged product. This is supported by

all combinations of IR and PMW SSTs (without introducing an inter-sensor bias correction) having reduced

L4 biases compared to the IR test run (Table 2). The colder temperatures observed in the Arctic IR SSTs455

(compared to drifters) is a well known problem, which is also seen in other SST analyses e.g. OSTIA (Fiedler

et al., 2019). To reduce the risk of introducing biases when switching from one sensor to the other/or both,

an inter-sensor bias correction is necessary. The smallest L4 mean difference against drifters is seen in the

case where the IR SSTs are adjusted to PMW SSTs. However, to be consistent with time periods when no

Arctic PMW SSTs are available, a bias correction adjusting the PMW SSTs to IR SST has been implemented460

here. This introduces a bias in the L4 SST as seen in Table 2. Since, the continuity of PMW imagers have

been sustained for the future with AMSR3 and CIMR in the pipeline, future work should focus on using the

PMW SST observations to adjust the cold IR SSTs in the Arctic (also extended to periods when no PMW

SSTs are available).

In general, the largest standard deviations (Figure 11a) and theoretical uncertainties (Figure 13a) are465

found along the coasts and sea ice edge for both IR and IR* PMW as well as for the other test runs (not

shown). In these regions, few or no SST observations from the IR and PMW satellite sensors (Figure 3)

make it challenging to provide accurate SST estimates. In addition, some of these regions have very large

gradients in the surface temperature e.g. along the ice edge (Carvalho and Wang, 2020). The improved

spatial resolution (of 15 km) from CIMR will enable PMW SST retrievals much closer to coasts and sea ice470

in the future. The higher accuracy of 0.3◦C (in cold waters) from CIMR will also improve the Arctic SST

estimates even further.

The L4 IR standard deviations during 2015 were higher (0.64◦C for drifters) compared to those from the

full period (0.54◦C for drifters). This is mainly explained by the fact that only the AVHRR sensors were

available during the period 2011-2017 (Nielsen-Englyst et al., 2023; Merchant et al., 2019). The year, 2015,475
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was chosen since we expected the largest impact from PMW observations to occur when few IR observations

are available, thus making it more feasible to assess the impact and variations among the different test runs.

As evident from Figure 12a, the largest reduction in standard deviation by including PMW SSTs was indeed

observed during the period 2011-2017. In relation to that, Figure 12b also showed that the reduction in

standard deviation is largest for regions rarely observed by IR sensors.480

For both IR and IR* PMW, the reduced satellite coverage during 2011-2017 resulted in increased standard

deviations (Figure 12a) and increased L4 uncertainties (Figure 14). In contrast, the overall long-term mean

differences do not show any dependence on the satellite coverage in Figure 12a. However, Figure 12b revealed

that in fact, there is a coverage dependence when binning the mean differences as a function of the days since

the last IR observation in that particular grid point. Both IR and IR* PMW get warmer as the number of485

consecutive days without IR observations increases. The issue arises during fall and early winter in unobserved

regions and when the surrounding observations are too far away to have any weight in the OI scheme. In that

case, the first guess SST (i.e. previous day’s analysis in this case) is used many days in succession resulting

in the use of erroneous warmer (summer and fall) SSTs.

This is clearly undesirable, in particular in the context of climate monitoring. Most of the existing and490

widely used L4 global SST analyses also use OI techniques (Castro et al., 2016; Vazquez-Cuervo et al., 2022)

and the previous day’s analysis as first guess (e.g. NOAA OI SST and REMSS MW-IR SST), and it is

thus likely that they also are affected by this artefact. Figure 12b showed that the residual effect was most

pronounced when only including IR observations, while the inclusion of the PMW observations reduced the

effect. This is another argument of including the more frequent available PMW observations from past,495

present and future missions. However, despite the inclusion of PMW SSTs, the problem will likely persist in

regions very near coasts and sea ice, which cannot be resolved by the current IR and PMW sensors. This

should be addressed in future updates of the Arctic reanalysis as well as in the development of new regional

and global reanalyses e.g. by applying a seasonal variation to the first guess field.

Future work should also be focused towards improving the validation close to sea ice e.g. by using500

Saildrone observations (Gentemann et al., 2020; Vazquez-Cuervo et al., 2022; Jia et al., 2022) and potentially

improving the surface temperature estimates close to both coasts and the sea ice e.g. in similar ways as done

for salinity retrievals in Meissner and Manaster (2021) and Olmedo et al. (2017). Moreover, the capability

of using PMW ISTs to supplement the IR ISTs should also be investigated in the future. An increasing

number of PMW derived IST products have become available at daily temporal resolution based on the505

vertically polarized 6.9-GHz channel AMSR-data (e.g. Le Traon et al., 2015; Comiso et al., 2003; Kilic et al.,

2019). These approximately represent the physical temperature of the snow/ice interface (Tonboe et al.,

2011; Tonboe, 2010; Ulaby et al., 1986), and relating these to IR IST (i.e. the skin surface temperature) is

a challenging task considering the large temperature gradients in the snow during winter (e.g. Comiso et al.,

2003, 1989).510

Finally, future work should aim at updating the OI scheme to include the L2 PMW SST uncertainty
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estimates provided with the individual PMW SST retrievals instead of the spatial and temporal constant of

0.5◦C. Alerskans et al. (2020) showed good validation results of the L2 PMW SST uncertainties and using

these may lead to better L4 SST estimates as well as improved L4 uncertainty estimates.

7. Conclusions515

The impact of including passive microwave (PMW) sea surface temperature (SST) observations is inves-

tigated using an existing infrared (IR) gap-free (L4) Arctic surface temperature analysis covering the ocean

and sea ice northwards of 58◦N. The Arctic suffers from frequent and persistent cloud cover, which prevents

IR retrievals of SST. Therefore, the almost all-weather PMW sensors have a significant coverage advantage

over IR sensors (which nevertheless provide a much better spatial resolution).520

This study provides a systematic assessment of how to best combine IR and PMW SST observations in a

blended L4 Arctic SST analysis in order to improve existing reanalyses as well as preparing for future PMW

missions (such as CIMR). It is found that the addition of PMW SST observations improves the L4 SST

validation results against drifting buoy SSTs for all the methods evaluated here. In order to combine IR and

PMW, it is important to correct for systematic biases in the PMW and IR SST data sets relative to each525

other. The PMW SSTs show lower mean differences against drifter SSTs compared to the IR SSTs, but for

consistency with time periods when no Arctic PMW SST observations are available, the PMW SSTs have

been adjusted to IR SSTs in this study. This has been done in order to generate a blended IR and PMW

Arctic SST climate dataset for the ESA-CCI PMW SST data period (2002-2017).

The L4 SST standard deviations decrease from 0.54◦C, 0.55◦C and 0.47◦C to 0.47◦C, 0.54◦C and 0.41◦C530

against drifters, moorings and Argo floats, respectively, when PMW SST observations are included. As

expected, the largest improvements are seen when the IR data is sparse, but improved performance is seen

in almost all regions including those already covered by IR observations. The good performance is likely not

only due to the superior PMW coverage but also related to the different and complementary uncertainty

characteristics of IR and PMW observations. The mean theoretical uncertainty estimate decreases with535

0.08◦C when including PMW observations, which is in good agreement with the observed reduction in

standard deviation against drifters.

The largest theoretical uncertainties and standard deviations against drifters are generally found along

the sea ice edge and coasts, which suffer from no or few SST observations (both from IR and PMW sensors).

Improved PMW coverage and SST retrievals are expected in the future with the launch of the CIMR mission,540

which will provide SSTs with a spatial resolution of 15 km and a precision of 0.3◦C (in cold waters) (Donlon,

2020). This will allow PMW SST retrievals much closer to the coasts and sea ice compared to what is possible

with previous and current radiometers. Therefore, CIMR has a very large potential to improve Arctic SST

estimates even further.
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Abstract. The Arctic region is responding heavily to cli-
mate change, and yet, the air temperature of ice-covered ar-
eas in the Arctic is heavily under-sampled when it comes to
in situ measurements, resulting in large uncertainties in ex-
isting weather and reanalysis products. This paper presents a
method for estimating daily mean clear-sky 2 m air tempera-
tures (T2m) in the Arctic from satellite observations of skin
temperature, using the Arctic and Antarctic ice Surface Tem-
peratures from thermal Infrared (AASTI) satellite dataset,
providing spatially detailed observations of the Arctic. The
method is based on a linear regression model, which has been
tuned against in situ observations to estimate daily mean T2m
based on clear-sky satellite ice surface skin temperatures.
The daily satellite-derived T2m product includes estimated
uncertainties and covers the Arctic sea ice and the Green-
land Ice Sheet during clear skies for the period 2000–2009,
provided on a 0.25◦ regular latitude–longitude grid. Compar-
isons with independent in situ measured T2m show average
biases of 0.30 and 0.35◦C and average root-mean-square er-
rors of 3.47 and 3.20 ◦C for land ice and sea ice, respectively.
The associated uncertainties are verified to be very realis-
tic for both land ice and sea ice, using in situ observations.
The reconstruction provides a much better spatial coverage
than the sparse in situ observations of T2m in the Arctic and
is independent of numerical weather prediction model input.
Therefore, it provides an important supplement to simulated
air temperatures to be used for assimilation or global surface
temperature reconstructions. A comparison of T2m derived
from satellite and ERA-Interim/ERA5 estimates shows that
the satellite-derived T2m validates similar to or better than
ERA-Interim/ERA5 against in situ measurements in the Arc-
tic.

1 Introduction

The Arctic climate is changing rapidly with surface tempera-
tures rising faster than other regions of the world due to Arc-
tic amplification (Graversen et al., 2008; IPCC, 2013; Pithan
and Mauritsen, 2014; Richter-Menge et al., 2017), with the
maximum warming occurring during late autumn and early
winter (Box et al., 2019; Screen and Simmonds, 2010). Mete-
orological measurements in Greenland show a general warm-
ing since the 1780s (Cappelen, 2021; Masson-Delmotte et
al., 2012; Hanna et al., 2021; Abermann et al., 2017), with
the 2000s being the warmest decade in western and south-
ern Greenland, while the 2010s in parts of eastern Greenland
were slightly warmer than the 2000s (Cappelen, 2021).

The Arctic surface air temperature is one of the key cli-
mate indicators used to assess regional and global climate
changes (Hansen et al., 2010; Pielke et al., 2007), and both
model simulations and observations indicate that warming
in the global climate is amplified at the northern high lati-
tudes (e.g. Collins et al., 2013; Holland and Bitz, 2003; Over-
land et al., 2018). Traditionally, near-surface air temperatures
have been measured at the height of 1–2 m using automatic
weather stations (AWSs) or buoys (Hansen et al., 2010; Jones
et al., 2012; Rayner, 2003; World Meteorological Organiza-
tion, 2014). Extreme temperatures, winds, and the remote-
ness of the Arctic make in situ observations in the Arctic tem-
porally and spatially sparse (Reeves Eyre and Zeng, 2017).
Therefore, it is challenging to achieve climate-quality tem-
perature records for this region.

The key datasets used to assess the Arctic temperature
changes are global gridded near-surface air temperature
datasets that are derived using in situ observations (Hansen
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et al., 2010; IPCC, 2013; Morice et al., 2012; Smith et al.,
2008; Vose et al., 2012). These datasets typically have higher
uncertainties in the Arctic region due to the limited availabil-
ity of in situ observations (Cowtan and Way, 2014; Lenssen
et al., 2019; Rapaić et al., 2015). In addition, global reanal-
ysis products such as ERA-Interim (ERA-I) and ERA5 (Dee
et al., 2011; Hersbach et al., 2020) are frequently used to
study the changes in the Arctic and to force ocean and sea ice
models. Despite the assimilation of in situ data in the global
reanalysis models, significant model differences have been
reported for the Arctic (Davy and Outten, 2020; Delhasse et
al., 2020; Lindsay et al., 2014; Wesslén et al., 2014) as well
as large deviations from observations of T2m over Arctic sea
ice (Wang et al., 2019).

Observations from polar-orbiting satellites offer a very
good supplement to the in situ observations through high spa-
tial and temporal coverage of the high latitudes and may im-
prove the surface temperature products and the assessment
of the Arctic climate changes. Therefore, daily near-surface
air temperatures derived from satellite temperature observa-
tions have the potential to increase the amount of informa-
tion in the datasets and improve the quality of the climate
records, as recognized in Merchant et al. (2013) and Rayner
et al. (2020).

Two fundamental challenges exist when deriving a T2m
product from infrared satellite observations. The first chal-
lenge is that infrared sensors (in the atmospheric window
region of 10–12 µm wavelength) measure the ice surface
skin temperature (ISTskin), whereas the current global tem-
perature products include the near-surface air temperature
as measured continuously by AWSs and buoys. The sur-
face skin temperature may differ considerably from the near-
surface air temperature measured by AWSs or buoys. Pre-
vious studies have compared satellite-retrieved ISTskin and
T2m from AWSs located on the Greenland Ice Sheet (GrIS;
Dybkjær et al., 2012a; Hall et al., 2008, 2012; Koenig and
Hall, 2010; Shuman et al., 2014) and over the Arctic sea
ice (Dybkjær et al., 2012) and found temperature differences
of which a significant part could be attributed to the tem-
perature difference between T2m and ISTskin. Other studies
have investigated the relationship between T2m and ISTskin
over ice using in situ observations (Adolph et al., 2018;
Hall et al., 2008, 2004; Hudson and Brandt, 2005; Nielsen-
Englyst et al., 2019; Vihma et al., 2008). Nielsen-Englyst
et al. (2019) found that on average T2m is 0.65–2.65 ◦C
higher than ISTskin with variations depending on the loca-
tion of the measurement, i.e. over sea ice, seasonal snow
cover, and the following zones of the GrIS: lower ablation
zone, upper-middle ablation zone, and accumulation zone.
The T2m–ISTskin difference was found to vary seasonally
with the largest differences during the winter (when inver-
sions are most common) and during melting conditions in the
summer (where the surface temperature is fixed at the melt-
ing point). In Nielsen-Englyst et al. (2019), wind speed and

cloud cover were identified as key parameters determining
the T2m–ISTskin difference.

The second challenge, related to the use of satellite-
derived infrared ISTskin to derive T2m, is that the availabil-
ity of ISTskin observations is limited to clear-sky conditions
while T2m is measured continuously by AWSs and buoys.
Previous studies have shown that a satellite-derived, clear-
sky, surface temperature record can be significantly colder
than an all-sky surface temperature record (Koenig and Hall,
2010; Nielsen-Englyst et al., 2019). To benefit from the
good coverage of satellite surface temperature data, above-
mentioned challenges should be considered with caution.
This work, starting with Nielsen-Englyst et al. (2019), has
been initiated to estimate clear-sky T2m from satellite ob-
servations (whenever these are available) for the Arctic sea
ice and the GrIS in order to provide spatially detailed obser-
vations for the areas unobserved by in situ stations and to
supplement the in situ observations already available. Here,
special attention has been given to the above-mentioned chal-
lenges, and the relationships between the near-surface air
temperature and the satellite skin measurements have been
explored in detail. A regression-based approach has been
used to estimate daily T2m using satellite ISTskin and a sea-
sonal cycle function as predictors based on the work pre-
sented in Høyer et al. (2018). The derived product covers
only days with no or limited clouds, when satellite skin tem-
perature observations are available. However, for those days
when the satellite-derived T2m product is available, it pro-
vides an estimate of the daily averaged all-sky T2m since it
has been regressed towards in situ measurements from both
clear and cloudy conditions. In order to further facilitate the
usage of the derived product in modelling and for monitoring
purposes, each satellite-retrieved T2m estimate comes with
uncertainties.

Similar efforts have been made to estimate clear-sky near-
surface air temperatures (and corresponding uncertainties)
over land, ocean, and lakes using satellite observations to
cover all surfaces of the Earth (Good, 2015; Good et al.,
2017; Høyer et al., 2018). The previous work has mostly been
done as a part of the European Union’s Horizon2020 project
EUSTACE (EU Surface Temperatures for All Corners of
Earth, 2015–2019, https://www.eustaceproject.org, last ac-
cess: 29 June 2021), with the overall aim to produce a glob-
ally complete gap-free daily near-surface temperature analy-
sis since 1850. It is outside the scope of this paper to produce
a daily continuous gap-free near-surface temperature analy-
sis. However, within EUSTACE this has been done using a
statistical model to combine satellite-derived clear-sky near-
surface air temperatures and in situ observations and their
respective uncertainty estimates (Morice et al., 2019; Rayner
et al., 2020). The clear-sky T2m product derived in this pa-
per has been used to generate this daily gap-free EUSTACE
T2m product for the GrIS and the Arctic sea ice, while simi-
lar clear-sky temperature products have been used over land,
ocean, and lakes.
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This paper is structured such that Sect. 2 describes the in
situ data and the satellite data. Section 3 presents the method
used to estimate clear-sky daily T2m and uncertainties. The
resulting T2m dataset and its validation are presented in
Sect. 4 and discussed in Sect. 5. Conclusions are given in
Sect. 6.

2 Data

2.1 In situ data

In situ observations of near-surface air temperatures have
been collected from weather stations, expeditions, and cam-
paigns covering ice and snow surfaces to assemble the DMI-
EUSTACE database. The database includes quality con-
trolled and uniformly formatted temperature observations
covering ice and snow surfaces during the period 2000–2009
(Høyer et al., 2018). For the GrIS we use the Programme
for Monitoring of the Greenland Ice Sheet (PROMICE) data
provided by the Geological Survey of Denmark and Green-
land (GEUS; Fausto and van As, 2019; Ahlstrøm et al., 2008;
van As et al., 2011) and the Greenland Climate Network data
(GC-Net; Kindig, 2010; Shuman et al., 2001; Steffen and
Box, 2001). Only PROMICE data from the middle-upper ab-
lation zone and accumulation zone have been used to ensure
that data are only acquired over permanently snow- or ice-
covered surfaces. Observations covering seasonal snow have
also been used from the Atmospheric Radiation Measure-
ment (ARM) programme from two sites: Atqasuk (ATQ) and
Barrow (BAR), at the North Slope of Alaska (Ackerman and
Stokes, 2003; Stamnes et al., 1999). Data from Arctic sea ice
are primarily retrieved from the meteorological observation
archive at the European Centre for Medium-Range Weather
Forecasts (ECMWF) MARS data storage facility, providing
196 unique data series from drifting buoys. These sea ice
data are supplemented with data from 10 US Army Cold
Regions Research Engineering Laboratory (CRREL) mass
balance buoys (Perovich et al., 2016; Richter-Menge et al.,
2006) and observations from a weather station located 29 m
above the sea surface on the research vessel Polarstern op-
erated by the Alfred Wegener Institute in the sea-ice-covered
parts of the Arctic Ocean (Knust, 2017; König-Langlo et al.,
2006a). We also use air temperature measurements obtained
from ice buoys deployed in the Fram Strait region within
the framework of the Fram Strait Cyclones (FRAMZY) cam-
paigns during the years 2002, 2007, and 2008 as well as air
temperatures from the Arctic Climate System Study (AC-
SYS) campaign in 2003 (Brümmer et al., 2011b, c, 2012b, a).
Finally, we use data from two ice buoy campaigns operated
by the Meteorological Institute of the University of Hamburg
within the framework of the integrated EU research project
DAMOCLES (Developing Arctic Modelling and Observing
Capabilities for Long-term Environmental Studies; Brümmer
et al., 2011a).

Figure 1. Total number of daily averaged in situ observations of
T2m and ISTskin over Arctic land ice and sea ice per year covering
the period 2000–2009.

The different in situ types measure the air temperature at
different heights that furthermore differ over time depend-
ing on the amount of snowfall, snow drift, and snowmelt.
Here, we will refer to T2m for all observation types regard-
less of these variations. Nielsen-Englyst et al. (2019) showed
small changes (< 0.22 ◦C) in T2m–ISTskin differences when
using only observations within the measurement range of
1.90–2.10 m in height compared to using all measurements
(ranging in measurement height from 0.3 to 3 m). The obser-
vations from Polarstern at 29 m height are not included in the
derivation of the near-surface air temperature dataset but only
used for the validation. The accuracy of the air temperature
sensors for all observation sites is approximated to 0.1 ◦C
(Hall et al., 2008; Høyer et al., 2017b). Few data sources
provide both skin and air temperatures, e.g. the PROMICE
and ARM stations. The PROMICE skin temperatures have
been calculated from upwelling longwave radiation, mea-
sured by Kipp & Zonen CNR1 or CNR4 radiometers, assum-
ing a surface longwave emissivity of 0.97 (van As, 2011). All
in situ data have been screened for spikes and other unreal-
istic data artefacts by visual inspection. Afterwards, the in
situ observations have been averaged to daily temperatures
using all available observations. Figure 1 shows the number
of daily averaged in situ observations each year (2000–2009)
of ISTskin and T2m over Arctic land ice and sea ice. The two
ARM stations are included as land ice stations in this anal-
ysis, and only data from snow-covered periods are used. In
total 65 810 observations with daily T2m and 7057 observa-
tions with daily ISTskin are available over land ice. See Ta-
ble 1 for more information on the in situ observations used
in this study.

2.2 Satellite data

The satellite data used in this study are from the Arctic and
Antarctic Ice Surface Temperatures from thermal Infrared
satellite sensors (AASTI; Dybkjær et al., 2014, 2018; Høyer
et al., 2019) dataset, covering high-latitude seas, sea ice,
and ice sheet with clear-sky surface temperatures based on
satellite infrared measurements from the CLARA-A1 dataset
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Table 1. Overview of in situ observations used in this study, covering the period 2000–2009.

No. of sites,
(AWS, buoys,
or ships)

No. of days
with observa-
tions

Surface type Observation type Temperature measurements

ACSYS 7 280 Sea ice Buoy T2m
ARM 2 2846 Seasonal snow AWS T2m, ISTskin
CRREL 10 1031 Sea ice Buoy T2m
DAMOCLES 25 2160 Sea ice Buoy T2m
ECMWF 196 27 235 Sea ice Buoy T2m
FRAMZY 11 251 Sea ice Buoy T2m
GC-NET 15 29 133 Land ice AWS T2m
POLARSTERN 1 189 Sea ice Ship T2m
PROMICE 8 2685 Land ice AWS T2m, ISTskin

compiled by EUMETSAT’s Climate Monitoring, Satellite
Application Facility (CM-SAF; Karlsson et al., 2013). The
dataset is based on one of the longest existing satellite
records from the Advanced Very High Resolution Radiome-
ter (AVHRR) instruments on board a long series of NOAA
satellites. AASTI contains swath-based (i.e. Level 2; L2) ice
surface skin temperature (ISTskin_L2) data processed and er-
ror corrected on the original Global Area Coverage (GAC)
grid. The first version of the AASTI product, which is used
in this study, is available from 2000 to 2009 in the original
projection and resolution (L2), i.e. ∼ 0.05 arc degree resolu-
tion and multiple daily coverage. Since 2000, seven different
AVHRR instruments have been orbiting the globe, each 14
times per day, thus providing approximately bi-hourly cover-
age of the polar regions (Fig. 2). The number of operational
satellites increased from two to six from 2000 to 2009. The
IST algorithm used to generate the AASTI dataset is based on
thermal infrared brightness temperatures of AVHRR chan-
nels 4 (centre wavelength at ∼ 11 µm) and 5 (centre wave-
length at ∼ 12 µm) and the satellite zenith angle. The al-
gorithm is a split window algorithm, working within three
temperature domains for each individual satellite (Key et al.,
1997). The retrieval calibration of each domain has been
done by relating modelled surface temperatures with mod-
elled top-of-atmosphere brightness temperatures, determined
by a radiative transfer model (Dybkjær et al., 2014). Cloud
masking has been performed using the Polar Platform Sys-
tem (PPS) cloud processing software (Dybbroe et al., 2005a,
b).

As discussed in Merchant et al. (2017), satellite-based cli-
mate data records should include uncertainty estimates. The
AASTI ISTskin_L2 data come with uncertainties divided into
three independent uncertainty components, each with differ-
ent characteristics: the random uncertainty (µrnd_L2), a lo-
cally systematic uncertainty (µlocal_L2), and a large-scale sys-
tematic (“global”) uncertainty (µglob_L2). These three com-
ponents have been chosen since they behave differently when
aggregating the observations in time or space (see Sect. 3.2).
This uncertainty methodology has been developed within

the sea surface temperature (SST) community (Bulgin et al.,
2016; Rayner et al., 2015) and will be followed here. The
total uncertainty on the ISTskin_L2, µtotal_L2, is calculated by
summing each component in quadrature (i.e. square root of
sum of squares). Excluding the cloud mask uncertainty, grid
cell systematic uncertainties (µglob_L2) are set to a fixed value
of 0.1 ◦C to represent systematic uncertainties in the forward
models (see e.g. Merchant et al., 1999; Merchant and Le
Borgne, 2004). The AASTI ISTskin_L2 data also come with a
quality level (QL) from 1 (bad data) to 5 (best quality), with
the addition of level 0 (no data) (GHRSST Science Team,
2010).

Here, we have aggregated the AASTI ISTskin_L2 observa-
tions into 3-hourly and daily gridded Level 3 (L3) averages
of ISTskin_L2 on a fixed 0.25◦ by 0.25◦ regular geographical
grid. This grid was chosen within the EUSTACE project to
ensure a common grid to be used globally. The daily gridded
averages (ISTskin_L3) are calculated by averaging all avail-
able ISTskin_L2 observations with a quality flag of 4 (good)
or 5 (best) for a given date and within the 0.25◦ bin. This
has been done to facilitate the development of the relation-
ship model and to ease the user uptake. The data in the daily
aggregated files contain mean surface temperature observa-
tions from 00:00 to 24:00 LST, 3-hourly bin averages of sur-
face temperatures, and also the number of observations in
the eight time bins during each day. The 3-hourly numbers
of observations are used to estimate the satellite sampling
throughout the day, and the 3-hourly temperature data are
used to gain confidence in the daily cycle estimates (see qual-
ity checks below). Figure 3 shows the mean number of ob-
servations per day in each of the eight time intervals given
in local time for the Arctic region. The variation in cover-
age throughout the day is a combined effect of the satellite
overpassing, performance of the cloud screening algorithm,
and the cloud-free conditions during the day. In addition, the
fixed 0.25◦ regular geographical grid results in a decreasing
L3 bin area when approaching the North Pole. The maximum
satellite coverage is generally seen around 80◦ N with a min-
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Figure 2. NOAA and Metop satellites carrying the AVHRR sensor, used for AASTI version 1.

imum at the North Pole. Cloud-free conditions over the GrIS
are primarily observed around noon and the early afternoon.

In order to best resolve the diurnal cycle with satellite
information, we require data during both the night (be-
tween 18:00 and 06:00 LST) and the day (between 06:00 and
18:00 LST) in order to calculate ISTskin_L3. To identify sea
ice, we use an ice mask for which sea ice is characterized by
sea ice concentrations above 30 % according to the EUMET-
SAT OSISAF Global Sea Ice Concentration Climate Data
Record (Tonboe et al., 2016). A few more checks have been
set up in order to minimize the temporal sampling errors, the
effects of undetected clouds and outliers, and inconsistencies
between the ice mask and the surface temperatures. Follow-
ing Høyer et al. (2018), the ISTskin_L3 is discarded if one of
the following criteria is met:

– ISTskin_L3 exceeds +5 ◦C, indicating inconsistency be-
tween the ice mask and the surface temperatures.

– The standard deviation of satellite ISTskin_L2 during 1 d
exceeds 7.07 ◦C, corresponding to a sinusoidal daily cy-
cle with a difference between day and night of 20 ◦C.

– The difference between ISTskin_L3 and the average of all
available 3 h bin averages exceeds 10 ◦C.

– ISTskin_L3 is more than 10 ◦C colder than the corre-
sponding average of up to 24 neighbouring cloud-free
observations (in a 5-by-5 grid cell square) with the same
surface type.

The criteria above have been derived from analysis and in-
spection of the satellite data and with considerations to the
results presented in Nielsen-Englyst et al. (2019). Inconsis-
tencies between the ice mask and surface temperature typi-
cally occur along the coasts and sea ice edge, where the OS-
ISAF product is subject to land-spillover effects causing spu-
rious ice in ice-free areas (Lavergne et al., 2019). Using a sur-
face temperature threshold of 5 ◦C reduces the land-spillover
effects and results in increased consistency between the ice
mask and the surface temperatures.

The satellite-derived surface temperature has seasonal dif-
ferences in daily variability, with the largest standard devi-

ations during the summer in Greenland and during the win-
ter for sea ice, when the freeze-up of sea ice causes higher
variability along the sea ice margin (Fig. 4). The main uncer-
tainty components of the ISTskin_L3 estimates are erroneous
cloud screening and the spatial variance of snow and ice sur-
face emissivity, which are not accounted for in the retrieval
algorithm. The presence of non-detected clouds will con-
tribute to increased standard deviations and usually a cold
ISTskin_L3 bias, since the cloud tops and other atmospheric
constituents are generally colder than the surface (Dybkjær
et al., 2012).

2.2.1 Validation

Additional satellite versus in situ differences arise when
comparing satellite observations with pointwise ground mea-
surements due to different spatial and temporal characteris-
tics. To assess the magnitude of these effects, the ISTskin_L3
data have been validated against in situ observations from the
PROMICE and ARM stations. Table 2 shows the validation
results of daily ISTskin_L3 against in situ skin temperatures
(ISTskin_insitu) and in situ 2 m air temperatures (T2minsitu).
The maximum matchup distance is 14.6 km, and the aver-
age distance is 8.1 km, considering the AWSs in Table 2.
The topography mask included in the HIRHAM5 regional
climate model (see e.g. Langen et al., 2015) has been used
to calculate the differences in elevation (1h) between the
in situ stations and corresponding satellite pixels. There is
no clear correlation between the large biases and large ele-
vation differences from this table, but the elevation effects
are contributing to the spatial sampling error. The spatial
and temporal sampling errors contribute to the overall un-
certainty, but effects from erroneous cloud screening, algo-
rithm simplifications, and uncertainties in the in situ ob-
servations are also included in the results. Previous stud-
ies find that erroneous cloud screening (undetected clouds)
is one of the main reasons for the cold biases observed
when comparing satellite-observed IST with in situ mea-
surements (Hall et al., 2004, 2012; Koenig and Hall, 2010;
Østby et al., 2014; Westermann et al., 2012). Another impor-
tant contribution is the effect of comparing clear-sky satel-
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Figure 3. Mean number of observations per day in the L3 bins for each of the eight local solar time intervals, averaged for the period
2000–2009.

Figure 4. Standard deviations (◦C) of daily satellite surface temperature observations for March, June, September, and December of each
year averaged for the years 2000–2009.

lite observations with all-sky in situ observations, as dis-
cussed in Nielsen-Englyst et al. (2019). In general, ISTskin_L3
correlates better with T2minsitu than with the ISTskin_insitu.
Moreover, the ISTskin_L3–T2mInSitu difference shows smaller
standard deviations than ISTskin_L3–ISTskin_insitu. However,
as expected the biases and root-mean-squared differences
(RMSDs) are larger for the ISTskin_L3–T2minsitu differences
than for the ISTskin_L3–ISTskin_insitu differences. The reason
is that the radiometric surface skin temperature can be sig-
nificantly different from the surface air temperature mea-
surements (Adolph et al., 2018; Hall et al., 2008; Hudson
and Brandt, 2005; Nielsen-Englyst et al., 2019; Vihma et al.,
2008). On average, the skin temperature is colder than the
air temperature (Nielsen-Englyst et al., 2019), resulting in
even more negative biases, when the ISTskin_L3 is compared
to in situ measured T2m, instead of in situ skin temperatures.
The generally high correlations are dominated by the synop-

tic (2–5 d) and seasonal variations, which are pronounced in
both IST and T2m.

3 Methods

3.1 Regression model

Nielsen-Englyst et al. (2019) analysed a large number of in
situ stations with simultaneous T2m and ISTskin observations
and showed that empirical relationships exist between T2m
and ISTskin. However, it was also shown that the relationships
varied for different regions. Based upon these results, it was
decided to use a simple-regression-based method in this pa-
per to derive the daily mean T2m from the satellite ISTskin_L3
observations. Separate regression models have been derived
for land ice and sea ice.
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Table 2. Validation of daily AASTI v.1 Level 3 IST (ISTskin_L3) against in situ ISTskin (ISTskin_insitu) and T2m observations (T2minsitu).
N : number of matchups; Corr: correlation; SD: standard deviation; RMSD: root-mean-square difference. d is the matchup distance and 1h
is the difference in elevation (AWS − satellite).

ISTskin_L3− ISTskin_insitu ISTskin_L3− T2minsitu d (km) 1h (m)

Station N Corr Bias SD RMSD Corr Bias SD RMSD

ARM_ATQ 1235 93.8 −2.47 3.69 4.44 93.7 −3.17 3.69 4.87 10.8 –
ARM_BAR 1594 94.1 −0.73 4.30 4.36 94.6 −1.14 4.02 3.86 6.1 –
PROMICE KAN-M 422 93.9 −3.65 3.37 4.96 94.6 −4.56 3.14 5.53 7.6 15
PROMICE KAN-U 239 93.9 −1.75 3.32 3.75 94.4 −3.39 3.17 4.64 14.6 21
PROMICE KPC-U 488 97.6 −1.31 2.62 2.92 98.2 −3.20 2.27 3.92 5.1 29
PROMICE NUK-U 296 77.7 −4.09 5.00 6.45 84.7 −7.19 4.01 8.23 14.4 64
PROMICE QAS-U 407 83.9 −1.65 4.20 4.51 86.3 −3.70 3.75 5.27 6.5 197
PROMICE SCO-U 403 91.5 −4.60 4.25 6.26 93.7 −7.55 3.75 8.43 4.2 20
PROMICE TAS-U 386 67.5 −1.03 5.43 5.52 79.5 −3.61 4.39 5.68 8.4 214
PROMICE UPE-U 125 88.2 −3.13 3.88 4.97 90.0 −5.49 3.50 6.50 3.0 110
All data 5595 92.9 −2.03 4.24 4.70 93.2 −3.36 4.12 5.32 8.1 83.8

To test different types of regression models, the ISTskin_L3
data have been matched up with in situ observations for each
day (Høyer et al., 2018). This is done by requiring a dis-
tance to the nearest in situ site of less than 15 km. The aver-
age matchup distance is 8.6 and 7.2 km for land ice and sea
ice, respectively, which means that all in situ observations are
made within the area of the satellite pixel. The corresponding
mean elevation difference is 30 m (while the absolute mean
elevation difference is 45 m) and is calculated using the to-
pography mask included in HIRHAM5 (Langen et al., 2015)
for the 23 GrIS AWSs. Out of the 23 AWSs, four of them
(GC-net JAR1, TAS_U, QAS_U, and UPE_U) have corre-
sponding elevation differences above 100 m. In Sect. 4.3,
the effect of these AWSs has been estimated and discussed.
All in situ observations, described in Sect. 2.1., have been
matched with ISTskin_L3 data, resulting in a total number of
daily matchups of 65 810 from 275 different observation sites
(see Table 1). These have been divided into two subsets: one
for training and one for validation of the different regression
models for land ice and sea ice, respectively. This has been
done while ensuring similar coverage of training and vali-
dation data over the two domains, which is shown in Fig. 5.
The result is that 40 % (13 792 matchups) are used for testing
the regression models (and generating the regression coeffi-
cients), and the remaining 60 % (20 872 matchups) are left
for validation of the regression models over land ice. Over
sea ice 48 % (15 035 matchups) are used for testing, and 52 %
(16 111 matchups) are left for validation.

The regression model is based on multiple linear regres-
sion analysis using least squares (Menke, 1989). The mul-
tiple linear regression analysis equations can be written in
matrix form,

dobs
=Gm+ e, (1)

dpre
=Gm, (2)

Figure 5. Positions of matchups on sea ice and land ice (red: train-
ing; blue: validation).

where dobs and dpre are vectors containing the observed and
modelled in situ air temperatures, respectively, G is a matrix
containing the various predictors, m is a vector containing
regression coefficients, and e is the fitting error.

The regression coefficients are found using damped least
squares (Menke, 1989). The least-squares method is used
since the problem is generally over-determined, and the
damping is added to limit effects of noisy data. The regres-
sion coefficients are thus given as
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G−g
=

(
GTG+ ε2I

)−1
GT , (3)

m=G−gdobs, (4)

where G−g is called the generalized inverse, ε is a damping
factor, and I is an identity matrix (with ones in the diago-
nal and zeros elsewhere). The superscript operator T denotes
transposing and−1 denotes inversion. We have tested a range
of damping factors to assess the relation to the error coeffi-
cients. A damping factor of 0.2 was chosen to avoid over-
fitting noise in the data, while keeping the error coefficients
low.

The choice of predictors is based on current knowledge
of the parameters that influence the relationship between
ISTskin and T2minsitu (Adolph et al., 2018; Hall et al., 2008;
Hudson and Brandt, 2005; Nielsen-Englyst et al., 2019;
Vihma and Pirazzini, 2005), limited by the available satel-
lite data. Nielsen-Englyst et al. (2019) showed that the T2m–
Tskin difference varies over the season with the smallest
differences during the spring, autumn, and summer in non-
melting conditions. For that reason, we have also tested the
effect of including a seasonal cycle as predictor. A total of
five regression models with different predictors have been
tested (Høyer et al., 2018).

ÎSTskin : T2msat = α0+α1ISTskin_L3 (5)

ÎSTskinSWd : T2msat = α0+α1ISTskin_L3

+α2SWd (6)

ÎSTskinWS : T2msat = α0+α1ISTskin_L3

+α2WS (7)

ÎSTskinLat : T2msat = α0+α1ISTskin_L3

+α2Lat (8)

ÎSTskinSeason : T2msat = α0+α1ISTskin_L3

+α2 cos((t · 2π)/(1yr))
+α3 sin((t · 2π)/(1yr)) (9)

The regression model in Eq. (8) is limited to an offset and
a scaling of ISTskin_L3, where the latter term accounts for
the synoptic and seasonal variations, which are the dominat-
ing factors in both the IST and T2m variability. This part
is thus included in all regression models tested. The other
regression models also have a third predictor, which is in-
cluded to examine how to best represent the residual varia-
tions in the T2m–IST difference. The model in Eq. (9) uses
theoretical top-of-atmosphere shortwave radiation, Eq. (10)
uses the wind forcing (from ERA-I and ERA5, respectively),
Eq. (11) uses latitude variation, and Eq. (12) uses a seasonal
variation. In the regression model in Eq. (12), the seasonal
variation is assumed to be the shape of a cosine function,
A ·cos((t ·2π)/(1yr)−ϕ), where A is the amplitude, ϕ is the
phase and t is time. Since cos(x1− x2)= cos(x1)cos(x2)+

Table 3. Statistics on the relation between observed and modelled
temperatures for the training data. N : number of matchups used
for testing; Corr: correlation; RMSD: root-mean-square difference.
Since, the training data are used for the regression, the bias is zero,
and thus the standard deviation equals RMSD.

N Corr (%) RMSD (◦C)

Land ice ÎSTskin 13 792 95.7 3.51
ÎSTskinSWd 13 792 96.2 3.28
ÎSTskinWSERA-I 13 792 95.8 3.47
ÎSTskinWSERA5 13 792 95.9 3.42
ÎSTskinLat 13 792 95.8 3.48
ÎSTskinSeason 13 792 96.3 3.28

Sea ice ÎSTskin 15 035 96.0 3.32
ÎSTskinSWd 15 035 96.0 3.32
ÎSTskinWSERA-I 15 035 96.0 3.32
ÎSTskinWSERA5 15 035 96.0 3.32
ÎSTskinLat 15 035 96.1 3.28
ÎSTskinSeason 15 035 96.2 3.25

sin(x1)sin(x2), the seasonal cycle can be rewritten to the

form in Eq. (12) withA=
√
α2

2 +α
2
3 and ϕ = arctan(α3/α2).

The training data have been used to calculate the re-
gression coefficients for each regression model covering the
land ice and sea ice. The performance of each regression
model has been investigated using the training data, and
the results are shown in Table 3. The best performance is
found by using the regression model where T2msat is pre-
dicted from ISTskin_L3 combined with a seasonal variation
(ÎSTskinSeason). This model predicts T2msat better compared
to the other regression models, with correlations above 96 %
and RMSD values of 3.25–3.28 ◦C against training data for
both surface types (Table 3). In the following, we will use the
regression model given in Eq. (12) with the seasonal term in-
cluded and with separate regression coefficients for land ice
and sea ice (see Table 4). The phase corresponds to a maxi-
mum on the 19 January and 12 February for land ice and sea
ice, respectively. This is in agreement with Nielsen-Englyst
et al. (2019), who found the strongest clear-sky inversion dur-
ing the winter months (December–February) for all sites in-
cluded in the analysis except from the ones located in the
lower ablation zone (not included here), where pronounced
surface melt takes place for long periods of time.

3.2 Uncertainty estimates for T2msat

Uncertainty estimates on the derived T2msat are crucial
to facilitate the usage of the dataset in modelling and
for monitoring purposes. The uncertainty estimates of the
satellite-derived T2msat data follow the approach in Bulgin
et al. (2016) and Rayner et al. (2015), which has also been
used for the AASTI data. The uncertainty on a single T2msat
estimate is divided into random, locally correlated, and sys-
tematic uncertainty components, with the total uncertainty
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Table 4. Model regression coefficients for ÎSTskinSeason.

Offset, α0 (◦C) ISTskin_L3 factor, α1 Amplitude, A Phase, ϕ

Land ice 4.20 1.06 2.26 −0.33
Sea ice 1.46 0.89 1.83 −0.75

µtotal_T2m given as the square root of the sum of the three
squared components:

µtotal_T2m =

√
µ2

rnd_T2m+µ
2
local_T2m+µ

2
glob_T2m.

The random uncertainty component for the T2msat belong-
ing to a particular grid cell at a particular point in time is
found by propagating the AASTI ISTskin_L3 random uncer-
tainty through the regression model:

µrnd_T2m =

√(
α1µrnd_L3

)2
,

with µrnd_L3 given as the aggregated µrnd_L2:

µrnd_L3 =
µrnd_L2
√
N

,

where N is the number of observations for each bin in the
aggregation from L2 to L3. The

√
N reduction applies be-

cause the random uncertainty of each L2 data point that goes
into the L3 calculation is by definition independent from the
other.

The L3 global uncertainty component does not average
out in any aggregation and is thus transferred directly from
the L2 uncertainty estimate and multiplied by α1 to make up
µglob_T2m:

µglob_T2m = α1µglob_L3 = α1 · 0.1 ◦C.

The µlocal_T2m contains the local uncertainty component of
L2, a sampling error µlsamp_L3 related to sampling errors
in space and time due to the aggregation, a relationship er-
ror, cloud mask uncertainty, etc. When aggregating from L2
to daily L3, additional sources of uncertainty enter through
the gridding process as ISTskin_L3 can only be retrieved for
clear-sky pixels. This introduces a temporal and spatial sam-
pling uncertainty. If all our satellite observations were ob-
tained during all-sky conditions, we assume that the high po-
lar temporal coverage is such that the temporal sampling un-
certainty in the L3 files can be set to zero. However, this is
not the case, and using only clear-sky observations generally
leads to a clear-sky bias in averaged ISTskin satellite obser-
vations when compared to in situ observations (Hall et al.,
2012; Nielsen-Englyst et al., 2019; Rasmussen et al., 2018).
The relationship error represents the standard deviation of the
residuals calculated at in situ stations, where both skin and air
temperatures are available, i.e. T2msat–T2minsitu. Estimating
all the different components that make up the µlocal_T2m is a

very challenging task and is out of the scope of this paper.
Instead, we estimate the µlocal_T2m component using a sim-
ple regression model fitted to the satellite-derived T2m and
in situ T2m differences. Separate models have been chosen
for the land ice and sea ice, due to the differences in the er-
ror characteristics. The variables to include in the uncertainty
regression models have been chosen from a careful examina-
tion of the matchup dataset. For land ice and sea ice the most
relevant variables were the ISTskin_L3 itself and the number
of 3 h time bins with observations in the L3, Nbins.

For land ice the regression model for µlocal_T2m is given as
follows:

µlocal_T2m_landice = β0+β1ISTskin_L3+β2Nbins, (10)

while the regression model for sea ice is given as

µlocal_T2m_seaice = γ0+ γ1ISTskin_L3+ γ2IST2
skinL3

+ γ3Nbins. (11)

The coefficients have been determined by fitting to the
T2msat–T2minsitu standard deviations calculated for the train-
ing data with ISTskin_L3 bin intervals of 2 ◦C and a Nbins in-
terval of 1. The µrnd_T2m and µglob_T2m components have
been removed from the standard deviations in each bin as
well as an assumed in situ uncertainty of 0.1 ◦C and an av-
erage sampling uncertainty of 0.5 ◦C (Høyer et al., 2017a;
Reeves Eyre and Zeng, 2017) before fitting the regression
models. The optimal regression coefficients for each domain
are listed in Table 5.

4 Results

In Sect. 3.1, we selected the best (Eq. 12) of the five differ-
ent algorithms and used it together with the derived coeffi-
cients (Tables 3 and 4) to retrieve T2m from satellite surface
temperature estimates. The derived dataset consists of daily
estimates of near-surface air temperature on a 0.25◦ regular
latitude–longitude grid, during the period 2000–2009 (Høyer
et al., 2018; Kennedy et al., 2019). Days with clouds and
few clear-sky observations (as explained in Sect. 2.2) are
not included in the dataset. However, for those days when
the satellite-derived T2m product is available, it provides an
estimate of the daily averaged all-sky T2m (see Sect. 5).
Each temperature estimate is associated with three compo-
nents of uncertainty on the 0.25◦ daily scale: a random un-
certainty, a synoptic-scale correlated uncertainty, and a glob-
ally correlated uncertainty excluding uncertainties related to
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Table 5. Uncertainty model regression coefficients.

Land ice β0 = 3.82 ◦C β1 =−0.24 β2 =−0.03
Sea ice γ0 = 2.01 ◦C γ1 =−0.06 γ2 =−0.12 γ3 =−0.001

the masking of clouds. The three types of uncertainties are
also gathered in a total uncertainty estimate (see Sect. 3.2).
The land ice temperatures have been calculated for grid cells
categorized as ice sheet by the ETOPO1 global relief model
(Amante and Eakins, 2009), averaged to the 0.25◦ grid. Sea
ice temperatures have been calculated for grid cells with sea
ice concentrations above 30 %, according to OSISAF (Ton-
boe et al., 2016).

4.1 Validation of T2msat

The derived T2msat product has been validated against in-
dependent in situ data (i.e. the validation subset described
in Sect. 3.1). Figure 6 shows an example of the daily near-
surface air temperature coverage (from 1 January 2008).
Circles are in situ T2m measurements from coincidence-
independent AWSs and buoys, and there seems to be quite
good agreement between these and T2msat during this spe-
cific day. The overall model performance, when compared to
all independent AWS and buoy observations, is summarized
in Table 6. The satellite-derived air temperatures are about
0.3 ◦C warmer than measured in situ air temperature for both
land ice and sea ice. For the GrIS, the bias is partly explained
by topographic effects (see Sect. 4.3). The correlations are
above 95 % for both surface types, and the RMSD is 3.47
and 3.20 ◦C for land and sea ice, respectively. Note that the
uncertainty of the in situ data is also included in these RMSD
values.

Figure 7 shows the average seasonal variation in bias and
standard deviation for land ice and sea ice, respectively. For
both land ice and sea ice, there is a seasonal dependency in
standard deviation, with the largest values during the win-
ter and smallest values during the summer. This is likely ex-
plained by a better cloud screening performance during sun-
lit periods (Karlsson and Dybbroe, 2010) and by the smaller
natural thermal variability that is observed during summer
conditions. Similar seasonality in performance is seen in five
reanalysis products (including ERA-I/ERA5) for the GrIS
(Zhang et al., 2021). As shown in Fig. 7, the average seasonal
variation in bias is largest over sea ice, with the largest val-
ues in March and August. However, this seasonal tendency in
bias over sea ice is only reflected at the beginning of the time
period (i.e. 2000–2004). This can be seen in Fig. 8, which
shows the seasonal averaged independent validation statis-
tics for the entire period for land ice and sea ice. The figure
also shows a quite stable performance over the time period
for both land ice and sea ice.

As more satellite observations have become available over
the time period, increased coverage of the surface tempera-

Figure 6. Daily mean 2 m air temperature over land ice and sea ice
from 1 January 2008. Circles show in situ measurements.

ture is expected over time. Figure 9 shows the average num-
ber of filled 3 h bins per day for the GrIS and Arctic sea ice
for 2000–2009. Both surface types show an increase in filled
3 h bins over time, with large seasonal variations. In most
years, sea ice has 1–1.5 filled bins per day more during win-
ter than summer, due to a more extensive cloud cover over sea
ice during summer (Curry et al., 1996; Beesley and Moritz,
1999). The GrIS typically has fewer filled bins per day dur-
ing the winter and summer than spring and autumn, which is
also explained by differences in cloud coverage (Griggs and
Bamber, 2008). Note that the increase in the average number
of filled 3 h bins from 2000 to 2009 is not reflected in the
performance of the T2m product (Fig. 8).

Figure 10 shows T2msat–T2minsitu differences plotted as a
function of AASTI L3 skin temperature for land ice and sea
ice. Over land ice, the standard deviation decreases as a func-
tion of ISTskin_L3, while the bias is around zero for ISTskin_L3
between −45 and −10 ◦C, positive for higher temperatures
and negative for lower temperatures. For sea ice, the max-
imum standard deviation is found at skin temperatures of
about −20 ◦C, with smaller standard deviations for higher
and lower ISTskin_L3. Positive biases are found for very cold
skin temperatures (<−25 ◦C) and for temperatures around
the melting point (>−4 ◦C), while the intermediate temper-
atures have a slightly negative bias. This effect is included
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Table 6. Statistics on the relation between satellite-derived and in situ measured temperatures for comparison with independent validation
data. N : number of matchups used for validation; Corr: correlation; bias: T2msat–T2minsitu difference; SD: standard deviation; RMSD:
root-mean-square difference.

N Corr (%) Bias (◦C) SD (◦C) RMSD (◦C)

Land ice 20 872 95.5 0.30 3.45 3.47
Sea ice 16 111 96.5 0.35 3.18 3.20

Figure 7. Estimated T2m minus observed T2m averaged for each month for (a) land ice and (b) sea ice. The dashed lines are standard
deviations while the solid lines are biases. The bars show the average number of matchups for each month.

in the uncertainty estimates as presented in Sect. 3.2, which
include ISTskin_L3 as a predictor for both land ice and sea ice.

Figure 11 shows the validation results of the estimated
uncertainties, where the T2msat–T2minsitu difference is plot-
ted against the theoretical total uncertainties as obtained in
Sect. 3.2 for land ice and sea ice. The dashed lines repre-
sent the ideal uncertainty with the assumptions that the in
situ observations have an uncertainty of 0.1 ◦C and that the
sampling uncertainty is 0.5 ◦C. The estimated uncertainties
show good agreement with the observed uncertainties when
the error bars follow the dashed line, which is the case here
for both land ice and sea ice.

4.2 Comparison with reanalyses

The performance of T2msat has been compared to the perfor-
mance of T2m from ECMWF’s reanalysis ERA-I (T2mERA-I;
Dee et al., 2011) and the replacement reanalysis ERA5
(T2mERA5; Hersbach et al., 2020). Table 7 shows the perfor-
mance of T2mERA-I and T2mERA5 against the independent in
situ T2m observations, which should be compared with the
performance of the regression-derived T2msat as shown in
Table 6. The comparison may not be truly independent as a
number of stations and buoys have been assimilated into the
ERA-I and ERA5 data products (Dee et al., 2011; Hersbach
et al., 2020), which would favour the reanalysis products in
the comparison. Yet, the bias is significantly lower for T2msat

than for both T2mERA-I and T2mERA-5, while the other vali-
dation parameters are similar, with slightly better correlation
and standard deviation but slightly worse RMSD results for
T2mERA. Previous studies have also found that ERA-I suf-
fers from a consistent warm bias in the Arctic (Lüpkes et
al., 2010; Jakobson et al., 2012; Vihma et al., 2002; Batrak
and Müller, 2019; Simmons and Poli, 2014), and recent stud-
ies suggest that the warm bias still exists in ERA5 over sea
ice (Wang et al., 2019; Graham et al., 2019). Similarly, re-
cent studies found no significant improvements in 2 m tem-
peratures over the GrIS for ERA5 compared to ERA-I (Del-
hasse et al., 2020; Zhang et al., 2021). Note, however, that the
NCEP-CFSR, which is based on a coupled atmosphere–sea
ice–ocean model, has shown better performance than ERA-I
for near-surface atmospheric variables over sea ice (Jakobson
et al., 2012).

Figure 12 shows the RMSD between in situ measured T2m
and T2mERA-I as well as T2mERA5 and T2msat for the in-
dividual validation sites and both surface types. Due to the
large number of buoys, these have been validated for each
data source with all observations weighted equally. The last
bars refer to the RMSD obtained by validating all valida-
tion sites in one long time series weighting all daily obser-
vations equally. The total T2msat agrees better with in situ
observations for both surface types compared to both ERA-
I and ERA5. For most land ice stations, the T2msat outper-
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Figure 8. Estimated T2m minus observed T2m (bin size of 1 ◦C) for the full time period (bin size of 90 d) for (a) land ice and (b) sea ice.
The dashed lines are standard deviations while the solid lines are bias in the upper figures. The surface plots in the middle figures show the
number of matchups in each bin, while the bottom plots show the number of matchups (blue) and the cumulative percentage of matchups
(red) in each time bin.

Table 7. Statistics on the relation between ERA-I/ERA5 and in situ measured temperatures for independent test data.N : number of matchups
used for validation; Corr: correlation; bias: T2mERA–T2minsitu difference; SD: standard deviation; RMSD: root-mean-square difference.

N Corr (%) Bias (◦C) SD (◦C) RMSD (◦C)

Land ice 20 872 ERA-I 96.4 3.41 3.18 4.66
ERA5 97.1 2.03 3.08 3.69

Sea ice 16 111 ERA-I 96.9 1.14 3.02 3.22
ERA5 95.7 2.19 3.67 4.27

forms ERA-I and ERA5. One exception is the ARM sta-
tion (BAR), where a bias of 2.49 ◦C gives rise to a relatively
large RMSD for T2msat. This is likely explained by physi-
cal differences between the seasonal snow-covered sites and
the GrIS sites, which are not fully captured by the regres-
sion model. ERA5 is significantly better than ERA-I over the
GrIS, but ERA5 performs worse than both ERA-I and T2msat
over sea ice. Over sea ice, T2mERA-I agrees better with in
situ observations from the ECMWF data stream and Po-
larstern. However, these may be assimilated into both ERA-
I and ERA5. The validation against Polarstern is relatively
good even though the temperature measurements are made at

29 m height. This is likely because the data are mainly from
the summer, when the vertical temperature gradients in the
boundary layer are mostly small, and the performance of the
cloud screening algorithm reaches its maximum. The inde-
pendent in situ observations by ACSYS, CRREL, DAMO-
CLES, and FRAMZY are better reproduced by the satellite-
derived T2m. The errors in the T2mERA-I/T2mERA5 and
T2msat datasets are expected to be independent and uncor-
related. For that reason, a combination of either T2mERA-I or
T2mERA5 and T2msat can lead to an improved T2m estimate.
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Figure 9. Average number of filled 3 h bins per day for the Green-
land Ice Sheet and the Arctic sea ice.

4.3 Topographic effects

The effects from topography over the GrIS have been as-
sessed by introducing a new matchup dataset that ensures that
the elevation difference between satellite and in situ observa-
tions is less than 100 m over the GrIS. Excluding those AWSs
(4 out of 23) with a larger elevation difference than 100 m re-
sults in a reduction of the training dataset of 2935 matchups
(i.e. from GC-net_JAR1 and PROMICE TAS_U) and a re-
duction in the validation dataset of 560 matchups (i.e. from
PROMICE QAS_U and UPE_U). The performance of the
satellite-derived T2m improves the bias in particular, which
decreases to 0.07 ◦C, while the standard deviation decreases
to 3.41 ◦C over land ice. ERA-I and ERA5 show limited
changes in performance, with slightly increased biases of
3.48 and 2.07 ◦C and standard deviations of 3.14 and 3.08 ◦C,
respectively, when introducing the new matchup dataset over
land ice. A similar good performance of the regression model
is found when the two AWSs in the validation subset are kept.
Despite the increased performance of the regression model,
we have included all observations in the training of the model
to ensure a robust and spatial representative solution.

4.4 Analysis of T2msat

The monthly mean T2msat is shown in Fig. 13 for March,
June, September and December averaged over the period
2000–2009. The interior and northern part of the GrIS is typi-
cally colder than other parts of the Arctic in all months, while
the warmest regions are found along the sea ice marginal ice
zone and the ablation zone of the GrIS. Limited spatial vari-
ability is seen over the Arctic sea ice during summer.

Figure 14 shows the monthly mean near-surface air tem-
perature estimates averaged over the GrIS for the period
2000–2009. The GrIS records a distinct annual cycle in near-
surface air temperature, with the maximum temperatures of
around −4 ◦C during July and minimum temperatures of
about −28 ◦C during winter. The range in monthly mean air
temperature is in agreement with those reported by van As
et al. (2011) at a number of PROMICE AWSs. The temporal

variability is largest during winter due to a larger cloud ra-
diative effect (compared to near-zero during summer) and a
larger meridional temperature gradient resulting in a more
vigorous atmospheric circulation in winter (Serreze et al.,
1993). In addition, the temporal variability is lower during
summer due to the fact that when the surface begins to melt,
the sensible heat is used for melting and hence reducing sur-
face air temperature variability (Steffen, 1995).

As illustrated in Fig. 15, T2msat provides increasing cov-
erage over the period 2000–2003 and quite stable coverage
for the years 2003–2009. The average daily coverage is 84 %
and 67 % for land ice and sea ice, respectively, for the stable
2003–2009 period and the 0.25◦ grid. When considering a
1◦ grid resolution, these numbers increase to 94 % and 81 %,
respectively. Over land ice, the maximum coverage is during
the spring and autumn, while the sea ice coverage has a clear
drop in coverage during the summer due to increased cloud
cover (Curry et al., 1996; Beesley and Moritz, 1999).

5 Discussion

Due to the limited number of in situ observations in the Arc-
tic, and especially over sea ice, gathering in situ observations
for testing and validating the regression models is not a sim-
ple task. The lack of observations that represent all condi-
tions and regions in the Arctic and the resulting matching
threshold of 15 km combined with the large topographical
variations over the GrIS increase the uncertainty in the pixel-
to-point comparison, thereby complicating the derivation and
validation of the regression models. Despite this, the valida-
tion against independent in situ observations and the com-
parison with ERA-I and ERA5 demonstrate the value of the
T2msat product in the Arctic.

Five regression models were tested, and the best regres-
sion model predicts T2msat from daily satellite ISTskin_L3
combined with a seasonal variation. The performance of the
T2msat product did not improve much when the wind speed
information from ERA-I or ERA5 (Table 3) was included
despite the fact that previous studies have shown a strong
dependency of wind speed for both land ice and sea ice
(Adolph et al., 2018; Hudson and Brandt, 2005; Miller et al.,
2013; Nielsen-Englyst et al., 2019). This was unexpected,
at least for sea ice. The reason is likely that the quality of
the wind speed fields is not adequate for use in the rela-
tionship model. In particular, accurately representing kata-
batic winds in numerical weather prediction (NWP) mod-
els is a challenging task due to the high resolution needed
in the vertical direction (Grisogono et al., 2007; Steeneveld,
2014; Weng and Taylor, 2003; Zilitinkevich et al., 2006).
Furthermore, the representation of surface roughness and the
processes of snow–surface coupling, radiation, and turbulent
mixing are hampered by limited resolution, while the relative
importance of the processes varies with wind speed (Sterk
et al., 2013). More accurate information on the wind speed
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Figure 10. Estimated T2m minus observed T2m (bin size of 1 ◦C) as a function of binned (bin size of 1 ◦C) satellite ISTskin_L3 for (a) land
ice and (b) sea ice. The dashed lines are standard deviations while the solid lines are bias in the upper figure. The surface plots in the middle
figures show the number of matchups in each bin while the bottom plots show the number of matchups (blue) and the cumulative percentage
of matchups (red) in each ISTskin_L3 bin.

is expected to improve the performance of the regression
model, which includes wind speed as a predictor. In partic-
ular, the higher-resolution NWP output may be very bene-
ficial in the regions of the GrIS where the local topography
interacts with the wind through katabatic effects (DuVivier
and Cassano, 2013; Oltmanns et al., 2015; Renfrew, 2004).
Regional high-resolution reanalysis products are currently
being developed within the Copernicus Arctic regional Re-
analysis service C3S project (https://climate.copernicus.eu/
copernicus-arctic-regional-reanalysis-service, last access:
29 June 2021). It is likely that such products will provide
winds that can be used within a relationship model.

Since infrared satellites cannot measure the surface tem-
perature during cloudy conditions, a cold clear-sky bias is
often observed in infrared satellite ISTskin_L3 averages com-
pared to all-sky temperature averages (see, e.g. Table 2; Hall
et al., 2008; Koenig and Hall, 2010). When using satellite
ISTskin_L3 observations, it is thus important to be aware of the
clear-sky bias, which moreover varies with different tempo-
ral averaging windows (Nielsen-Englyst et al., 2019). Here,

when using an empirical statistical method, which is trained
against daily averaged in situ T2m (obtained in both clear-
sky and cloudy conditions), the conversion from ISTskin_L3 to
T2msat removes the systematic ISTskin_L3 clear-sky bias ef-
fects that may be present in the satellite data. As a result, we
obtain a T2msat estimate which performs similarly or better
than the ISTskin_L3, when validated against in situ observa-
tions. For the ISTskin_L3, the temporal sampling errors result-
ing from clouds have been minimized through a number of
requirements. For short-lasting (< 24 h) cloudy conditions,
the division into 3 h bin averages and the requirement of filled
3 h bins during both the night (between 18:00 and 06:00 LST)
and day (between 06:00 and 18:00 LST) ensure that the di-
urnal cycle is best resolved despite the gaps with clouds.
For long-lasting (≥ 24 h) cloudy conditions, ISTskin_L3 is not
available, and we do not retrieve T2msat for these days.

The T2msat product derived here provides increasing cov-
erage over the period 2000–2003 and stable coverage for
2003–2009. The coverage varies with the season, with the
minimum coverage over sea ice in the period from July to
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Figure 11. Satellite-estimated T2m uncertainty validation with respect to independent in situ T2m for (a) land ice and (b) sea ice. Dashed
lines show the modelled uncertainty accounting for uncertainties in the in situ T2m and the sampling error. Solid black lines show 1 standard
deviation of the estimated minus in situ differences for each 0.1 ◦C bin. The bottom plots show the number of matchups (blue) and the
cumulative percentage of matchups for each bin (red).

Figure 12. Root-mean-square differences (RMSDs) calculated for the (a) land ice sites and (b) sea ice sites using T2m from ERA-Interim,
ERA5, and the regression model, respectively. Only buoys with more than 200 observations are included. The last two bars listed as “total”
are the RMSD obtained by using all validation data.

September due to extensive cloud cover over the Arctic sea
ice during summer (Curry et al., 1996; Beesley and Moritz,
1999). Nevertheless, the average daily coverage is 84 % and
67 % for land ice and sea ice, respectively, for the stable
2003–2009 period. The high percentages in coverage demon-

strate that the gaps due to cloudy days are limited (except for
over sea ice in the summer) and that the dataset contains a
significant amount of information on the all-sky daily T2m
even though it is based on clear-sky satellite observations.
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Figure 13. Monthly mean T2msat during March, June, September,
and December, averaged for the period 2000–2009.

Atmospheric models using data assimilation or statistical
techniques may be applied to fill in the gaps due to clouds.
This has already been done in the EUSTACE project by using
an advanced statistical model to combine in situ observed and
clear-sky satellite-derived T2m estimates (over land, lakes,
ocean, and ice), including uncertainty estimates, into a global
and gap-free daily analysis of surface air temperatures from
1850 to 2015 (Morice et al., 2019; Rayner et al., 2020). The
T2msat product derived in this paper is used as input to the
EUSTACE surface air temperature analysis for the GrIS and
the Arctic sea ice.

The T2msat dataset developed here only covers Arctic, but
the AASTI satellite dataset also covers the Antarctica. This
implies that similar statistical methods can be derived for the
Antarctic ice sheet and sea ice. Preliminary investigations in-
dicate that a T2m product can be derived for the Antarctic ice
sheet with similar performance to GrIS, whereas the South-
ern Ocean sea ice is challenging due to very few in situ obser-
vations (Morice et al., 2012). For both southern regions, more
in situ observations are needed to repeat the work performed
for the Arctic and to determine a reliable statistical model.
This product can also be extended to seasonal snow and ice,
but it requires a dynamic surface mask and the derivation of
the regression model to be repeated. However, similar efforts
have already been made within EUSTACE to cover seasonal
snow (Good, 2015; Morice et al., 2019; Rayner et al., 2020).

The AASTI version builds on the Clara version 1 dataset
from the CM-SAF. A version 2 of the dataset is now available
(Karlsson et al., 2017), which facilitates the production of
an AASTI version 2 dataset that covers the period 1982 up
to present. With consistency in the retrieval algorithm and
datasets, it will be possible to use the relationship model to
produce a satellite-based climate data record of T2m from
1982 to today.

Including other available satellite products such as
MODIS IST observations (Hall et al., 2004) or the (A)ATSR
dataset (Ghent et al., 2017) may improve the quality of the
T2msat product. However, adding new data requires detailed
knowledge of the characteristics of the dataset such as sam-
pling frequency and uncertainty of the IST observations. In
addition, determination of the relationship model is needed
again. At the same time, adding more satellite overpasses

to the daily estimates may not reduce the uncertainty of
the products. This is evident when comparing Figs. 7 and
8 where the variation in the number of satellite observations
during the record (Fig. 8) is not reflected in a similar variation
in the performance of the product (Fig. 7). The uncertainty in
the beginning of the record is comparable to the uncertainty
at the end of the record, despite an almost doubling of the
observed 3-hourly averages throughout the day.

6 Conclusions

The surface air temperature is one of the key indicators for
Arctic climate change, and it can easily be compared with
climate change indicators from other regions. This study in-
troduces a methodology for using satellite skin temperatures
for estimating air temperatures to compensate for the lack
of in situ measurements and as a supplement to reanalysis
products in the Arctic. Daily near-surface air temperatures
(T2m) have been estimated based on daily clear-sky satel-
lite Level 3 (L3) observations of ice surface skin temper-
atures (ISTskin_L3), using the Arctic and Antarctic ice Sur-
face Temperatures from thermal Infrared satellite sensors
(AASTI) reanalysis. A regression-based method has been
used and tuned against in situ observed T2m using ISTskin_L3
observations covering both Arctic sea ice and the Greenland
Ice Sheet (GrIS). In general, there is a good correlation be-
tween T2m and ISTskin_L3 due to the seasonal cycle in both
IST and T2m. Different models have been tested to examine
how to best capture the variability in the T2m–IST differ-
ence. The highest correlation and lowest RMSDs were found
using a model where T2msat is predicted from daily satel-
lite ISTskin_L3 combined with a seasonal variation, assumed
to have the shape of an annual harmonic. This model has
been used to derive daily T2m on a 0.25◦ regular latitude–
longitude grid from the clear-sky AASTI ISTskin_L3 over the
Arctic during the time period 2000–2009 (Kennedy et al.,
2019), using different regression coefficients for land ice and
sea ice. Days with clouds or limited clear-sky observations
have been excluded from the analysis. Considering a 1◦ reg-
ular latitude–longitude grid, the average daily coverage of the
T2msat product is 94 % over the GrIS and 81 % for sea ice for
the years 2003–2009. The days when the T2msat is available,
the T2m estimate can be considered a daily averaged all-sky
T2m, since it has been tuned against all-sky in situ observa-
tions.

The estimated T2msat data show average biases of 0.30
and 0.35 ◦C and average root-mean-square errors of 3.47 and
3.20 ◦C for land ice and sea ice, respectively, when validated
against independent in situ observations. All daily T2msat es-
timates include a total uncertainty estimate divided into a
random, locally systematic, and large-scale systematic un-
certainty component. The total uncertainty of T2msat shows
good validation results when validated against independent
in situ observations. A comparison with two of ECMWF’s
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Figure 14. Monthly mean T2msat for the Greenland Ice Sheet. The shading represents the variability.

Figure 15. T2msat coverage averaged for (a) each year and (b) each month for the GrIS and sea ice, and using a grid resolution of 0.25◦ and
1◦, respectively.

reanalyses (i.e. ERA-I and ERA5) shows that T2msat vali-
dates similarly or better than both of these even though the
reanalyses actively assimilate available in situ observations.
The T2msat product is independent of the quality of the NWP
forecasts, and thus it represents an important supplement to
the model-based T2m. The errors in NWP products (e.g.
T2mERA-I or T2mERA5) and the errors in the product derived
here (T2msat) are expected to be independent and uncorre-
lated, and a combination of a NWP product and the T2msat
data can therefore lead to an even better T2m estimate. The
regression models presented here both work on satellite ob-
servations that are available from reprocessed records but
open up for a near-real-time estimation of T2m from satel-
lites. The results obtained for the ice-covered areas show that
there is a large potential for using satellite-observed surface
temperatures to estimate near-surface air temperatures. These
estimates are not supposed to replace the already existing air
temperature measurements or reanalyses, but rather to sup-
plement these in particular in areas where no in situ observa-
tions are currently available.

Data availability. The derived surface air temperatures from
satellite surface skin temperatures over ice can be downloaded from
https://doi.org/10.5285/f883e197594f4fbaae6edebafb3fddb3
(Kennedy et al., 2019). The PROMICE data can be ac-
cessed through http://www.promice.dk (last access: 16
November 2018, https://doi.org/10.22008/promice/data/aws,
Fausto and van As, 2019). The ARM data are available at
https://www.archive.arm.gov/discovery/#v/results/s/s::co (last
access: 21 December 2018, https://doi.org/10.5439/1025220,
ARM Archive, 2018). GC-Net data can be found through
https://doi.org/10.5067/6S7UHUH2K5RI (Greenland Climate Net-
work (GC-Net) Radiation for Arctic System Reanalysis, Version
1., 2016). Data from CRREL mass balance buoys are available
from http://imb-crrel-dartmouth.org (The CRREL-Dartmouth
Mass Balance Buoy Program, 2016), while Polarstern data can
be downloaded at https://dship.awi.de/Polarstern.html (last access:
24 November 2016, https://doi.org/10.1594/PANGAEA.761654,
König-Langlo et al., 2006b). FRAMZY data are available from
https://doi.org/10.1594/WDCC/UNI_HH_MI_FRAMZY2002
(Brümmer et al., 2012b), https://doi.org/10.1594/WDCC/
UNI_HH_MI_FRAMZY2007 (Brümmer et al., 2011b), and
https://doi.org/10.1594/WDCC/UNI_HH_MI_FRAMZY2008
(Brümmer et al., 2011c), while ACSYS data are found here:
https://doi.org/10.1594/WDCC/UNI_HH_MI_ACSYS2003.
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Damocles data can be found here:
https://doi.org/10.1594/wdcc/uni_HH_MI_DAMOCLES2007
(Brümmer et al., 2011a). The traditional buoy and ship data
obtained from ECMWF are distributed through the World
Meteorological Organization’s (WMO) Global Telecommu-
nication System (GTS) and available for members at the
ECMWF Meteorological Archival and Retrieval System
(MARS). Finally, the AASTI ISTskin_L2 data are available
from https://doi.org/10.5285/60b820fa10804fca9c3f1ddfa5ef42a1
(Høyer et al., 2019).
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Abstract

This letter presents a reevaluation of earlier CMIP6 Arctic assessments in IPCC
2021, focusing on the ongoing issue of climate models tending to represent a
colder Arctic. We show that this long-standing bias is originated from the com-
parison with the commonly used ERA5 reanalysis dataset, which has a warm
bias over Arctic sea ice. In contrast, our findings show that the CMIP6 mod-
els perform fairly well when compared to a recently developed high-resolution
satellite-derived 2m air temperature dataset in the Arctic. These findings have
significant implications for future model evaluation, climate change assessment,
and the upcoming CMIP7.

Keywords: Arctic, sea ice, 2m air temperature, ERA5, climate models, CMIP6

Several recent studies including the IPCC AR6 show that climate models generally
simulate a too cold Arctic, also known as a longstanding bias in the past phases
of the Coupled Model Intercomparison Project (CMIP) (IPCC, 2021; Bock et al,
2020). This bias, however, is often derived from comparisons with global reanalyses
rather than direct observational data, because the latter are typically available as
anomalies relative to a reference period (Simmons et al, 2017; Benestad et al, 2019).
Nevertheless, recent studies (Batrak and Müller, 2019; Zampieri et al, 2023) found
a large warm bias of 5-10◦C in the sea ice surface temperature (IST) in nearly all
known reanalyses. When using these global atmospheric reanalysis products, e.g., the

1



widely used ERA5(Hersbach et al, 2020; IPCC, 2021; Bock et al, 2020), for model
validation, this bias may lead to inaccurate conclusions, such as presuming that the
climate models have a ”cold temperature” bias.

Because the Arctic, particularly over sea ice, is data sparse, global reanalyses in
the Arctic are only weakly constrained by observations and heavily rely on model
formulation with simplified physical processes tied to the radiation budget, such as
missing representation of snow on sea ice and constant thickness for sea ice, resulting
in considerable uncertainty (Simmons et al, 2017; Benestad et al, 2019; Batrak and
Müller, 2019; AMAP, 2021). Accurately assessing the Arctic climate state is crucial,
as many essential elements in the Arctic (e.g., sea ice and permafrost melting points,
ecosystems, and their possible tipping points, etc.) respond to specific temperature
thresholds. We recently developed a new high spatial resolution observational dataset
of 2m air temperature (T2m), converted from satellite derived ISTs Nielsen-Englyst
et al (2023) using an existing model (Nielsen-Englyst et al, 2021) (hereafter referred to

as T
(SAT)
2m ), which enables benchmarking climate models in the Arctic. When compared

to various in-situ T2m observations (Nielsen-Englyst et al, 2023), the T
(SAT)
2m mean

differences range from -0.45◦C to 0.65◦C, significantly smaller than those of T
(ERA5)
2m

ranging from 1.73 to 3.73◦C.

Fig. 1a shows the T
(SAT)
2m climatology over the regions with Arctic sea ice concen-

trations (SIC) above 30%. Using T
(SAT)
2m as reference, ERA5 exhibits a wide spread

warm bias of more than 2◦C (Fig. 1b) for areas where the SIC is typically above 70%
(compassed by the red line and hereafter denoted as SIC70). The bias is markedly
larger in wintertime when it may reach 6-10◦C, consistent with (Batrak and Müller,
2019). In contrast, the latest generation of CMIP (CMIP6) historical ensemble of 47
models performs remarkably well in this region, with a mean difference of only 0.5◦C
or less (Fig. 1c), falling within the range of observational uncertainties. Outside of
SIC70 (i.e., the marginal ice zone), the largest biases are primarily associated with
discrepancies in sea ice cover for both ERA5 and CMIP6 (Fig. 1b-c). Particularly for
CMIP6, it is attributed to large regional disparities among models (Davy and Outten,
2020; Shen et al, 2021) and only the subset of models with SIC above 30% have been
accounted.

Figure 1 also shows time evolutions of the annual T2m differences of ERA5 and

CMIP6 ensemble mean (Fig. 1d-e) with respect to T
(SAT)
2m (Fig. 1f) area averaged over

SIC70. From 1982 to 2020, ∆T
(ERA5)
2m remains positive by more than 1.41◦C, whereas

∆T
(CMIP6)
2m is modest and varies around zero. This contradicts previous conclusions

that the Arctic is too cold in CMIP6 historical simulations when compared to ERA5
(IPCC, 2021; Davy and Outten, 2020). Here we emphasize the limitations of using
global reanalysis such as ERA5 to evaluate climate models over Arctic sea ice.

Despite the prevailing view that climate models systematically underestimate
Arctic warming and amplification compared to ERA5 (Rantanen et al, 2022), CMIP6
(0.61 ◦C/decade) performs slightly better than ERA5 (0.56 ◦C/decade) in capturing
the warming trend over SIC70, aligned with the observed trends of surface warming

(0.79 ◦C/decade) and sea ice loss (Fig. 1g). Overall, the differences between T
(CMIP6)
2m

and T
(ERA5)
2m (Fig. 1b,c) are similar to the previous studies regarding the longstanding

2



cold bias over the Arctic region in climate models (IPCC, 2021; Davy and Outten,

2020). However, using T
(SAT)
2m as a benchmark, the cold bias in T

(CMIP6)
2m is only

evidenced in the marginal ice zone. These results highlight the need for improving the
relevant processes in assimilation and simulations, as well as including observations
as new benchmark fields for evaluating climate models for the Arctic region.

Abbreviations. IPCC: the Intergovernmental Panel on Climate Change; AR6:
the Sixth Assessment Report; CMIP: the Coupled Model Intercomparison Project;
CMIP6: the Sixth generation of CMIP; IST: sea-Ice Surface Temperature; ERA5: the
fifth generation ECMWF reanalysis for the global climate; ECMWF: the European
Centre for Medium-Range Weather Forecasts; T2m: 2m air temperature; SIC: sea ice
concentration (%); SIC70: areas with SICge70%; NCKF: National Center for Climate
Research.
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Climatological mean (1995-2014) for SIC>30%

a) T
(SAT)
2m

b) T
(ERA5)
2m −T

(SAT)
2m c) T

(CMIP6)
2m −T

(SAT)
2m

Annual mean area averaged for SIC≥70%

Fig. 1 (a) The 20 years climatology of satellite derived T
(SAT)
2m over sea ice. The climatological mean

difference of T2m from (b) ERA5 and (c) CMIP6 ensemble means versus T
(SAT)
2m . All T2m data

are collected for the region with SIC>30% (>58◦N) using the observed SIC in Nielsen-Englyst et al
(2023). The CMIP6 ensemble mean is calculated from T2m with SIC>30% for each of 47 models to
exclude grid points over open sea. In (a-c) the map is bounded at 58◦N with the dashed line marking
66.5◦N. The red line in (a) indicates the observed SIC≥70% (SIC70) averaged over 1995-2014. Time

series of annual mean observed sea ice extent for SIC70 on an inverted y-axis (g), T
(SAT)
2m (f), and its

difference from the ERA5 (d)/CMIP6 model mean (e) averaged for the same area and the respective
linear trends (◦C/decade) for 1980-2014.
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Unpublished report: Exploring

machine learning to retrieve sea
surface temperature from satellite

observations

This appendix contains a revised version of a short, unpublished report submitted for the
DTU PhD Course 02910 Computational Data Analysis, taken as part of the PhD degree:

• Pia Nielsen-Englyst. 2021. ”Exploring machine learning to retrieve sea surface
temperature from satellite observations.” Unpublished
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Exploring machine learning to retrieve sea 
surface temperature (SST) from satellite 
observations 

Abstract 
Accurate sea surface temperatures are crucial for weather, ocean, and climate models as well as 

for monitoring of climate change. This study evaluates different machine learning (ML) techniques for 

their capability to predict sea surface temperatures from passive microwave (PMW) satellite observed 

brightness temperatures. Each of the algorithms also use some instrument and environmental 

information as input. Overall, the performances are good, with the neural network outperforming three 

different ensemble learning algorithms. The neural network further outperforms the current state-of-art 

retrieval algorithms based on inversion of a physical model and regression, respectively. This indicates 

that there is a great potential for using ML techniques to retrieve SST from PMW observations. 

Introduction 
The sea surface temperature (SST) is an essential climate variable used for climate monitoring, 

understanding of air–sea interactions, and numerical weather prediction (NWP). Two kinds of retrieval 

algorithms have generally been used to retrieve SST from PMW satellite observations:  statistical 

algorithms developed by comparisons of satellite observed brightness temperatures and collocated in 

situ and model observations (most common, see e.g. Alerskans et al., 2020; Wentz and Meissner, 

2007), and radiative transfer model (RTM) based algorithms, which use an RTM to simulate the top of 

atmosphere brightness temperatures. This requires instrument information (azimuth/earth incidence 

angles, frequency and polarisation) and environmental information (SST, sea surface salinity (SSS), 

wind speed/direction, water vapour density, liquid water density, pressure, and atmospheric profiles of 

temperature). Optimal estimation (OE) theory has previously been used to invert a RTM to retrieve SST 

(Nielsen-Englyst et al., 2018) using a priori information about the ocean and atmosphere (and 

corresponding uncertainties) to constrain the retrievals. The OE types of algorithms clearly tie the 

physics of the observations to the geophysical retrieval algorithm, which allows for indication of 

measurement errors (Minnett et al., 2019). This also means that the performance of OE algorithms is 

constrained by the accuracy of the RTM as well as the representativeness of the observation and prior 

error covariances (Merchant et al., 2020).  Moreover, measurement errors require ad-hoc corrections 

to the geophysical retrievals in the OE type of algorithms (Meissner and Wentz, 2012; Nielsen-Englyst 

et al., 2018). In contrast, statistically based algorithms may account for some of the measurement errors 

through the coefficient derivation process, but they are limited by the established statistical relationships 

between the variables.  

Machine learning (ML) may improve or supplement existing retrieval algorithms through their 

higher flexibility and capability of recognizing meaningful patterns and structures in complex problems 

(Lee et al., 2017). Until recently, the use of ML techniques has been very limited within the field of SST 

retrievals. However, there has been an increasing amount of research applying ML techniques to 
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specific parts of retrieval algorithms such as for cloud detection (Paul and Huntemann, 2021), bias 

correction (Saux Picart et al., 2018), error estimation (Kumar et al., 2021) and identification of eddies 

(Moschos et al., 2020). Latest, Alerskans et al. (2021) investigated the ability of retrieving PMW SST 

using of a neural network (the TensorFlow interface; (Haykin, 1999; Nielsen, 2015; Abadi et al., 2016) 

and the tree-based algorithm Extreme Gradient Boosting (XGBoost; Chen and Guestrin, 2016). The 

results look promising and we wish to build on this work to further explore the possibilities of using ML 

techniques for SST retrievals. 

In this study, four different ML algorithms have been tested for their ability to retrieve SST from 

PMW observations: bootstrap aggregation (bagging), random forests and least-squares boosting and 

a neural network. The first tree algorithms are all different types of ensemble learning, which combine 

the results of many regression trees in different ways. The neural network has been re-implemented in 

MATLAB using the optimized hyperparameters from Alerskans et al. (2021), but leaving out two of the 

input variables. The different algorithms have been compared and assessed in terms of their ability to 

retrieve SST using matchups with in situ observations. Furthermore, the performances have been 

compared with a simple regression tree and the two benchmark algorithms from Alerskans et al. (2021).  

There is a generally good understanding of the geophysical parameters impacting the brightness 

temperatures observed by the satellites and the relationship with the SST. Therefore, this study has not 

put any efforts into evaluating the feature importance but included all the inputs known to be of 

importance. However, it is also important to know the impact of missing input information e.g. in the 

case of instrument failure on satellites and in this relation it could be of interest to perform an analysis 

of feature importance in the future. 

Data 
For this study we use a matchup data base (MMD) consisting of collocated brightness 

temperatures from AMSR-E and in situ observed surface temperatures from drifting buoys. Each 

matchup also includes instrument information as well a number of geophysical variables (from 

numerical weather prediction (NWP) models) known to affect the observed brightness temperatures 

(Nielsen-Englyst et al., 2018). Table 1A (Appendix) shows the number of variables included in the MMD. 

A total of 5,105,663 matchups covering the years 2002-2011. The MMD has been quality controlled 

and filtered to remove erroneous observations and to ensure a good and representative coverage of 

the global ocean. The data has been divided randomly into three subsets consisting of 50%, 25% and 

25% used for training, validation and testing, respectively for all algorithms below. The division into 

subsets is performed by the Neural Network, but is used for the other algorithms as well. 

Methods 

Bootstrap aggregation (bagging) 
Bagging uses many bootstrap samples (with replacement) of the training data to grow individual 

regression trees for each bootstrap sample and afterwards averaging (aggregating) the predictions. 

This allow us to average out the noise and reducing the variance compared to growing just one 

regression tree, and the bias of the bagged tree is the same as that of the individual trees. In this case, 
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we use 100 bootstrap samples and a minimum leaf size of 5 (1, 3, 5, and 10 were tested manually), 

which is the default leaf size for regression and close to optimal for the predictive power of an ensemble.  

When drawing each bootstrap sample 37% of the observations will on average be omitted. These 

omitted observations, called “out-of-bag” (OOB) observations, can be used for reliable estimates of the 

retrieval performance and the feature importance. However, here we have used the test data set for a 

consistent comparison with the other algorithms in Table 1 and Figure 1-2. 

 

Random Forest 
Random Forest (RF) is similar to Bagging, but every tree in the ensemble randomly selects only a 

subset of predictors for each decision split, while Bagging is provided with the full range of predictors 

each time. Due to the random feature selection, the trees are more independent of each other compared 

to bagging, which often results in better performance (due to better variance-bias trade-offs). The 

number of variables to be sampled randomly at each split must be set and this is the most important 

parameter to define. Figure A2 shows the results from the 'OptimizeHyperparameters' Bayesian 

optimization software in MATLAB. The optimal number of variables to be sampled is found to be 14, 

but the variations are relatively small for the values in the range 7-20. Therefore, to save time, the 

results presented below uses a value of 8, which is the default value in MATLAB (and run at the very 

beginning as benchmark). We use 100 trees and maximum number of splits equal to one minus the 

number of matchups in the validation subset, while the minimum leaf size is set to 5 as for the bagging 

algorithm. 

 

Least-squares boosting (LSBoost) 
Least-squares gradient boosting (LSBoost) is also an ensemble learning algorithm, but it differs from 

RF in the way that each tree is trained. While RF uses randomness and grow each regression tree 

independently, LSBoost grows one tree at a time and adds a new tree to its structure by fitting it to the 

difference between the observed response and the aggregated prediction of all the pre-trained trees. 

LSBoost fits to minimize mean-squared error and it can be used with shrinkage by providing the learning 

rate (LearnRate) parameter. It is very important to select a sufficient learning rate. If the learning rate is 

too small, the ensemble of trees has to be very large to reach a sufficient performance, while higher 

learning rates may take too large steps and overshoot the minima. In this case, the LearnRate, 

MaxNumSplits and B have been chosen by using the 'OptimizeHyperparameters' random search 

and a smaller subset of the validation data (~12,764). The final search ranges for each of the 

hyperparameters were: 0.05:0.8, 1:7, and 300:800, with the optimized values being 0.44, 3, and 705, 

respectively. This structure is a lot different from the one used in the XGBoost algorithm, which uses 

103 trees, a maximum number of splits of 22, a minimum leaf size of 3, and a learning rate of 0.085. 

More over the XGBoost algorithm have used fractions of subsampling, subsampling by tree, and 

subsampling by level of 0.58, 0.70, and 0.63, respectively. 
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Neural Network 
Following Alerskans et al. (2021), we use a neural network with two hidden layers with 10 and 15 

hidden neurons, respectively. The data are randomly divided into three subsets. The training data are 

presented to the neural network during training, where the network is adjusted according to its error. 

The testing data have no effect on the training process, and provide a completely independent measure 

of network performance. The network is trained with Levenberg-Marquardt backpropagation algorithm 

(trainlm.m). The validation data are used to measure network generalization, and to stop the training 

process when the generalization stops improving (and before overfitting). Early stopping is applied, 

which means that the training automatically stops when generalization stops improving, as indicated by 

an increase in the mean squared error of the validation data. In this case, the training stopped when 

the validation error failed to decrease for six iterations, which occurred at iteration 926. Once, the neural 

network has fit the data, it forms a generalization of the input-output relationship which can be used to 

generate outputs for inputs it was not trained on. Table 1 and Figure 1-2 show the performance against 

the independent test data. The standard deviations for the training and validation data sets agree within 

two digits. If the performance against the training data had been significantly better this could indicate 

overfitting and a solution would be to reduce the number of hidden neurons. In this case, the 

performance is equally good and there is no reason to test different numbers of neurons. 

Results 
The retrieved SSTs have been compared with independent in situ SST using the test data (shown 

in Table 1). The table also shows the results of using a single regression tree for comparison. 

Furthermore, the performance of the two benchmark algorithms in Alerskans et al. (2021) have been 

included for comparison using the same validation subset. As expected all algorithms improve the 

retrievals over a single regression tree. The best performance is obtained using the XGBoost algorithm 

followed by the two neural networks, while RF and LSBoost show a comparable performance, except 

from the sensitivity (AK; explained below). Table 2A (Appendix) shows the mean validations statistics 

of the Arctic >58°N. 

 

Table 1. Validation results against independent drifter observations of SST from test data (N=1,276,416) of the different 
retrieval algorithms. The table shows the mean error (ME, i.e. the bias), mean squared error (MSE), mean absolute error 
(MAE), standard deviation (SD), robust SD (RSD), the coefficient of determination (R2) and the sensitivity (AK). The last two 
rows show the performance of the two algorithms used in Alerskans et al. (2021) using the same test subset. All differences 
are calculated as retrieved minus in situ SST. *The sensitivity is calculated from a different subset consisting of 1,021,133 
matchups which includes simulated brightness temperatures.  

 ME MAE  MSE SD RSD  R2 AK* 

Regression Tree 0.001 0.57 0.60 0.77 0.66 0.993 0.80 

Bagging 0.002 0.48 0.42 0.65 0.56 0.995 0.81 

Random Forest 0.001 0.45 0.37 0.61 0.53 0.996 0.79 

LSBoost 0.001 0.45 0.37 0.61 0.54 0.995 0.86 

Neural Network 0.001 0.33 0.20 0.45 0.40 0.998 0.92 

XGBoost 0.007 0.24 0.13 0.36 0.26 0.998 0.78 

NN Tensorflow 0.012 0.37 0.25 0.50 0.44 0.997 0.88 
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The geographical distribution of the ME and SD have been compared for the different algorithms 

in Figure 1 and 2, respectively. All algorithms have a decreasing performance with latitude and largest 

SD in the high variability regions such as the Gulf Stream. For the Bagging and RF, the high variability 

regions and the Southern Ocean also suffer from high biases. RF, LSBoost  and NN all improve the SD 

in the Southern and Equatorial Region compared to Bagging. LSboost and NN also improves the bias 

compared to Bagging and RF. Figure 2A (appendix) shows the ME and SD as a function of drifter SST, 

wind speed, total column water vapor and total cloud liquid water for each of the ML models. The NN 

shows superior, and very stable, performance compared to the other models.  

 

Figure 1. Mean retrieved SST minus drifter SST (ME) for each of the four algorithms.  

 

Figure 2. Mean standard deviations (SD) of the retrieved minus drifter SST difference for each of the four algorithms. 
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The sensitivity (AK) is a very useful estimate of the algorithms ability to capture true changes in 

SST. It is defined as the change in retrieved SST per unit change in the true SST i.e. a value of 1 would 

mean an optimal relation. To estimate the sensitivity, we use a forward model to simulate brightness 

temperatures for three different scenarios: one using reference in situ SST, and two using in situ SST 

with 1°C added and subtracted, respectively. The simulated brightness temperatures are then provided 

to the ML retrieval algorithms instead of observed ones to estimate the change in retrieved SST per 

change in “true” SST i.e. the change in simulated brightness temperature. For this, a different matchup 

data set is used consisting of 1,021,133 matchups. The average sensitivity results can be seen in Table 

1, while Figure 3 show the geographical distributions. The sensitivities are high for all algorithms and 

highest for the NN developed in this study. However, the high sensitivity for LSBoost should also be 

noted. All algorithms show a general tendency of higher sensitivities in warm waters and decreasing 

sensitivities with higher latitudes, but with slightly lower sensitivities at equator. This is in agreement 

with previous findings (Nielsen-Englyst et al., 2018).  

 

Figure 3. Mean SST sensitivity for each of the four algorithms. 

Discussion 
Four different ML algorithms have been assessed for the ability to retrieve SST using passive 

microwave observations. Alerskans et al. (2021) has previously used two different ML algorithms 

(XGBoost and a neural network) to retrieve SST and these have been used as benchmark.  

The performance from a single regression tree has been included and all algorithms improve as 

expected compared to that. The better performance of bagging and RF is a result of a variance reduction 

since they provide a bias equal to the bias of the individual trees. Due to the random feature selection 

in RF, the trees are more independent of each other compared to bagging, and this results in a better 

performance (due to better variance-bias trade-offs). It was expected that LSboost would outperform 

RF, but with the hyperparameters used here, this is not the case when considering the global statistics 
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in Table 1. However, LSBoost better represent the extreme cases better (Figure 2A) and provides a 

better (higher) sensitivity. More efforts can be put into the tuning of the hyperparameters of the LSBoost 

algorithm. The tuning is computational expensive with the amount of data, which is needed in order to 

get a good coverage of the global ocean. It was observed that a better performance could be reached 

with increasing trees (up to 10,000 trees was tested) and reducing learn rate. This is not surprising, but 

would take a long time to run on a standard computer. Future work should be aimed at finding a good 

approach for parameter tuning of the LSBoost algorithm. Furthermore, different fractions of 

subsampling, subsampling by tree, and subsampling by level could be tested. The RF training and 

testing can be repeated for the optimal number of variables to be sampled at each split, and this may 

also improve the retrievals (but likely only slightly). 

In terms of SD, the XGBoost outperforms all the other algorithms including the two NNs and the 

LSboost algorithm used in this study. The XGBoost and LSboost algorithm differ a lot in their structure. 

While XGBoost grows 103 large trees with a maximum depth of 22, LSboost grows more trees (705), 

but very shallow trees with a maximum depth of 3. Growing large/complex trees may result in overfitting 

(which would also result in a low sensitivity) and this could be the case for the XGBoost algorithm. 

Another explanation could be that the test data is not completely independent, i.e. information has 

leaked in some way e.g. through the normalization, which is done using the scikit-learn 

quantiletransformation method. The NN set up in this study outperforms the NN (using the TensorFlow 

interface) in Alerskans et al. (2021). One difference between the two NNs is the number of input 

variables. In this study, two input variables were left out as these are thought to have limited impact on 

the SST. This can likely explain the difference in performance between the two NNs.  

Overall, the results look very promising and they indicate that ML techniques can be used to 

retrieve SST at a similar or even better accuracy than existing retrieval algorithms (Nielsen-Englyst et 

al., 2018; Alerskans et al., 2020). However, more work is needed in order to fine-tune the algorithms in 

particular the LSBoost algorithm, which suffered from limited time (and computational) resources.  

In this study, no attempts have been made to estimate uncertainties. However, it is good practice 

to provide uncertainties with SST retrievals and when inverting physical models each retrieval is 

accompanied with an uncertainty estimate directly through the optimal estimation method. This could 

be another focus of future work and it could be tackled in different ways. One approach could be to train 

multiple algorithms to obtain an uncertainty estimate. Multiple algorithms could also be trained to ensure 

that an algorithm with good generalization is used. Another approach could be to train a new uncertainty 

algorithm using the same input parameters and the target being the retrieved SST minus in situ SST 

instead. A third, and very interesting approach, is to model the a posteriori probability distribution of the 

output parameter (here SST) as a mixture of Gaussians and let the various parameters of the mixture 

model be given the outputs of a conventional neural network in a similar way as was done in Meier et 

al. (2007). Providing uncertainty estimates should be the focus of future work to further enhance ML 

retrievals of SST. 
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Appendix 
 

Table 1A. List of input features/predictors and the output SST from drifting buoys. 

 

Inputs Satellite orbit 

Latitude 

Longitude 

Solar Zenith Angle 

Satellite Zenith Angle 

Satellite Azimuth Angle 

Relative direction 

NWP wind speed 

NWP total column water vapor 

NWP cloud liquid water content 

Brightness temperature 6V 

Brightness temperature 6H 

Brightness temperature 10V 

Brightness temperature 10H 

Brightness temperature 18V 

Brightness temperature 18H 

Brightness temperature 23V 

Brightness temperature 23H 

Brightness temperature 36V 

Brightness temperature 36H 

Brightness temperature 89V 

Brightness temperature 89H 

'amsr_orbit' 

'amsr_lat' 

'amsr_lon' 

'amsr_solza' 

'amsr_satza' 

'amsr_sataz' 

'relative_dir' 

'nwp_wind_speed' 

'nwp_tcwv' 

'nwp_clwt' 

'tb6V' 

'tb6H' 

'tb10V' 

'tb10H' 

'tb18V' 

'tb18H' 

'tb23V' 

'tb23H' 

'tb36V' 

'tb36H' 

'tb89V' 

'tb89H' 

Output In situ sea surface temperature 'insitu_sst' 
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Figure 1A. Estimated objective function value for different numbers of variables to be sampled for the RF algorithm. 

 

 

 ME MAE  MSE SD RSD  R2 AK* 

Regression Tree 0.026 0.65 0.77 0.88 0.77 0.915 0.75 

Bagging 0.024 0.55 0.54 0.74 0.66 0.940 0.75 

Random Forest 0.017 0.51 0.45 0.67 0.61 0.950 0.68 

LSBoost 0.008 0.57 0.55 0.74 0.69 0.939 0.78 

Neural Network -0.010 0.42 0.29 0.54 0.52 0.968 0.86 

XGBoost 0.010 0.23 0.13 0.36 0.22 0.985 0.65 

NN Tensorflow -0.014 0.48 0.40 0.63 0.58 0.956 0.82 

Table 2A. Performances of the different retrievals for the matchups located in the Arctic (>58°N). Number of matchups are 

106,417. 
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Figure 2A: Performance of retrieved SST compared to drifter SST as a function of a) drifter SST, b) wind speed, c) 
total column water vapour and c) total cloud liquid water.  



Surface Temperatures of the Arctic Oceans 203



Technical
University of
Denmark

Ørsteds Plads, Building 348
2800 Kgs. Lyngby
Tlf. 4525 1700

www.space.dtu.dk

www.space.dtu.dk

	Preface
	Acknowledgements
	Abstract
	Resumé
	Abbreviations
	1 Introduction
	1.1 Motivation and research objectives
	1.2 Thesis outline
	1.3 Publications

	2 Sea Surface Temperature from Microwaves
	2.1 Optimal Estimation
	2.2 Regression
	2.3 Machine Learning 
	2.4 Channel Selection
	2.5 Discussion

	3 Arctic Surface Temperatures
	3.1 Consistent Sea Ice Product
	3.1.1 Assimilation and Evaluation

	3.2 Sea and Sea-Ice Surface Temperature Reanalysis
	3.3 Impact of Microwave Sea Surface Temperatures
	3.4 Near-Surface Air Temperatures from Satellites
	3.4.1 Gap-free Reanalysis

	3.5 Benchmark for Climate Models and Reanalyses
	3.6 Discussion

	4 Conclusion
	4.1 Outlook

	Bibliography
	A Paper I: Construction of a climate data record of sea surface temperature from passive microwave measurements
	B Paper II: Exploring machine learning techniques to retrieve sea surface temperatures from passive microwave measurements
	C Paper III: Impact of channel selection on SST retrievals from passive microwave observations
	D Paper IV: A combined sea and sea-ice surface temperature climate dataset of the Arctic, 1982-2021
	E Paper V: Impact of microwave observations on Arctic sea surface temperatures
	F Paper VI: Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements
	G Paper VII: Concerns on benchmarking climate models in the Arctic
	H Unpublished report: Exploring machine learning to retrieve sea surface temperature from satellite observations

