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A B S T R A C T   

Potentials derived with machine learning algorithms achieve the accuracy of high-fidelity quantum mechanical 
computations such as density functional theory (DFT), while allowing orders of magnitude lower computational 
time. In this work, we demonstrate the use of uncertainty aware equivariant graph neural networks for predicting 
spin-resolved electron densities, forces, and energies of the Na3V2(PO4)3 NASICON structured cathode. Due to 
the speedup in computational time, we are able to investigate structures of ∼ 300 atoms for  200 million 
timesteps. The ability to model larger systems on the nanosecond length scale with maintaining DFT level ac-
curacy allowed critical insights into the diffusion characteristics of Na-ions, associated electron transfer pro-
cesses, and dependence of diffusivity on sodium concentration in the structure.   

1. Introduction 

High accuracy electronic scale simulations with density functional 
theory (DFT), especially ab initio molecular dynamics (AIMD), have 
been a key to modelling electrochemical phenomena such as ionic 
diffusion that determine the functional properties of battery materials 
[1]. Discovering ionic diffusion mechanisms with high energy barrier (e. 
g. in intercalation battery cathodes) is very challenging. The time scale 
and system size required are often beyond what AIMD simulations allow 
due to computational cost. As those are coupled with electron transfer 
processes, classical force field methods lack the accuracy and electronic 
scale description of the electron transfer redox process at transition 
metal atoms of the intercalation framework while ions move through it. 
Over the last decade the promise of machine learning (ML) potentials 
has matured from conceptual development [2,3] to enabling long time 
and length scale simulations of real functional materials [4,5] with 
quantum mechanical accuracy but at much lower computational cost. 
High-accuracy long time-scale simulations with machine learning po-
tentials recently have helped create new scientific insight in liquid 
hydrogen [6] and disordered silicon [7]. ML potentials have been 
applied in few cases for atomic-scale simulations of battery anode 
[8–10], electrolyte [11–15], cathode [16] and cathode coating materials 
[17] as well. These studies exemplify structural optimisation 

simulations of intercalated electrodes [8–10,16] and diffusion in solid 
state electrolytes [11–13,17] with ML potentials. 

Simulations performed with ML potentials in these pioneering ap-
plications in battery materials do not encompass reactive diffusion, 
where electronic reorganisation, i.e. redox processes, happens. 
Compared to ML potentials that show good accuracy for structural 
optimisation calculations, building ML potentials for studying diffusion 
phenomena reliably is more challenging. For precise optimisation sim-
ulations, the surrogate models need to accurately represent only the 
near-equilibrium part of the potential energy surface (PES). High ac-
curacy simulation of diffusive behaviour requires the surrogate to 
accurately portray a much larger portion of the PES, for bonding and 
electronic structure far beyond equilibrium covering transition state 
geometries and oxidation states [18,19]. If the underlying electronic 
structure does not change significantly, the degrees of freedom to be 
sampled and modelled in ML potentials are limited to structural ones 
and thus are less demanding than modelling diffusion in transition metal 
based frameworks (e.g. intercalation cathodes) where ionic diffusion 
also leads to redox reactions. The invariance of the electronic structure 
to the instantaneous position of diffusing ions and the limited modula-
tion in the host lattice in solid state electrolytes[20,21] helps ML po-
tentials with limited algorithmic expressivity perform well. Recent 
published work used ML potentials for ionic diffusion studies in systems 
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where diffusive phenomena are not ion-coupled electron transfer [11, 
12,17]. Ionic diffusion coupled redox reactions in transition metal based 
cathode materials are expected to be exceptionally challenging due the 
combination of host framework structural modulation (with far from 
equilibrium structures during diffusion), electron transfer redox pro-
cesses, and the presence of many atom types with multivalent transition 
metals. Currently published work on ML potentials for transition metal 
oxide intercalation cathode is built for optimisation tasks in the fully 
discharged state [16]. 

Due to the intricacy of building ML potentials that reliably model 
electron transfer based reactive/diffusive ML systems, such potentials 
have been successfully deployed only for small molecule reactions[18, 
19,22]. Gaussian approximate potential (GAP)[5] type of potential is 
applied in one of the studies [22]. GAP is not suitable for complex pol-
yanionic cathodes with four or more types of atoms, as the number of 
’smooth overlap of atomic positions’ (SOAP) descriptors [5] needed 
increases combinatorially with the number of atom types. GAP poten-
tials are difficult to train with a large number of training samples(cubic 
complexity to dataset size) which is needed to capture different ’away 
from equilibrium’ structures that represent the diffusive system [19]. As 
the ML potentials development is data driven in nature, sampling the 
PES for higher energy configurations e.g. transition states need to 
sampled. Models built with mainly with near equilibrium structures 
would provide erroneous force and energy estimates for out of distri-
bution structures encountered during simulations and thus not usable 
for reactive dynamics. Learning from our success in building generalised 
reactive ML potential for small molecule reactions [18,19], we obtained 
breakthrough in building reactive ML simulation tools that can perform 
electron density simulations similar to typical AIMD simulations. 

We propose an equivarient graph neural network(GNN) based 
atomic scale simulation model that follows the state of the art devel-
opment [23,24] in continuous filter GNNs with message passing based 
representation learning framework, enabling potentials capable of 
generalising for a large number of atomic species as required for com-
plex polyanionic cathodes. We go beyond the state of the art by intro-
ducing an additional linear scaling equivariant GNN model for 
spin-resolved 3D electron density simulations. The model output is 
continuous and differentiable, but can be used to predict charge den-
sities at grid points around atomic structures independent of each other, 
making it highly parallel and fast. This additional access to electron 
density while performing GNN based AIMD helps us to, for the first time, 
study the dynamic redox process occurring during ionic diffusion in 
intercalation cathode materials. 

We used this equivariant GNN based machinery to study the electron 
transfer coupled diffusion mechanism in NASICON structured 
Na3V2(PO4)3, as this type of phosphate materials has attracted much 
attention as viable alternatives to lithium ion batteries [25,26] with 
good cycle life and energy density [27,28]. Specifically, recent studies 
have suggested the possibility of complex diffusion mechanisms based 
on vacancy and charge ordering [29]. We could simulate structures of ∼
300 atoms for as much as 200 million timesteps. The ML models are able 
to capture complex diffusion mechanisms inside the structure. 

2. Methods 

2.1. Workflow 

To gain a mechanistic understanding of the ionic mobility and 

Fig. 1. Schematic of the ML workflow utilized in this article. In the first phase, we collect charges, forces and energies from DFT simulations. We then train an 
ensemble of ML models (to capture uncertainty) with energy, forces and charge density as target. Subsequently an active learning framework to iteratively retrain 
models with new out of distribution data for improving their accuracy and reliability. Finally the models are able to do nanosecond length scale MD, on a supercell of 
300 atoms for our current study. We later analyze the results of the MD, at different charged state and temperatures. 
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related electron transfer mechanism in energy storage materials using 
ML, we developed a systematic workflow that can be applied to any 
crystalline material - anodes, cathodes or electrolytes. The diagram is 
illustrated in Fig. 1, and consists of the following steps: 

1) Create initial datasets from short AIMD simulations starting with 
different intercalation state and ion ordering to get charge densities, 
forces and energies. 

2) Train an ensemble (to get uncertainty estimates) of ML models 
(with energy, force, and charge density targets) on the initial dataset. 

3) To improve the accuracy of the models and obtain reliable long- 
time scale MD, sample unknown parts of the configurational space 
using an active learning framework to retrain better models iteratively. 

4) Apply models for molecular dynamics, charge prediction, or 
structure optimisation on long time (nanoseconds) and length scales 
(hundreds to thousands of atoms). 

5) Analyse results and gain mechanistic understanding of the 
material. 

2.2. Ab inito simulations 

Spin polarized density functional theory based simulations were 
performed with the Vienna Ab-initio Simulation Package (VASP) [30]. 
The projector augmented wave (PAW) method [31] was used with a 400 
eV energy cutoff. Exchange correlation effects were described using the 
PBE functional [32]. To improve the delocalisation error for d-electrons, 
a correcting Hubbard U term was added to the 3d electrons of the va-
nadium atoms. Following previous work, a U − J parameter of 4.2 eV 
was added to vanadium atoms [33,34]. For the supercell with 2 formula 
units (f.u) Na3V2(PO4)3 (NVP), we use a k-point sampling of 2 × 2 × 2, 
and for the 16 f.u. structure, we reduce the k-point sampling to 1 × 1 ×
1. 

Ab initio molecular dynamics were run in the canonical NVT 
ensemble, using the atomic simulation environment (ASE) [35]. To in-
crease the likelihood of adequately sampling the phase space, the tem-
perature was set at 1000K using a Maxwell-Boltzmann distribution. The 
time step for all simulations was set at 0.5 fs. Calculations were ini-
tialised with V atoms in ferromagnetic order. 

2.3. Structure generation 

We collected training data from two different supercells of 
NaxV2(PO4)3 (NaxVP). The first structure contains 2 f.u. of NVP, with 
four vanadium atoms, and the second structure is the 2 ×2 ×2 cell, 
containing 32 vanadium atoms. 

Within the NASICON framework, two crystallographic Na-sites are 
reported: Na(1), and Na(2). The Na(1) site is located in a [V2(PO4)3] unit 
along the c-direction, with 6 oxygen neighbours, while Na(2)-ions are 
surrounded by eight oxygen atoms in its first coordination sphere [36, 
37]. A f.u. of NVP contains one Na that occupies a Na(1) site and two Na 
that occupies the Na(2) site. The calculated Na-O distance at the Na(1) 
site, has been found to be 2.378, which is much shorter than the average 
Na-O distance at the Na(2) site of 2.521 [38]. Due to the shorter Na-O 
distance, the Na(1) site is more stable and calculations reveal that the 
Na occupancy energy at the Na(1) site is 130 meV/f .u. lower compared 
to those of Na(2). [33]. Therefore, during deinteracalation, the occu-
pancy of Na(2) decreases, while the occupancy of the Na(1) site remains 
close to 1 [39]. 

The initial structures for Ab-initio molecular dynamics (AIMD) had 
sodium concentrations varying from Nax = 0 to Nax = 3. To improve 
variability in the training sets, the Na (1) and Na (2) sites were randomly 
populated at a given Na concentration. 

When MD was performed with an ensemble of ML models, initial 
structures were created by employing a basin hopping algorithm on the 
300 atom supercell at various Na concentrations, using the ML-ensemble 
as a calculator. Sodium ions were populated, so that Na(1) sites were 
filled first, followed by Na(2). Sodium concentration was varied from 

Nax = 1 to Nax = 3, and the volume of the cell was increased linearly 
from Nax = 1 to Nax = 3, following previous work [36]. 

2.4. Force and energy predictions - equivariant graph neural network 
model 

Recently developed linear scaling message passing neural networks 
(MPNN) based interatomic potentials [24,40–43] are especially effec-
tive when many types of atoms are involved and the data sets are large. 
The conceptual idea behind these models is to represent a crystal 
structure or molecule as a graph, where each node in the graph corre-
sponds to a atom in the system. Edges of the graph (atom-to-atom con-
nections) are drawn where the atoms are within a certain cutoff 
distance, which is a hyperparameter of the model. The nodes of the 
graph have a ”hidden” representation, which can be seen as a fingerprint 
representing the atom and its local environment. The nodes interact 
with each other through message passing steps. Information is 
exchanged between the nodes and the contents of these messages is 
modelled with artificial neural networks. The iterative exchange of in-
formation in principle enables an atom to influence atoms far away from 
its cutoff radius. After a number of message passing steps an energy 
contribution from each atoms is extracted with another neural network 
that maps each atom’s hidden representation to a scalar value. The 
contributions are summed up to give the total energy. The message 
passing steps are all differentiable so forces can be obtained by calcu-
lating the gradient with respect to the atom positions. In the first gen-
eration of message passing algorithms, the hidden representations of the 
atoms are invariant with respect to rotation and translation of the 
molecules. However, this means that directional information is lost in 
the message passing [24,44]. In the new generation of equivariant 
message passing models [24,45–49] the hidden representation of the 
nodes is given the ability to retain directional information in, which 
improves the accuracy and data efficiency of the models [43]. The loss 
function considers both the total energy E, as well as forces Fi to accu-
rately predict both properties: 

ℓ(Ê, (E,F1,…,Fn)) = (1 − ρ)‖ E − Ê ‖2 + ρ 1
n
∑n

i=0
‖ Fi −

(

−
∂Ê
∂Ri

)

‖2

(1)  

It should be pointed out that the accuracy of the ML models rely on high- 
quality DFT data, for example, from dense k-point sampling, large 
enough plane-wave energy cutoff and higher rung functional like 
HSE06. For deploying our methods in novel materials to discover un-
known phenomena, it is required that data is collected with DFT after 
performing convergence tests on these parameters. For the simulations 
described in this article, we did not try to verify the convergence of the 
energy and forces of the DFT calculations but took the suggested energy 
cutoff for accurate simulation for the hardest pseudopotential (oxygen). 

In this work, we use our own implementation of message passing 
equivariant graph neural network following similar published work 
[24]. Other models have also been used to study NASICON materials, 
such as kinetic Monte Carlo (kMC)[50]. kMC is a lattice based model 
where the possible events are predefined but it allows us to study 
diffusive processes in cathodes at micrometre and millisecond scales. In 
contrast, ML force fields compute forces and energies continuously as a 
function of atomic positions allowing the possibility to observe unex-
pected phenomena and provide structural distortion details for 
out-of-equilibrium motifs as well. Our novel GNN approach gives us 
access to electronic degrees of freedom as well. Thus in the ML accel-
erated multiscale simulation [15,51] paradigm of battery materials, our 
models operate at a lower time and length scale than kMC and com-
pliments it. kMC input parameters like accurate diffusion barriers need 
to implicitly account for structural and electronic changes during 
diffusion. Typically such barriers are obtained from DFT calculations. 
For large systems with many structural and configurational degrees of 
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freedom, the number of barrier calculations can be in the thousands and 
require large simulation boxes. This being infeasible, low-accuracy ap-
proximations [52] are often done - lowering the reliability of the results 
from kMC simulations. We envision that our ML models complement 
kMC method by enabling large scale high accuracy barrier calculations 
providing parameters to kMC on the fly. 

We implemented an ensemble of models consisting of four individual 
models with different sets of hyperparameters, while the predictions 
were given by the ensemble average. The uncertainty was estimated by 
the variance of the model predictions in the ensemble [53]. The pre-
diction uncertainty was later applied within the active learning frame-
work. Due to the nature of the numerical procedure of DFT simulations, 
total energies are well converged while forces obtained are noisy and 
force accuracy depend on high converged DFT parameters which is not 
possible to adhere to for large scale data collection like ours. Noise in 
force data makes it harder to train for accurate force prediction although 
error-free propagation of MD simulations depends on high accuracy 
forces. Thus our model training required a higher proportion of force 
loss. From one DFT data point, we have one energy observable but many 
force observables (one vector per atom) making force loss coefficients on 
the order of 100–1000 times larger than energy loss coefficient [24,54]. 
All models were therefore initially trained with a force weight ρ = 0.99, 
and interactions between atoms were considered within a cutoff radius 
rcut = 5. All models were trained with a stochastic gradient descent, 
using the ADAM optimizer[55], and an initial learning rate of η = 10− 3. 
A validation set consisting of ∼ 1% of the data was used for early 
stopping. The models used in this study are listed with their hyper-
parameters in Table 1. 

2.5. Charge predictions with density scanning nodes 

To track the oxidation state of vanadium, we use an up- and down- 
spin electron density prediction model trained on the charge density 
outputs (CHGCAR) of the ab initio calculations. Starting from our 
recently developed equivariant DeepDFT model [56,57], we extend it to 
predict two outputs, (a) the total electron density and (b) the difference 
between the up and down spins. The charge(spin) density model is also 
based on a message passing graph neural network model and it uses the 
same form of equivariant internal node representations as the model 
described above. 

The fundamental difference is that, in addition to the atom nodes, 
special probe nodes are inserted, which only receive messages in the 
message passing process and, therefore, do not affect the representation 
of the atom nodes. These probe nodes allow the electron density to be 
predicted at any point in 3D space even though the training data is given 
on a grid. For each gradient update in the training phase, two structures 
are sampled and 1000 grid points are sampled within each structure. 
The mean squared error between the prediction and the reference data is 
used as the cost function (Fig. 2). 

During training, we utilize observations of density at discreet points 
as training data. As the underlying function is continuous and differ-
entiable, we can sample from DFT done with any real space grid, even 
non-uniform grid spacing or simulations done with different grid spac-
ings. The benefit of having a continuous function for density is that 
during inference we can output density over any grid spacing irre-
spective of that for the data used to train. For very large-scale simula-
tions our model allows us to describe density around only a specific 

focus atom or region of interest. We want to emphasize that the 
DeepDFT model, can generate charge density on selective local snap-
shots independent of the underlying machine learning potential 
employed. As a result, it can be integrated with other models of energy/ 
force prediction that drives the molecular dynamics. For systems with 
simpler electronic structure, one can use this flexibility to simulate 
larger system faster with another model like [3,17,58] and infer electron 
density only for the steps that are deemed interesting. 

We implemented a single charge density model in this work, ini-
tialised with 3 interaction layers and an embedding size of 128. 

2.6. Collecting training data with on the fly learning 

For the initial training set, AIMD was performed for 30 different 
initial configuration based on number of Na atoms and their ordering, 
run for 500 steps each, giving a total of 15000 individual structures. 
Once the initial model ensemble was trained with this data, it was used 
for MD. During this first deployment of the ML ensemble, as the struc-
ture evolved, the force variance between models started to increase 
rapidly after 2 − 10 ps. When force variance increased above 5 eV/, we 
found that the simulation broke down quickly due to unphysical forces, 
usually after less than 10 time-steps. 

When structures are outside the distribution of the training data, 
force predictions are unreliable. To obtain an accurate description for 
the PES, we would need to collect a large variety of long time scale AIMD 
simulations. As we are limited by the high computational cost of 

Table 1 
Hyperparameters of the 4 models we trained during this study.  

Model Embedding size Interaction layers 

Model 1 128 3 
Model 2 148 3 
Model 3 128 4 
Model 4 148 4  

Fig. 2. In the charge density prediction model message passing scheme we 
compute interatomic messages in multiple interaction steps and then calculate 
the density at each query point. 
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obtaining training data, we have to intelligently sample unknown parts 
of the PES. To tackle this problem, we developed an active learning 
framework inspired by Wang [17], and Botu [59]; First, we created an 
initial structure and ran MD, employing the ML ensemble for energy and 
force predictions. During the dynamic evolution of the structure, the 
active learning framework was conditionally activated. If the force 
variance between the models was in the range 1 eV/ < fvar < 5 eV / the 
configuration was added to the training set, and the simulation was 
continued. To avoid adding nonphysical structures to the set, we added 
the constraint that structures with variance larger than 5 eV / were kept 
out of the set. It is worth mentioning that active learning is a general 
method for optimal data collection while building ML potentials that 
rely on predicted uncertainty for new structural configurations to choose 
which one to be calculated with DFT. Active learning strategy allows 
models to be built in a data efficient manner while achieving high ac-
curacy. Similar methods to ours using uncertainty between ensemble 
models have been used previously, for example in moment tensor po-
tentials [17,60,61], GAP potentials [22,62] and graph neural networks 
[63]. 

We initialised 5 different structures, at different sodium concentra-
tions, on the 2 f.u. supercell and applied the above process with the 
trained ensemble. In total, 214 different structures were collected. For 
each of the structures, an AIMD simulation ran for 25 time steps, at T =
1000 K with a step size of 0.5 fs. The ML ensemble was then retrained on 
this new dataset. Previous work, showed that progressively increasing 
the energy loss coefficient during training was an effective strategy for 
reducing training time [64]. Therefore, we reduce ρ to ρ = 0.9 during 
this phase of training. By sampling the space in this way, the ML 
ensemble eventually gathers enough information about the PES, and can 
perform MD with sufficient accuracy on a long timescale. In this work, 
the process is repeated until the ML ensemble can perform ns molecular 
dynamics for the 16 f.u. supercell. 

As we are interested in studying a larger system allowing symmetry 
breaking and novel structure/electronic motif to emerge, we expand the 
original 2 f.u. cell in a 2 × 2 × 2 cell supercell with ∼ 300 atom. We then 
apply the retrained models to perform MD on the larger structure. When 
the MD leads to high-variance structure and the MD breaks apart, we 
repeat the active learning framework with 5 different structures of 
varying sodium concentrations. After retraining the models on this final 
dataset, we performed a qualitative test on the fully sodiated 16 f.u. 
supercell, with the ensemble models. The simulations ran for more than 
1 ns, without the structure becoming non-physical or breaking down. 

Finally, MD based active learning as performed here, is not the only 
suitable way to collect large amounts of training data. Machine learning 
models perform optimally, as long as the phase space of the training set 
is large and includes structural motifs that are similar to those encoun-
tered during the deployment phase. For studying ionic diffusion with our 
method, it is essential that we capture many different types of ionic 
jumps, even rare ionic jumps in our training set. Many materials exhibit 
“sparse” diffusion in the sense that only a small subset of diffusion events 
contribute to the diffusivity [65]. This can be problematic, as the 
timescales to observe such events using MD are often on mu - ms 
timescales. In this case, a more suitable method for gathering training 
data, would be to also utilize nudged elastic band (NEB) based data 
collection for training, as NEB has the added flexibility of specifying the 
trajectory the ions move and track very rare events with large barriers. 

For Full details of the iterative training including training curves, 
please see appendix A (for force/energy) and B (for charge density 
training) in supporting information. 

3. Accuracy of the models 

3.1. Accuracy of forces and energy 

Once we have a set of fully trained models, we need to quantify their 
accuracy. Several reports in the literature report accuracy based on the 

validation set [17], or on data which the models are trained on. How-
ever, this underestimates the error of the model, as they have already 
seen the data [66]. To give an unbiased sense of the accuracy, we created 
a separate data set that the models had not seen, which contains ∼ 1200 
data points of the AIMD data at 1000 K. The initial configuration was 
created by removing two sodium atoms from the 2 f.u. supercell. The 
error distribution for forces and energy is shown in the top part of Fig. 3 

The mean absolute error (MAE) on the test set was found to be 0.23 
eV/ and 1.52 meV/atom for forces and energy, respectively. 

3.2. Accuracy on charges 

Here we are interested in understanding how the oxidation state of 
vanadium changes dynamically. As the cathode is cycled from 
Na3V2(PO4)3 to NaV2(PO4)3, V-ions can be in two different oxidation 
states; V3+, and V4+ [67]. 

To distinguish between different oxidation states, we integrate the 
DFT-based and predicted charge densities according to Bader parti-
tioning [68]. For the V ions, this gives a distribution of charge around 
two different charge centres, where each centre corresponds to either 
V3+, or V4+. This can be seen in Fig. 3c), where the Bader charge dif-
ference between the two centres is ∼ 0.25. The model predicts a dis-
tribution similar to the one predicted by DFT. 

If we look at the error distribution in Fig. 3b), we see that most errors 
are less than 0.05. MAE of the density model was found to be 0.009. This 
is much less than the separation between different oxidation states of V 
ions, indicating that the DeepDFT type model can accurately capture 
differences in oxidation state during dynamics. 

3.3. Accuracy of reaction barriers 

To verify the ability of the ML-ensemble to model the PES accurately 
during diffusion of Na-ions, we use the Nudged elastic band (NEB) 
method [69]. Previous reports have found that a concerted Na(1)-Na(2) 
ion exchange may be the preferred diffusion route in the structure [38]. 
We define a similar trajectory shown in the right side of fig 5 as input to 
the NEB calculations. We repeat the calculations at two different sodium 
concentrations, Nax = 2 and Nax = 2.5. Vacancies are created by 
removing Na from the Na(2)-site. Calculated NEBs for ML and DFT are 
shown in Fig. 4 a), and b). With the same initial and final state, the ML 
ensemble model found practically the same NEB path and associated 
barrier as DFT. This indicates that the ML ensemble can model the PES, 
during complex concerted ion diffusion. 

4. Results and discussion 

4.1. Diffusion mechanism 

To understand ion mobility in Na3V2(PO4)3, MD was performed in 
the canonical NVT ensemble with a timestep 0.5 fs, using the ML 
ensemble, in the 16 fu supercell (∼ 300 atoms). Before MD was run, each 
structure was optimised with a basin hopping algorithm for 100 steps. 
Sodium concentration in the structure was varied from Na3VP to Na1VP, 
and 4 different temperatures were investigated T ∈ [300K, 400K, 500K,
600K]. We ran MD at elevated temperature for collecting training data 
whereas we reduced the temperature when running the actual simula-
tions for three reasons. By increasing the temperature, we sample a 
larger variety of configurations away from the equilibrium. This diverse 
data helps the ML model be more robust and generalize better. Secondly, 
the cost Of AIMD based acquisition of data with dissimilar structures can 
be lowered if new structural motifs are visited during MD quickly and 
frequently. This is achieved by running the MD at a higher temperature, 
as the high kinetic energy drives the system away from the equilibrium 
structure. Third, by lowering the temperature during inference, the 
atomic neighbourhoods encountered are not out of distribution from the 
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training data and thus the model has low error and the MD run is stable 
providing more accurate results. If we run MD at higher temperatures, 
such as 1000K, the models quickly encounter structures with atomic 
structure neighbourhoods that are out of distribution from training data 
leading to high prediction uncertainty. As we observe statistically 
plentiful diffusion phenomena at 400K, we chose to limit the maximum 
temperature to 600K to improve the accuracy of our predictions. 

Each trajectory was run for a single day on a NVIDIA RTX-3090 

graphics card, without specifying a time limit for the MD simulations. 
This produced a distribution of different length scales, and the median 
time each simulation was run was 166 ps. In total, data from more than 
> 30 ns of MD are collected, and during all simulations, only Na-ions are 
observed to diffuse from their equilibrium position. 

As mentioned above, the NASICON structure has two distinct Na 
sites. The first is the Na(1) site, which is the most stable and is sur-
rounded by 6 oxygen atoms, while the Na(2) site has an 8-fold 

Fig. 3. a) Error distribution for the final fully trained ensemble model on force, and energy predictions [per atom] b) Error distribution for predicted Bader charge 
found by integrating the model derived charge densities, and comparing with DFT. c) Distribution of Bader charges for Vanadium atoms, predicted from the ensemble 
model (left), and DFT (right). 
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coordination and longer Na-O distances. From the simulations, only a 
single diffusion phenomenon was observed; Na(1) - Na(2), or Na(2) - Na 
(1). 

The observed diffusion process occurs in two steps. (i) A Na(1) ion 
moves into a vacant Na(2) site, leaving a nascent vacancy at the Na(1) 
site (ii) A neighbouring Na(2) ion quickly migrates, filling the Na(1) 
vacancy and create a vacancy at the Na(2) site. The mechanism is 
illustrated in Fig. 5. Both concerted ion exchange and standalone Na 
(1)⟶ Na(2) diffusion have been studied previously and shown to have 
a ∼ 5 times lower activation barrier than a direct Na(2)-Na(2) diffusion 
pathway [38,67]. This suggests that both the Na (1) and Na (2) ions are 
mobile during diffusion, which is also captured by the ML ensemble. 

To determine if concerted ion motion, is the dominating diffusion 
pathway in NVP, we determined the number of collective jumps as a 
function of temperature. Jumps were considered concerted if the time 
difference between jumps, was on the same order of magnitude as the 
attempt frequency [70]. Following previous work studying diffusion in 

superionic conductors, jumps were considered concerted if they 
occurred within 1 ps of each other [71]. The results for concerted ion 
jumps were subsequently compared to the total number of jumps, 
revealing that the number of collective jumps depends strongly on the 
temperature. At temperatures above 400K, our results show that 
concerted ion motion is the dominating diffusion pathway in the 
structure. At 400K, roughly 48% of ionic jumps are concerted, 
increasing to 57% at 500K and 67% at 600K. Thus collective jump 
processes may have a significant effect on Na-ion diffusion inside NVP, 
especially at elevated temperatures. The increase in the percentage of 
concerted ion jumps as a function of temperature, is likely caused by the 
higher number of jumps at elevated temperatures, as Na-ions will be 
influenced by other moving neighbouring Na-ions, thus increasing the 
probability of collective ion motion [70] (Fig. 6). 

Additionally, our results indicate that Na(1) sites are vacant only 
during short transitionary periods, thus Na(1)-occupancy remains close 
to 1 as sodium is deintercalated, in agreement with previous findings 

Fig. 4. a) Comparison of the predicted NEBs, using the ensemble model [blue], and DFT [red] at the sodium concentration Nax = 2. b) Comparison of the predicted 
NEBs, using the ensemble model [blue], and DFT [red] with the same trajectory, at a sodium concentration Nax = 2.5. c) Geometry of the initial state, illustrated with 
the prescribed diffusion pathway. d) Atomic arrangement of the transition state of the NEB trajectory. e) Final atomic arrangement of the NEB trajectory. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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[39]. As both Na(1) and Na(2) are essential in the migration process, we 
expect no diffusion at sodium concentrations below Nax = 1 (Na1VP), 
since all Na ions will be located at the energetically favourable Na(1) 
site. 

We want to touch upon two critical points, regarding the application 
of the model. Firstly, our model can be used for simulating very large 
scale systems for long trajectories as the computational cost increases 
linearly with the system size, unlike DFT. The current implementation is 
limited to the accessible GPU memory for system size that can be worked 

with. e.g. with the model hyperparameter we have used  3000 atoms can 
be simulated with a 3090RTX GPU with 24GB memory. Nevertheless, 
due to the many configurations, ion-concentrations and temperatures 
we investigated, our GNN based MD computations took ∼ 300 GPU-days 
with the ∼ 300 atom system size we chose. Our goal for this research was 
to demonstrate ∼ ns length scale simulations with electron density 
description, that allow us to investigate diffusion behaviour and the 
associated redox processes at many different Na-concentrations within a 
reasonable timeframe and the accessible GPUs. Our models are adapt-
able to larger systems of thousands of atoms and even longer time scales 
than we did, if fewer systems to be simulated or larger compute re-
sources are available 

Secondly, none of our MD simulations makes assumptions about 
different diffusion paths inside the structure. Taking into account the 
complexity of concerted ion migration, it is notable that our ML model 
predicts concerted ion movement as the dominant diffusion pathway, 
similar to previous results in the literature [38]. This demonstrates that 
ML-models are capable of predicting diffusion pathways, even in chal-
lenging systems, such as NASICONs. 

4.2. Diffusivity at different concentrations and temperatures 

Diffusivity of Na-ions was calculated by counting the number of ions 
migrating during a given time period normalized by the number of Na- 
ions in the structure, denoted by Γ in this study. The diffusion coefficient 
was then found by linking the ion migration rate, to the average distance 
dion an ion jumps: 

Fig. 5. Schematic of the concerted ion exchange which occurs during diffusion of Na-ions. Initially a Na(1) ion(yellow) migrates to a vacant Na(2) site. Once the 
migration has taken place, a hole is left at the Na(1) site, which is quickly filled by a neighbouring Na(2)-ion. Thus migration of ions in the structure occurs through a 
joint Na(1)-Na(2)-Na(1) diffusion scheme. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Distribution of concerted and single ion jump events as a function of 
temperature. 
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D(Na) =
1
6

d2
ionΓ (2)  

Migration was considered when a Na-ion moved further away than 3 
from its initial position. To obtain better statistics, 3 different initial 
configurations were considered when MD was run at a given Na con-
centration. The diffusion coefficient at a specific concentration was 
found by averaging the diffusion coefficients from the 3 MD simulations. 
We investigated diffusion in 4 different temperature regimes; T ∈ [300K,
400K, 500K, 600K]. Although nothing prohibited us from going up to 
higher temperatures, such as 1000K, the models quickly encounter 
structures with high prediction uncertainty at higher temperatures. As 
we observe plentiful of diffusion phenomena at 400K, we chose to limit 
the maximum temperature to 600K to improve the accuracy of our 
predictions. 

In Fig. 7, we have presented the diffusivity as a function of concen-
tration and temperature, for the case of high discharge rates. At high 
discharge rates, the system does not have enough time to reach a ther-
modynamic equilibrium and therefore remains in a solid solution during 
discharging. However, at slower discharge rates, the system exists in a 
two-phase region at 1 < Nax < 2 and 2 < Nax < 3 [36]. As a result, at 
slow discharge rates, diffusivities should be considered as an average of 
the diffusivities in the single-phase regions. 

At a temperature of T = 300K, Na ions simply vibrate around their 
equilibrium position. The diffusion of ions was only observed at two 
different concentrations; Nax = 2 and Nax = 2.75, with only a single ion 
migration event occurring at this temperature. As predicted by the 
Arrhenius equation, ion migration increases sharply with temperature. 
The maximum diffusivity is found at T = 600K, at the concentration Nax 

= 2.75, with DNa = 2.1 10− 6cm2/s. At T = 600K, the diffusivity de-
creases almost two orders of magnitude from Na2.875V2(PO4)3 to 
Na1.25V2(PO4)3, with similar trends observed at T = 500K. Therefore, 
the activation barrier for Na-ion diffusion is highly dependent on Na 
concentration. To investigate the Na concentration dependence of 
diffusion, we looked at two different concentration regimes. First, when 
it is close to fully charged, Nax, x ∈ 2.875.2.75 and when it approaches 
50% SOC Nax, x ∈ 2.25.2.125 To find the activation barrier, we assume 
that diffusivity DNa can be described in terms of the Arrhenius relation as 
[72]: 

log(DNa) = log(D0) −
Ea

kBT
(3)  

Where Ea is the activation barrier for ion migration, kB is the Boltzmann 
constant, and D0 is the preexponential coefficient. The plot of the log-
arithm of DNa versus 1/T, should result in a linear relationship. The 
Arrhenius-type plots are shown in Fig. 8, and indeed a good linear fit 
between diffusivity and inverse temperature is found. Activation bar-
riers are determined from the slopes of the curves, in Fig. 8, and are 
shown in Table 2. 

The activation barriers determined from previous NEB-DFT calcu-
lations were found to be 0.304eV at Na3V2(PO4)3 [67]. This is similar to 
our results of 0.23eV − 0.26eV, determined from MD, indicating that 
properties such as the ion migration rate can be accurately determined 
using machine learning models. Furthermore, our MD has allowed us to 
study, for the first time, the dependence of activation barriers on sodium 
concentration for a wide range of sodiation levels. Interestingly, we 
observe that the activation barrier almost doubles when the sodium 
concentration reaches Nax = 2.25. This can be rationalised in terms of 
the probability of finding sodium pairs for concerted diffusion, which 
decreases as sodium is extracted from the material. 

Our models predict a smaller barrier at high sodium concentration, 
compared to previous results, and hence a faster diffusion rate. The error 
may be explained by the lower energy loss coefficient employed here, 
which is more biased towards predicting correct forces than energies. It 
is important to note however, that the errors in barriers should be 
evaluated in the context of the differences in barriers calculated from 
various DFT calculations. For instance, previous research of the lowest 
diffusion barrier for the hole-polaron in Li2O2 calculated using HSE with 
α = 0.25, ranges from 0.038 [73] to 0.068 eV [74], while using α = 0.48 
yields a barrier of 0.42 eV [73]. Thus minor changes only in the 
exchange-correlation functional can lead to changes in predicted bar-
riers up to 0.3 eV. As our ML models are trained with data from PBE+U 
calculations ML simulations are expected to follow a similar trend and 
deviate from other DFT based barrier calculation results done with 
HSE06 functional [34]. Simulation results from our PBE+U based sur-
rogate potential are reasonably close to previous results and satisfactory 
considering we calculate the activation energy using MD with an ML 
potential, whereas most authors use DFT-NEB methods. 

An interesting investigation is to determine the contribution of ionic 
jumps to the overall macroscopic diffusion. It should be noted that not 
all Na-ions contribute to macroscopic diffusion as they may return to 
their original positions. To determine if most jumps contribute to 
macroscopic diffusion, we can compare the diffusivities calculated from 
the ionic jumps (Eq. (2)) denoted DJump to diffusivities calculated from 
mean squared displacement of Na-ions denoted as DMSD: 

DMSD =
1

6N
ΣN

i |ri(t) − ri(0)|2 (4)  

Fig. 9 illustrates a plot of DMSD and DJumps at T = 600K. From the figure, 
it is observed that the DJumps follows the same trend as DMSD. However, at 
specific Na-concentrations, such as Nax = 1.875 and Nax = 1.5, the 
jump rate coefficient is overestimated. This suggests that at certain 
concentrations, the ionic jumps do not significantly contribute to 
macroscopic diffusion. Nevertheless, in general, the jumps determined 
from DMSD and DJumps are of the same order of magnitude, leading us to 
propose that the majority of ionic jumps inside the structure contribute 
to overall macroscopic diffusion. 

Our research has revealed two significant findings. Firstly, at high 
Na-concentrations, diffusivity is the highest. Secondly, as the Na- 
concentration is reduced, diffusivity decreases substantially. This 
decrease in diffusivity can be attributed to three key factors. 

First, as the sodium concentration is reduced, the concentration of Na 
(2) ions decreases. As a result of the reduction in Na(2) ions, ion 
migration becomes increasingly difficult because both Na(1) and Na(2) 
ions must be present for ion exchange to occur. 

Second, as the sodium concentration is reduced, the cell contracts, 
leading to a decrease in the Na-V distance, while at the same time more 

Fig. 7. Logarithm of the diffusion coefficient, as a function of concentration; 
Nax and temperature. Spots without dots, indicate no ion migration was 
observed during the simulations at a given concentration. 
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and more V ions change the oxidation state, from V3+ to V4+, leading to 
an increase in electrostatic repulsion and greater destabilisation of the 
Na(2) site [67]. 

Lastly, during the deintercalation of Na-ions, the structure undergoes 
phase transitions. Previous findings revealed that the material exhibits 
different phases at varying sodium concentrations, with regions that are 
stable over a wide temperature range (0K − 800K). The authors found 
that the ground state configuration of Na3VP was monoclinic (C2 /c), 
Na2VP was triclinic (P1), and Na1VP was rhombohedral (R3 /c) [36]. 

The end members Na3VP, and Na1VP are stable, while Na2VP is meta-
stable. At the structural level, Na2VP is orientated so that Na (2) ions are 
located close to V3+ ions and, preferably, farther away from V4+ ions. 

4.3. Vanadium charge ordering during ion migration 

Previous investigations have shown that ion diffusion may be 
accompanied by a polaron migrating with Na vacancy [34]. To study the 
polaron-ion diffusion mechanism, we used our DeepDFT charge density 
prediction model to predict charge densities. Integration of the charge 
density according to Bader partitioning provides the oxidation state of 
the V-ions in the structure. The results from our MD simulations revealed 
the dominating diffusion mechanism, involved a concerted Na(1)-Na(2) 
diffusion mechanism. Hence, the oxidation state of V-ions is investigated 
during such a diffusion process. 

Three different structures, at three different Nax concentrations were 
investigated on the 16 f.u supercell; Nax = [2.875,2.5,2]. The dynamic 
evolution of the polaron-Na diffusion process is illustrated for the case of 
Nax = 2.5 in Fig. 10. 

Charge exchange is observed to occur in three stages (i) Initially, V 
sites close to Na vacancies tend to be in an oxidation state of V4+. (ii) As 
the first Na-ions migrate towards the Na-vacancies, the V4+ ions change 
oxidation state from V4+ to V3+ as seen in the middle of Fig. 10. The 
charge is transferred to a neighbouring V-ion, or the second nearest 
V-ion. During this transition, the polaron is not localised to a single site 
but jumps between different V-ions (iii) In the final state, as both ions 
have migrated to new equilibrium sites, vacancies are left at the original 
position of the Na(2)-ions. The V-ion closest to the nascent vacancy, is 
then oxidized, and remains as V4+, as shown in the middle of figure. 

Thus, Na-ion diffusion in the structure involves a transfer of electrons 
between V ions, and our results indicate that the electrons move in the 
opposite direction to the migrating Na-ions. 

Earlier investigations have studied the diffusion process as a com-
bined Na vacancy/polaron diffusion process. The authors used the 
HSE06 hybrid functional, which is very expensive, and found GGA+U 
methods to be less satisfactory in describing both polaron-diffusion 

Fig. 8. Arrhenius plot of the logarithm of diffusivity versus 1/T, for three different temperatures, and 4 different Na-concentrations. Dashed lines shows the fitted 
curve, at a given Na-concentration. 

Table 2 
Activation barriers for Na-ion diffusion at different Na concentrations.   

Na2.875 Na2.75 Na2.25 Na2.125 

Ea 0.23eV 0.26eV 0.39eV 0.33eV  

Fig. 9. Plot of Na-ion diffusivity calculated from Na-ion jumps [blue] (Eq. 2) 
and from the mean squared displacement [red] (Eq. 4), at T = 600K. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 10. Illustration of the model predicted bader charges of V-ions inside the structure, as Na-ion migration is occurring. Upper picture shows the initial state, and 
the final state of a concerted diffusion process. V4+ is shown in blue, and V3+ in red. The middle picture, shows the predicted Bader charge of V-ions, with the 
Distance from the initial positions of the migrating sodium ions. Bottom picture shows the transition state, during the diffusion process. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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processes and the shrinkage of V − O bonds, as V changes the oxidation 
state [34,75]. Results obtained from our spin-resolved charge density 
prediction model reveal that the average V4+ − O distance, is 0.08 less, 
than the average V3+ − O distance. This is in agreement with experi-
mental data, since the difference in ionic radii between V3+ and V4+ is 
found to be 0.08 from Shannon tables. Thus, the DeepDFT model is 
capable of distinguishing different oxidation states of V ions. 

5. Conclusion 

In this work, an equivariant message-passing graph neural network 
model was successfully implemented to predict subatomic energies, 
forces, and spin-resolved charge density. This linear scaling model al-
lows access to 100s of nanosecond of electronic scale MD simulation 
data with DFT-like accuracy. We used this machinery to investigate 
electron transfer coupled diffusion phenomena in a NASICON system of 
~300 atoms, on the ns time scale, allowing a thorough investigation on 
the effects of sodium concentration on diffusion properties of Na-ions. 
Our results indicate that a concerted ion-exchange mechanism is the 
dominant diffusion pathway and show that our model can capture 
highly complex dynamics inside the structure. 

By training an ML model on spin densities from DFT, we were able to 
investigate changes in electronic densities around vanadium ions during 
the migration of Na-ions. Our results indicate that the migration of Na- 
ions is linked with redox processes. 

These findings serve as successful proof of concept of using equiv-
ariant graph neural network-based (energy, force, and charge density) 
surrogate models in studying electronic scale electrochemistry of com-
plex transition metal oxides and polyanions. Given that the time spent in 
ML calculations is 3–4 orders of magnitude lower than DFT, it should 
now be possible to accurately study large and complex systems on 
nanosecond time scales. The workflow employed here can be easily 
expanded to different kinds of structure and chemistries. 

CRediT authorship contribution statement 

Paolo Vincenzo Freiesleben de Blasio: Data curation, Formal 
analysis, Investigation, Validation, Visualization, Writing – original 
draft, Writing – review & editing. Peter Bjørn Jorgensen: Methodology, 
Software, Writing – review & editing. Juan Maria Garcia Lastra: Su-
pervision, Formal analysis, Investigation, Writing – review & editing. 
Arghya Bhowmik: Conceptualization, Supervision, Funding acquisi-
tion, Formal analysis, Project administration, Resources, Writing – 
original draft, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

All codebase, trained models, data from DFT simulations, and ML 
inference are shared via public repository https://zenodo. 
org/records/10051133. 

Acknowledgement 

The authors acknowledge financial support from Det Frie For-
skningsråd under Project “Data-driven quest for TWh scalable Na-ion 
battery (TeraBatt)” (Ref. Number 2035-00232B) and from VILLUM 
FONDEN by a research grant (ref. no. 00023105) for the DeepDFT 
project. 

Supplementary material 

Supplementary material associated with this article can be found, in 
the online version, at 10.1016/j.ensm.2023.103023. 

References 

[1] Y. Elbaz, D. Furman, M. Caspary Toroker, Modeling diffusion in functional 
materials: from density functional theory to artificial intelligence, Adv. Funct. 
Mater. 30 (18) (2020) 1900778. 

[2] J. Behler, M. Parrinello, Generalized neural-network representation of high- 
dimensional potential-energy surfaces, Phys. Rev. Lett. 98 (14) (2007) 146401. 
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