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A B S T R A C T

Cycling can reduce greenhouse gas emissions and air pollution and increase public health.
Hence, policymakers in cities worldwide seek to improve bicycle mode shares. Efforts to increase
the bicycle’s mode share involve many measures, one of them being the improvement of cycling
safety often requiring an analysis of the factors surrounding accidents. However, meaningful
analysis of cycling safety requires accurate bicycle flow data that are generally sparse or
only available at the aggregate level. Therefore, safety engineers often rely on aggregated
variables or calibration factors that fail to account for variations in the cycling traffic relevant
to policymaking.

This paper illustrates how machine learning can support policy analysis by delivering
detailed bicycle flow predictions. The illustration applies a Deep Learning approach, the Long
Short-Term Memory Mixture Density Network (LSTMMDN), to estimate hourly bicycle flow in
Copenhagen, conditional on weather, temporal and road conditions at the segment level. The
method addresses some shortcomings in the calibration factor method resulting in 66–77% more
accurate bicycle traffic estimates.

To quantify the impact of more accurate bicycle traffic estimates in cycling safety analysis,
we test the effect of different flow estimates in a bicycle crash risk model, i.e. the models
are identical except for the exposure variables. One model is estimated using the LSTMMDN
estimates, one using the calibration-based estimates, and one using yearly mean traffic esti-
mates. The results show that investing in more advanced methods for obtaining bicycle volume
estimates can improve the quality of safety analyses and other performance measures.

. Introduction

In a world where sustainable transport is increasingly essential, policy-makers in cities seek to increase the mode share of the
icycle. Not only is cycling emission free, but it also improves the health and wellbeing of its users (Mueller et al., 2015) and
eads to improved livability of cities. However, a frequently reported barrier to increasing the mode share of cyclists is the fear of
raffic-related injury (Horton, 2016; Transport for London, 2014; Vejdirektoratet, 2018).

To tackle the above problems, safety engineers, transport agencies, and researchers have investigated various aspects of bicycle
ccidents to identify the factors associated with bicycle crash occurrence (Boele-Vos et al., 2017; Janstrup et al., 2019; Aldred et al.,
018; Vandenbulcke et al., 2014; Dozza, 2017; Rossetti et al., 2018; Twisk and Reurings, 2013; Morrison et al., 2019; Kaplan and
rato, 2015; Ji et al., 2021; Saha et al., 2018; Raihan et al., 2019), and injury outcome (Myhrmann et al., 2021; Kaplan et al., 2014;
ountas et al., 2021; Kim et al., 2007; Behnood et al., 2014; Thomas and De Robertis, 2013; Chen et al., 2017; Samerei et al., 2021)
o make informed mitigating efforts. However, as highlighted by Dozza (2017) and Thomas and De Robertis (2013), many such
nvestigations do not account for cyclist exposure. This is primarily due to a lack of exposure data, as bicycle monitoring is often
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Fig. 1. Graphical illustration of LSTM cell structure1: Orange squares mark layers with respective activation functions, yellow circles mark point-wise operation,
where 𝑥 and + icons indicate respective element-wise multiplication and addition of tensors in the LSTM cell.

infrequent, only conducted at a few locations, or even entirely unavailable. The studies that account for cyclist exposure often rely
on highly aggregated exposure measures such as the annual average daily cycling traffic (AADCT), annual average weekday cycling
traffic (AAWCT), or population and commuter indicators whereas transport agencies use calibration factors applied to AADCT or
AAWCT to obtain reasonable hourly volume profiles (Schrank, 2021). However, the hourly cycling volumes derived from calibration
factors do not reflect variations in traffic due to weather, temporal effects, and other external factors. This presents a significant
issue considering the impact weather and other factors have on cyclist ridership (Böcker et al., 2013; Nankervis, 1999; Nosal and
Miranda-Moreno, 2014). Thus, to provide more informed policy and accident analyses, there appears to be a need for more detailed
bicycle volume estimates.

Recent advances for the estimation of traffic volumes have primarily focused on the prediction of the short-term traffic
state/flow (Lv et al., 2015; Polson and Sokolov, 2017; Du et al., 2021; Chen et al., 2018). Short-term traffic prediction is mainly
relevant for segments and networks already subject to good monitoring, where detailed short-term forecasts can be applicable for
congestion easing. This is because the short-term traffic predictions are conditioned on the previous traffic flow data. An especially
popular model to aid this task is the Long Short-Term Memory (LSTM) neural network (Hochreiter and Schmidhuber, 1997) which
has been adopted for many recent models for traffic forecasting (Ma et al., 2015; Duan et al., 2016; Chen et al., 2016; Cui et al.,
2020; Zhao et al., 2017).

However, to aid safety engineers in improving bicycle accident- and safety analysis, historic bicycle flow estimates are needed.
Therefore our study focuses on improving the estimation of historic bicycle volumes derived from mean daily exposure measures,
which is also of interest for recently developed large scale models (Davies, 2017; Kjems and Paag, 2019). The model is intended to
estimate historic bicycle flow, where only the mean-expected daily traffic is available.

To accomplish this, we apply a novel neural network approach to estimate hourly bicycle volumes conditional on weather
conditions, temporal effects, and road conditions. This framework is a hybrid of an LSTM and a Mixture Density Network (Bishop,
1994), which introduces a Gaussian Mixture Model (GMM) extension to the traditional LSTM. This hybridisation enables the model
to estimate a conditional bicycle flow distribution in contrast to the conventional conditional mean estimation. Furthermore, the
MDN extension improves the estimates of hourly bicycle volumes by treating them as random draws from a distribution, thus
introducing variation across the network even on measurably similar roads. Finally, we quantify the effect of improved bicycle
exposure estimates by contrasting crash frequency models using different exposure variables.

2. Methodology

The following section describes the methodological approach employed to estimate the bicycle flow.

2.1. LSTM

LSTMs have exhibited a superior capability of handling nonlinear time series problems (Hochreiter and Schmidhuber, 1997).
The LSTM learns to represent temporal data by introducing a memory cell and sub-processes, referred to as gates. There are three
such gates in the LSTM cell: the input gate, the forget gate, and the output gate. The gates each handle different tasks, involving
what information to keep from the previous cell state, what new input to consider, and which to include in the cell state. In Fig. 1,
there is a visual illustration of the LSTM cell layout, and the computations performed in the LSTM cell for each time step in the
temporal sequence are shown in Eqs. (1) to (6).

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 +𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓 ) (1)

1 https://upload.wikimedia.org/wikipedia/commons/3/3b/The_LSTM_cell.png
2
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Fig. 2. Example structure of simple LSTM neural network.

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 +𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖) (2)

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶𝑥𝑥𝑡 +𝑊𝐶ℎℎ𝑡−1 + 𝑏𝐶 ) (3)

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �̃�𝑡 (4)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 +𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜) (5)

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) × 𝑜𝑡 (6)

Here 𝜎(⋅) and tanh(⋅) are the respective activation functions, 𝑊𝑓𝑥, 𝑊𝑓ℎ, 𝑊𝑖𝑥, 𝑊𝑖ℎ, 𝑊𝑜𝑥, 𝑊𝑜ℎ, 𝑊𝐶𝑥 and 𝑊𝐶ℎ are the weight matrices
of the respective gates 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 and the memory cell 𝐶𝑡, in the LSTM cell. 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜 and 𝑏𝐶 are intercept/bias terms of the respective
gates, and ℎ𝑡 represents the hidden state at time step 𝑡.

2.2. LSTM MDN

An illustration of a simple LSTM regression network is shown in Fig. 2. It has an input layer, a single LSTM cell with 𝑘
computational nodes in each gate, and a single-node output layer. The optimisation of such a model by minimising the mean squared
error (MSE) has been shown to approximate the conditional average of the target data (i.e. bicycle flow) (Bishop, 1994). However,
we wish to allow for similar weather and seasonal conditions not necessarily yielding the same bicycle flow across roads. Therefore,
we introduce a level of randomness in the bicycle flow estimation. Namely, through the Mixture Density Network (Bishop, 1994).

The original Mixture Density Network proposed by Bishop (1994) is a combination of an artificial neural network (ANN) and
a mixture model (McLachlan and Basford, 1988). This combination provides the flexibility to model a general distribution and, as
such, enables the estimation of the conditional density function of the target data, in contrast to the conditional average.

In the mixture model, the probability density of the target data is specified as a linear combination of kernel functions,

𝑝(𝑦|𝑋) =
𝐴
∑

𝑖=1
𝛼𝑖(𝑋)𝜙𝑖(𝑦|𝑋) (7)

where 𝐴 is the number of mixture components, 𝛼𝑖(𝑋) are the mixing coefficients dependent on the input data, and 𝜙𝑖(⋅|𝑋) are
Gaussian probability density kernels:

𝜙𝑖(𝑡|𝑥) ∝
1

𝜈𝑖(𝑥)1∕2
𝑒
− (𝑡−𝜇𝑖 (𝑥))2

2𝜈𝑖 (𝑥)2 (8)

where 𝜇𝑖(𝑥) is the centre of the kernel, i.e. the conditional average, and 𝜈𝑖(𝑥) the associated variance.
We refer to the combination of the LSTM and the MDN as the LSTMMDN. This model varies from the LSTM regression shown

in Fig. 2 only in the output layer. The task of the LSTM in the LSTMMDN is to estimate the mixing coefficients 𝛼𝑖(𝑋), the means
𝜇𝑖(𝑋) and the variances 𝜈𝑖(𝑋), conditional on input 𝑋, subsequently fed into the GMM.

To ensure the properties of the conditional density of the target data 𝑝(𝑦|𝑋), the mixing coefficients 𝛼𝑖(𝑋) need to satisfy the
constraint in Eq. (9)

𝐴
∑

𝑖=1
𝛼𝑖(𝑋) = 1 (9)

which can be solved by connecting the mixing coefficients to the feed-in network using a softmax/multinomial logit regres-
sion (Bishop, 1994), i.e.

𝛼𝑖 =
𝛼𝑖(𝑜𝛼𝑖 )
∑𝐴 𝛼

. (10)
3

𝑗 𝑜𝑗
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Fig. 3. Graphical illustration of the LSTMMDN setup used in the study.

where 𝑜𝛼𝑖 is the network output relevant to the mixing coefficients. It is convenient to avoid the conditional variances tending to
zero. Therefore we parameterise the conditional variance in terms of the exponential of the network output, see Eq. (11). This
parametrisation also corresponds to choosing an un-informative Bayesian prior in a Bayesian framework, assuming that the output
𝑜𝜈𝑖 has a uniform probability distribution (Bishop, 1994).

𝜈𝑖 = 𝑒𝑜
𝜈
𝑖 (11)

Finally, the centres/conditional means 𝜇𝑖, shown in Eq. (12), are represented by location parameters that depend directly on the
network outputs 𝑜𝑖.

𝜇𝑖 = 𝑜𝜇𝑖 (12)

To optimise the weights and biases 𝛩 = {𝑊𝑓𝑥,𝑊𝑓ℎ,𝑊𝑖𝑥,𝑊𝑖ℎ,𝑊𝑜𝑥,𝑊𝑜ℎ,𝑊𝐶𝑥,𝑊𝐶ℎ, 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜, 𝑏𝐶} we use a method called back-
propagation. This is an iterative process in which data are ‘‘fed forward’’ until a prediction is made upon which the deviation/error
from the actual result is computed using a loss function. Based on the deviation/error of the result and the impact on the output
of the individual weights (𝛩), the error is then backpropagated using a gradient scheme to update the individual weights 𝛩. For
further explanation of the statistics of backpropagation, see, e.g. Hastie et al. (2009), Bishop (1994). The loss function we use for
the parameter optimisation is the log-likelihood as shown in Eq. (13).

(𝛩) = 1
𝑁

𝑁
∑

𝑗
− ln{

𝐴
∑

𝑖=1
𝛼𝑖(𝑋𝑗 )𝜙𝑖(𝑦𝑗 |𝑋𝑗 )} (13)

2.3. Model configuration

To sum up the model configuration: The LSTMMDN applied in this study is configured as shown in Fig. 3 using the activation
functions described in Eqs. (1) to (6). We apply an internal dropout rate of 20% dropout in the LSTM cell to avoid overfitting/over-
specification of the model (Srivastava et al., 2014). Meanwhile, we use a linear 𝑎(𝑥) = 𝑥 in the output layer, along with the relevant
transformations leading into the GMM, as described in Eqs. (10) to (12). The specific backpropagation scheme used for the parameter
optimisation is the Adaptive Moment Estimation (Adam) algorithm (Kingma and Ba, 2015). This is a stochastic gradient-based
optimisation approach, which provides some advantages over traditional gradient-based schemes (Hastie et al., 2009). Finally, we
employ an early stopping criterion. This criterion is evaluated on a small validation sample of the data and ends the model estimation
if no performance improvement is achieved over 𝐿 model updates to avoid overfitting where we set 𝐿 = 100.

3. Results

3.1. Data and experimental setup

The current study use bicycle flow in Copenhagen, Denmark, as case. The bicycle volume data was obtained for the Mastra service
provided by the Danish Road Directorate (Vejdirektoratet, 2020). Here we selected the data recorded from automated counting
stations in Copenhagen and Frederiksberg. Such counting stations generally record the amount of cyclists by registering bicycles
riding over two tubes with a constant airflow inside. Thus enabling the counting and potential speed assessment of the cycling flow.
Thusly, the hourly bicycle volume data recorded by bicycle counting stations was acquired for the period 2017–2020. The selected
bicycle counting stations are located at the blue dots in Fig. 4. There was considerable variation in active counting days of the
4
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Fig. 4. Map of the measurement stations and weather stations in Copenhagen. Black star shows the location of the measuring station used to fill in missing
wind data. The green dot shows the location of the HQ of the Danish Meteorological Institute. Blue dots are cycling counting stations. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

counting stations in the four-year period from 2017 to 2020. The number of days counting stations were active ranged from 9 to
731 days. The median number of active counting days is 40. Overall, a total of 64,664 hourly bicycle volumes are recorded.

The reports provided by The Danish Road Directorate, which contain the hourly bicycle counts, also contain the AADCT and
AAWCT for each bicycle counting station every year where activity is registered. The AADCT and AAWCT are computed by the
Danish Road Directorate.

Using the Open Data API of the Danish Meteorological institute (DMI, 2021), located at the green dot in Fig. 4, we acquired
weather data for Copenhagen in the period 2017–2020. The data are reported at 10-minute intervals and contain information on
air temperature, pressure, wind speed, wind gusts, wind direction, precipitation levels, visibility and snow volume.

Finally, we also include time-related data such as an hour of the day, day of the week, week of the year, and indicators of public
holidays, as this would be assumed to influence cyclist ridership strongly.

The data consist of 64,664 observations of hourly bicycle volumes and ≈ 388, 000 weather and temporal measurements at 10-
minute intervals, totalling 17 features (i.e. explanatory variables). These 17 weather and time-related features, including the AADCT
of the roads of the bicycle counters, are the predictors used to estimate the hourly bicycle volumes 𝑦𝑇 . The observed 10-minute
interval predictors 𝑥𝑥𝑥𝑡 are grouped such that a sequence of six 10-minute interval observations 𝑥𝑥𝑥𝑡 are paired with the matching
response (i.e. the accumulated bicycle volume of the hour) as shown below.

These data are used to train and evaluate the LSTMMDN. The combined data of all bicycle count stations subsequently split into
a training, validation and test data set containing 70%, 10% and 20% of the total data, respectively.

𝑦𝑇 (𝑋𝑋𝑋𝑇 ) ∶ 𝑋𝑋𝑋𝑇 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑥𝑥𝑥𝑡1
𝑥𝑥𝑥𝑡2
𝑥𝑥𝑥𝑡3
𝑥𝑥𝑥𝑡4
𝑥𝑥𝑥𝑡5
𝑥𝑥𝑥𝑡6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝑥1,𝑡1, 𝑥2,𝑡1,… ., 𝑥𝐷,𝑡1)
(𝑥1,𝑡2, 𝑥2,𝑡2,… ., 𝑥𝐷,𝑡2)
(𝑥1,𝑡3, 𝑥2,𝑡3,… ., 𝑥𝐷,𝑡3)
(𝑥1,𝑡4, 𝑥2,𝑡4,… ., 𝑥𝐷,𝑡4)
(𝑥1,𝑡5, 𝑥2,𝑡5,… ., 𝑥𝐷,𝑡5)
(𝑥1,𝑡6, 𝑥2,𝑡6,… ., 𝑥𝐷,𝑡6)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(14)

Here 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6 index the six 10-minute intervals of the input sequence for the aggregated hourly cycling volume, 𝑇
indicates the full hour, and 𝐷 is the number of predictors.
5
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Table 1
Goodness-of-fit (GOF) measures related to various LSTMMDN structures and the SVFs, determined on the test data.

Model specification − log𝜇 − log ̂ 𝑀𝑆𝐸𝜇
̂𝑀𝑆𝐸 Trainable parameters

MDN: G(A=6) −6244 −6587 0.267 0.673 1962
ANN: (Sekuła et al., 2018) 5772 – 0.108 – 162,025
LSTM: 𝐿(𝑘 = 32) 5851 – 0.129 – 6,561
LSTM: 𝐿(𝑘 = 64) 5792 – 0.114 – 21,313
LSTM: 𝐿(𝑘 = 32) × 6 5832 – 0.128 – 6,733
LSTM: 𝐿(𝑘 = 64) × 6 5777 – 0.110 – 21,645
LSTMMDN: 𝐿(𝑘 = 32) × 𝐺(𝐴 = 6) 5805 5929 0.119 0.226 7,122
LSTMMDN: 𝐿(𝑘 = 32) × 𝐺(𝐴 = 8) 5811 5933 0.121 0.234 7,320
LSTMMDN: 𝐿(𝑘 = 64) × 𝐺(𝐴 = 6) 5753 5864 0.102 0.195 22,418
LSTMMDN: 𝐿(𝑘 = 64) × 𝐺(𝐴 = 8) 5777 5872 0.109 0.201 22,808
SVF-based estimates 6570 – 0.377 – –

3.1.1. Data pre-processing
Missing data is an issue for the wind speed data, where 37% of the data were missing from the measurement station at DMI.

he missing data are mainly centred around the winter months, potentially skewing the data representation and the model’s ability
o create accurate bicycle flow estimates. Therefore, we impute the missing data with wind speed observations from the nearest
eather observation station, shown by the black asterisk in Fig. 4 . This station is approximately 7 kilometres removed from the
MI station. The imputed wind speeds only have 1.6% missing data. Thus we lose less data. The chosen approach may lead to a
ecreased precision in wind data for the bicycle volume estimation but presents a solid trade-off compared to missing 37% of the
ata. Any remaining 10-minute intervals of data with missing data, are omitted.

.2. Bicycle flow estimation — model training and comparison

To assess the performance of the proposed LSTMMDN to estimate historical hourly bicycle volumes, we compare it against other
eural network architectures and, most importantly, the method based on calibration factors currently employed by the Danish Road
irectorate (the Seasonal Variation Factors, SVF). Five models for the estimation are being compared in various setups. A simple
DN with 1 hidden layer providing 18 outputs for 6 mixtures, the ANN setup proposed in Sekuła et al. (2018) to estimate hourly

ar traffic in Maryland, LSTM and LSTMMDN in similar setups, and the SVF-based method used by the Danish Road Directorate.
The ANN proposed by Sekuła et al. (2018) contains three hidden layers of each 258 neurons with 20% dropout in each layer

nd ELU activation (Clevert et al., 2015) in each hidden layer. The LSTM networks have a single LSTM cell with 𝑘 = 32 or
𝑘 = 64 computation nodes in the LSTM-gates. The output from the LSTM cell is passed through a single layer with 𝑚 = 6, 𝑚 = 8
omputational nodes, and finally to a single node output layer. We also evaluate the performance of an LSTM network where the
STM cell is connected directly to the single output node. The hidden layers all have linear 𝑎(𝑥) = 𝑥 activation functions.

The LSTMMDN is set up similarly to the described LSTM networks with 𝑘 = 32 or 𝑘 = 64 nodes in the LSTM-gates, and either
𝐴 = 6 or 𝐴 = 8 mixture components. The latter means that the output layer will have 𝑚 = 𝐴 × 3 as visualised in Fig. 3.

For better training efficiency, the flow data for model training is standardised to mean zero and standard deviation 1. The
escribed models are all ‘‘trained’’ using the training data set and the validation set used for monitoring and early stopping. After
he model training, the test data set is used to compare model performance. The models are compared based on the following
easures:

• The average mse ( ̂𝑚𝑠𝑒)
• The average negative log-likelihood − log ̂
• The mse of the conditional average (𝑚𝑠𝑒𝜇)
• The negative log-likelihood of the conditional average (− log𝜇)

The first two are computed based on 100 posterior draws from the trained LSTMMDN, while the latter two are computed for the
mean of the same 100 posterior draws. For the standard LSTM network, the ANN, and the calibration factor method, the last two
measures are computed for one forecast as they all estimate the conditional average cycling flow already.

The results are shown in Table 1. Here 𝐿(𝑘) represents an LSTM cell with output dimension 𝑘, × ⋅𝑚 represents a connection with
a hidden layer consisting of 𝑚 computation nodes, and ×𝐺(𝐴) refers to a connection with a GMM with 𝐴 mixture components and
therefore an output layer with 𝐴 × 3 computational nodes.

Based on the GOF measures presented in Table 1, the LSTMMDN 𝐿(𝑘 = 64) ×𝐺(𝐴 = 6) appears to be the superior of the models.
Noteworthy is that all the LSTMMDNs outperform their LSTM network counterpart with similar setups. Considering the less refined
nature of the ANN (Sekuła et al., 2018) compared to the LSTM-based models, it is surprising that it is the second-best performing
model on the test data. However, the ANN has ≈ 8 times as many estimable parameters as the second-largest model and takes
significantly longer to train. It could be considered if a complicated model structure like that of the LSTMs is therefore necessary,
but comparing the output with the simple MDN, which has 6 mixtures, we see that a simple ANN feeding into a mixture model fails
6

to capture the temporal correlations present in the bicycle flow data. The model, in fact, is not much better than the SVF approach.



Transportation Research Part A 176 (2023) 103783M.S. Myhrmann and S.E. Mabit
Fig. 5. Heat maps comparing the prediction accuracy of the SVF method (left) and the LSTMMDN method (right) based on the reserved test data set.

The most relevant comparison is the model-based approaches vs the SVF-based method currently used in road agencies and the
Danish Road Directorate. Comparing all models-based estimates with the SVF-based estimates shows their superior performance
when estimating the hourly bicycle flow while accounting for varying weather and time-related effects. With the improvements
ranging from 66% − 77%

For the remainder of this paper, we continue with the best performing LSTMMDN: 𝐿(𝑘 = 64)×𝐺(𝐴 = 6), which will be compared
further to the SVF-method for estimating hourly bicycle traffic.

3.3. LSTMMDN vs. SVF-calibration method

The LSTMMDN: 𝐿𝑆𝑇𝑀(64) × 𝐺(6) performance on the test data yields an 𝑀𝑆𝐸𝜇 which is ≈ 77% lower than that of the SVF
method. To delve further into their respective ability to estimate hourly bicycle traffic accurately, we compare the fitted vs. actual
bicycle flow using a heat plot in Fig. 5. The two heat plots reveal the superior ability of the LSTMMDN to estimate the hourly bicycle
flow more accurately, as the concentration of estimates is much closer to the 45◦ line establishing a 𝑥 = 𝑦 relation. It is similarly
apparent from the heatplots in Fig. 5 that the SVF method tends to overestimate the bicycle volumes compared to the actual bicycle
volumes. Meanwhile, we also see that the model-based approach seems to overestimate bike-flow in the low-bike-flow domain. This
is primarily due to the few observations of low-exposure roads meaning that our model is not good at representing the bike flow
on such roads and cycling lanes.

To look further into the discrepancies between the two bicycle flow estimation methods, we compare their representation of the
bicycle flow over a continuous week. The plot in Fig. 6 shows a direct comparison of the standardised bicycle flow estimates from
the LSTMMDN (orange) and the SVFs (green) for a continuous week at a monitoring station. The actual observations for the week
at the station are shown in blue. Fig. 6 allows for a more fine-tuned diagnostic of the individual time-related effects learned by the
LSTMMDN model vs the SVF calibration. Overall, the LSTMMDN estimates follow the observed values for the chosen road during
this period much more tightly than the SVF estimates, coming closer in both the respective peaks and midday dips. However, the
most significant difference between the LSTMMDN and the SVF estimates in Fig. 6 is the discrepancy of the SVF-based method to
estimate the traffic at weekends accurately.

3.4. Impact of bicycle exposure on bicycle accident analyses

Having shown that our proposed method for estimating historical bicycle flow has potential compared to the calibration-factor
method, we wish to assess the impact of more detailed bike-flow data on some city planners’ and road agencies’ tasks. One such task
is to improve cycling safety, which involves accident analysis. As previous studies have highlighted the necessity of accounting for
exposure in accident analysis (Vandenbulcke et al., 2014; Thomas and De Robertis, 2013; Aldred et al., 2018; Norros et al., 2016),
we wish to quantify the impact of the quality of the exposure data further.

To do so, we estimate separate city-wide crash frequency models for Copenhagen with different exposure variables. Except for
the exposure variable, all other exogenous variables are constant and equal across the different models. We consider three exposure
variables: AAWCT, SVF-based hourly volume estimates, and LSTMMDN hourly volume estimates. The crash frequency model is a
simple Poisson regression. This model has been used in many previous studies involving crash frequency (Lord and Mannering,
2010). Other slightly more general models were tested namely the Negative Binomial regression and the Zero Inflated Poisson
regression. However, these models offered limited improvements in model fit to data and did not alter the conclusions based on
Poisson models. The results in terms of Log Likelihood, AIC and BIC are shown in Table B.6.
7
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Fig. 6. Visualisation of the standardised bicycle flow over 148 continuously registered hours from a randomly picked counting station. Blue: Actual counts
f bicyclists from random counting station, orange: LSTMMDN cycling flow estimates on the same road section and week, and green: SVF-based cycling flow
stimates for same road section and week. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)

Table 2
Summary statistics of the data used in the Poisson model.
Variable Mean Std. deviation

Visibility 27,519 m 14.266 m
Bank holiday 0.034 0.181
Exposure(LSTMMDN) 5430 cyclists/h 4221 cyclists/h
Exposure(SVF) 6051 cyclists/h 5594 cyclists/h
Exposure(AAWCT) 6079 cyclists/h 219 cyclists/h
Morning Peak/ Afternoon peak 0.089 0.285
Temperature < 0 ◦C 0.032 0.175
Temperature > 20 ◦C 0.075 0.262
Wind speed < 5 m∕s 0.102 0.303
Wind speed > 9 m∕s 0.008 0.087
Precipitation > 0 mm 0.429 0.471

We consider for the response variable the aggregated amount of bicycle crashes in Copenhagen during any given hour in the
eriod 2017–2020. As exogenous variables, we consider the following: Visibility [𝑚], Temperature < 0 ◦C, Temperature > 20 ◦C,

Morning peak hours (7–9 weekday), Afternoon peak (15–17 weekday), Wind speed < 5 m∕s, Wind speed > 9 m∕s, Precipitation
(> 0 mm), Bank holidays, Bicycle flow.

Hourly cycling exposure is estimated for the four years for each bicycle counting station using the LSTMMDN and calibration
factors, respectively. Subsequently, the estimates are averaged over all stations to approximate city-wide cycling exposure (similar
to Dozza, 2017). When using the AAWCT as an exposure variable, the volume is scaled to be the annual average hourly cycling
traffic.

Due to missing weather data over the four years, leading to missing bicycle flow estimates, we undersample the bicycle flow to
have three full years of data. The three years of data include 2104 bicycle crashes in 26,232 h, meaning 0.08 accidents per hour on
average. The variance in the number of accidents is 0.085. Some summary statistics of the data used in the bicycle crash frequency
model are shown in Table 2 while the resulting parameter estimates for the estimated crash models are shown in Table 3. Correlation
matrices can found in Appendix A. We see that only peak hours (morning/afternoon) are even moderately correlated with the flow
estimates (i.e. 0.3 < | corr | < 0.5). Furthermore, no variables are strongly correlated (i.e. 0.5 < | corr | (Overholser and Sowinski,
008).

We see from the results in Table 3 that Model 3 is the best based on the log-likelihood and Deviance. This leads us to conclude
hat the LSTMMDN estimates as exposure variables lead to superior model performance in crash risk analysis. The resulting log-
ikelihood is 5.5% higher in Model 3 than in Model 1. Having changed only the exposure variable across the three models, this
ndicates that the quality of exposure estimates used in models have a substantial impact on fit to data. In addition, we find that
odel 2 (SVF-based hourly cycling volumes) fits the data more accurately than Model 1, with a 3.9% higher log-likelihood.

The results in Table 3 also reveal magnitude differences in parameter estimates and a difference in sign and significance of
ariable effects across the three models. We find that conclusions regarding various variable impacts on the bicycle crash frequency
ary depending on which of the three model variations is employed. For example visibility, which is significantly positive in Model
, becomes negative in Models 2 and 3 being significant in Model 2 and borderline insignificant in Model 3. Similarly, we observe
8

hat high wind speeds are found to be significantly associated with a decrease in the crash frequency in Model 1, while being
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Table 3
Estimates for three Poisson regressions using similar input variables with the exception of varying the exposure variable (AAWCT, SVF-based hourly cycling
volume and LSTMMDN-based hourly cycling volume).

Model 1 (AAWCT based exposure) Model 2 (SVF-based exposure) Model 3 (LSTMMDN based exposure)

No. Obs 26,232 26,232 26,232
Estimated parameters 10 10 10
log −7, 142 −6, 874 −6, 740
Deviance 10,287 9,750 9,483

Variables Parameter estimates 𝑝-value Parameter estimates 𝑝-value Parameter estimates 𝑝-value

Intercept −23.390 < 0.001 −7.958 < 0.001 −10.740 < 0.001
Visibility (for one log change) 0.071 0.029 −0.068 0.037 −0.062 0.055
Bank holiday −0.857 < 0.001 −0.809 < 0.001 −0.096 0.609
log(Exposure) 2.267 < 0.001 0.697 < 0.001 1.006 < 0.001
Morning peak 1.098 < 0.001 0.210 0.002 0.247 < 0.001
Afternoon peak 1.194 0.003 0.296 < 0.001 0.284 < 0.001
Temperature < 0 ◦C −0.512 < 0.001 −0.113 0.519 −0.027 0.877
Temperature > 20 ◦C 0.422 0.774 0.075 0.270 0.224 0.001
Wind speed < 5 m∕s −0.023 0.946 0.181 0.025 0.136 0.090
Wind speed > 9 m∕s −0.018 0.001 −0.058 0.824 −0.030 0.908
Precipitation 0.147 0.001 0.095 0.031 0.124 0.005

insignificant in the two other regression models. The same is the case for low temperatures, which are similarly significant and
negative only in Model 1. Meanwhile, high temperatures and low wind speeds are insignificant in Model 1, while these variables
are associated with significant effects in Model 3 and Model 2, respectively.

4. Discussion

The current approach used by transport agencies to estimate hourly bicycle traffic relies on calibration factors and thus does
ot reflect variations in cycling exposure related to weather and other effects. This study aims to amend this issue by applying
n LSTMMDN to estimate city-wide hourly bicycle volumes in Copenhagen based on the mean-daily traffic while accounting for
eather and temporal effects. The results clearly show that the proposed LSTMMDN produces significantly more accurate estimates
f hourly cycling flow than the calibration factor method. Conditional on the size of the applied network, the LSTMMDN yields 66%
o 77% more accurate estimates of the hourly bicycle volume. The LSTMMDN contrasts models previously used in estimation and
hort-term traffic forecast and traffic estimation studies (Ma et al., 2015; Sekuła et al., 2018) as it estimates a conditional cycling
istribution, compared to only estimating a conditional average cycling flow. As such, the LSTMMDN should provide a more realistic
epresentation of cycling. As cycling flows are treated as draws from the conditional cycling distribution, there is randomness in
he system. This means that cycling flows on otherwise measurably identical roads will be different. This would not be the case for
odels estimating conditional averages. The above highlights that machine learning methods are capable of improving the precision

n flow estimates necessary for policy analysis. This should not be seen as a claim that the LSTMMDN is optimal. There could be
ther methods giving even higher precision. In addition, any decision on an optimal method for a given application includes a trade
ff between model simplicity and precision. However, the LSTMMDN serves to illustrate that there is room for improvement in
recision, which can be achieved by well-established methods.

Several policy areas within transport could be impacted by improved bicycle volume estimates, e.g. recently developed large-
cale models that include link-based cycling volumes (Kjems and Paag, 2019; Davies, 2017). Another area being cycling safety
mprovement, where many policy applications rely on exposure, i.e. bicycle flow. As an illustration of policy analysis, we quantify
he potential impact of improving the quality of bicycle flow estimation. Specifically, we estimate three bicycle crash frequency
odels, which are identical except for the exposure variable. The results show that improving the accuracy of bicycle volume

stimates result in better crash risk models. The best results are achieved from best to worst using the LSTMMDN estimates, the
VF estimates, and the modified mean daily aggregated cycling. These results add to previous research arguing that the accuracy
f analyses is improved by including exposure, as opposed to no exposure (Thomas and De Robertis, 2013; Norros et al., 2016),
y arguing that the detail and quality of the exposure variable affect the accuracy of inference. A potentially worrying notion was
aised from the results of the crash frequency models. We observe both sign and significance level changes concerning the variable
ffects when comparing the models in Table 3. Looking at the simplest Model 1, policymakers could be concerned that having many
yclists is problematic since accidents increase more than proportionally to exposure. However, in Model 3 we find that accidents
nly increase proportionally with exposure. Similarly, peak hours are seen as relatively much more dangerous in Model 1 than in
odels 2 and 3. This could influence the priorities placed on various policies towards improving cycling safety. This variation is

vidence of aggregation bias influencing the estimation results when using aggregated exposure estimates and raises questions about
he validity of results from studies using highly aggregated exposure in models. However, a definitive clarification would require
n in-depth analysis and is the subject of future studies. Nonetheless, it presents a strong argument for the need for further bicycle
9

bservation/monitoring efforts and the methods for estimating bicycle flow.
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4.1. Limitations

4.1.1. Model-based hourly cycling volumes
Several variables are not accounted for that could be considered when attempting to accurately estimate cycling flow. Accounting

or the built environment, network structure and connected routes could improve the model’s accuracy. Applying models similar
o Bao et al. (2019), which combine network and temporal features, could be considered for future research. Previous research
uggests that cyclists prefer bicycle paths separated from motorised traffic (Aldred et al., 2017; Broach et al., 2012; Transport for
ondon, 2014), and future applications should seek to include car traffic as a predictor in the model. The specific strength of the
STM is its ability to handle very long time-series data. In this study, however, the input sequences passed to the LSTM only contain
equences of six 10-minute weather intervals. Future research could concern itself with the topic and include extended series of
eather data into the bicycle flow model and include previous bicycle counts to improve accuracy.

.1.2. Data
The current model relies on the availability of monitoring of hourly bicycle volumes. Therefore, if no data on bicycle volumes

s available other methods need to be explored. In terms of policy making it is interesting to know which variables are crucial and
hich are negligible in cases where one might want to estimate traffic. Therefore we investigated the impact of removing variables

onsidered in the study by leaving out one variable at a time, while keeping all other variables. We investigate the relative change
n the GOF-statistics reported in Table 1 compared to the exhaustive model. This identifies temporal effects such as day of week,
eek of year and mean daily cycling traffic at a station as very important factors for determining the cycling flow. Leaving any
f these three factors out resulted in 23.3%, 17.8% and 201% increase in the 𝑀𝑆𝐸𝜇 respectively. Similarly, the amount of data

needed for models is relevant, and in terms of policymaking, data costs money. We therefore investigated the performance drop of
the best model identified in the study if only using randomly sampled 5%, 10%, 20% and 30% of the data to train the model, while
testing the performance on the same data set as used for the results in Table 1. The results suggest that even with only 5% of the
data for training instead of the 70% we used, the model achieves improvements of 50%. The full set of variables and results for this
can be found in Appendix B.

The increased availability of technologies to monitor cyclists and their behaviour via systems such as instrumented cy-
clists (Gustafsson and Archer, 2013; Roos and Lindqvist, 2020) also implies the potential for new ways and methods to estimate
cycling flow that could turn cycling counting stations obsolete in the future. Meanwhile, the newer technologies enabling the
monitoring of cyclist volumes and behaviour come from private companies and their products, making them potentially less viable
for the transport agencies. Therefore, although sparse, the most easily accessible cycling monitoring data for transport agencies and
safety engineers still stems from automated bicycle counting stations. Hence, it should still be in their interest to develop models to
improve the hourly bicycle estimates based on what little information about the cycling exposure is currently available.

4.1.3. Bicycle crash models
The crash model and the variables used for those models are very simplistic and quantify the impact that better bicycle volume

estimates can have on the accident models that are crucial to making informed decisions to increase cycling safety. Many studies
have investigated the factors related to bicycle crashes and the outcomes thereof Janstrup et al. (2019), Myhrmann et al. (2021),
Fountas et al. (2021), Schepers et al. (2020), Aldred et al. (2018), Kaplan and Prato (2013), Kim et al. (2007). This study illustrates
that the conclusions reached in these studies may have a dependence on the detail of exposure used in the various studies. The
three Poisson regressions results indicate that the bicycle flow estimates affect the crash analysis. This result makes it plausible
that the same would be the case in more advanced models. However, this is left for future research. As previously mentioned,
we tested a Negative Binomial regression and Zero Inflated Poisson regression to compare to the simplistic nature of the Poisson
regression in this paper. In neither of the three exposure settings did we find evidence of a significant dispersion parameter. As is
seen in Appendix C there is only a benefit to increasing the model complexity by applying NB or ZIP regressions, when using the
simplest type of exposure measure, namely the AAWCT. Meanwhile, when using the SVF and LSTMMDN-based exposure measures
the Poisson regression performs the best when evaluating the AIC and BIC measures.

5. Conclusion

This paper focuses on the application of machine learning for estimating historical bicycle flows that transport agencies use
for various tasks such as improving cycling safety or as input in larger transport models. The proposed LSTMMDN estimates
cycling traffic based on the mean daily traffic and accounts for weather and time-related factors. The proposed method significantly
outperforms the current calibration factor method to obtain hourly bicycle flow estimates, and the cycling flow estimates are up
to 77% more accurate in the studied example. The LSTMMDN also provides a more realistic cycling representation due to the
model’s built-in uncertainty. Assuming less monitoring of the cycling network and therefore less data for training still leads to
model performances far superior compared to the current calibration factor method. Using only 5% of the original data for model
estimation still leads to cycling flow estimates that are 50% more accurate in the studied example. Overall this suggests that traffic
estimation efforts in transport agencies would benefit from accounting for weather and other influencing factors as well as embracing
newer statistical frameworks. Also, the quality of exposure data could easily be thought to impact the results of their analyses. In
line with this, the current study analyses the impact of the improved cycling flow data from the LSTMMDN in accident analysis.
The results show how these models, generally used to make informed decisions regarding mitigating action, benefit from the more
detailed and accurate bicycle flow data. Hence, the results suggest that highly aggregated exposure data could lead to erroneous
10

conclusions.
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Table A.4
Table showing the Pearson correlation values between the flow and other variables in the Poisson regressions. Bold indicates correlations that are significantly
different from zero.

log(vis) Bank holiday Morning peak Afternoon peak Temp. < 0 ◦C Temp. > 20 ◦C Wind < 5 m∕s Wind > 9 m∕s Precip.

log(SVF-flow) 0.18 −0.01 0.32 0.36 −0.12 0.23 −0.14 0.01 −0.01
log(LSTMMDN-flow) 0.18 −0.09 0.23 0.31 −0.15 0.18 −0.10 0.00 −0.01

Table A.5
Table showing the Pearson correlation values between exogenous variables (non-flow) in the Poisson crash models. Bold indicates correlations that are significantly
different from zero.

log(vis) Bank holiday Morning peak Afternoon peak Temp. < 0 ◦C Temp. > 20 ◦C Wind < 5 m∕s Wind > 9 m∕s Precip.

log(vis) 1.00 0.06 −0.05 0.07 0.02 0.15 −0.12 0.01 −0.14
Bank holiday 0.06 1.00 0.00 0.00 0.00 −0.05 −0.02 0.04 0.01
Morning peak −0.05 0.00 1.00 −0.10 0.01 −0.01 −0.03 0.01 0.00
Afternoon peak 0.07 0.00 −0.10 1.00 −0.03 0.09 −0.06 0.01 0.00
Temp. < 0 ◦𝐶 0.02 0.00 0.01 −0.03 1.00 −0.05 0.02 −0.01 −0.08
Temp. > 20 ◦𝐶 0.15 −0.05 −0.01 0.09 −0.05 1.00 −0.07 −0.02 −0.12
Wind < 5 m∕s −0.12 −0.02 −0.03 −0.06 0.02 −0.07 1.00 −0.03 −0.01
Wind > 9 m∕s 0.01 0.04 0.01 0.01 −0.01 −0.02 −0.03 1.00 0.01
Precip. −0.14 0.01 0.00 0.00 −0.08 −0.12 −0.01 0.01 1.00
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Appendix A. Correlation tables for regression

See Tables A.4 and A.5.

Appendix B. Comparing Poisson, negative binomial and ZIP models

See Table B.6.

Appendix C. Test of limited data and variables

See Tables C.7 and C.8.
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Table B.6
Comparison of crash frequency models using Poisson, Negative Binomial (NB) and Zero-inflated Poisson (ZIP)
regressions.
GOF Poisson reg. NB reg. ZIP reg.

AAWCT-based exposure
log −7142 −7141 −7122
AIC 14306 14305 14288
BIC 14396 14404 14468

SVF-based exposure
log −6874 −6874 −6863
AIC 13770 13773 13771
BIC 13860 13871 13951

LSTMMDN-based exposure
log −6740 −6743 −6734
AIC 13502 13509.11 13511.18
BIC 13591.92 13607.2 13691.03

Table C.7
Relative difference in GOF measures related to different variables left out in the training of the LSTMMDN: 𝐿(𝑘 = 64)×𝐺(𝐴 = 6),
compared to the exhaustive model, determined on the test data.
Left out variable ̂𝑀𝑆𝐸 (%) 𝑀𝑆𝐸𝜇 (%) − log ̂ (%) − log𝜇 (%)

Temperature −1.82 1.46 0.05 0.08
Humidity 1.46 −1.54 0.03 −0.08
Precipitation 3.29 −0.29 0.30 −0.02
Pressure 3.75 1.83 0.20 0.10
Visibility 0.68 2.59 0.23 0.14
Visibility (past 10 min) −1.02 −3.67 −0.11 −0.20
Holiday 0.37 2.50 0.15 0.14
Day of week 24.12 23.33 1.86 1.29
Week of year 16.55 17.76 1.12 0.98
Wind speed −6.59 −2.14 −0.03 −0.12
Wind Gusts −2.68 −1.30 0.05 −0.07
AAWCT 205.52 201.28 13.61 11.10

Table C.8
GOF measures related to the LSTMMDN: 𝐿(𝑘 = 64) × 𝐺(𝐴 = 6) trained on reduced amounts of data, determined on the test data.
Fraction of data ̂𝑀𝑆𝐸 𝑀𝑆𝐸𝜇 − log ̂ − log𝜇

5% 0.316 0.188 −6221 −6010
10% 0.284 0.164 −6123 −5939
20% 0.266 0.152 −6058 −5903
30% 0.238 0.136 −5982 −5854
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