
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Jun 04, 2024

Manipulation of magnetization and spin transport in hydrogenated graphene with THz
pulses

Svaneborg, Jakob Kjærulff; Lorentzen, Aleksander Bach; Gao, Fei; Jauho, Antti-Pekka; Brandbyge,
Mads

Published in:
Frontiers in Physics

Link to article, DOI:
10.3389/fphy.2023.1237383

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Svaneborg, J. K., Lorentzen, A. B., Gao, F., Jauho, A-P., & Brandbyge, M. (2023). Manipulation of
magnetization and spin transport in hydrogenated graphene with THz pulses. Frontiers in Physics, 11, Article
1237383. https://doi.org/10.3389/fphy.2023.1237383

https://doi.org/10.3389/fphy.2023.1237383
https://orbit.dtu.dk/en/publications/ee532104-cd9d-4965-80fc-466ab5838c92
https://doi.org/10.3389/fphy.2023.1237383


Manipulation of magnetization
and spin transport in
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Terahertz (THz) field pulses can now be applied in scanning tunneling microscopy
(THz-STM) junction experiments to study time-resolved dynamics. The relatively
slow pulse compared to the typical electronic time-scale calls for approximations
based on a time-scale separation. Here, we contrast threemethods based on non-
equilibrium Green’s functions: i) the steady-state, adiabatic results, ii) the lowest-
order dynamic expansion in the time variation, and iii) the auxiliary mode
propagation method without approximations in the time variation. We consider
a concrete THz-STM junction setup involving a hydrogen adsorbate on graphene
where the localized spin polarization can be manipulated on/off by a local field
from the tip electrode and/or a back-gate affecting the in-plane transport. We use
steady-state non-equilibrium Green’s function theory combined with density
functional theory to obtain a Hubbard model for the study of the junction
dynamics. Solving the Hubbard model in a mean-field approximation, we find
that the near-adiabatic first-order dynamic expansion in the time variation
provides a good description for STM voltage pulses up to the 1 V range.

KEYWORDS

THz spin-electronics, time-dependent transport, graphene magnetism, non-equilibrium
Green’s functions, Wigner representation, density functional theory–non-equilibrium
Green’s function

1 Introduction

Recently, it has become possible to extend scanning tunneling microscopy (STM) studies
to the time domain by applying strong sub-cycle near-field electromagnetic pulses in the THz
regime inside the STM, so-called THz-STM.. This enables studies of time-resolved dynamics
of the transport in junctions with sub-Å and sub-ps resolution [1–3]. Due to the strong field
confinement at the STM tip electrode, the effective voltages between tip and sample can be on
the order of 1 V [4].

The STM-THz experiments pose interesting questions regarding the theoretical
description of the dynamics of the electronic subsystem on the time scale of typical
atomic vibrations. The case of atomic-scale junctions in STM under strong bias and
coupling to the tip requires the consideration of coupling to semi-infinite electrodes. To
this end, the non-equilibrium Green’s function (NEGF) methods [5–7] have been a popular
choice, where the electrodes are included via self-energies. However, it is relevant to consider
simplifications to the full time dynamics since the electron dynamics most often nearly
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adiabatically follow fields in the THz range. This can be
accomplished by the Wigner representation, which involves a
time-scale separation into a slow THz time scale (T) and a fast
electronic time scale (τ), typically around a femtosecond. This has
been considered recently by Honeychurch and Kosov [8] where the
NEGF Kadanoff–Baym equations (KBEs) are expressed in the so-
called Wigner form with an expansion in terms of the derivative of
the slow time, T, from hereon called “dynamic expansion” (DE).

From a numerical point of view, one important advantage of the
DE approach is that each discrete time step will be independent from
each other: quantities like electron density and current are expressed
by quantities independent of the other time steps allowing for
computational parallelization over time as opposed to the time
propagation of the KBEs. This is important for efficient
calculations based, e.g., on first-principles methods such as time-
dependent density functional theory based on the NEGF (TD-DFT-
NEGF).

In this paper, we apply the DE method to a realistic STM
junction which has received considerable attention, namely, STM
on a hydrogen adsorbate on graphene. This system is magnetic,
but the magnetism can be tuned by the applied tip or gate field,
resulting in a change in the in-plane spin transport. Here, we will
consider the junction subject to a THz pulse and use it to
benchmark the DE against the full time-dependent NEGF
calculation with the auxiliary mode (AM) method and steady-
state field approximation (zero-order DE). We first use steady-
state DFT-NEGF to examine the bias- and gate-dependent
electronic structure and in-plane transport in the system. We
extract parameters from here to obtain an effective mean field, a
Hubbard model for the junction, which we use for benchmarking
and which serves as a toy model of a full TD-DFT-NEGF
calculation, highlighting the numerical considerations in a
self-consistent treatment of time-dependence within the DE
approach. Our results show how the computationally efficient
DE method is able to capture the main features in the THz
dynamics of the system, in particular that the THz-bias pulse
gives rise to fast switching dynamics of the magnetism,
generating higher harmonic dynamics in the occupations and
currents which, on the other hand, are not captured well by the
steady-state adiabatic approximation.

2 System and DFT calculations

Magnetism of graphene can be created by point defects like
adsorption of isolated hydrogen (H/Gr) or a vacancy, owing to
the creation of unpaired π electrons around the defects [9]. The
electronic density of graphene is highly tunable by electrostatic
gating [10] which makes it interesting to consider how this
magnetism may be tunable either by a global back-gate or a
local gating such as the voltage on the STM tip, see
Figures 1A,B.

First, we consider steady-state DFT-NEGF calculations
where we use a three-terminal device setup with a gate plane,
encompassing left and right graphene electrodes (with width
W), and an additional gold tip electrode above the H atom, as
schematically shown in Figure 1A. The calculations were
performed using the SIESTA/TranSIESTA package [11–14]
with the GGA-PBE [15] functional for exchange correlation,
a DZP atomic orbital basis set and an electronic temperature of
50 K (for further details, see the work of Gao et al. [16]). To
model the gate-induced doping of graphene, a gate plane was
placed 15 Å underneath the graphene. The gate carries a charge
density of n = g × 1013 e/cm2, where g defines the gating level,
with g < 0 (g > 0) corresponding to n(p) doping [17].

The local atomic structure of H/Gr in Figure 1B displays an out-
of-plane buckling of the C atom, leading to a transition from sp2 to
sp3 hybridization. In Figure 1C, we show the calculated density of
states around the Fermi energy (EF) projected on the H atom
(PDOS) without gating, g = 0, and with gate-induced n-doping,
g = −1. The H impurity resonances at the center of the graphene’s
pseudogap, the midgap peaks, imply a strong interaction between
the s orbital of the H atom and the pz orbital of graphene. Here, the H
adatom forms a σ bond with the carbon atom next to it, and π bonds
are broken. The bonding states are located at −8 eV, far below the
Fermi level.

We use a tip-H distance of 4.5 Å, where there is only a weak
connection between the tip and H to keep the spin moment at 1 μB as
the initial state at zero bias (0 V) and gate. Without gating, the
magnetic moment can be switched on/off with the tip voltage-
induced doping below the tip, as observed by the disappearance of
the spin splitting in the PDOS. On the other hand, we can also turn

FIGURE 1
(A) Schematic of the three-terminal hydrogen on the graphene (H/Gr) device setup with a charge back-gate plane. μtip and μGr are chemical
potentials of the gold tip and graphene electrodes. Here, W is the width of the device. (B) Local atomic structure of the hydrogen atom on graphene
showing an out-of-plane buckling of the C atom below H (sp3 hybridization). (C) Density of states projected on the H atom, the midgap states, with g = 0
and g= −1 gating in units of 1013cm−2, respectively. Solid red and dashed blue lines represent spin up and down populations, respectively. EF refers to
the Fermi energy of the system in equilibrium, i.e., without bias.
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the magnetism “off” for an n-doped graphene by applying gating
(g = −1), where we see a non-spin split, fully occupied peak for zero
tip bias (0 V). In this situation the magnetism/spin splitting
reappears when we apply a 0.8 V tip bias counteracting the gate
doping. Thus, it is possible to manipulate the spin by either the STM
tip bias or by a global field from a gate plane [16]. The main driver
for this behavior is the electronic occupation of the carbon below the
hydrogen.

Next, we address the effects of the field and spin
manipulation on the in-plane transport in H/Gr. To this end,
we consider the energy-dependent scattering cross section, σ(E)
[18], corresponding to the “shadowing” length (area) caused by
the point defect in 2D (3D) conductors. We can estimate σ(E)
from the electron transmission functions for the pristine and
defected systems, T0 and T, respectively [19, 20].

σ E( ) � W
T0 E( ) − T E( )

T E( ) , (1)

where W is the width of the device, as shown in Figure 1A. In
Figure 2A, we see two peaks around EF caused by the resonant, spin-
split H resonances, c.f. the PDOS in Figure 1C, yielding a significant
in-plane transport spin polarization, Pσ = (σ↑ − σ↓)/(σ↑ + σ↓). The
cross section we obtain here is close to the one obtained for H on
graphene nanoribbons [18]. In accordance with the PDOS in
Figure 1C, we observe in Figure 2A how the spin splitting and
transport spin polarization vanish when applying a tip voltage. On
the other hand, as shown in Figure 2B, we show how the in-plane
transport spin polarization can be turned “on” using the
counteracting tip bias for the gate-induced n-doped system. In
this case, we also observe a dip in the cross section
around −0.3 eV below EF, corresponding to the Dirac point of
the doped graphene substrate. The H resonance is pinned around
the Fermi level at equilibrium (0 V), but it can be shifted by the tip
bias. This shows how external biases may be used to turn spin
polarization “on/off” in the H/Gr system and how this has
implications not only for the tunnel current between the tip and
sample (PDOS) but also for the in-plane transport in graphene.

3 Model and time-dependent methods

We consider next the response of the H/Gr system to a time-
dependent variation of the tip and gate potentials with the waveform
shown in Figure 3A chosen to mimic THz pulses in typical
experiments [1, 4], V(t) � A cos(2π]0t − ϕ) exp(− t2

2ζ2
). The time-

resolved shape and power spectrum of the pulse are shown in
Figure 3. We note that a realistic experimental pulse integrates to
zero over time, which is not fulfilled by the simple analytic
expression specified above. However, we do not expect this
deviation to have a significant effect on the dynamics. The
central (carrier) frequency ]0 can be adjusted to investigate how
the dynamics depend on the speed of external driving, thereby
testing the adiabaticity in the system. The width is adjusted along
with the frequency such that the dimensionless product ζ]0 = 0.3
remains constant.

We will use a minimal model for the H/Gr system with
parameters chosen according to the aforementioned DFT
calculations and model the system in the typical
electrode–device–electrode setup where the time-dependence of
the potential is considered in the device region, while the
electrodes are assumed to be perfectly screened so that the time
dependence in these regions consists only of a rigid shift of the
energies and chemical potentials following the pulse [5]. The device
region consists of the hydrogen atom and the sp3 carbon atom in the
graphene on which it is adsorbed. This system is modeled using an
electronic two-level model for each spin, corresponding to one
orbital per atom per spin. The coupling to the graphene sheet
and the STM tip electrodes is included using self-energies. We
note that the spin-polarization in the H/Gr in reality involves
carbon atoms further away from the adsorbate [9], but we will
neglect these effects here.

The system is described by the total Hamiltonian

Ĥ t( ) � Ĥ t( ) + Ĥgr t( ) + Ĥtip t( ) + V̂d,gr + V̂d,tip, (2)
where Ĥgr describes the graphene sheet, Ĥtip the STM tip, Ĥ
the device region, and V̂d,gr and V̂d,tip the graphene-device and

FIGURE 2
In-plane spin-dependent elastic scattering cross section (σ) as a function of energy. In the bottom panel, the corresponding spin polarization (Pσ)
without (A) g = 0 and (B) with g =−1 gate-induced n doping is shown. Solid red and dashed blue lines represent spin-up and spin-down states,
respectively.
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tip-device coupling, respectively. The rigid shift of the energies in the
screened electrodes caused by the electric field in the THz pulse is
ΔαV(t), where α ∈ {gr, tip}, and we have

Ĥα t( ) � ∑
k,σ

εαk + ΔαV t( )[ ]ĉ†αkσ ĉαkσ . (3)

Here, αk is a generalized state label referring to the eigenstates of
the isolated graphene sheet and tip, respectively. The mean-field
Hubbard Hamiltonian Ĥ describing the device is

Ĥ t( ) � ∑
σ

εH + VDC + UnH�σ t( )[ ]ĉ†Hσ ĉHσ + εC t( )ĉ†Cσ ĉCσ

+ vCHĉ
†
Cσ ĉHσ + h.c.( ), (4)

where ĉ(†)C,H are annihilation (creation) operators for the hydrogen
and adsorption-site orbitals, εH and εC are the on-site energies for
these orbitals, vCH is the hopping matrix element between these, and
σ ∈ {↑, ↓} refers to the spin. The Hubbard interaction strength is
given by U, and the opposite-spin H occupation is given by
nH�σ � 〈ĉ†H�σ ĉH�σ〉, where �σ refers to the spin opposite to σ. The
parameter VDC designates a DC potential due to the tip bias, as
shown in Figures 1, 2. The device couples to the tip by tunneling
through the hydrogen orbital

V̂d,tip � ∑
kσ

vtip,k ĉ
†
Hσ ĉtip,kσ + h.c., (5)

and to the graphene sheet through the C atom on the adsorption site

V̂d,gr � ∑
kσ

vgr,k ĉ
†
Cσ ĉgr,kσ + h.c., (6)

such that vtip,k is the hopping matrix element between the tip state k
and the hydrogen orbital and vgr,k is the hopping matrix element
between the graphene state k and the device carbon orbital. These
parameters enter the numerical model only indirectly through the
electrode self-energies to be specified below.

The values of the model parameters were estimated to mimic the
results of the DFT calculation, and we find that the values
εH = −1.7 eV, εC(t) = 0 eV + ΔgrV(t), vCH = 3.25 eV, U = 6.5 eV,

Δgr = 1, and Δtip = 0 resulted in a qualitative agreement between the
models when comparing PDOS on the respective atoms and their
spin splitting. The effect of the THz pulse is to shift the graphene
electronic energies relative to the tip. There is no spin-flipping
mechanism such that the spin-up and spin-down electrons
effectively form two separate systems, interacting only through
the time-dependent mean-field occupation of the opposite spin
on the H atom, which must be solved self-consistently.

The dynamical evolution of the system for a given time-
dependence may be described using the NEGF formalism. We
now express all operators as matrices in the device state space,
consisting of the hydrogen and carbon orbital for each spin. The
retarded, advanced, and lesser Green’s functions in the device region
are governed by the KBEs [5],

i∂t −H t( )[ ]Gr/a t, t′( ) � 1δ t − t′( ) + ∫ dt1Σr/a t, t1( )Gr/a t1, t′( ),
(7)

for the retarded/advanced functions and

i∂t −H t( )[ ]G< t, t′( )�∫dt1 Σr t, t1( )G< t1, t′( )+Σ< t, t1( )Ga t1, t′( )[ ]
(8)

for lesser Green’s function. In these equations, Σ = Σgr + Σtip is the
self-energy related to the coupling of the device to the graphene
sheet and the tip. These self-energies may be found from Green’s
function operator gα of the electrodes in the absence of coupling to
the device:

Σr/a/<
α t, t′( ) � ∑

k

vα,k g
r/a/<
α,k t, t′( ) vα,k* . (9)

In the present work, the tip is modeled in the wide-band limit
using an energy constant, Σr/a

tip � ∓ iΓtip/2, with the weak tip-
hydrogen coupling Γtip = 0.1 eV, while the self-energy of
the graphene sheet is found from a tight-binding model of the
graphene with the nearest-neighbor hopping parameter t = −2.7 eV
and zero on-site energy. From this model, the self-energy accounting

FIGURE 3
THz pulse used to drive the system in the time-domain (A) and frequency domain (B). The pulse has the form V(t) � A cos(2π]0t − ϕ)exp(− t2

2ζ2
). For

the numerical investigations carried out in this work, we fixed the parameters at ζ � 3
10]

−1
0 , ϕ � −π

4, and A = 1 eV. These parameters were chosen to mimic
pulses used in the experiment. The carrier frequency ]0 is varied between 1 and 10 THz; in the figure, a pulse with ]0 = 3 THz is shown.
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for the presence of the rest of the graphene sheet on the carbon atom
under the hydrogen was found using a k-integral to obtain the real-
space self-energy in the primitive unit cell of graphene [21].
Subsequently, this self-energy is further downfolded to the C
atom entering the C–H system. This yields a self-energy which
reproduces the Dirac-cone DOS for graphene.

We note that all quantities in Eqs (7) and (8) are matrices in
the device state-space. Thus, in our model, we obtain two sets of
2 × 2 matrices, one set for each spin. To solve the KBEs, we use
two different numerical approaches. The first is a method based
on the separation of time scales [8], where the resulting equations
of motion are expanded in an asymptotic series, which we denote
as the DE. This represents an approximation to the dynamics,
which becomes exact when the external time-dependence varies
on a much slower time scale than the electronic degrees of
freedom in the system. The second method (AM) recasts the
KBEs into a set of coupled ordinary differential equations (ODEs)
which depend only on a single time variable. The system
dynamics can then be found by propagating these ODE’s
forward in time from a specified initial condition [22, 23].
This method provides an exact propagation of the dynamics,
but requires that the self-energies be approximated by a series of
Lorentzian functions. In the following, we will provide some
more details on these two schemes.

3.1 Dynamical expansion

We introduce a central time variable T and a difference time
variable τ,

T � t + t′
2

τ � t − t′. (10)

In the absence of external driving, the system is invariant with
respect to translations in time, and thus, in this case, the quantities in
the KBEs will only be a function of the difference time τ. The
introduction of an external time-dependent driving breaks time-
translation invariance and, thus, introduces a dependence on the
central time variable T. Therefore, the variables (T, τ) are well suited
to separate the time scales associated with internal dynamics of the
system (τ) and the external driving (T). After the introduction of the
new time variables, we cast the KBEs in the so-called Wigner space
representation by performing a Fourier transform over τ. Thus, we
obtain a new set of Green’s functions and self-energies:

~G T,ω( ) � ∫∞

−∞
dτ G T, τ( )eiωτ , (11)

where the superscript ~ indicates that a quantity is in the Wigner
representation. After transforming all self-energies and Green’s
functions to the Wigner representation, the KBEs of motion take
the form

i

2
∂T + ω − e−

i
2∂

G
ω∂

H
T H T( )[ ] ~Gr/a � 1 + e−

i
2 ∂ΣT∂

G
ω−∂Σω∂GT( )~Σr/a ~G

r/a
, (12)

and

i

2
∂T + ω − e−

i
2∂

G
ω∂

H
T H T( )[ ] ~G< � e−

i
2 ∂ΣT∂

G
ω−∂Σω∂GT( ) ~Σ< ~G

a + ~Σr ~G
<( ), (13)

where the differential operators in the exponentials act only on the
function whose superscript they bear. For notational convenience,
we have suppressed the arguments (T, ω) on the self-energies and
Green’s functions. We note that Eqs (12) and (13) are still formally
exact. If the time-dependence is taken to be adiabatic, all central-
time derivatives in Eqs (12) and (13) vanish. In this limit, the
exponentials act as the identity operator, and we obtain the well-
known steady-state KBEs in the frequency domain:

ω −H T( )[ ] ~Gr/a

0 � 1 + ~Σr/a ~G
r/a

0 . (14)
ω −H T( )[ ] ~G<

0 � ~Σ< ~G
a

0 + ~Σr ~G
<
0 , (15)

where the 0 subscripts indicate that these are adiabatic Green’s
functions. If we assume that the external perturbation acts on a
much slower time scale than any internal dynamics in the system, G
and Σ will be slowly varying functions of the central time T. In that
case, we can expand the exponential operators in Eqs (12) and (13)
and keep only the lowest order terms on the grounds that higher-
order terms contain higher powers of the central time derivative ∂T,
which must be small by virtue of the slow variation. This allows us to
expand the Green’s functions in a formal series.

G � G0 + G1 + G2 +/ , (16)
whereGi satisfies an equation of motion containing terms only of ith
order in the central time derivative ∂T. Thus, G0 describes the
adiabatic response of the system (Eqs (14)–(15)) to the time-
dependent perturbation, while G1 describes the first-order
dynamical corrections and so on. The explicit expressions for Gr/a

and G< resulting from this expansion at the zeroth and first orders of
approximation are shown in Supplementary Material.

Once the Green’s functions governing the system have been
found, the time-resolved current into the device from the graphene
sheet and tip, respectively, is given by [5]

Jα t( ) � TrCα t( ), (17)
where the current matrix Cα is

Cα t( ) � ∫
t

−∞
dt′ G>

α t, t′( )Σ<
α t′, t( ) − G<

α t, t′( )Σ>
α t′, t( )[ ] + h.c. (18)

In the Wigner space representation, the integral in Eq. (18)
becomes an exponential operator, and we find the equivalent
expression in terms of Wigner space quantities as

Cα T( ) � ∫∞
−∞

dω
2π

e−
i
2 ∂GT∂

Σ
ω−∂Gω∂ΣT( ) ~G

>
T,ω( )~Σ<

α T,ω( ) − ~G
<
T,ω( )~Σ>

α T,ω( )[ ] + h.c.

(19)

We expand the current and current matrix in a series in the same
manner as we did for the Green’s functions.

Jα � Jα,0 + Jα,1 + Jα,2 +/ Cα � Cα,0 + Cα,1 + Cα,2 +/ , (20)
where Jα,i = TrCα,i, and Cα,i satisfies an equation containing terms of
order i in ∂T. These equations, at each order, are found from the
series expansion of the exponential operator in Eq. (19) and the
expansion Eq. (16) of the Green’s functions by collecting all terms of
the same order in ∂T. They are given explicitly in Supplementary
Material.

It is worth emphasizing that the method does not require any
propagation of the equations of motion because the dynamics are
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included as time-dependent corrections to the adiabatic solution. It
is, therefore, well suited to problems where exact propagation may
not be computationally feasible, such as problems that require the
consideration of dynamics over very long time scales, and, in
particular, the computations may be parallelized trivially over the
discrete time steps of the central time variable, T.

3.1.1 Self-consistent solution
The device Hamiltonian is an input parameter to the dynamical

expansion and, thus, must be known a priori. This represents a
problem for working with systems with interactions or
electron–electron repulsion, as the effective device Hamiltonian
will then depend on the state of the system. One approach to
this problem is the introduction of correlation self-energies,
which must then also be approximated by an additional
expansion in ∂T [24]. In this work, we use instead an iterative
procedure, seeking a self-consistent dynamical electron density. This
approach is in the spirit of DFT, and we envision that future
implementations of the method may work with DFT programs to
obtain self-consistent dynamical corrections to time-dependent
problems. In our approach, we start from a self-consistent
adiabatic solution on a pre-defined time-grid. The self-consistent
adiabatic Hamiltonian obtained from this solution is then used as
the input Hamiltonian to the DE model, from which a new
dynamical Hamiltonian is obtained on the same time grid. This
process is repeated until the self-consistency of the dynamical
Hamiltonian is achieved. Obtaining convergence for all time
steps is not trivial except at very low frequencies ]0 of the
external perturbation and was not obtained at the highest
frequencies investigated. This is related to the fact that the
higher-order harmonics generated by the switching of the
magnetization state are highly non-adiabatic and, therefore,
unsuitable for description by an expansion such as the DE.
Nonetheless, for frequencies below ]0 ≈ 5 THz, the dynamical
corrections were in good agreement with the exact time
propagation (AM) scheme even when the self-consistent cycle
did not formally converge for all time steps. Further details of
the numerical implementation may be found in Supplementary
Material.

3.2 Exact density matrix propagation (AM)

The KBE, as shown in Eq. 8, can be dealt with under the
assumption that the spin-independent electrode broadening
matrices Γα � i(Σr

α − Σa
α) are a weighted sum of Lorentzians in

the form [22, 23, 25, 26]

Γα ϵ( ) � ∑
Nl

l�1

γ2αl
ϵ − ϵαl( )2 + γ2αl

Wαl, (21)

with a corresponding retarded self-energy

Σr
α ϵ( ) � 1

2
H Γα[ ] ϵ( ) − i

2
Γα ϵ( ). (22)

In Eq. (21), Wαl is a fitting coefficient in a matrix sense, and in
Eq. (22),H denotes the Hilbert transform. This leads to a particularly
simple form of the lead self-energies and allows the KBE to be solved
exactly, in terms of the density matrix ρ(t) = −iG<(t, t) and a collection

of auxiliary modes that contain the necessary information of the two-
time Green’s function. The coupled set of ODEs for propagating the
density matrix then becomes [22, 23, 25, 27–30]

i∂tρ t( ) � H t( ), ρ t( )[ ] + i∑
α

Cα t( ), (23)

where the current matrix Cα is defined in Eq. (18)
The memory integral is handled through contour integration

and identifying so-called auxiliary modes to obtain the auxiliary
mode approach to the problem [23]. The current matrix Cα(t) has
several associated equations of motion with coefficients related to
the weights and poles in Eq. (21) (23). The system of ODEs, as
shown in Eq. (23), can then be solved using a standard ODE solver
method. In this particular case, an adaptive Runge–Kutta–Fehlberg
fourth-order method (RKF45) was used [31]. This serves as a basis
for comparison, as this method is only dependent on having a
suitable fit of Γα instead of having an approximation of how fast the
system can change. Because of the setup, getting the fit of Γα for each
electrode is just fitting two scalar functions to the form in Eq. (21),
which is easily carried out using an equally spaced grid and
minimizing the least square error with respect to the fitting
coefficient on each Lorentzian.

These steps, from obtaining fits to the lead Γα’s to propagating
the density matrix and its auxiliary modes in time in a numerically
exact way, were implemented in a code that will be published in the
future. The fits used can be seen in Figure 4A together with a
comparison of the transmission function (tip to graphene) with
numerically “exact” self-energies and fitted self-energies in
Figure 4B. For the fits, as shown in Figure 4, 100 Lorentzians
were used.

4 Results

To test our methods, we calculate self-consistently the time-
dependent occupation of spin-up and spin-down electrons on the
H atom and central C atom, along with the time-resolved spin-
polarized current injected into the graphene sheet. A net current
may be injected since electrons can tunnel from the STM tip
through the hydrogen atom and into the graphene sheet. These
properties are calculated using the two methods outlined
previously. For our purposes, the AM method may be regarded
as numerically exact. In the DE method, the equations of motion
are expanded to first order; i.e., we include only first-order
dynamical corrections. In the fully adiabatic limit, the self-
consistent solution to the electronic dynamics may be found
semi-analytically, and for comparison, we include such a
calculation in all figures shown.

In the absence of the THz pulse, the system relaxes to an
equilibrium configuration which is similar to the ground-state
found in the DFT calculations in Section 3. In particular, the
ground state is spin polarized when VDC = 0, but the
polarization vanishes upon the inclusion of a sufficiently large
bias. We analyze in the following the dynamics for VDC = 0.5 eV
and VDC = 0.0 eV. These two situations correspond to the situations
in the top (0.4 V) and bottom (0.0 V) panels in the left (g = 0) part of
Figure 1C, respectively. This way of applying a DC bias to the system
mimics that used in the experiment by Cocker et al. [32].
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In Figure 5, we show the time-dependent occupation of the
hydrogen (A and B) and carbon (C and D) orbitals as determined
self-consistently by the DE and the AM method when the system is
perturbed by the THz pulse. We take the central frequency of the
pulse to be ]0 = 3 THz and its amplitude to 1 eV, as shown in the
experiment by Peller et al. [4]. We will show in the following that the
DE method breaks down for this system between 5 and 10 THz, and
so 3 THz is one of the highest frequencies for which we would expect
the method to work. The gray dotted line marks the adiabatic self-
consistent solution, which neglects all dynamics associated with the

finite response time of the electronic system. The main new feature
when dynamics are included is a delay in the switching time from the
polarized to the non-polarized state, and vice versa. The DE and AM
methods are in reasonably good agreement with respect to this time
delay, in particular for the polarized → non-polarized (P → NP)
transition for the DC biased system in Figures 5A,C. Note that for
the NP→ P transition to occur, the spin-up/down symmetry of the
systemmust be spontaneously broken. Physically, this is achieved by
any random (e.g., thermal) fluctuation of the system, but in the
numerical implementation, a small spin-up/down asymmetry is

FIGURE 4
(A) Lorentzian fits to Γgr (blue) and Γtip (red) used for the AM approach. (B) Tip-graphene transmission function calculatedwith the numerically “exact”
self-energies and the fitted Γ’s without the Hubbard term (U = 0). The transmission was calculated using TBtrans [13].

FIGURE 5
(A) Time-dependent occupation of the hydrogen orbital (〈nH〉(t)) as determined self-consistently by the DE and the AMmethod when the system is
perturbed by a THz pulse at a central frequency of 3 THz (middle panels) for a DC bias where the system is non-polarized (VDC =0.5 eV). (B)H-occupation
for a DC bias yielding a polarized system (VDC = 0 eV). (C) Carbon pz-orbital occupation (〈nC〉(t)) for non-polarized and (D) polarized cases. In each case,
the lines labeled nad mark the adiabatic solution to the problem.
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introduced explicitly to break this symmetry. We implemented this
by introducing a small energy splitting between spin-up and -down
electrons, εH → εH + εσ, where ε↑/↓ = ∓1 μeV, i.e., a much smaller
energy scale than any other scales in the system. This parameter,
therefore, controls the spontaneous symmetry breaking during the
NP → P transition without, otherwise, affecting the dynamics.

The sign of εσ was chosen to make the system eventually return
to the initial polarization state for the unbiased configuration. One
could equally well have chosen the opposite sign, which would make
the pulse switch the polarization state of the H adatom for
sufficiently low central frequencies. In the absence of an external
magnetic field splitting the degeneracy between the spin states and if
the central frequency of the pulse is sufficiently low to completely
quench the polarization, the final polarization state would be
independent of the initial state.

In Figure 5C, we can observe that as the hydrogen atom acquires a
spin polarization, the carbon atom acquires the reverse polarization.
This happens even though the model does not include
electron–electron repulsion in the carbon orbital. It is known that
the spin polarization of a hydrogen adsorbate on graphene induces a
sublattice-dependent spin polarization in the graphene, extending for
several unit cells around the adsorption site [9, 16]. Our observation is
qualitatively in line with these results, though the effect could be
modeled more accurately by using a spin-dependent coupling self-
energy for the graphene-device contact. One could also include more
carbon atoms in the device region and, thus, explicitlymodel their time-
dependent spin polarization. TheAM results for the carbon orbital were
shifted by a constant vertical off-set to make all methods agree in the
steady-state regime. If such an offset is not included, a small discrepancy
is observed due to the Lorentzian fit to the self-energy used in the AM
method in place of the exact self-energy. The carbon orbital, which
couples directly to the graphene sheet through the self-energy, is
particularly sensitive to any variation in this parameter. We remark
that the quality of the fit may always be improved by including more
Lorentzian functions, until a satisfactory fit is achieved.

Figure 6 shows the time-resolved spin-polarized current Js = J↑ − J↓
injected into the graphene due to the THz pulse for the DC biased and
unbiased configurations. Large peaks are observed when the
magnetization state switches, corresponding to the abrupt change in

occupation of the hydrogen atom. These peaks are completely absent in
the adiabatic calculation. The DE result displays rapid small-amplitude
oscillations shortly before the switch occurs. This is a numerical artifact
which reflects the fact that the self-consistent cycle did not converge for
these particular time steps. This is not surprising as the DE approach is
based on the assumption that the time-evolution is near adiabatic,
which is far from the case near the transition, see the discussion in
Supplementary Material. Despite this challenge, the overall prediction
by the DE method is in good agreement with the exact (AM) result,
especially for the biased (NP → P → NP) configuration.

The spectrum of the spin-polarized current is shown in Figure 7.
The DE and AM spin-polarized currents contain significant Fourier
components at much higher frequencies than the adiabatic current,
as one may have anticipated from the peaks observed in Figure 6.
They both also predict oscillations in the spectra at high frequencies
(most evident in Figure 7A), although the amplitudes and exact
locations of these oscillations are different. This finding indicates
that the DE method captures well the qualitative effects of the
dynamics, but it may not be quantitatively correct on all accounts.
All three methods predict currents whose spectra contain higher
frequencies than the incident THz pulse, attesting to the highly non-
linear behavior of the system.

As the DE method is exact in the adiabatic limit, a natural question
is how fast the externally imposed time-dependence may be before the
method breaks down. Figure 8 shows the total spin injected into the
graphene sheetQs(]0) � 1

2∫∞
−∞ Js(t, ]0)dt due to a single THz pulse as

a function of the central frequency ]0 of the pulse.
Neglecting dynamical effects (i.e., the adiabatic case), the

transferred spin is inversely proportional to the central frequency
of the pulse because the current is frequency-independent. To
highlight the difference due to the dynamical corrections, we plot
]0Qs which is constant for the adiabatic calculation and is shown in
Figure 8 as a gray dashed line. At low frequencies, the DE and AM
methods are in good agreement, predicting that the transferred
charge is roughly independent of ]0, which is observed in Figure 8 as
a linear relationship between ]0Qs and ]0. At low frequency, the
system has time to completely polarize/depolarize, resulting in an
approximately frequency-independent current associated with the
filling and emptying of the device orbitals. As the frequency

FIGURE 6
Spin-polarized current Js= J↑− J↓ into the graphene layer for (DC) biased (A) and unbiased (B) configurations. A positive sign of Jsmeans that there is
a net spin-up current into the graphene sheet. Both time-dependent methods predict large spikes in the current when the polarization state of the
hydrogen atom changes, in particular during the transition from non-polarized to polarized currents. This feature is absent in the adiabatic calculation.
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increases the DE method begins to deviate. From the figures, we
assess that ]0 ≈ 5 THz is the largest frequency for which the DE
works well. We remark that at high frequencies, the self-consistent
cycle used in the DE method does not converge well. For these
frequencies, the dynamical density with the smallest error obtained
in the self-consistent cycle is included in the figure. The dots show
the frequencies at which calculations were made, and the lines
interpolate between these points. In the biased case (Figure 8A),
the dynamical behavior predicted by the AM method changes
significantly around ]0 = 10 THz. This change is related to the
fact that at high frequencies, the electronic system cannot adjust to
follow the pulse. Thus, when the system starts out in the NP state, it
does not have time to polarize. For a fully non-polarized system, the
spin-polarized charge will always vanish due to the spin-up/down
symmetry. This explains the sudden decrease in the transferred

charge at this point. This highly non-adiabatic effect is not at all
captured by the DE method.

5 Conclusion and outlook

We have tested the computationally efficient DE/time-scale
separation method, introduced in [8] on a model of an
experimentally relevant system, namely, mean-field, open-system
calculations of charge, and spin dynamics in a THz-STM junction
involving a hydrogen adsorbate on graphene. We demonstrated that
for lowTHz frequencies, the DEmethod gives a good description of the
non-adiabatic dynamics compared to full propagation using the AM
method. This calculation may, furthermore, be seen as a toy model for
a self-consistent TD-DFT-NEGF setup, where dynamical corrections

FIGURE 7
Spectrumof the spin-polarized current Js= J↑ − J↓ into the graphene layer for (DC) biased (A) and unbiased (B) configurations. Due to the spike in the
current associated with the spin-polarization phase transition, the spectrum of the current contains much larger frequencies than that of the external
pulse, an indication that the problem is highly non-linear. This is especially evident in the biased case, when the non-polarized → polarized transition is
particularly rapid. Note the different scales of both axes in the two figures; the black curve showing the spectrum of the external pulse in arbitrary
units is the same in both figures.

FIGURE 8
Total spin injected into the graphene layer multiplied by pulse frequency plotted for various frequencies for (DC) biased (A) and unbiased (B)
configurations. The total spin injected is calculated asQs � 1

2∫ (Js)dt with Js given by three different methods. Note the different scales of the y-axes on
the two figures. In the adiabatic case, the transferred charge is simply inversely proportional to the frequency, and so ]0Qs,ad = constant. Multiplying by the
frequency, thus, emphasizes the dynamical variation of the transferred charge as the frequency of the external potential is varied.
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to the density due to an external field are taken into account via the
dynamical expansion method. Some of the numerical challenges and
methods are discussed in Supplementary Material.

We have shown how the THz pulse generates spin-dynamics in
the hydrogen on the graphene THz-STM system with higher
harmonic frequencies appearing due to the highly non-linear
system. This dynamics may affect both the tunnel current from
the tip electrode as well as the spin-dependent scattering of carriers
in graphene, as observed by the spin-dependent scattering cross
section of the hydrogen adsorbate.

The magnetic structure in the graphene induced by the polarized
hydrogen atom is long ranged [9]. As an outlook, it would be
interesting to extend the computational region and possibly to
include dynamics among multiple localized spins. We also note
that the carrier-envelope phase (CEP) may be changed so the THz
waveform changes in a continuous way, e.g., from maximum being
positive to negative [33], as a further way of tuning the dynamics.

The expansion in powers of the central time derivative ∂T used in
the DE may in principle be continued up to arbitrary order to
include dynamical effects to higher degrees of accuracy. It would be
interesting to extend the numerical implementation beyond the
first-order dynamical corrections. In a preliminary study, we found
that it was difficult to converge the self-consistent cycle within the
second-order DE, and we did not pursue this further. An open
question for the DE method is the issue of convergence. It is not
trivial to quantify how slow the external time variation in a given
system should be in order for the lowest-order terms to approximate
the full dynamics. A further investigation into this issue would be
highly interesting, in particular, in combination with the inclusion of
higher-order terms in the formal series expansion.
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