

Comprehensive Review About The Control Architecture Of Co-located Utility-scale Hybrid Power Plants: State-of-the-art And Future Directions

Pouraltafi-Kheljan, Soheil; El Sied, Moataz; Rahmani, Mustapha Amine; Das, Kaushik; Sørensen, Poul Ejnar

Publication date: 2023

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Pouraltafi-Kheljan, S. (Author), El Sied, M. (Author), Rahmani, M. A. (Author), Das, K. (Author), & Sørensen, P. E. (Author). (2023). Comprehensive Review About The Control Architecture Of Co-located Utility-scale Hybrid Power Plants: State-of-the-art And Future Directions. Sound/Visual production (digital)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Comprehensive Review About The Control Architecture Of Co-located Utility-scale Hybrid Power Plants: State-of-the-art And Future Directions

Soheil Pouraltafi-Kheljan, Moataz El-Sied, Mustapha-Amine Rahmani, Kaushik Das, Poul Ejnar Sorensen

1: Department of Wind and Energy Systems, DTU

2: TotalEnergies

Outline

- Introduction
- HPP Controller (HPPC)
- In the scope of this review
- Observations
- Hierarchical Control Architecture
- Challenges and Future Directions
- Conclusion

Introduction

Fig. 1: Generalized illustration of hybrid power plants, where P, PCC, BSS, PV, WPP, and SPP stand for active power, point of common coupling battery storage system, wind power plant, and Solar power plant

[1] WindEurope. 'Renewable hybrid power plants: Benefits and market opportunities', 2019.

[2] Haines, et al. 'The Impact of Co-Located Clusters of Inverter Based Resources on a Performance-Based Regulation Market Metric', 2022. 2022 North American Power Symposium (NAPS)

- Hybrid Power Plants
 - "The term HPP refers to a power-generating facility that converts primary energy into electrical energy and which consists of more than one power-generating module connected to a network at one connection point"[1]
 - "Co-Located Clusters of Inverter-Based Resources" [2]

Introduction

Generalized illustration of hybrid power plants, where P, PCC, BSS, PV, WPP, and SPP stand for active power, point of common coupling battery storage system, wind power plant, and Solar power plant

- Advantages [1,2]:
 - Optimized network use
 - Higher capacity factor
 - More dispatchable and stable power
 - Eased fulfillment of stakeholder demand
 - Reduced infrastructure expenses reduced electricity balancing costs

 ^[1] WindEurope. 'Renewable hybrid power plants: Benefits and market opportunities', 2019.
[2] Clark, C., Barker, A., King, J., et al. 'Wind and Solar Hybrid Power Plants for Energy Resilience', 2022. NREL/TP-5R00-80415, 1842446, MainId:42618

• The number of such HPPs under development or already operating around the globe is limited and their business case is still under development or evaluation

Source: https://windeurope.org/about-wind/database-for-wind-and-storage-colocated-projects/

Introduction

1. Co-Location [1] 2. Coordinated Control [1] **Dual Defining Characteristics**

[1] U.S. Department of Energy (DOE). 2021. Hybrid Energy Systems: Opportunities for Coordinated Research.

HPP Controller (HPPC)

- Handling the interplay between disparate technologies.
- Robust against uncertainties
- Reliable for the dedicated services
- Represents the HPP as a single power-generating entity to the interconnected grid
- Contradictory to individual technologies, there is a notable scarcity of published integrated HPPC

In the scope of this review:

Microgrids (MG)

Hybrid Power Systems (HPS)

Hybrid Energy Systems(HES)

- 1. Stakeholders
- 2. Objectives
- 3. Structural attributes

In the scope of this review:

Hybrid Power Systems (HPS)

Hybrid Energy Systems(HES)

1. Co-Located
2. Coordinated Control
3. Grid-Connected
4. Utility-Scale
Several MW to a few GW

1. Co-Located

- 2. Coordinated Control
- 3. Grid-Connected
- 4. Utility-Scale

- and Implementation of a Hybrid Power Plant Controller'. Third International Hybrid Power Systems Workshop, 2018.
- [2] Das, K., Hansen, A.D., Adamou, P., et al. 'Dynamic Modelling of Wind-Solar-Storage Based Hybrid Power 2019.
- [3] Wilches.Bernal, F., Haines, T., Darbali.Zamora, R., et al. 'A Resource Aware Droop Control Strategy for a PV, Wind, and Energy Storage Flexible Power (Flexpower) [13] Plant'. In: 2022 IEEE Kansas Power and Energy Conference (KPEC), 2022. pp. 1-5
- [4] Haines, T., Darbali.Zamora, R., Jiménez.Aparicio, M., ^[14] et al. 'The Impact of Co-Located Clusters of Inverter Based Resources on a Performance-Based Regulation Market Metric', 2022. 2022 North American Power Symposium (NAPS)
- [5] Haines, T., Wilches.Bernal, F., Darbali.Zamora, R., et al. Clusters of Inverter-Based Resources'. In: 2022 IEEE Power and Energy Conference at Illinois (PECI), 2022. pp. 1–6
- [6] Sahin, O., Alahmad, B., Raducu, A.G., et al. 'New Frequency Control Philosophy for Future Hybrid Power Plants', 2023.
- [7] Alahmad, B., Sahin, O., Cassamo, N., et al. 'Coordinated control of hydrogen production based on wind power generation', 2023. 7th Hybrid Power Plants and Systems Workshop
- [8] Ionita, C., Raducu, A.G., Styliaras, N., et al. 'Online Optimization and Control for Renewable Hybrid Power Plants', 2019.
- [9] Long, Q., Das, K., Pombo, D.V., et al.: 'Hierarchical control architecture of co-located hybrid power plants', International Journal of Electrical Power & Energy Systems, 2022, 143, pp. 108407

- [1] Raducu, A.G., Styliaras, N., Funkquist, J., et al. 'Design [10] Attya, A.B., Vickers, A.: 'Operation and Control of a Hybrid Power Plant with the Capability of Grid Services Provision', Energies, 2021, 14, (13), pp. 3928
 - [11] Bakhtvar, M., Al.Hinai, A.: 'Robust Operation of Hybrid Solar–Wind Power Plant with Battery Energy Storage System', Energies, 2021, 14, (13), pp. 3781
 - Plant'. 18th International Wind Integration Workshop, [12] Vázquez.Pombo, D., Iov, F., Stroe, D.I.: 'A Novel Control Architecture for Hybrid Power Plants to Provide Coordinated Frequency Reserves', Energies, 2019, 12, (5), pp. 919
 - Long, O., Zhu, R., Das, K., et al. 'Interfacing energy management with supervisory control for hybrid power plants', 2021. pp. 347-351
 - Long, Q., Das, K., Sorensen, P.: 'Hierarchical Frequency Control of Hybrid Power Plants Using Frequency Response Observer', IEEE Transactions on Sustainable Energy, 2023, 14, (1), pp. 504-515
 - [15] Pombo, D., Raducu, A., Styliaras, N., et al. 'The First Utility Scale Hybrid Plant in Europe, The Case of Haringvliet', 2021.
 - 'Flexible Control of Synthetic Inertia in Co-Located [16] Long, Q., Celna, A., Das, K., et al.: 'Fast Frequency Support from Hybrid Wind Power Plants Using Supercapacitors', Energies, 2021, 14, (12), pp. 3495

Table 1 Summary of reviewed literature regarding the included technology, topology, control, and ancillary service provision. In this table, PSS, GS, OG, OS, Cen., Distr., Dymc., SI, and Opt. stand power storage system, grid support, optimized generation, output smoothing, centralized, Distributed, dynamical, Synthetic Inertia, and optimization, respectively.

		Te	chnolo	nies		То	nology							Contr	ol				Ancillary Services	Provision
Reference		10	ciniolo	gies		10	pology	0	bjectiv	ve	Ту	pe	Archi	tecture		Strategie	S		- Anemary Services	1 10 1 15 10 11
	WPP	SPP	BSS	PSS	Other	AC	AC/DC	GS	OG	OS	P	Q	Cen.	Distr.	Dymc.	Rule-based	Opt.	EMS	Frequency	Other
Raducu et al. [1]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark			Primary	
Das et al. [2]	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark				Primary	LVRT
Wilches-Bernal et al. [3]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark			\checkmark			Primary	
Haines et al. [4]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark						Secondary	
Haines et al. [5]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark				SI	
Sahin et al. [6]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR	
Alahmad et al. [7]	\checkmark				H2S	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark			mFRR	
Ionita et al. [8]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark					\checkmark				\checkmark		FCR	
Long et al. [9]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR, FRR, FFR	FRT
Attya et al. [10]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark			\checkmark					SI, Primary	
Bakhtvaret al. [11]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark		\checkmark							
Pombo et al. [12]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark		\checkmark				FCR, FFR	
Long et al. [13]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark				\checkmark	\checkmark		\checkmark	FCR, FRR, FFR	
Long et al. [14]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark			FCR, FFR	
Pombo et al. [15]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR	
Long et al. [16]	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark			FFR, FCR, FRR	

Observations

Table 1 Summary of reviewed literature regarding the included technology, topology, control, and ancillary service provision. In this table, PSS, GS, OG, OS, Cen., Distr., Dymc., SI, and Opt. stand power storage system, grid support, optimized generation, output smoothing, centralized, Distributed, dynamical, Synthetic Inertia, and optimization, respectively.

		Те	chnolo	oies		То	nology						Contr	rol				_ Ancillary Services	Provision
Reference		10	cimolo	gies		10	pology	C)bjecti	ve	Туре	Arch	itecture		Strateg	gies		- Allemary Services	1107151011
	WPP	SPP	BSS	PSS	Other	AC	AC/DC	GS	OG	OS	P Q	Cen.	Dis	D	D 1 1	1 0 1			0.1
Raducu et al. [1]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		W	PP. SPF	P. BSS	S te	chnologies ha	ave
Das et al. [2]	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			heen co	nsidar	bo	except for tw	0
Wilches-Bernal et al. [3]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark					eu,		0
Haines et al. [4]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark		St	udies als	so hav	еH	2 electrolyzer	ror
Haines et al. [5]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark	\checkmark			super	cap	acitor	
Sahin et al. [6]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark \checkmark	\checkmark				•	•		
Alahmad et al. [7]	\checkmark				H2S	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			mFRR	
Ionita et al. [8]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark				\checkmark				\checkmark		FCR	
Long et al. [9]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			FCR, FRR, FFR	FRT
Attya et al. [10]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark					SI, Primary	
Bakhtvaret al. [11]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark							
Pombo et al. [12]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark		\checkmark				FCR, FFR	
Long et al. [13]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark	FCR, FRR, FFR	
Long et al. [14]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark			FCR, FFR	
Pombo et al. [15]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			FCR	
Long et al. [16]	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark			FFR, FCR, FRR	

Observations

Table 1 Summary of reviewed literature regarding the included technology, topology, control, and ancillary service provision. In this table, PSS, GS, OG, OS, Cen., Distr., Dymc., SI, and Opt. stand power storage system, grid support, optimized generation, output smoothing, centralized, Distributed, dynamical, Synthetic Inertia, and optimization, respectively.

		Те	chnolo	gies		То	nology							Contr	ol				Ancillary Service	es Provision					
Reference		10	cilliolo	gies		10	pology	0	bjectiv	ve	Ту	pe	Archi	tecture		Strategie	S		Anomary Service	25 1 10 1 151011					
	WPP	SPP	BSS	PSS	Other	AC	AC/DC	GS	OG	OS	P	Q	Cen.	Distr.	Dymc.	Rule-based	Opt.	EMS	Frequency	Other					
Raducu et al. [1]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark			Primary						
Das et al. [2]	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark				Primary	LVRT					
Wilches-Bernal et al. [3]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark			\checkmark			Primary						
Haines et al. [4]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark						Secondary						
Haines et al. [5]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark								CT.						
Sahin et al. [6]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark	AC-coupled topology is addressed in all papers												
Alahmad et al. [7]	\checkmark				H2S	\checkmark		\checkmark	\checkmark		\checkmark														
Ionita et al. [8]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark								pape	513								
Long et al. [9]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	A	C/DC	C-coup	oled cons	side	red b	y only two	FRT					
Attya et al. [10]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark					of th	em								
Bakhtvaret al. [11]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark														
Pombo et al. [12]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark		\checkmark				FCR, FFR						
Long et al. [13]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark				\checkmark	\checkmark		\checkmark	FCR, FRR, FFR						
Long et al. [14]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark			FCR, FFR						
Pombo et al. [15]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR						
Long et al. [16]	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark			FFR, FCR, FRR						

_

-

C)bs	ser	va	tio	ons)								-	The a	ctive nov	Nor (contr	ol is included	1 in
Table 1 Summary	of re	view	ed li	terati	ure re	garc	ling the	e inc	clude	ed te	ch	nol	ogy, t	0		tion how		r tha		. In
this table, PSS, GS output smoothing,	able, PSS, GS, OG, OS, Cen., Distr., Dymc., SI, and Opt. stand power s ut smoothing, centralized, Distributed, dynamical, Synthetic Inertia, and c															ol loop h	nas l	Deen	considered	in ^{on,}
	Technologies Topology																liee	pap	615	lion
Reference		10		gles		10	pology	0	bjectiv	ve	Ту	ype	Archit	tecture		Strategie	S		- Ancinary Services	Provision
	WPP	SPP	BSS	PSS	Other	AC	AC/DC	GS	OG	OS	P	Q	Cen.	Distr.	Dymc.	Rule-based	Opt.	EMS	Frequency	Other
Raducu et al. [1]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark			Primary	
Das et al. [2]	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark				Primary	LVRT
Wilches-Bernal et al. [3]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark			\checkmark			Primary	
Haines et al. [4]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark						Secondary	
Haines et al. [5]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark				SI	
Sahin et al. [6]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR	
Alahmad et al. [7]	\checkmark				H2S	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark			mFRR	
Ionita et al. [8]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark					\checkmark				\checkmark		FCR	
Long et al. [9]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR, FRR, FFR	FRT
Attya et al. [10]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark			\checkmark					SI, Primary	
Bakhtvaret al. [11]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark		\checkmark							
Pombo et al. [12]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark		\checkmark				FCR, FFR	
Long et al. [13]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark				\checkmark	\checkmark		\checkmark	FCR, FRR, FFR	
Long et al. [14]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark			FCR, FFR	
Pombo et al. [15]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR	
Long et al. [16]	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark			FFR, FCR, FRR	

Observations

Table 1 Summary of reviewed literature regarding the included technology, topolog this table, PSS, GS, OG, OS, Cen., Distr., Dymc., SI, and Opt. stand power storage output amouthing controlized Distributed dynamical Synthetic Inartic and antimed

All dynamic controller is PI(D). rule-based controllers are for SOCfollowing, curtailment dispatch, etc.

output smoothing, centralized, Distributed, dynamical, Synthetic Inertia, and optimization, respectively.

		Те	chnolo	nies		То	nology							Contr	ol				Ancillary Services	Provision
Reference		10	cilliolo	gies		10	pology	0	bjectiv	ve	Ty	pe	Archi	tecture		Strategi	ies		- Anemary Services	110/151011
	WPP	SPP	BSS	PSS	Other	AC	AC/DC	GS	OG	OS	P	Q	Cen.	Distr.	Dymc.	Rule-based	l Opt.	EMS	Frequency	Other
Raducu et al. [1]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		√	\checkmark			Primary	
Das et al. [2]	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark				Primary	LVRT
Wilches-Bernal et al. [3]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark			\checkmark			Primary	
Haines et al. [4]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark						Secondary	
Haines et al. [5]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark				SI	
Sahin et al. [6]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR	
Alahmad et al. [7]	\checkmark				H2S	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark			mFRR	
Ionita et al. [8]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark					\checkmark				\checkmark		FCR	
Long et al. [9]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR, FRR, FFR	FRT
Attya et al. [10]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark			\checkmark					SI, Primary	
Bakhtvaret al. [11]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark		\checkmark							
Pombo et al. [12]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark		\checkmark				FCR, FFR	
Long et al. [13]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark				\checkmark	\checkmark		\checkmark	FCR, FRR, FFR	
Long et al. [14]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark			FCR, FFR	
Pombo et al. [15]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR	
Long et al. [16]	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark			FFR, FCR, FRR	

Observations

Table 1 Summary of reviewed literature regarding the included technology, topolog this table, PSS, GS, OG, OS, Cen., Distr., Dymc., SI, and Opt. stand power storage output emosthing controlized Distributed dynamical Synthetic Inertia and entime

The frequency services has been considered almost in every study

output smoothing, centralized, Distributed, dynamical, Synthetic Inertia, and optimization, respectively.

		Те	chnolo	nies		То	pology							Contr	ol				Ancillary Services	Provision
Reference		10	cilliolo	gies		10	pology	0	bjecti	ve	Ту	pe	Archit	ecture		Strategie	8		Andmary Services	
	WPP	SPP	BSS	PSS	Other	AC	AC/DC	GS	OG	OS	P	Q	Cen.	Distr.	Dymc.	Rule-based	Opt.	EMS	Frequency	Other
Raducu et al. [1]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark			Primary	
Das et al. [2]	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark				Primary	LVRT
Wilches-Bernal et al. [3]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark			\checkmark			Primary	
Haines et al. [4]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark						Secondary	
Haines et al. [5]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark				SI	
Sahin et al. [6]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR	
Alahmad et al. [7]	\checkmark				H2S	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark			mFRR	
Ionita et al. [8]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark					\checkmark				\checkmark		FCR	
Long et al. [9]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR, FRR, FFR	FRT
Attya et al. [10]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark			\checkmark					SI, Primary	
Bakhtvaret al. [11]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark		\checkmark							
Pombo et al. [12]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark		\checkmark				FCR, FFR	
Long et al. [13]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark				\checkmark	\checkmark		\checkmark	FCR, FRR, FFR	
Long et al. [14]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark			FCR, FFR	
Pombo et al. [15]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR	
Long et al. [16]	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark			FFR, FCR, FRR	

Hierarchical Control Architecture

- Based on the presented literature review and common practice in the industry
 - Grid code compliance
 - Profitability: Optimal operation
- The benefits of hierarchical control include:
 - Increased scalability
 - Improved robustness
 - Reduced complexity

A synoptic representation of multi-layer hierarchical control architectures of HPP in literature.

Hierarchical Control Architecture

Table 1 Summary this table, PSS, GS output smoothing,	of re S, OC cent	t n Di	A dia th cont	strib e im rol a	uted a pleme at asse	ppr enta et le	oac tion vel	h is of f (FF	ad rec R,	lop que SI,	ted f ency FCI	for [R)	o; Ti ag m	ne centra	alize tl	d ap he m	proach is ad ajority.	opted ir		
		Те	chnolo	nies		То	pology							Cont	rol				Ancillary Services	Provision
Reference		10	cilliolo	gies		10	pology	0	bjectiv	ve	Ту	pe	Archi	tecture		Strategie	S		- Ancinary Services	1101151011
	WPP	SPP	BSS	PSS	Other	AC	AC/DC	GS	OG	OS	P	Q	Cen.	Distr.	Dymc.	Rule-based	Opt.	EMS	Frequency	Other
Raducu et al. [1]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark			Primary	
Das et al. [2]	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark				Primary	LVRT
Wilches-Bernal et al. [3]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark			\checkmark			Primary	
Haines et al. [4]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark						Secondary	
Haines et al. [5]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark	\checkmark	√				SI	
Sahin et al. [6]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark	\checkmark	V		V	\checkmark			FCR	
Alahmad et al. [7]	\checkmark				H2S	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark			mFRR	
Ionita et al. [8]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark					\checkmark				\checkmark		FCR	
Long et al. [9]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR, FRR, FFR	FRT
Attya et al. [10]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark			\checkmark					SI, Primary	
Bakhtvaret al. [11]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark		\checkmark							
Pombo et al. [12]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			\checkmark		\checkmark		\checkmark				FCR, FFR	
Long et al. [13]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark				\checkmark	\checkmark		\checkmark	FCR, FRR, FFR	
Long et al. [14]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark			FCR, FFR	
Pombo et al. [15]	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			FCR	
Long et al. [16]	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark			FFR, FCR, FRR	

Hierarchical Control Architecture

[1] Long, Q., Das, K., Sorensen, P.: 'Hierarchical Frequency Control of Hybrid Power Plants Using Frequency Response Observer', IEEE Transactions on Sustainable Energy, 2023, 14, (1), pp. 504–515

Challenges and Future Directions

1. Interaction of multi-layer and multi-vendor controllers

 the interaction between the voltage control at the technology plant level and asset level can cause oscillations in voltage and reactive power output [1]

2. Service Stacking

- 1. At different levels and different time intervals
- 2. a contraction between the services such that the realization of one specific objective could impede the achievement of another: Fault-ride-through [2]
- 3. P2X: inaccurately capturing the dynamic behavior and its possible interactions with other assets effects delivery of the service [3].

[1] Fan, L., Miao, Z., Ramasubramanian, D., et al.: 'Operational Challenges of Solar PV Plus Storage Power Plants and Modeling Recommendations', IEEE Open Access Journal of Power and Energy, 2023.
[2] Long, Q., Das, K., Pombo, D.V., et al.: 'Hierarchical control architecture of co-located hybrid power plants', International Journal of Electrical Power & Energy Systems, 2022, 143, pp. 108407
[3] ozein, M.G., De.Corato, A.M., Mancarella, P.: 'Virtual Inertia Response and Frequency Control Ancillary Services From Hydrogen Electrolyzers', IEEE Transactions on Power Systems, 2023, 38, (3), pp. 2447–2459.

Challenges and Future Directions

- 3. Black-start Capability
 - shorter starting time of renewables + incorporation of ESS [1] shows good potential for HPP black-start capability
 - This will present a multi-stage procedure in which different control architectures might be adopted at each stage

[1] Zhao, C., Andersen, P.B., Træholt, C., et al.: 'Gridconnected battery energy storage system: a review on application and integration', Renewable and Sustainable Energy Reviews, 2023, 182, pp. 113400[2] Long, Q., Das, K., Pombo, D.V., et al.: 'Hierarchical control architecture of co-located hybrid power plants', International Journal of Electrical Power & Energy Systems, 2022, 143, pp. 108407.

[2] Kölle, K., Göçmen, T., Garcia.Rosa, P.B., et al.: 'Towards integrated wind farm control: Interfacing farm flow and power plant controls', Advanced Control for Applications, 2022, 4, (2), pp. e105 2447-2459.

[3] Dykes, K., et al.: 'Wind farm flow control: prospects and challenges', Wind Energy Science, 2022, 7, (6), pp. 2271–2306. publisher: Copernicus GmbH

4. Artificial intelligence (AI)-Driven Uncertainty Mitigation

- 1. Uncertainties pertaining to the power grid, such as faults and frequency disturbances
- 2. Weather and environmental-related uncertainties like wind speed and solar irradiance
- 3. Uncertainties associated with modeling parameters of BSS, P2X, storage tank, and reelectrification assets
- 4. Uncertainties connected with Electricity and commodity X markets, including variations in pricing and demand dynamic
- Identification of different sources of uncertainty and development of advanced dynamic modeling [1]
- controlling uncertain parameters via AI-driven model-free approaches [2].

[1] Shen, S., Sadoughi, M., Chen, X., et al.: 'A deep learning method for online capacity estimation of lithium-ion batteries', Journal of Energy Storage, 2019, 25, pp. 100817
[2] Liew, J., Göçmen, T., Lio, W.H., et al.: 'Model-free closed-loop wind farm control using reinforcement learning with recursive least squares', Wind Energy, 2023,

Challenges and Future Directions

- 5. Exposure to Communication Failure and Risk of Cyber-Attacks
 - latency, reliability, and security of communication impact the operation and service quality, for example, communication delays may cause negative resistance, oscillations, and damping [1].
 - Tightiz et al. [2] have applied the IEC 61850 information model to enable the Microgrid central controller to support the frequency restoration
 - Developing new HHPs with new standards and their interconnection is easier but hybridizing already operating plants may require an update in the communication layer.

[1] an, L., Miao, Z., Ramasubramanian, D., et al.: 'Operational Challenges of Solar PV Plus Storage Power Plants and Modeling Recommendations', IEEE Open Access Journal of Power and Energy, 2023, PP, pp. 1–1

[2] Tightiz, L., Yang, H., Bevrani, H.: 'An Interoperable Communication Framework for Grid Frequency Regulation Support from Microgrids', Sensors, 2021, 21, (13), pp. 4555

Conclusion

- This study delves into the pivotal realm of control architecture for HPPs with a focus on co-located utility-scale grid-connected installations.
- The predominant architecture for HPPs is hierarchical control, known for scalability, robustness, and simplifying complex control systems.
- The control objectives have been achieved both in a centralized and distributed manner.
- The noted challenges encompass the need to further investigation of the matter

Soheil Pouraltafi-kheljan

PhD Student | Operation and Control of Hybrid Power Plants Interfacing EMS

Email: sopou@dtu.dk

1

LinkedIn

L

