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In the domain of general image forgery detection, a myriad of diferent classiication solutions have been developed to

distinguish a łtampered" image from a łpristine" image. In this work, we aim to develop a new method to tackle the problem

of binary image forgery detection. Our approach builds upon the extensive training that state-of-the-art image classiication

models have undergone on regular images from the ImageNet dataset, and transfers that knowledge to the image forgery

detection space. By leveraging transfer learning and ine tuning, we can it state-of-the-art image classiication models to the

forgery detection task. We train the models on a diverse and evenly distributed image forgery dataset. With ive modelsÐ

EicientNetB0, VGG16, Xception, ResNet50V2, and NASNet-LargeÐwe transferred and adapted pre-trained knowledge from

ImageNet to the forgery detection task. Each model was itted, ine-tuned, and evaluated according to a set of performance

metrics. Our evaluation demonstrated the eicacy of large-scale image classiication modelsÐpaired with transfer learning

and ine tuningÐat detecting image forgeries. When pitted against a previously unseen dataset, the best-performing model of

EicientNetB0 could achieve an accuracy rate of nearly 89.7%.

CCS Concepts: · Security and privacy→ Intrusion detection systems; Distributed systems security; Mobile and wireless

security; Denial-of-service attacks.

Additional Key Words and Phrases: Multimedia data integrity, Image forgery, Fake news, Post editing, Fine tuning, Transfer

learning.

1 INTRODUCTION

For multimedia platforms, image forgery has become increasingly accessible through more complex editors,
better automated image overlaying, and coding-wise image editing [19, 37]. As such, the ability to diferentiate
authentic images from forged images has become ever more necessary [32]. This goes for both private individuals
who may be struggling with inding the genuine Twitter account for their favorite celebrity and in the courtroom
where authenticity of images and detection of forgery would be an immaculate tool for making sure the right
culprit ends up behind bars. Lots of sensitive information is being digitized and the validation and integrity of
said information is imperative [5]. The above naturally calls urgently for ways of detecting these falsiications,
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preferably with the largest degree of automation and smallest degree of manual labor, given the ever increasing
amount of information in need of veriication [34] and retrieval [12].

The expression łFake News" has become more prominent and has previously been seen linked to everything
from individuals spreading rumours via social media to state sponsored allegations via corrupt media. For example,
a TikTok video was posted in August 2022, spreading that Disney World was going to lower the drinking age
to 18 [1]. The need for authenticity often arises when reading articles with headlines meant to inspire outrage.
One of the ways for these rumors to circumvent that issue is by forging images to make it look like someone or
something is behaving according to the story. Although the term łFake News" is commonly associated with the
election campaign of former U.S. President Donald Trump, it is not a new expressionÐnor is it going away [2].
While completely validating all types of information that can be put in writing would not be possible via

computations, perhaps a validation of potentially forged images are. Not only does imagery have a remarkable
impact on various areas such as criminal investigation, surveillance systems, intelligence systems, legal services
and insurance claim, but also a direct efect of the increased demand for detecting forged images shows itself an
important topic in both academia and industry [20].

Motivations. The most original approaches to solving the image forgery detection problem were the develop-
ment of a model that would utilize outlier-detection in diferent color spectra as well as diferent image types.
Given its relatively simple setup, these original approaches were intended as a proof-of-concept project, in which
the usage of image editors in Python would facilitate concept creation. Simple photo edits were conducted to
enable subsequent attempts at detection. Likewise, an even simpler modelÐintended to be used as comparison
baseline for later resultsÐwas implemented.
Although the potential for problems with time consumption in training and application of the models was

well-known, the expectation was that the detection would be good and at least decent enough to provide some
signiicant results [16, 43]. With this in mind and a general idea of proof-of-concept, there is a need to consider
the following aspects: a) the extra time it would take to train and predict on the model would be outweighed
by the simple approach, b) few pictures needed (no large dataset), c) a utilization of the vast amounts of data in
each picture, d) good visualization provided to highlight and illustrate the relevant indings. Time was also set
aside to be able to optimize the models and make them as eicient as possible. This would be achieved by GPU
usage and Keras, even going as far as implementations for server side serving on the models created. This could
have potentially provided the speed needed for simple image forgery detection with the help of outlier-detection.
However, simple testing on a normal CPU proved to be inadequate and insuicient for achieving desired detection
rate, so even accounting for the time spent, there was no reason to continue this kind of attempt.

Likewise, for the purpose of optimization, the conversion module Hummingbird-ml was utilized to convert the
common Scikit-Learn algorithms to be faster but equal implementation in Pytorch. This also gave the possibility
of Keras and GPU usage but as previously mentioned, the idea never made it that far. However, the conversion
was still valid, as it still utilized the more streamlined algorithms and built blocks provided by the Pytorch package,
thereby making the computations much faster.
The computations fed to the models were simple mathematical diferences of various lavors. Multiple ap-

proaches were explored, such as increasing the averages that were used in detection. łIncreasing the averages"
means that instead of adding the simple diference of two pixels to the data, the computation would be an
average of the ten diferences of the ten preceding pixels. In this manner, we can eliminate single points of failure.
Unfortunately, this approach proved ineicient since the True Positives (TPs) were diminished by the calculated
averages.

After running several detection types, with many diferent models and data, it becomes apparent that a more
complex approach and algorithms are needed. Relying solely on outlier detection would be inadequate, and a
more complex structure for detection was needed such as a neural network. As is apparent in the remainder of
this work, changing the approach proved to be the right choice. As this was a learning process and not the basis

ACM Trans. Multimedia Comput. Commun. Appl.



Detecting Post Editing of Multimedia Images using Transfer Learning and Fine Tuning • 3

Fig. 1. Inadequate results of atempted outlier detection

for any of the conclusions made in this work, a single image containing the best performing model is displayed
below for reference (see Figure 1). It is the Isolation Forest run on a simple RGB image, which, as we can see, did
not provide any valuable information.
Contributions. This work focuses on the detection of forged imagery with the help from machine-learning

models, and, more speciically, the usage of transfer learning and neural networks. Tensorlow and the Keras
interface are our tools of choice for modeling the detection algorithms, and we utilize diferent error measurements
to determine the most efective model. Our work attempts to treat image forgery detection as a general image
classiication problem and therefore to leverage powerful pre-trained state-of-the-art modelsÐpopular both in
the ield and in the literatureÐin an efort to solve it. Our contributions can be summarized as below.

• We transfer the knowledge of ive pre-trained image classiicationmodelsÐEicientNetB0, VGG16, Xception,
ResNet50V2 and NASNet-Large. These models are trained, itted, ine-tuned, and compared via a set of
performance metrics. Each model trains for 100 epochs with most weights non-trainable and the best
version of the model advances. This łbest" incarnation of the model is then adjusted and trained for an
additional 100 epochs with several more trainable parameters. The best-performing incarnation of the
ine-tuned model demonstrates the eicacy of image classiication models when it comes to diferentiating
tampered images from pristine images.

• Our evaluation conirms that ine tuning said models has a tremendous impact on model performance,
indicating that there are distinct diferences between the problems of (1) image classiication and (2)
tampering detection. We compare both training accuracy and validation accuracy to give an assessment of
potential overitting in spite of the measures we take to reduce this risk (e.g., dropout layers). With the best
performing model, EicientNetB0, we achieved an accuracy of almost 89.7% on an unseen testing set.

Roadmap. The rest of this article is structured as follows: Section 2 describes the related work on image
forgery. Section 3 introduces our proposed approach in detail. Section 4 details the implementation and evaluation
results. Section 5 discusses open challenges and experimental results. Finally, we conclude this work in Section 6.

2 RELATED WORK

Image forgeries have led to an explosion of relevant research in recent years, resulting in various surveys. Table 1
provides a summary of survey papers on image forgery detection. This section will briely introduce related
studies on the intersection of image forgery detection via deep learning and transfer learning. Transfer learning is
a useful technique (or can be considered as a learning method) for deep learning, by reusing existing pre-trained
models to a new problem or domain [45].

Wei et al. [40] aimed to detect faked image or objects on images via rescaling/rotation detection and parameter
estimation, based on the relations between the rotation angle and the frequencies. This is because a forged image
usually takes rescaling or rotation actions. Chierchia et al. [15] introduced a method of detecting forged images
using sensor pattern noise via Bayesian estimation. They also used the Modern convex optimization method to
reach a globally optimal solution for estimating photo-response non-uniformity (PRNU) noise. Pun et al. [14]

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 1. Summary of survey papers on image forgery detection.

Year Survey title

2011 [31] Forensics Investigations of Multimedia Data: A Review of the State-of-the-Art

2017 [13] Comparison between image forgery detection algorithms

2019 [10] Digital Image Forgery Detection Techniques: A Comprehensive Review

2020 [25] A Comparative Study of Block-Based Copy-Move Forgery Detection Techniques

2021 [28] A Brief Review on Existing Techniques for Detecting Digital Image Forgery

2021 [17] Image forgery detection review

2021 [37] Hierarchical Categorization and Review of Recent Techniques on Image Forgery Detection

2022 [18] A Review on Digital Image Forgery Detection

2022 [4] A Comparative Analysis of Image Forgery Detection Techniques

2023 [19] Toward Deep-Learning-Based Methods in Image Forgery Detection: A Survey

aimed to detect copy-move forgery actions by using adaptive oversegmentation and feature point matching,
which is a combination of block-based and keypoint-based forgery detection approaches. They also introduced a
forgery region extraction algorithm to replace the feature points with small superpixels as feature blocks, which
can enhance the detection performance.

Mayer and Stamm [9] then introduced a method of image forgery detection via analyzing the inconsistencies
of lateral chromatic aberration (LCA). For this reason, they provided a statistical model that can capture the
inconsistency between global and local estimates of LCA. They further posed forgery detection as a hypothesis
testing problem and derive the results. Li and Zhou [21] proposed a copy-move forgery detection algorithm
via hierarchical feature point matching. They also provided an iterative localization method by exploiting the
robustness properties (e.g., dominant orientation) and the color information of each keypoint. Matern et al. [30]
focused on image inconsistencies using an analytic model and designed a physics-based forensic detection to
characterize 2-D lighting environments of objects. This is because the integral over a gradient ield of an object
indicates the direction of incident light in the image plane.
Wu et al. [41] focused on the forged images in online social networks (OSNs) and designed a robust training

scheme. They particularly analyzed the noise and decoupled it into predictable noise (caused by operations of
OSNs) and unseen noise (the defects of the detector). Gupta et al. [3] evaluated two CNNmodels for image forgery
detectionÐan untrained CNN and a pre-trained VGG16 CNN. The two models achieved accuracy values of 74.95%
and 91.62%, respectively. Then Baviskar et al. [4] developed an 8-layer CNN-based image forgery detection model,
in which they evaluated against two pretrained models: VGG16 and VGG19. For the experimental evaluation, they
leveraged the Casia and MICC F2000 datasets. The proposed model achieved an accuracy of 0.95, outperforming
both the VGG16 modelÐ0.88, and the VGG19 modelÐ0.90.

Hebbar and Kunte [6] proposed an approach to detect image forgeries that incorporates a pre-trained ResNet50
networkÐfor transfer learningÐinto the encoder of a DeepLabv3+ architecture. They compared the performance
of their proposed approach to ive related studies, and they found that their approach signiicantly outperformed
its contemporaries. The F1-scores of the related approaches ranged from 0.20730 to 0.68300, while the proposed
approach achieved an F1-score of 0.7510. Cristin et al. [7] devised an image forgery detection scheme that
leveraged supervised learning and was trained on both compressed and uncompressed images. They conducted
a number of performance analyses in which they varied the learning rate of the activation functionÐwhich
was either ReLU or Leaky ReLU. Das and Naskar [8] devised a scheme that focuses speciically on the detection
of image splicing-type forgeries. They constructed a deep CNN-based model, replacing the initial convolution
layers with the pre-trained weights of MobileNetV2 (a CNN that is pre-trained on ImageNet). They reported an
accuracy of 93.01%, which surpassed the accuracy scores of the related schemes included in their evaluation and
their comparison.

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 2. Breakdown of unified datasetśOmega from each single dataset

Dataset Pristine Tampered

CASIA v11 0 921

CoMoFoD2 48 200

CG-1050-V13 100 381

CG-1050-V24 818 66

COVERAGE5 100 100

MICC-F20006 1300 700

MICC-F2207 92 90

Total 2458 2458

In addition to the image forgery detection schemes, image encryption [39], traditional traic analysis [24, 27]
and collaborative intrusion detection systems [22, 23, 26] can be complementary to enhance the detection scope
and protect the overall systems.

3 OUR PROPOSED APPROACH

The proposed method in this paper is to use the architecture of established deep learning models in combination
with transfer learning and ine tuning in an attempt to uncover which of these is the most suitable for the task of
passively detecting image forgeries. For transfer learning and ine tuning purposes, each model’s initial weights
will be pulled from its training on the ImageNet dataset (https://www.image-net.org/). The ImageNet dataset is
a well-known dataset, often mentioned in the literature when it comes to image classiication challenges and
evaluations. It is very efective when comparing the capabilities of diferent models. As is the case when using
transfer learning, the model weights will be loaded and completely frozen, then the fully connected top layers
will be removed and replaced by new ones, after which the model will train and validate on the dataset in hopes
of learning the distinction between a pristine and tampered image.
As mentioned, when using transfer learning, the model layers with the exception of the fully connected top

layers are frozen, meaning that they are made non-trainable. That is the distinction to ine tuning, in which some
or all layers of the model can be unfrozen after loading in weights. Fine tuning provides the model an increased
number of trainable parameters and is therefore beneicial whenever there is a large degree of diference between
(1) the current dataset and model and (2) the dataset and model task from which the weights were inherited.
This phenomenon can be attributed to an increased number of trainable parameters, which allows the model to
refocus on the elements of an image that are relevant to the current task but are not relevant to the łparent"
model.

3.1 Dataset

The goal of this sort of classiication is to achieve a model that generalizes well on data outside the dataset. To
achieve this purpose, one of the most important factors is the dataset itself. For this reason, the dataset used
in this paper is a uniied dataset, composed of a set of publicly available datasets that have been tailored to
include only image forgeries of the sort we are attempting to classifyÐnamely, copy, move, and splicing forgeries.
Many attempts were made to include datasets not available to the public, in order to further increase the models’
generalization power; however, none of those eforts proved fruitful. Therefore, our dataset, henceforth referred
to as łOmega," includes images from the following datasets: CASIA v1, CoMoFoD, CG-1050-V1, CG-1050-V2,
COVERAGE, MICC-F2000, MICC-F220. Table 2 shows how many and what kind of images each dataset has
provided.

ACM Trans. Multimedia Comput. Commun. Appl.
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As shown in Table 2, the Omega dataset is composed of equal parts pristine and tampered images, as to not
allow for class bias in the models.

3.2 Performance Measures

The models implemented in this paper will be evaluated on four performance metrics; accuracy, precision, recall
and F1 score. The following will be clariication of what is meant with each of these metrics. Accuracy (A) is
intuitively the number of correctly predicted images out of all the predicted images. The precision (P) of the
model is the ratio of correctly predicted tampered images out of all the predicted tampered images. Recall (R)
measures the ratio of correctly predicted tampered images out of all the tampered images. The models F1 score
(F1) is weighted mean of precision and recall. The metrics can be calculated using the Equations (1)-(4).

� =

�� +��

�� + �� + �� +��
(1)

� =

��

�� + ��
(2)

� =

��

�� + ��
(3)

�1 = 2 ·
� · �

� + �
(4)

For these metrics, TP is the number of True Positives, TN is the number of True Negatives, FP is the number
of False Positives and FN is the number of False Negatives. The positive prediction is, in this paper, a tampered
image, whereas a negative prediction is a pristine image. All four metrics range between 0 and 1, with 1 being
the ideal and 0 the worst value.

3.3 Tensorflow

Tensorlow (https://www.tensorlow.org/) is a package originally made for Google Brain that has its main
applicability in relations to deep-learning algorithms and can be considered sort of the building blocks of
algorithms of all kinds. Tensorlow’s brilliance partly comes in the utilization of multiple GPUs, which allows for
greater eiciency speciically in the training of the models as well as potential prediction.

In this work, the module called Keras will be implemented to enable fast computations using the GPU. Keras is
a framework built on top of the Tensorlow package, which allows for great intercommunication between the
two. Keras is the number one deep-learning module when it comes to speed, and, time and time again, Keras has
demonstrated that its spectacular eiciency does not come at the cost of its integrity. Not only is Keras used by
top agencies such as NASA and CERN, it has also been part of the top ive teams on Kaggle, thereby proving its
simplicity as well as its capability to scale to more complex computations.

3.4 Models Used

In this work, we leveraged ive diferent models. This will allow for a good basis for comparison as well as a
larger potential for inding the most optimal model for image forgery detection. This section contains multiple
concepts directly related to advanced algorithms regarding testing, usage, creation and eiciency. All ive models
are highly complex, this is due to the utilization of pre-trained models has been developed by large companies
such as Google. The models used have all proven their worth in diferent avenues and we will discuss why to
choose each model as below.

ACM Trans. Multimedia Comput. Commun. Appl.
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3.4.1 EficientNet. EicientNet is a convolutional neural networkÐalso called łCNN" or łConvNet." As the name
implies, CNNs are a sub-category of neural networks and are well known when it comes to image classiication
problems. They have been applied to all manner of problem domains and industries, from segmentation to medical
image analysis. That said, the foundation and general approach of a CNN model lies in its łfull connectivity"Ðthat
is, the full connectivity of the embedded neurons. As such, CNNs can be applied to many problems beyond
the static image analysis, including natural language processing, brain-computer interfaces, and inancial time
seriesÐto name a few.
The so-called łfull connectivity" of CNNs is mainly a result of multi-layer perceptrons (MLPs), which are

utilized in the training phase. Essentially, full connectivity means that every node implemented in every layer
contains a neuron, and that neuron is fully connected to the preceding nodes in the previous layer. Each node
has a certain weight to which the connection to other nodes in order to make sure that the full connection in
theory does not provide any setbacks. MLPs are known to overit data again as a result of the full connectivity
of neurons; however, well-known countermeasures can be taken to address potential overitting issues. In fact,
CNN-type neural networks are referenced as regularized versions of MLPs because various measures have been
incorporated into CNNs such that overitting is kept to a minimum.
CNNs share the common applicability that the models are so vast that scaling of the models when more

computational power is added, can improve the model substantially. This is why the base model of EicientNet,
e.g., the B0 version, has a much lower detection rate than the successors. The scaling is done by expanding
the network. The network can be expanded in multiple ways, two of which involve concrete expansion of the
network width and depthÐe.g., scaling the network. The last of the three ways of expanding the network is using
images of higher resolution when training the model. While all three expansions improve the model, what makes
EicientNet one of the best in its ield, is the balancing of the three expansions. Making the network substantially
wider that deep, the network will be ineicient and vice versa. That is why EicientNet has implemented
coeicients to uniformly and most eiciently scale the model given any speciic kind of data. This is what
diferentiate and signiicantly improves the EicientNet from the other algorithms.
As mentioned above, the scaling is done via implemented coeicients to uniformly scale the network. The

example given by Tan and Le [46] in relation to the release of the B7 version is to increase � 2 times more
computational resources. Then simply increasing the network depth by �2, width by �2, and image size by �2,
where �, �,� are constant coeicients determined by a small grid search on the original model, would make sure
the expansion of the network was done most eiciently.

A brief explanation of the modelÐwhich Eicient builds uponÐwill help explain why the model is eicient and
(as we will demonstrate later) why the model performs the best in terms of detection, resources, and time spent.
The EicientNet predecessor łAutoML MNAS" was developed speciically with the objective of low resource cost
as it was developed for mobile devices. This makes for an efective and low cost model foundation to further
develop and expandÐwhich is exactly what EicientNet is.
To look into some of the testing done for this model, a brief introduction to the data will explain why this

data is speciically used as a common denominator for testing multiple models. For image classiications and
segmentation, the data from ImageNet is absolutely top of the line. This is due to the way the data is structured
and the goal of the developers. A large database of so-called łsets of synonyms"ÐsynsetsÐfor many words and
word-sets has been constructed and dubbed a łword hierarchy". This word hierarchy comprises almost 100,000
synsets, and the developers of ImageNet strive to provide 1,000 images for each synset. As such, there are a lot of
imagesÐroughly 1.2 million in total. All images are human veriied, controlled, and labeled. This is why testing
on such vast data provides an extremely good foundation for comparison.
Figure 2 displays performance results gathered from multiple diferent sources, based on the application of

diferent models on the ImageNet dataset. Four of the ive models utilized in this work are showcased on the
graph. This gives a preliminary overview of the strength of each model.

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 2. Model Parameters vs. Accuracy

3.4.2 VGG16. Much like the EicientNet, VGG16 uses a structure with CNNs and inherits the same full connec-
tivity attributes. While the initial thought of a deeper network with similar attributes to the other model sounds
like an improvement, one of the irst setbacks one would notice of a deeper and more complex network is of
course the time consumption. As described in multiple articles [19], this model sufers severely from time issues.
This is due to the complex architecture of the model.

The VGG16 model is very complex, which contains multiple algorithm structures such as the softmax and
other Convolutions as well as an MLP. To explain in full all the algorithms this model utilizes to classify images,
one would need more space than this work would allow; however, a quick run-through of the model is as follows:
The input RGB image will be input into a stack of convolution layers with very small receptive ields to ilter
the images. For each Reduction in dimension via the iltering, the spatial rotation of the pixels attempts to be
preserved by ixing the spatial padding in a 1-pixel convolution layer. This is then used in the max-pooling layers
to achieve the reduction of pixels in the most representative matter. Max-pooling is generally a way to down
scale or down sample in this case an image taking the highest value (thus max-pool) as the most representative
pixel. After multiple iterations of these layers, the output is an array of representative pixels run through an MLP
and classiied via the last MLP. The last layer is often a softmax layer that aims to classify the input.

VGG16 (https://github.com/ashushekar/VGG16) is an older model introduced in 2014 and was revolutionary at
the time, it may now perform worse than current day models given the ields research since then.

3.4.3 Xception. This model has proven to be a more eicient model than VGG16 and is the simplest version of
EicientNet (see Figure 2). However, much like the others, it cannot compete with better-trained EicientNet
models. One of the noticeable diferences from this model to the other is that this model has only incorporated the
potential for full connectivity in one of the last layers where some of the other models have the Full connectivity
as a given part of the end model.

Apart from some of the more commonly seen components of the models such as block normalizations for each
of the max-pooling iterations and ReLU, the Xception model has its basis on what is called Depthwise Separable
Convolution, which in theory should be a faster way of gathering the same results as the commonly used CNN.
Common CNN runs on all sides and lengths of the image while the Depthwise Separable Convolution will run
on each length and height but will run all data in the depth of the max-pooled data. This is basically a way of
simplifying a CNN, making it more lightweight and potentially just as powerful. To make up for the łmissing"
convolutions seen in common CNN implementations, a so-called łPointwise" convolution is constructed such
that the last dimension is taken into account. Not only did the computations become more lightweight, they also

reduce the number of needed computations by a factor of
1

����ℎ
.
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Fig. 3. Overview of Neural Architecture Search (NAS)

This is one of the models that has the most simplistic architecture even if it provides a similar structure as the
others while having 8 iterations of the modiied convulsion sequences. While developers have aimed for a more
simpliied way of providing image classiication and segmentation, the results are impressive indeed. One such
example given by Ganguly et al. [29], in which this exact model was used to detect the so-called łDeep fakes"
where faces are swapped.

3.4.4 NASNet-Large. The NASNet-Large or NASNet-A (https://github.com/tensorlow/models/tree/master/
research/slim/nets/nasnet) is the largest model that has been implemented in this work. Not only does it have
the highest number of parameters, it potentially has the most complex structure as a whole. This is due to the
distinctive measures this model takes in order to perform the most eicient detection. It utilizes a whole diferent
setup than any of the other modelsÐit uses Neural Architecture Search (NAS) to search through diferent types of
CNNs (e.g., 2x2, 5x5, etc.). Since each max-pooling iteration shifts or changes data, it is very likely that diferent
CNNs will provide diferent results; as such, NAS was implemented to ind the most capable CNN method.
While search is needed to iterate, data also needs to be generated for the model to search through. This is

done via sampling of the data given and training a child network with a given CNN architecture and calculation
of a given accuracy. After all models are sampled, the controller recurrent neural network (RNN) can pass a
probability back of how well data it (and thus probability in correct prediction) on a small held-out validation
set and another model is suggested. All this happens before every CNN is implemented as is the most likely
cause of the many parameters needed. Thus, as this is a very heavy model and large in size, it is clear that the
computational power needed is indeed quite large. Figure 3 illustrates how the circuits look within the NAS:

The most interesting thing to take from this model is the fact that it makes a good comparison to other models
while giving a completely new take of detection methods. The new take on image classiications is a direct cause
of the implementation of the above. The greatest downside of this model is its size, complexity and thereby
computational time.

3.4.5 ResNet50V2. ResNet50V2 is, as the name implies, the second version of the ResNet50 and is built upon the
theory of Residual Networking. While this network sounds like it is vast in scale, when referencing the 50-block
structure it has, of diferent convolution layers, it actually requires much less computational power. Most of the
computational gains may come from the structuring and the overall adaptability the residual networks provide.
Residual networks have the beneit of evaluating the layers of the model and provide the adequate łskips" of the
convolutions that do not beneit the model in any way. Skipping not only provides computational gains as time
does not need to be spent on needless computations, it is also a fundamental part of potentially not overitting
any given data. The general structure has the same philosophy or idea from the VGG nets, which have been
covered earlier, it is distinctive in the residual layer added on top.
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3.4.6 Choosing Models. When choosing the models in our work, we have to consider a few aspects. The research
approach of attempting to treat forgery detection as a classiication problem can strongly impact the decision
making. EicientNet was chosen as it is the de facto state-of-the-art model for image classiication. It was decided
that the EicientNetB0 would be the version of choice as its parameter count was roughly similar to a few of
the other models chosen in this work. The aim of that decision was to have the models be easily comparable.
The VGG16 model was chosen as it has previously been a state-of-the-art algorithm for image classiication
and therefore a valuable model to test the proposed solution. Xception was chosen as it has a great accuracy to
parameter count ratio and it was thought ideal to have a model from the łInception" family. ResNet50V2 was
chosen for its unique architecture and approach, it was considered as a good tool to test the proposed solution
method. Lastly, the NASNet-Large was chosen as a heavy-hitting model with a large number of parametersÐin
contrast to the other smaller models used.

3.4.7 General alterations. As will be discussed in detail in Section 4, we aim to introduce four general approaches
in order to optimize all the models for our particular problem. While all four aspects serve some purposes for a
given model, this section is oriented toward explaining some of the concepts that will be used at a theoretical
level, where the implementation is practically oriented. The following are the four topics:

1) ReLU. The Rectiied Linear Activation Unit (ReLU) has quickly become the most commonly used activation
model for CNNs in particular. There are two reasons for this particular activation model to be preferred than
other similar models such as sigmoid (which will also be covered) or tanh. Once again, the computational power
comes to play as the ReLU is very fast and lightweight when implemented. This is also why it is common to see
this model incorporated multiple times in any of the models tested in this work. It has a simple structure as
follows: � (�) =��� (0, �). This is a very fast and eicient way to transform the data coming from the neurons
into values higher than or equal to zero, while rectifying the data into a linear problem.

Secondly, the ReLU model provides sparsity with the model implementation. Much like a sparse Matrix where
most entities are zero, sparse models with some of the weights being zero usually result in more concise models
with less chance of overitting and parsing data that does not provide value. Due to the transformation of all
negative numbers to zero, it is likely to create a sparse network.
The importance of these activation functions is the need for the deep learning models to learn, understand,

and train against non-linear data; thus, the model becomes more complex in its structure. Without activation
functions, all neural networks would be perceived as a linear regression problem with input X and a set of weights.
This is where the concept of łrectifying" is important: it allows the model to train upon data that is not suitable
for linear regression, making the model more complex.

2) Global Average Pooling. Global Average Pooling is a concept that serves similar purposes as the previously
mentioned max-pooling. It is a way to downscale vast quantities of data while attempting to make the data as
representative as possible between each CNN layer. While the max-pool takes the largest value of any given pool
size predeined in the model, the global average pooling takes the average of the values in the pool and scales it.
While the concept is quite simple, it holds great power and could potentially change the detection rate drastically.
According to Lin et al. [11], they managed to get some good results based on their lightweight model structure
with the global average pooling implemented in the model.

3) Dropout layers. Dropout layers are quite simple to understand yet provide a great value for our study
of the concepts mentioned in this section. Dropout layers can force the model to train or explore more aspects
of the data, as the dropout layer will randomly select neurons in that layer of the model to make sure that the
remained neurons are forced to explain more of the classiication and by that get trained. This is a measure to
reduce the risk of overitting.

4) Sigmoid. The sigmoid function serves a similar purpose as ReLU, since they are both activation functions
and are used to transform data. While ReLU transforms the data into values greater than zero, the sigmoid
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function returns a given number between 0 and 1, making it perfect for binary activation. The sigmoid is
slightly more demanding computation, ������� (�) = 1/(1 + ��� (−�)), but efectively has the same attributes as
softmaxÐwhich is often applied to the end low of models when multiple classes are attempted to be detected. It
behaves as if the softmax has two elements whereas the second is always zero, making it equally distributed.
Values greater than ive will tangent toward one while values less than negative ive will tangent to zero.

4 IMPLEMENTATION AND EVALUATION

4.1 Model Hyperparameters

For each model utilized in our work, there are choices to be made when implementing them, so called hyperpa-
rameters. This subsection will cover each of our decisions and how they afect the performance of our models.
The hyperparameters used in training are as follows; the models will train for 100 epochs, the optimizer will be
Adam with a learning rate of 0.0001 and a decay rate for the irst and second moment of 0.9 and 0.999, the loss
function will be binary cross-entropy as it is a binary classiication problem and a batch size of 32 will be used.
The models themselves will have either a fully connected layer with ReLU activation or a Global Average Pooling
layer followed by a dropout layer with value 0.5 to maximize regularization, lastly a fully connected layer of size
1.0 with sigmoid activation is added as the prediction layer, given that this is a binary classiication problem.
Figures 4 and 5 show the implementation of the top layers for EicientNet and VGG16, respectively.

1000 pre_trained_model = Ef f i c i entNetB0 ( input_shape =(224 , 224 , 3) ,
include_top=False ,

1002 weights=" imagenet " ,
drop_connect_rate =0.4)

1004

x = l a y e r s . GlobalAveragePooling2D (name="avg_pool" ) ( pre_trained_model . output )
1006 x = l a y e r s . Dropout ( 0 . 5 ) ( x )

x = l a y e r s . Dense (1 , a c t i v a t i o n=’ s igmoid ’ ) ( x )
1008

Eff ic ientNetB0_model = Model ( pre_trained_model . input , x )

Fig. 4. Implementation of the EficientNetB0 model’s top layer

1000 pre_trained_model = VGG16( input_shape =(224 , 224 , 3) ,
weights=’ imagenet ’ ,

1002 include_top=False )

1004 x = l a y e r s . F lat ten ( ) ( pre_trained_model . output )
x = l a y e r s . Dense (1024 , a c t i v a t i o n=" r e l u " ) ( x )

1006 x = l a y e r s . Dropout ( 0 . 5 ) ( x )
x = l a y e r s . Dense (1 , a c t i v a t i o n=" sigmoid " ) ( x )

1008

VGG16_model = Model ( pre_trained_model . input , x )

Fig. 5. Implementation of the VGG16 model’s top layer

The Omega dataset will be split into three parts, each with equal parts pristine and tampered images. 70% of
the data will be categorized as training data, 15% will be validation data and the remaining 15% will be testing
data. The data will be split into these three parts by utilizing a Keras function that has been customized-built to
split datasets into three parts instead of the original two. Using the Keras function, we can easily construct the
training dataset, as shown in Figure 6, where łcustom_image_dataset_from_directory()" refers to the tailor-made
function.

ACM Trans. Multimedia Comput. Commun. Appl.



12 • S. Jonker, et al.

1000 root_path = os . getcwd ( )
data_dir = path l i b . Path ( root_path + "/Datasets /Omega Dataset " )

1002 batch_size = 32
img_height = 224

1004 img_width = 224
seed = 1337

1006 s p l i t s = (0 . 1 5 , 0 . 1 5 )

1008 train_ds = custom_image_dataset_from_directory (
data_dir ,

1010 va l i d a t i o n_sp l i t=s p l i t s ,
subset=" t r a i n i n g " ,

1012 seed=seed ,
image_size=(img_height , img_width ) ,

1014 batch_size=batch_size
)

Fig. 6. Implementation of extracting training data from the Omega dataset

Fig. 7. EficientNetB0 accuracy performance dur-

ing 100 epochs of training.

Fig. 8. VGG16 accuracy performance during 100

epochs of transfer learning.

4.2 Performance of Transfer Learning

As mentioned earlier, the models will train for 100 epochs, but the weights of all epochs will be saved and the
model weights at the epoch with best accuracy on the validation data will be chosen moving forward and be
used for future calculations.

The accuracy for the training and validation data over the course of 100 epochs can be seen in Figures 7, 8, 9,
and 11, with the best iteration highlighted.
As shown in Figure 7, the EicientNetB0 model using transfer learning follows a steady learning curve and

reaches its peak validation accuracy at epoch 79, with a validation accuracy of 78.7%. The model achieves this
while only having 1281 trainable parameters. It is additionally clear to see that through transfer learning, the
model is unable to reach a high degree of accuracyÐeither on the training data or the validation data. This
indicates that either the problem is too complex for the model, the ImageNet data is too diferent from the data in
the Omega dataset and therefore the inherited weights cannot explain the diferences well enough, or that there
are simply too few trainable parameters to classify the images efectively.

VGG16 is the model with the most trainable parameters during transfer learning, as it has roughly 25.7 million
trainable parameters. As shown in Figure 8, the accuracy on the validation data reaches its peak at epoch 84
with an accuracy of 83.0%. That accuracy is 4.3% greater than the accuracy of EicientNetB0. However, it is
interesting to note that VGG16 has a total amount of trainable and non-trainable parameters of roughly 40.4
million and EicientNetB0 has 4.1 million. Even more interestingly for transfer learning, VGG16 has about 64%
of its parameters trainable, whereas the EicientNetB0 model has only 0.03% of its parameters trainable. The
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Fig. 9. Xception accuracy performance during 100

epochs of transfer learning.

Fig. 10. ResNet50V2 accuracy performance during

100 epochs of transfer learning.

efects of this are also apparent in Figure 8, where it is clear to see that the VGG16 model experienced signiicant
overitting very quickly in the training period.

The accuracy of the Xception model, as shown in Figure 9, follows a relatively clean learning curve and shows
no acute signs of overitting. The lack of overitting shows signs that it might perform even better under ine
tuningÐas the model has not it to noise in the data. Therefore, a few more parameter tweaks could help describe
the diferences in the data better. The Xception model’s validation accuracy peaks at epoch 82 with an accuracy of
72.5%. At present, this level of accuracy is not impressive, yet it is important to consider that the Xception model
is the smallest of all the models in terms of total parameters: that is, it contains only 20.8 million parametersÐand
only 2,049 of them are trainable during transfer learning.

The ResNet50V2 is similar in size and proportions to the above-mentioned Xception, yet ResNet50V2 operates
in a much-diferent mannerÐas described earlier. The result of this diferent architecture when training and
validating on the Omega dataset is shown in Figure 10. When inspecting the igure, the diference in smoothness
on the training and validation accuracy curve is apparentÐas well as the massive swings in performance on the
validation data. It seems to imply that the model has overit on some element of noise in the training data that
results in what resembles coin lips in the accuracy on the validation data. As the accuracy metric tracks only the
successfully classiied images, and not how far from predicting the class correctly the model was. These large
swings indicate that the model does not actually understand much of the dataset and is blindly guessing for the
most part. Due to this, the validation accuracy peaks at 73.8% at the 75th epoch.

Figure 11 shows the training and validation accuracy for the NASNet-Large model. It is immediately apparent
that the model with its current parameters stagnates around 65% accuracyÐmore than 10% lower than the
accuracy of EicientNetB0. This is alarming as NASNet-Large has 4033 trainable parameters, when using transfer
learning in this way, which is more than three times as many trainable parameters as the EicientNetB0 model.
Additionally, it is the largest of all tested models by a considerable margin: the total number of parameters for
the NASNet-Large model is roughly 84.9 million, more than twice the number of the second largest model. The
NASNet-Large model reaches its peak accuracyÐ66.1%Ðat epoch 83.
Table 3 provides an overview of each model’s performance during its best-performing epoch as well as a

breakdown of each model’s parameters. From the table, it is immediately apparent that EicientNetB0 contains
by far the fewest parameters, yet it performs very well regardless. VGG16, however, is the best-performing model
when it comes to transfer learningÐthough it is just barely ahead of EicientNetB0. Our evaluation indicates that
NASNet-Large performs signiicantly worse than the other four models.

4.3 Performance of Fine Tuning

This section covers the ine tuning of the ive models. In practice, to efectuate ine tuning, we begin with the
incarnation of the model that achieved peak performance during transfer learning. Starting from the top of
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Fig. 11. NASNet-Large accuracy performance during 100 epochs of transfer learning

Table 3. Transfer learning model performance and parameter overview

Accuracy Parameters

Best Epoch Validation Training Trainable Non-trainable Total Trainable Share

EicientNetB0 79 78.7% 75.8% 1281 4.1 million 4.1 million 0.03%

VGG16 84 83.0% 94.4% 25.7 million 14.7 million 40.4 million 63.6%

Xception 82 72.5% 68.2% 2049 20.9 million 20.9 million 0.01%

ResNet50V2 75 73.8% 64.5% 2049 23.6 million 23.6 million 0.009%

NASNet-Large 83 66.1% 64.8% 4033 84.9 million 84.9 million 0.005%

the model, we select a pre-determined number of layers, which will be made trainable (the number of layers
varies by model). Then, we train the model again for 100 epochs. In efect, the model is given a second chance to
it itself to the data. This łsecond chance" carries an increased risk of overitting, but it also allows the model
to better explain the diferences between the imagesÐand thereby better classify them. As earlier mentioned,
this phenomenon can be beneicial either (1) if the new dataset difers greatly from the original dataset (in this
case, the ImageNet dataset) or (2) if the new classiication problem is signiicantly diferent from the original
classiication problemÐagain, in this case, the ImageNet challenge.

The starting point for ine tuning the EicientNetB0 model was epoch 79, with a validation accuracy of 78.7%,
so beating that is the goal. This goal was more than reached by making an additional 75 layers trainable, which
corresponded to two blocks of convolution layers. Thus, the number of trainable parameters increased by 3.1
million, up from a mere number of 1,281. With this change, an immediate diference in performance can be
noticed in Figure 12. Within just a few epochs, the validation accuracy reaches a steady plateau between 85 and
90% peaking at exactly 89.0% in epoch 35. After this point, the training accuracy continues to gradually increase,
while the validation accuracy starts a slow declineÐthis is indicative of a model overitting to its training data.
The model experiences an increase in peak performance of 10% from transfer learning to ine tuning.

For the VGG16 model, as shown in Figure 8, the performance increase is extremely minimal: 1.5%. Performance
was 83.0% during transfer learning, which increased to 84.5% during ine tuning. This peak during ine tuning
occurs at the 30th epoch. The lack of improvement is not surprisingÐgiven that the transfer learning performance
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Fig. 12. EficientNetB0 accuracy performance dur-

ing 100 epochs of fine tuning.

Fig. 13. VGG16 accuracy performance during 100

epochs of fine tuning.

Fig. 14. Xception accuracy performance during 100 epochs of fine tuning

already showed signiicant signs of overitting. The VGG16 model was ine-tuned by unfreezing four additional
layers representing the top convolution block and max-pooling layer, which resulted in an additional 7.1 million
trainable parameters. This performance evaluation shows that the VGG16 model, on this particular dataset and
problem, does not in any meaningful way beneit from ine tuning.
Xception is the model that sees the largest gain from ine tuning in this instance. As shown in Figure 14, the

peak accuracy during transfer learning was 72.3%, whereas when ine tuning the performance peaks at epoch 8
with an accuracy of 86.3%, an increase of 14%. It was identiied during the transfer learning process that Xception
was the model with the most room to grow, as it had a relatively low peak accuracy and showed no signs of
overitting. The increased performance, however, was not enough to rival the performance of the EicientNetB0
model at 89% accuracy, as the model does experience quite signiicant overitting during ine tuning. The ine
tuning on the Xception model is achieved by unfreezing the top two blocks of the model, which is equivalent to
16 layers or an additional 6.8 million trainable parameters.

The performance increase for the ResNet50V2, as shown in Figure 15, is not only an increase in accuracy,
but also a signiicant increase in model stability. For ine tuning the top convolution block, in other words an
additional 13 layers, has been unfrozen, resulting in an increase in trainable parameters of 4.5 million from
the original 2049. This increase in model capabilities lets it more accurately distinguish between pristine and
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Fig. 15. ResNet50V2 accuracy performance during 100 epochs of fine tuning

Fig. 16. NASNet-Large accuracy performance during 100 epochs of fine tuning

tampered images, to the point where it no longer shows strong signs of lack of understanding. In the transfer
learning stage, the lack of understanding led to large swings in model performance. The validation accuracy
peaks to 81.5% at epoch 46, an increase of 7.7%.

NASNet-Large was the model that had the worst performanceÐin terms of accuracyÐduring transfer learning,
and that was still the case when using ine tuning. As can be seen in Figure 16, the validation accuracy peaks at
epoch 93 with an accuracy of 74.5%. Even with an accuracy increase of 8.4%, the model still trails behind the
rest, leaving a gap of 5.5% to the second-worst performing model. The NASNet-Large model was ine-tuned
by unfreezing 35 additional layers, resulting in an increase of 4.6 million trainable parameters. However, it is
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Table 4. Fin-tuning model performance and parameter overview

Accuracy Parameters

Best Epoch Validation Training Trainable Non-trainable Total Trainable Share

EicientNetB0 35 89.0% 94.8% 3.1 million 0.9 million 4.1 million 77.3%

VGG16 30 84.5% 93.6% 32.8 million 7.6 million 40.4 million 81.1%

Xception 8 86.3% 99.8% 6.8 million 14.1 million 20.9 million 32.5%

ResNet50V2 46 81.5% 93.1% 4.5 million 19.1 million 23.6 million 18.9%

NASNet-Large 93 74.5% 98.6% 4.6 million 80.3 million 84.9 million 5.5%

Fig. 17. Model performance in predicting unseen testing data

apparent from the aforementioned igure that the model struggles tremendously to understand and classify the
images correctly.

Table 4 showcases the performance of each of the ive models as well as their parameter metrics. It is impressive
that the EicientNetB0 model achieves such a high accuracy with an order of magnitude in diference in terms
of parameter count. Additionally, it is interesting to note that even though NASNet-Large only has 5.5% of
its parameters available for training in ine tuning, it still manages to overit without reaching high levels of
validation accuracy.

4.4 Performance Discussion

Seeing as the ine-tuned models performed better than their transfer learning counterparts, the ine-tuned models
were selected for the inal model evaluation and validation. They were evaluated against data that they had never
seen beforeÐdata that had never been used for either training or validation. The results of this evaluation were
used to assess the models’ generalization power as well as their performance.

As shown in Figure 17 and Table 5, NASNet-Large is still an outlier as its performance is severely behind the
other four models on all metrics. EicientNetB0 also stands out, as the best performing model with an accuracy
of 89.7% on the testing data reaching near 0.9 on all metrics, a very impressive score. Its high precision shows
that it has an exceptionally low false positive rate, which is essential for classifying tampered images. The high
recall score shows that the model inds and classiies the majority of the tampered images. A high F1-score is
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Table 5. Model performance results from testing on unseen testing data

Accuracy Precision Recall F1 score

EicientNetB0 0.897 0.896 0.896 0.896

VGG16 0.872 0.872 0.872 0.872

Xception 0.881 0.882 0.877 0.880

ResNet50V2 0.856 0.848 0.866 0.857

NASNet-Large 0.685 0.663 0.747 0.703

indicative of a model that is uniformly good at predicting both classes correctly. Here Table 5 shows the data
represented in Figure 17.

5 DISCUSSION

In this section, we would like to shed some light on our struggle and challenges in regard to data acquisition.
1) The problem was double faceted: there was a severe lack of quality datasets with tampered images and, for

the datasets not freely available, the researchers handling the datasets appeared entirely unreachable. Most of the
datasets mentioned in existing literature were not accessible. In the few cases, the obtained datasets were either
of limited scope or questionable quality. This proved to be quite a challenge as well as the construction of our
dataset: łOmega". As earlier mentioned, the Omega dataset is composed entirely of freely available datasets of
medium to high quality images and an even distribution of pristine and tampered images.

2) Fine tuning increased the performance of all tested models, and some models saw huge improvements when
implementing it. This could be due to the fact that the classiication problem this work attempts to solve is quite
diferent in nature from the classiication in ImageNet. It is not a particular element our classiication is trying
to ind represented in images, rather it is whether or not something within the image does not it in. In other
words, some knowledge that the models inherited from the original ImageNet weights is less useful than other
knowledge. The top few layers of the models hold the most weights with most impact, as they are the most
speciic to the data. Therefore, changing those particular weights, as was done in this work through ine tuning,
showed tremendous improvements in accuracy.
3) As with every machine learning task, overitting is a real concern. There is no real measurement or

speciication to determine precisely when a model is overitting on data and becoming less eicient. Multiple
generalizations are applicable such as when the slope of the training curve is nearing a horizontal state or when
training accuracy keeps increasing without the validation accuracy increasing.
3.a) Overitting is very relevant for this work, especially because we are working with large-scale models

and pre-trained weights. Models of this caliber exhort us to be cautious and to implement countermeasures
to avoid overitting, such as dropout. Even when only ine tuning on the last layers of the model, overitting
remains a concern. Another example of measures to prevent overitting is: the ResNet50V2 model’s feature of
skipping blocks does not provide any improvements, thus also eliminating some potential overitting. Even with
counter measures and model’s features directed toward battling overitting data, the desired outcome is not
always achieved.
3.b) Overitting was a deciding factor when choosing to opt for the EicientNetB0 model over some of its

larger, more complex, and more capable siblings. A model as powerful as EicientNetB7 is at a much higher risk
of overitting. Had we chosen the EicientNetB7 model, we would have had to take even more drastic measures
to mitigate overitting.

3.c) One such measure would be increasing the size of the dataset by several magnitudes. Unfortunately, that
solution was simply not feasible due to the aforementioned complications with acquiring data. That being said,
with the performance seen from the EicientNetB0, one could only expect that, given enough additional data and
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other measures to prevent overitting, the EicientNetB7 would be capable of expanding upon the performance
seen in this paper.

4) Even though our initial goal of an expansive, diverse dataset was not met, the Omega dataset is still a success.
The Omega dataset is illed with a mix of images of (1) variable sizes, (2) variable tampering methods, and (3)
variable levels of editing qualityÐall of which are essential and distinguishing facets. Even with those facets, the
Omega dataset still maintains an even distribution of tampered and pristine images, mitigating concerns of bias
that have plagued most related works.

6 CONCLUSION

In this work, our ultimate goal was to assess the viability of treating image forgery detection as a standard
image classiication problem and solving it with standard image classiication tools. Transfer learning using
pre-trained ImageNet weights proved to be a viable option to achieve decent models for image forgery detection.
In addition, ine tuning the transfer learning models to better it them to the classiication problem has proven
highly beneicial. The EicientNetB0 model reached a classiication accuracy of 89.7% when evaluated against
unseen data, an exceptional result that validates the approach put forth in this work. It also showed no bias to
either image class and had excellent precision, recall, and F1 metricsÐ0.896 for all three.

The Omega dataset is a valuable asset when it comes to training classiication models to detect image forgeries.
Eforts to increase the size of this dataset would only improve the performance of the models. It would also serve
the purpose of potentially allowing the use of more complex modelsÐsuch as EicientNetB7Ðwithout running
into overitting problems. The measures put in place in this work to prevent overitting or bias were mostly
successful; overitting did occur in some cases.
Future work, apart from obtaining additional high quality forged images, could include looking at diferent

waysÐmore efective waysÐof ine tuning the models. In this work, the goal was to prove the validity of the
approach rather than achieve the highest possible accuracy. Further improvements might include implementing
a teacher network to generate labels for unlabeled data, which could be fed to a student networkÐa state-of-
the-art technique when it comes to general image classiication problems. This technique would circumvent the
issues associated with the major shortage of labeled forgeries, which, in turn, would signiicantly improve the
performance of the model.
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