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Novel radionuclides for use in Nuclear 
Medicine in Europe: where do we stand 
and where do we go?
Maija Radzina1,2,3  , Laura Saule1,3*  , Edgars Mamis1,2  , Ulli Koester4  , Thomas Elias Cocolios5  , 
Elina Pajuste1  , Marika Kalnina1  , Kristaps Palskis2,6  , Zoe Sawitzki5, Zeynep Talip7  , Mikael Jensen8  , 
Charlotte Duchemin2  , Kirsten Leufgen9 and Thierry Stora2   

Background
Novel radionuclides for nuclear medicine can improve diagnostics of a broad spectrum 
of diseases. Moreover, achievements in theranostic (therapy + diagnostic) can lead to a 
precise and quick way from diagnosis to treatment. Theranostics is a treatment using 
diagnostic imaging to identify if target receptors are present on cancer cells, followed by 
precision radiation treatment that targets these receptors. In the last years, nuclear med-
icine has shown its potential in personalized medicine and targeted therapy approaches. 
Implementation of positron emission tomography (PET) into clinical routine and estab-
lishing novel targeted therapies in oncology have made nuclear medicine more accessi-
ble to patients (Neels et al. 2019).

Abstract 

Background: In order to support the ongoing research across Europe to facilitate 
access to novel radionuclides, the PRISMAP consortium (European medical radionu-
clides programme) was established to offer the broadest catalog of non-conventional 
radionuclides for medical and translational research. The aim of this article is to intro-
duce readers with current status of novel radionuclides in Europe.

Main body: A consortium questionnaire was disseminated through the PRISMAP 
consortium and user community, professional associations and preclinical/clinical 
end users in Europe and the current status of clinical end-users in nuclear medicine 
were identified. A total of 40 preclinical/clinical users institutions took part in the sur-
vey. Clinical end users currently use the following radionuclides in their studies: 177Lu, 
68 Ga, 111In, 90Y, other alpha emitters, 225Ac, 64Cu and Terbium isotopes. Radionuclides 
that would be of interest for users within the next 2–5 years are 64Cu, Terbium radionu-
clide “family” and alpha emitters, such as 225Ac.

Conclusions: Thanks to a questionnaire distributed by the PRISMAP consortium, 
the current status and needs of clinical end-users in nuclear medicine were identified.
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Radionuclides that are used in radiopharmaceuticals have different applications: for 
diagnostic, therapeutic and disease monitoring purposes in nuclear medicine practice, 
as well as research tools (European Medicines Agency 2023). Out of the more than 3000 
different radioisotopes that scientists have synthesized in the laboratory, only a handful 
are regularly used for medical procedures, mostly for imaging, though the interest in 
targeted radionuclide therapy has been growing in the last few years. One of the main 
limits to the development of novel radio-medicinal products is the access to radionu-
clides during the development and early biomedical research phases. In order to support 
the ongoing research across Europe to facilitate access to novel radionuclides, the PRIS-
MAP consortium (European medical radionuclides programme) was established to offer 
the broadest catalog of non-conventional radionuclides for medical and translational 
research. One of the aims of the European medical radionuclides program is to enable 
this development phase by providing access to novel radioisotopes of high purity grade 
for medical research (PRISMAP 2021a, b).

The most frequently used PET radionuclides are the pure positron-emitters 18F and 
11C, which can be produced at medical cyclotrons (Gabriela and Jacek 2012). Also, 68 Ga 
and 111In are used widely for positron emission tomography (PET) and single photon 
emission computed tomography (SPECT), respectively. 177Lu and 225Ac are used for β−- 
and α-radionuclide therapy, respectively (Müller et al. 2018).

PRISMAP “Production of high purity isotopes by mass separation” is the European 
medical isotope programme that federates a consortium of key European facilities such 
as intense neutron sources, isotope mass separation facilities and high-power accelera-
tors and cyclotrons, with leading biomedical research institutes and hospitals active 
in the translation of the emerging radionuclides into medical diagnosis and treat-
ment. PRISMAP creates a single-entry point for a fragmented user community distrib-
uted amongst universities, research centers, industry and hospitals, in a similar way as 
how the National Isotope Development Centre NIDC, supported by the Department 
of Energy (DOE), has provided radionuclide sources for users in the United States of 
America (USA).

PRISMAP brings together a consortium of 23 beneficiaries from 13 countries, one 
European research laboratory and an international organisation. It further receives sup-
port from leading associations and institutions in the field such as the European Asso-
ciation of Nuclear Medicine (EANM) and the International Atomic Energy Agency 
(IAEA) (PRISMAP 2021a, b). It supplies radionuclides across Europe and beyond to any 
user on an excellence basis, and offers support through a network of biomedical research 
facilities that are fully equipped and licensed to use the array of radionuclides available 
in the PRISMAP portfolio.

In order to find out the situation with novel radionuclides in Europe, the consortium 
questionnaire was created. The construction of a questionnaire was based on literature 
review, an expert review by a certain panel and finally a validating before the survey 
starts in consortium members meeting.

A questionnaire was disseminated through the PRISMAP consortium and user com-
munity, professional associations of radiology and nuclear medicine, and preclinical/
clinical end users in Europe, collecting a total of 40 responses. The survey was based 
online and the first results were summarized after a 9  month long period. The total 
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number of survey candidates is undetectable, because it was not sent out to specific 
institutions, but disseminated through communities and associations. Moreover, the 
link to this questionnaire is still available on the PRISMAP public homepage to encour-
age new clinical users to become visible.

Presented responses presented the current status and needs of clinical end-users in 
nuclear medicine. This questionnaire covered novel radioisotopes, clinical exam type 
and advanced technology current usage and near future plans in next 2–5  years. The 
survey also included questions about research and development activities and education 
activities that respondents’ institutions provide. Also, a literature review of currently 
used novel radionuclides in clinical and preclinical phases was carried out.

Main text
Examples of novel radionuclides usage in medicine—the review of current state 

in preclinical and clinical phase

Scandium presents three radioisotopes for theranostic application. 43Sc  (T1/2 = 3.89 h, 
β+  = 88.1%, <  Eβ+ >  = 476  keV) and 44Sc  (T1/2 = 4.04  h, β+  = 94.3%, <  Eβ+ >  = 632  ke
V) can both be used for PET, while 47Sc  (T1/2 = 3.35 d, β− = 100%, <  Eβ- >  = 162 keV) is 
the therapeutic match—also suitable for SPECT  (Eγ = 159  keV (68.3%)). 43Sc and 44Sc 
can be radiolabelled with macrocyclic chelators, e.g. DOTA or other chelators such as 
NODAGA, AAZTA, pypa, mpatcn, etc., but 47Sc—with macrocyclic chelators, in par-
ticular DOTA. Currently, 44Sc is most advanced in terms of production, as well as with 
pre-clinical investigations, and has already been employed in proof-of-concept stud-
ies in patients. Even though the production of 43Sc may be more challenging, it would 
be advantageous due to the absence of high-energetic γ-ray emission  (Eγ = 1157  keV 
(99.9%) for 44Sc). The development of 47Sc is still in its infancy, however, its therapeu-
tic potential has been demonstrated preclinically (Müller et al. 2018; PRISMAP 2021a, 
b). The results of study showed that accurate quantitative scandium-43/44 PET/CT is 
achievable in commercial devices (Lima et al. 1826). Scandium-44 was proposed as an 
alternative radionuclide to 68 Ga for PET imaging allowing the user of 44Sc-PSMA-617 
as a diagnostic match to 177Lu-PSMA-617 (Umbricht et al. 2017). Scandium-47 is a β–-
emitter suitable for therapeutic purposes, which also produces γ-ray emission useful for 
SPECT imaging (Müller et al. 2018).
Manganese-52  (T1/2 = 5.59 d, β+  = 29.4%, <  Eβ+ >  = 242 keV) shows promise in posi-

tron emission tomography (PET) and in dual-modality manganese-enhanced magnetic 
resonance imaging (MEMRI) applications including neural tractography, stem cell track-
ing, and biological toxicity studies (Graves et al. 2015). 52Mn is suited for combined PET/
MR imaging or as PET analog of Mn-based MRI contrast agents to study their in vivo 
distribution and pharmacokinetics (Saar et al. 2018; Lewis et al. 2015). 52Mn can be radi-
olabelled with macrocyclic chelators, such as DOTA (PRISMAP 2021a, b).
Copper-64  (T1/2 = 12.7  h, β+  = 17.6%, <  Eβ+ >  = 278  keV, 

β− = 38.5%, <  Eβ- >  = 191 keV) labeled compounds ranging from small molecules (pep-
tides, etc.) to antibodies are regularly used in clinics and clinical trials respectively. A 
recent study confirmed that radiolabeled 64Cu-PSMA is a promising agent to target 
and visualize PSMA receptor positive tumor lesions with high serum stability. This 
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was shown in preclinical evaluation by small-animal PET studies, organ distribution 
and a patient application (Carlos Dos Santos et al. 2020).
Copper-67  (T1/2 = 61.83 h, β− = 100%, <  Eβ- >  = 145 keV) is an emerging β− emitter 

of interest for therapy with γ-emission usable for SPECT/CT  (Eγ = 91.3 and 93.3 keV 
(21.1%) and  Eγ = 185  keV (44.2%)) that forms a theranostic pair together with 64Cu. 
Promising results in SPECT/CT imaging have been already published showing the 
benefit of using medium energy collimators to obtain reconstructed images of a simi-
lar quality to the ones that can be obtained using 177Lu (Merrick et al. 2021). 64Cu and 
67Cu can be radiolabelled with macrocyclic chelators. DOTA is being used, but other, 
specific copper chelators such as MeCOSar may provide improved stability (PRIS-
MAP 2021a, b).
Palladium-103  (T1/2 = 17.0 d, 100% electron capture,  EX-ray ≈ 20 keV (64.9%) and 

 EX-ray ≈ 23 keV (12%)) is used in the development of a new concept for brachytherapy, 
based on gold–palladium (AuPd) alloy nanoparticles, intrinsically radiolabeled with 
103Pd.  [103Pd]AuPd alloy nanoparticles embedded in gel-forming liquids have been 
tested preclinically (Fach et  al. 2021). 103Pd/103mRh generators have been developed 
(Jensen et al. 2020).
Silver-111  (T1/2 = 7.45 d, β− = 100%, <  Eβ- >  = 350  keV) labeled hydroxyapatite 

particles have been studied preclinically for radiosynovectomy. Radiosynovectomy 
consists of intra-articular injection of a β−-emitting radionuclide in colloidal or par-
ticulate form, which comes into contact with synovium. The phagocytic cells absorb 
some of the injected dose, which is transmitted to the synovium. If the amount of 
radioactivity injected is large enough the tissue will be destroyed. A study has shown 
that regenerated tissue will be asymptomatic for 2–5  years (Chattopadhyay et  al. 
2008).
Caesium-128  (T1/2 = 3.66 min, β+  = 68.8%, <  Eβ+ >  = 1260 keV) is a short half-life 

radionuclide with high potential for application in PET. It is provided to end users as a 
generator 128Ba/128Cs by profiting from the decay of its longer half-life (2.5 days) par-
ent 128Ba (Lagunas-Solar et al. 1982). Moreover, the radioisotope 129Cs  (T1/2 = 32.06 h, 
 Eγ = 372 keV (30.6%)) is also of interest for imaging due to its emissions and half-life 
suitable for SPECT.
Lanthanum-135  (T1/2 = 18.9  h, 100% electron capture (94.6% Auger electrons), 

 EAuger e- = 2.66–5.97 keV (77.6%)) is a radiolanthanide, usually in trivalent state. 135La 
can be chelated e.g. with DTPA or DOTA (PRISMAP 2021a, b; Abel et al. 2018). It has 
been proposed as a therapeutic Auger electron emitter and has suitable x-rays emis-
sions for SPECT imaging  (EX-ray ≈ 32 keV (61.3%) and  EX-ray ≈ 37 keV (13.4%)) using 
low energy detectors. Its similar chemistry to actinium suggests it may also be a suit-
able imaging partner to 225Ac for theranostic applications.
Samarium-153  (T1/2 = 46.28  h, β− = 100%, <  Eβ- >  = 225  keV) is suited as a source 

for Mößbauer spectroscopy, a highly sensitive technique to characterize the chemical 
state and chemical environment of samarium bound in solids or frozen ex vivo sam-
ples (Friedman et al. 1976). It can be radiolabelled with macrocyclic chelators, in par-
ticular DOTA (PRISMAP 2021a, b). 153Sm with limited specific activity is mainly used 
for bone pain palliation, commercially available under the brand name Quadramet®. 
High specific activity 153Sm has been recently produced using the mass separation of 
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an activated sample, opening the door to a translation of HSA 153Sm for therapeutic 
applications (Voorde et al. 2021).
Terbium presents four radionuclides of medical interest: 149  Tb  (T1/2 = 4.12  h, 

β+  = 7.1%, <  Eβ+ >  = 730 keV, α = 16.7%,  Eα = 3967 keV), 152 Tb  (T1/2 = 17.5 h, β+  = 20.
3%, <  Eβ+ >  = 1140 keV), 155 Tb  (T1/2 = 5.32 d,  Eγ and X-ray ≈ 45 keV (107%),  Eγ = 86.6 keV 
(32%),  Eγ = 105.3  keV (25.1%)) and 161  Tb  (T1/2 = 6.95 d, β− = 100%, <  Eβ- >  = 225  keV, 
≈ 227% conversion and Auger electrons,  Eγ and X-ray ≈ 48  keV (43.1%),  Eγ = 74.6  keV 
(10.3%)). 149 Tb is the only α-emitter with clinically useful half-life that is also suitable 
for PET imaging. Muller et al. presented a preclinical study with a tumor-bearing mouse. 
The conclusion was that the perspective of alpha-PET makes 149  Tb highly appealing 
for radiotheragnostic applications in future clinical trials (Müller et  al. 2017). Simi-
lar study was conducted by Umbricht et  al.—149  Tb-PSMA-617 was used for targeted 
α-therapy (TAT) using a mouse model of prostate-specific membrane antigen (PSMA)-
expressing prostate cancer. The PET images confirmed the selective accumulation of 
149 Tb-PSMA-617 in PC-3 PIP tumor xenografts. The unique characteristics of 149 Tb for 
TAT make this radionuclide of particular interest for future clinical translation, thereby, 
potentially enabling PET-based imaging to monitor the radioligand’s tissue distribution 
(Umbricht et al. 2019). A first in human PET/CT imaging was performed with 152 Tb-
DOTATOC over 24 h (Baum et al. 2017). The results of a study by Muller et al. dem-
onstrate the successful preparation and preclinical testing of 152 Tb-PSMA-617 and its 
first applications in a patient with metastatic castration-resistant prostate cancer (Mül-
ler et al. 2019). Terbium-155 may be of particular interest for low-dose SPECT prior to 
therapy with a therapeutic match such as the β−-emitting radiolanthanides 177Lu, 161 Tb, 
166Ho, and the pseudo-radio lanthanide 90Y (Müller et al. 2014a). Due to the strong simi-
larities of chemical and nuclear properties of 161  Tb and 177Lu, 161  Tb is considered a 
logical evolution from 177Lu, increasing the local dose deposition in therapeutic appli-
cations with respect to the latter. The therapeutic benefit of 161 Tb over 177Lu has been 
demonstrated preclinically with different compounds (Müller et  al. 2014b). A clinical 
SPECT/CT protocol has been proposed for imaging with 161 Tb (Marin et al. 2020). A 
first-in-human application of 161  Tb-DOTATOC has been reported including clinical 
SPECT/CT imaging (Baum et al. 2021).
Thulium-165  (T1/2 = 30.1 h) is a radiolanthanide, usually in trivalent state. The main 

application of 165Tm is in 165Tm/165Er generators making available non-carrier-added 
165Er. 165Er  (T1/2 = 10.3 h, ≈ 75% Auger electrons with <  EAuger > ≈ 5 keV,  EX-ray ≈ 47 keV 
(59.4%),  EX-ray ≈ 54 keV (14.3%)) is of interest for Auger therapy and has x-rays emission 
compatible with imaging. (Beyer et al. 2004).
Erbium-169  (T1/2 = 9.39 d, β− = 100%, <  Eβ- >  = 100 keV, ≈ 55% conversion and Auger 

electrons with < E > ≈ 7 keV) is a potential radionuclide toward therapy of metastasized 
cancer diseases, particularly, for the treatment of single cancer cells and small metas-
tases. It can be produced in nuclear research reactors, irradiating isotopically-enriched 
168Er2O3. High specific activity 169Er is obtained by using mass separation of the irradi-
ated sample (Talip et al. 2021). Chelators suitable for 177Lu can be directly employed for 
169Er too, in particular DOTA (PRISMAP 2021a, b).
Gold-199  (T1/2 = 3.14 d, β− = 100%, <  Eβ- >  = 82  keV,  Eγ = 158.4  keV (40%), 

 Eγ = 208.2  keV (8.7%)) has been used for radiolabeling and SPECT imaging of Au 
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nanoparticles (Zhao et  al. 2016). Preclinical in  vivo SPECT imaging with mixed 
198Au/199Au radiotracers has been reported (Fazaeli et al. 2014).
Bismuth-213  (T1/2 = 45.6  min, β− = 97.8%, <  Eβ- >  = 436  keV, αcumulative = 100%, <  Eα 

cumulative >  = 8.32  MeV) has been used preclinically and clinically with antibodies and 
peptides (Morgenstern et  al. 2020). It can be labelled with macrocyclic chelators such 
as DOTA (PRISMAP 2021a, b). A clinical trial with 213Bi-DOTA-substance P has shown 
promising results for glioblastoma therapy (Krolicki et al. 2018). In spite of its short half-
life, this isotope may be supplied to clinics via a 225Ac generator with a longer shelf life 
(weeks).
Radium-223  (T1/2 = 11.43 d, αcumulative = 400%, <  Eα cumulative > ≈ 6.6  MeV)—free  Ra2+ 

ions act analogously to  Ca2+ as bone seekers. It is used for targeted therapy of bone 
metastases of metastatic prostate cancer and is the only α-emitting radionuclide cur-
rently broadly approved in clinical practice (Parker et al. 2013).
Actinium-225  (T1/2 = 9.92 d, αcumulative = 400%, <  Eα cumulative >  = 6.88  MeV) is one of 

the most promising new radioisotopes in the fight against cancer. 225Ac has been used in 
preclinical studies for over 25 years (Beyer et al. 1997). 225Ac is suitable for many macro-
cyclic chelators used with other trivalent metallic ions, in particular DOTA (PRISMAP 
2021a, b). Reports on the remarkable therapeutic efficacy of 225Ac-PSMA617 for therapy 
of prostate cancer have stimulated significant global interest in applying 225Ac as thera-
peutic nuclide in targeted alpha therapy of cancer. Moreover, further promising applica-
tions of the alpha emitters 225Ac include the therapy of brain tumors, bladder cancer, 
neuroendocrine tumors, and leukemia (Morgenstern et  al. 2020). The implementation 
of 225Ac-PSMA-617 as a therapy tool for metastatic castration-resistant prostate cancer 
(mCRPC) lead to a major advancement in targeted alpha therapy (Fendler and Cutler 
2017). It was reported that two patients with late-stage mCRPC came to complete remis-
sions after treatment with 225Ac-PSMA-617 (Kratochwil et al. 2016). One more example 
was reported of the therapeutic efficacy of a 225Ac-PSMA-617 patient with mCRPC that 
was progressive under conventional therapy, and was treated with two cycles of 225Ac-
PSMA-617 with a cumulative activity of 14 MBq. Restaging with 68 Ga- PSMA PET/CT 
after 5 months showed a remarkable molecular imaging response. This patient also dem-
onstrated a biochemical response with a decrease in PSA level from 1,301 to < 0.05 ng/
mL (Morgenstern et al. 2018).

Novel radionuclides for nuclear medicine—the current perspective from clinical end users 

point of view in Europe

Respondent profile

During a PRISMAP questionnaire, a scene of nuclear medicine in Europe from clinical/
preclinical end users’ point of view was identified. A total of 40 preclinical/clinical users 
institutions took part in the survey (55% clinical hospitals, 25% research institution-
hospital collaborations, 10% preclinical research institutions, 2.5% private clinics and 
7.5%—other types of institutions: 2 clinical research organisations, 1 private clinic and 1 
manufacturer and ambulatory clinical nuclear medicine center).

The respondents represented 22 countries among which 9 were coming from the 
Netherlands, 3 from Italy, 3 from the United Kingdom, 2 from France, 2 from Roma-
nia, 2 from Greece, 2 from Estonia, 2 from Slovakia, 2 from Switzerland, 1 each from 
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Austria, Latvia, Belgium, Denmark, Poland, Turkey, Spain, Cyprus, Slovenia, Finland, 
Serbia, Czechia and Lithuania (see Fig. 1).

47% of the respondents conducted both preclinical and clinical studies, 37% respond-
ents only clinical studies, 5% respondents only preclinical studies and 10% respondents 
other types of studies, such as medical physics, drug biodistribution, drug selection, fun-
damental (analytical methods), medical research. It is seen that the majority of respond-
ents work in the clinical phase, so the results of the survey are representative of the part 
of the end users that use it in daily clinical practice (see Fig. 2).

Clinical imaging is common for nearly all respondents: For routine clinical practice 
90% respondents have PET, PET/CT or PET/MR, 82,5% respondents SPECT, SPECT/
CT or SPECT/MR, 70% respondents planar scintigraphy, 40% respondents animal PET/
CT or PET/MR, 32% respondents experimental long term animal facilities for radionu-
clide therapy studies and 30% respondents animal SPECT or SPECT/CT (see Fig. 3).

Furthermore, many respondents are also involved in developments of those imag-
ing protocols. The emerging technologies that the respondent’s institutions have are 
the following: SPECT/CT software advances (quantification, 3D dynamics etc.) (52,5% 
respondents), PET new generation cameras with extended axial field of view, optimised 
image and dose reduction (50% respondents). Respondents also mentioned the use of 

Fig. 1 Map of respondents represented countries and cities
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Artificial Intelligence in Nuclear Medicine (17,5% respondents) as well as dedicated 
cardiac SPECT cameras (15% respondents) and CZT cameras (10% respondents)—see 
Fig. 4 for more details.

Regarding emerging imaging technologies that respondents would like to work with 
in their facilities in 2–5 years, similar answers were obtained. The artificial intelligence 
in nuclear medicine concerned 57,5% respondents. PET new generation camera with 
extended axial field of view, optimised image and dose reduction was ticked by 50% 
respondents and SPECT/CT software advances (quantification, 3D dynamics etc.) for 
32,5% of the respondents. CZT camera represented 20% respondents, dedicated car-
diac SPECT camera 7,5% respondents and PEM—positron emission mammography and 
dedicated cardiac PET camera, 5% respondents each (see Fig. 5).

All respondents perform studies in oncology, while inflammation studies were 
reported from 80% respondents, cardiology—77,5% respondents, neurology—75% 
respondents, endocrinology—72,5% respondents, nephrology—60% respondents, pul-
monology—57,5% respondents, traumatology-orthopaedics—55% respondents. A simi-
lar scene was seen about studies which respondent’s facility plan to implement within 

Fig. 2 Type of respondents conducted studies

Fig. 3 Equipment that respondent’s institutions have for daily practice
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the next 2–5 years. Most abundant answers were oncology (57,5% respondents), inflam-
mation (50% respondents), neurology and cardiology (40% respondents each), endo-
crinology (32,5% respondents), and pulmonology and traumatology/orthopaedics (30% 
respondents each).

Use of novel radionuclides

Part of the previous section summarized activities with radionuclides that are not only 
used in preclinical phase or experimental laboratories, but also used by end users in their 
daily clinical practice. The following “novel” non-conventional radionuclides are used 
by clinical users in Europe: 177Lu (80% respondents), 68  Ga (72,5% respondents), 111In 
(57,5% respondents), 90Y (52,5% respondents), other alpha emitters (42,5% respondents), 
225Ac (20% respondents), 64Cu (15% respondents) and Terbium isotopes (10% respond-
ents).. Other radionuclides mentioned were 223Ra, 89Zr, 166Ho, 131I, 123I, 212Pb, 89Sr, and 
153Sm. Some of the radionuclides of terbium and scandium that are very promising, are 
not yet utilized in the clinical environment because of their poor availability at the time 
of the questionnaire.

Fig. 4 Emerging technologies that respondents’ institutions use in daily work

Fig. 5 Emerging technologies that respondents want in the near future (2–5 year) in their institutions for 
daily work
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Novel radionuclides that respondents would be interested to use in the next 2–5 years 
were 225Ac (67,5% respondents), 64Cu (50% respondents), 68  Ga (47,5% respondents), 
177Lu (42,5% respondents), and other alpha emitters (40% respondents) and Terbium iso-
topes (37,5% respondents). Figure 6 shows both -radionuclides that end users use and 
radionuclides that end users would be interested in. It is seen that the demand for 225Ac 
and the terbium quadruplet (149, 152, 155, 161) coming from clinical end users will 
increase significantly in the following years. The foreseen application possibilities and an 
increasing demand for these radionuclides also point out the low availability of them at 
the moment, either by production capacity or required amounts or purity grade.

Not only single radionuclides were used in daily practice, but also theranostic pairs. 
If we look at the current radionuclide use for theranostics, Fig. 7 shows that the most 
popular pairs were 123I-131I as Iodine (57,5% respondents),  [68 Ga] Ga-DOTA-peptides—
[177Lu] Lu-DOTA-peptides (55% respondents),  [64Cu] Cu-peptides—[177Lu] Lu-peptides 
(50% respondents), 99mTc-223RaCl2 for skeletal metastases (47,5% respondents),  [18F] 
PSMA—[177Lu] Lu-PSMA (42,5% respondents) and  [123I] mIBG –  [131I]-mIBG (27,5% 
respondents).

Most often mentioned theranostic pairs that respondent would be willing to use in the 
future were  [64Cu] Cu-peptides-[177Lu] Lu-peptides (42,5% respondents),  [18F] PSMA—
[177Lu] Lu-PSMA (40% respondents),  [68  Ga] Ga-DOTA-peptides—[177Lu] Lu-DOTA-
peptides (35% respondents),  [68 Ga] Ga-PSMA—[177Lu] Lu-PSMA (32,5% respondents) 
and  [18F] NaF—223RaCl2 for skeletal metastases (20% respondents), as presented in 
Fig. 7.

We observed that none (except for iodine radiopharmaceuticals) of the current 
responder institutions yet are interested in possibilities of “matched pair” from terbium 
and scandium radionuclides in the near future. This probably reflects the still insufficient 
pre-clinical data and/or availability of such radionuclides.

Fig. 6 Novel radionuclides used by end users in their daily routine (green) and radionuclides that 
respondents would be interested to use in the next 2–5 years (blue)
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Improvements for daily practice

The following improvements were mentioned by preclinical/clinical users as their 
need for daily practice: unified licensing and registration of available radionuclides 
and kits in Europe (80% respondents), information about transport and logistics net-
work in Europe (55% respondents), database of available radionuclides and the geo-
graphic location of the supply site (50% respondents), and some specified equipment/
technologies (e.g., collimators etc.) (45% respondents). On-site training with the 
visit of international experts is also a wish (40% respondents) as is outsourced cru-
cial training for technical personnel (32,5% respondents) and medical doctors (30% 
respondents).

Some of the respondents’ countries send patients to other countries for speci-
fied nuclear medicine examinations and/or treatment procedures. The reason of 
this outsourcing is due to unavailability of the specific radiopharmaceuticals (42,5% 
respondents), a lack of reimbursement by the national healthcare system (22,5% 
respondents), and unavailable radionuclide for radiopharmaceutical production 
(17,5% respondents).

Research and development activities

Out of all respondents from preclinical/clinical institutions, 87,5% mentioned that 
their research and development activities would benefit from collaboration/cooper-
ation in obtaining emerging radionuclides with centralized and harmonized proce-
dures and legislation, offered by efforts of the PRISMAP consortium.

One of the main interest of end users were novel radionuclides—some respond-
ents indicated specific ones such as 43Sc/44Sc and 64Cu/61Cu and some indicated 
novel radionuclides overall—clinical translation of novel theranostic tracers, higher 
availability of new radiopharmaceuticals, access to new radionuclides for novel radi-
opharmaceuticals, enhancing clarity and regulatory procedures to enhance research 

Fig. 7 Theranostic pairs used by end users now (green) and theranostic pairs that respondents would be 
interested to use in the next 2–5 years (blue)
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with radiopharmaceuticals, improving the delivered radionuclide data and regula-
tion, along with biomedical research capacity and speed up implementation of new 
radionuclides and/or broader availability of currently used radionuclides. Production 
of novel theranostics pairs and access to rare and exotic radionuclides and need for 
quick registration of radiopharmaceuticals were also mentioned.

Respondents indicated the interest in collaborating with PRISMAP consortium mem-
bers with regards to the sharing of new research protocols across countries, speeding 
up the implementation of new radiotracers in clinical practice, extending of portfolio in 
performing preclinical studies. Also interest in multicentric clinical trials, international 
studies, and research and clinical use interest were present.

Finally, technical interests from end users were indicated, including the standardiza-
tion and harmonization of the medical physics calibrations, interests to establish labe-
ling of different probes (mostly peptide based) with different emerging radionuclides in 
order to promote translation to the clinic.

Education

77,5% of all end user institutions are involved in the training of industry experts, techni-
cians, students, and researchers at various expertise levels.

The most popular training fields are clinical trials/studies (27 respondents), radio-
nuclide/radiopharmaceutical QC and analysis (23 respondents), radiopharmaceuti-
cal synthesis and development (20 respondents), pre-clinical studies (18 respondents), 
radiochemistry (16 respondents). See Fig. 8 for provided training fields from end users 
institutions.

The most often mentioned answers about training level were workshops and seminars 
(26 responses), PhD programmes (21 respondents), and scientific visits (21 respond-
ents). See Fig. 9 for other types of provided training.

The target audience for training provided at respondent institutions are students (31 
respondents), early-stage researchers (28 respondents), technologists (27 respondents), 
experienced researchers (17 respondents), nurses (14 respondents), and industry profes-
sionals (5 respondents).

Fig. 8 Training and knowledge transfer fields provided by respondent’s institutions
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The main limitations in the training process were identified as a lack of integration of 
radiopharmaceutical research in faculty courses and student curriculum, no dedicated 
program for nuclear medicine physicians, technologists and radiochemists in university, 
limited training capacity to 1–2 weeks, due to daily workflow, and limited time resource 
overall.

Respondents also mention a lack of personnel since there is a lack of trained pre-
clinical scientists with a global view from radiochemistry to pharmacology and limited 
number of trainers overall. Some respondents indicated problems with training process 
regulation: training depends on the national regulatory organizations or there is a need 
to work within national health service training schemes.

It has also been indicated that there is insufficient access to radioisotopes, also a lack of 
equipment such as small animal imaging facilities and emerging new technologies. There 
is also a need for a good overview/database of training possibilities. Some respondents 
indicated that in their countries they don`t have any professional training available for 
radiopharmacy or radiochemistry, so their radiopharmacists are trained abroad.

Discussion
The most frequently used radionuclides in radiopharmaceuticals that are used in daily 
clinical practice are Carbon-11, Fluorine-18, Nitrogen-13, Oxygen-15, Copper-64, Zir-
conium-89, Iodine-124, Gallium-68, Iodine-13, Technetium-99  m, Indium-111, Lute-
tium-177, Yttrium-90, Iodine-131, Actinium-225, Astatine-211, Radium-223 and 
Bismuth-213 (Malcolm et al. 2019; Al-Toubah and Strosberg 2018).

These radionuclides represent only a part of overall potential as many novel radio-
nuclides have entered the preclinical phase studies. Due to that, the European medi-
cal radionuclides programme PRISMAP was established to offer the broadest catalog 
of non-conventional radionuclides for medical and translational research (PRISMAP 
2021a, b).

Thanks to a questionnaire distributed by the PRISMAP consortium, the current status 
and needs of clinical end-users in nuclear medicine were identified. It was found out that 
novel radionuclides in which respondents would be interested in the near future were 
225Ac, 64Cu, 68 Ga, 177Lu, other alpha emitters and Terbium isotopes. A lack of training 

Fig. 9 Types of provided training in nuclear physics, radiochemistry and radiopharmacy
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possibilities and trained personnel have been identified as well as access to radionuclide 
to gain experience.

Also, the study has some limitations. First of all, it needs to be addressed that the study 
was conducted in a relatively small end users’ cohort. Not all European countries were 
covered—the majority of responses come from Western Europe, most notably the Bene-
lux, France and Italy. More emphasis will be needed for reaching out to responders from 
South-East Europe regions. Secondly, the PRISMAP programme continues and these 
results are preliminary, limited outcomes of this study so far. Moreover, study should 
be extended outside the PRISMAP consortium with the possibility to obtain data from 
other preclinical/clinical end users in Europe.

Conclusions
The current perspective shows that nuclear medicine specialists/clinical end users from 
broad parts of Europe are interested not only in new radionuclides for diagnostics, but 
also in therapy and technology advancements that confirm their interest in development. 
This study was preliminary and should be extended outside the PRISMAP consortium.
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