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MultiXC-QM9: Large dataset of 
molecular and reaction energies 
from multi-level quantum chemical 
methods
Surajit Nandi, Tejs Vegge   & Arghya Bhowmik  

Well curated extensive datasets have helped spur intense molecular machine learning (ML) method 
development activities over the last few years, encouraging nonchemists to be part of the effort as well. 
QM9 dataset is one of the benchmark databases for small molecules with molecular energies based 
on B3LYP functional. G4MP2 based energies of these molecules were published later. To enable a wide 
variety of ML tasks like transfer learning, delta learning, multitask learning, etc. with QM9 molecules, 
in this article, we introduce a new dataset with QM9 molecule energies estimated with 76 different 
DFT functionals and three different basis sets (228 energy numbers for each molecule). We additionally 
enumerated all possible A ↔ B monomolecular interconversions within the QM9 dataset and provided 
the reaction energies based on these 76 functionals, and basis sets. Lastly, we also provide the bond 
changes for all the 162 million reactions with the dataset to enable structure- and bond-based reaction 
energy prediction tools based on ML.

Background & Summary
The application of machine learning (ML) to predict molecular properties is well established now1. The effec-
tiveness and proliferation of molecular ML models rest on large high-quality data sets. Datasets that are easy 
to access and machine actionable2–4 have enabled the broader community of machine learning researchers 
to participate in the building of novel molecular ML models5–7. The construction of small molecule proper-
ties databases that can be used to prototype and benchmark new ML architectures has been the basis of many 
ground-breaking machine learning developments in the context of predicting molecular properties8–10. Among 
many such datasets, QM9 dataset11 has been the gold standard for testing the latest models. In the original 
QM9 dataset the molecular electronic energies were reported with calculations based on density functional 
theory at the B3LYP/6–31 G (2df, p)12–15 level of theory. Recently, those were estimated with high accuracy 
composite quantum chemistry method (G4MP2)16–18. The availability of molecular energies at multiple levels 
of theory allows interesting ML tasks to be explored, such as the delta learning approach19, transfer learning20, 
and multi-task learning21.

Beyond the molecule property prediction task, ML can have a tremendous impact on chemical sciences by 
accelerating the prediction of reaction networks22. Building a reaction network requires very fast energy predic-
tion as a large number of energy computation is necessary and thus DFT can be computationally too expensive 
for exploring large reaction networks. The use of low-level DFT method can reduce computational cost, but the 
low fidelity of predicted energies could lead to an erroneous analysis of the reaction network. Typically, semiem-
pirical level theories, such as XTB are generally used, but those also have large errors. One way to mitigate this 
problem is to use energy-correcting methods to achieve higher accuracy via correcting energies from lower-level 
methods. Building ML-based delta correction models23 or simple statistical correction schemes24 that are widely 
applicable requires large datasets or reaction energies from both cheap/low-fidelity and expensive/high-fidelity 
methods.

With an aim of providing large datasets with energy targets from a wide variety of methods to help build 
both these novel molecular ML tasks and ML for reaction networks, we provide multilevel energies of the QM9 
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molecules and reactions derived from there. Molecular quantum chemistry community utilizes a wide variety 
of exchange correlation functional25 and thus any new ML method needs to be tested for predictions across 
many different XC to prove generalization and universality. Therefore, providing data for QM9 molecules with a 
number of DFT functionals and basis sets will provide new challenges to the ML community to build robust ML 
methods that can be applied to a variety of methods. Furthermore, we provide the energies with the GFN2-XTB 
method for the QM9 molecules and the reactions, keeping in mind that reaction network exploration methods 
often use this semi-empirical method.

Methods
Dataset generation. A semi-automated flowchart of data set generation is shown in Fig. 1. The entire pro-
cess can be divided into approximately three steps. First, energy calculations were performed on the molecules 
using ADF(SCM) and XTB. Then, the energies were saved in the CSV and SQLite format using Python scripts. 
Atomistic simulation environment (ASE) was used to process the data and for energy calculation.

In the second step, all possible isodesmic reactions among the QM9 molecules were calculated. Two mol-
ecules are considered convertible if their chemical formula is the same. This means that the reactions in the 
dataset are of type A ↔ B. Once all the indices for the reactions are collected and saved in a csv file (“reactions.
csv”), we computed the reaction energies and saved the results in multiple CSV files. Therefore, the creation of 
the datasets requires two steps: one, to compute the indices of the reactants and products, and then, to compute 
the reaction energies.

The xyz geometries of the QM9 molecules were extracted from the logfiles available in the Figshare repository26.  
We used those geometries to calculate the energies using the post-SCF method as implemented in the SCM 
software package. For all the post-SCF functionals, the GGA level energy was computed using the PBE 
method. We run three separate calculations with the SZ, DZP, and TZP basis set for the 133 K molecules.  
We also computed the single-point energy of the same geometries using the GFN2-XTB semi-empirical method 
as implemented in the xtb package. The SCF convergence criteria for the DFT calculation was the default one of 

XYZ-file from QM9-
G4MP2

molecule.db
molecule.csv

SCM Plams interface XTB-6.3.3

DFT SZ DFT DZP DFT TZP XTB

XYZ files Calculate
Reactions

Calculate
Reaction
EnergiesCSV files

Step 1

Step 2
(parallel)

Fig. 1 Semi-automated workflow diagram of the database preparation.
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ADF (1e-6 Hartree), and for the XTB calculation, the SCF convergence criteria were set to the default value of 1e-6 
Hartree.

Data records
There are two types of data in the dataset - one contains information on molecules and the other contains infor-
mation on reactions. The information of the molecules is stored in CSV and SQLite formats, while the informa-
tion on the reactions is provided only in CSV format. The molecules are same as QM9 except that all the molecules 
with charge separation are excluded from the dataset. The energies are calculated as single point energies of the 
B3LYP/6–31 G(2df,p) optimized geometries from a previous dataset of the same molecules16. The geometries 
taken for the single point energy calculations were originally optimized at the B3LYP/6–31 G(2df,p) level11.  
It should be noted here that since the theoretical level at which the minima were computed is different from the 
one used in this article, the energies reported here may not correspond to the minimum energy geometries at 
the corresponding DFT level.

The CSV format database contains energies from different DFT and semi-empirical methods, SMILES strings 
derived from the xyz files, and chemical formula of each of the species. Each molecules has a unique index num-
ber named “index”. The SQLite format molecular dataset contains xyz coordinates, energies, and other relevant 
properties which were derived automatically by ASE. The reaction database contains reaction energies, indices 
of the reactants and products, and SMILES of reactants and products. The reactant and product indices are the 
primary key (“index”) of the molecular database. Each reaction is identified with a key called “rxnindex”. The 
relationship between the molecular and reactions database is shown in Fig. 2. Each of the reactions are unique 
and even though the molecule to reaction cardinality is shown as many to many because, each reactions are 
related to two molecules (more than one).

The log files obtained from the energy calculations are publicly available from DTU Data27 (version 3 was 
accessed). All scripts to reproduce the reaction energies, databases, are available from GitHub under the MIT 
public license (https://github.com/chemsurajit/largeDFTdata). The log files are provided into four separate zip 
files; TZP.zip, DZP.zip, SZ.zip, XTB.zip. It should be noted that in the dataset by Kim et al.16, the author used the 
spin multiplicity of N as 2 when calculating the energy of a single atom. Since the spin multiplicity of the ground 
state of N is 4, we recalculated the atomization energies with the G4MP2 method after replacing the N.log file 
from the dataset with our own N.log file. We provide the N.log file for the calculation using Gaussian. The N.log 
file with the energy calculation using G4MP2 is provided in the dataset.

Technical Validation
We presented the atomization energy distribution in two different ways. Due to the fundamental difference in 
calculating the atomization energies, we made a comparison first, among the basis sets of three different density 
functionals, second, between the G4MP2 and the GFN2-xTB methods. The atomization energy distribution 
plots are given in Fig. 3. In case of the DFTs, the atomization energies that correspond to the TZP and DZP basis 
sets are quite similar and the atomization energies from the SZ basis are relatively different. This is expected 
as the SZ basis is the minimalistic representation of the orbitals. It is also evident that the characteristic of the 
energy distribution varies among the functionals. Between the G4MP2 and GFN2-xTB energies, there are sig-
nificant differences in the energy distribution, as expected.

Next, we show the distribution of the error in the reaction energies with respect to the G4MP2 reaction 
energies of different methods in Fig. 4. It is interesting, albeit expected, that the errors of the DFT functionals 
with the TZP and the DZP basis sets are similar and significantly small. The distribution of error in XTB reac-
tion energies is similar to that of the DFT level with SZ basis set. Also, the error in energy distribution is mostly 
symmetric and of Gaussian type. This indicates that in any situation even though there can be large errors in 
atomization energies, the reaction energies mostly follow a normal distribution with the majority of reactions 
on a relatively small error scale. This type of behavior is known and expected since for a reaction cancelation of 
errors occurs28. Therefore, the errors in reaction energies become lower and sink to a scale that is much smaller 

molecules

PK (Integer) index

scalers DFT & XTB energies, formula

Characters SMILES

vectors coordinates(n,3)

reactions

PK (Integer) rxnindex

scalers DFT & XTB energies

Characters react_smi, pdt_smi

FK (Integer) reactindex, pdtindex

Fig. 2 Entity relationship diagram of the molecule and reaction databases. The “index” and “rxnindex” 
represent the primary keys of the molecules and reactions data respectively. The “reactindex” and the “pdtindex” 
represents the foreign key and thus indicates the index of the molecules database.
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than the atomization energies. It has to be noted here that the energies calculated by using the post-SCF method 
with the electron density calculated at the PBE level. Therefore, the accuracy of the energy values is expected to 
be less than the SCF calculations from each of the theoretical levels.

Usage Notes
All the data are publicly available from DTU data27 (version 3 was accessed). Log files related to energy calcu-
lations are available from the data repository. Scripts for downloading and making the molecular and reaction 
database are available from the GitHub repository under the MIT license condition. The functional names are 
used as they are (even if they contain special characters) for the CSV file. For SQLite format, special characters 
in functional names are replaced by underscore(_). The changed functional names and the original name of the 
SCM output file are provided in Table S1 in the supporting information. The CSV file contains SMILES strings, 
index of the molecules, and the energy values. The SQLite format database contains the molecular coordinates, 
smile strings, and energy values. Since the SQLite format database is created with ASE, some other information 
of the molecules (e.g., chemical formula) is also available from this file.

The data on the reaction energies are provided as multiple CSV files. The CSV files contain reaction energies, 
reactant index (reactindex), product index (pdtindex), and a unique index (rxnindex) for each reaction. The 
index of the species is the same as the index in the database for molecules. Hence, if a model needs reactant 
and product coordinates, it can be read from the SQLite format database file of the molecule. Additionally, a 
README.md file is available in the GitHub repository explaining how to run the scripts.

Fig. 3 Atomization energy distribution of three density functionals: PBE (GGA type), B3LYP(VWN5) (hybrid 
functional) and M06-2X (highly parametrized meta-hybrid functional) in three different basis sets (SZ, DZP, 
and TZP). The last plot shows the atomization energy distribution difference between GFN2-xTB and G4MP2 
method.
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Code availability
The energy calculations with the 76 different post-SCF functionals were performed using the SCM software 
package29. The GFN2-xTB energies were computed using the XTB version 6.3.3 software package30–32. The 
G4MP2 energies were obtained from a previous paper by Kim et al.16,26. The workflow of the calculations and 
collection of data are build using the Python3.7.10 and BASH scripts. The atomistic simulation environment 
(ASE)33 was used to create the database file in SQLite3 format. The csv files were created using pandas. The plots 
were generated using the matplotlib library. All scripts are available on GitHub under the MIT license agreement 
(https://github.com/chemsurajit/largeDFTdata).
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