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A B S T R A C T

Polycrystals illuminated by high-energy X-rays or neutrons produce diffraction patterns in which
the measured diffraction peaks encode the individual single crystal strain states. While state of
the art X-ray and neutron diffraction approaches can be used to routinely recover per grain mean
strain tensors, less work has been produced on the recovery of higher order statistics of the strain

✩ This work was funded by Vetenskapsrådet - Röntgen Ångström Cluster, project no. 2017-06719.
∗ Corresponding author.
E-mail address: axel.henningsson@solid.lth.se (A. Henningsson).
ttps://doi.org/10.1016/j.cma.2023.116417
eceived 17 May 2023; Received in revised form 28 August 2023; Accepted 29 August 2023
vailable online 8 September 2023
045-7825/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cma.2023.116417
https://www.elsevier.com/locate/cma
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116417&domain=pdf
mailto:axel.henningsson@solid.lth.se
https://doi.org/10.1016/j.cma.2023.116417
http://creativecommons.org/licenses/by/4.0/


A. Henningsson, A.G. Wills, S.A. Hall et al. Comput. Methods Appl. Mech. Engrg. 417 (2023) 116417

T
s
t
m
n
t
d

b

Polycrystals
Probability distributions

distributions across the individual grains. In the setting of small deformations, we consider the
problem of estimating the crystal elastic strain tensor probability distribution from diffraction
data. For the special case of multivariate Gaussian strain tensor probability distributions, we
show that while the mean of the distribution is well defined from measurements, the covariance
of strain has a null-space. We show that there exist exactly 6 orthogonal perturbations to this
covariance matrix under which the measured strain signal is invariant. In particular, we provide
analytical parametrisations of these perturbations together with the set of possible maximum-
likelihood estimates for a multivariate Gaussian fit to data. The parametric description of the
null-space provides insights into the strain PDF modes that cannot be accurately estimated
from the diffraction data. Understanding these modes prevents erroneous conclusions from
being drawn based on the data. Beyond Gaussian strain tensor probability densities, we derive
an iterative radial basis regression scheme in which the strain tensor probability density is
estimated by a sparse finite basis expansion. This is made possible by showing that the operator
mapping the strain tensor probability density onto the measured histograms of directional
strain is linear, without approximation. The utility of the proposed algorithm is demonstrated
by numerical simulations in the setting of single crystal monochromatic X-ray scattering. The
proposed regression methods were found to robustly reject outliers and accurately predict the
strain tensor probability distributions in the presence of Gaussian measurement noise.

1. Introduction

Neutrons and high energy X-rays are key tools for non-destructive testing in the materials research community (e.g., [1,2]).
oday, large scale synchrotron, reactor and spallation facilities offer a wide range of material characterisation possibilities where in-
itu 3D volume measurements in the bulk of dense materials can be achieved, e.g., [3,4]. Coupled with modern statistical regression
ools and high performance computing, a plethora of physical quantities, embedded into first principle mathematical material
odels, can be characterised, e.g., [5,6]. Such estimations are important for successful calibration and validation of advanced
umerical materials models. Importantly, the non-destructive nature of neutrons and X-rays enables measurements on the same
est specimens to be repeated, decreasing uncertainty in the estimation and unlocking the possibility for monitoring of changes
uring in-situ testing, e.g., loading [7] or heating [8].

Three Dimensional X-ray Diffraction Microscopy (3DXRD) [9] and the High Energy Diffraction Microscopy (HEDM) [10] are
ecoming established as workhorses for the diffraction microscopy imaging community. Using hard X-rays (∼10–100 keV), these

microscopy techniques enable per-grain characterisation of polycrystalline aggregates featuring thousands of grains [11–14]. With
a penetration depth in the range of mm for dense materials, 3DXRD/HEDM has developed into a popular tool for non destructive
testing of metals, alloys, rocks and granular media. The technique relies on the measurement of 2D mono-channel digital images of
spotty diffraction patterns to estimate per-grain position, volume, average strain [15], average stress [16,17] and orientation [18].

Beyond the average grain state, accessible by standard 3DXRD and in pursuit of intragranular variation, Scanning Three
Dimensional X-ray Diffraction Microscopy (s3DXRD) [19] and point focused High Energy Diffraction Microscopy (pf-HEDM) [20]
have developed under the 3DXRD and HEDM umbrellas. The key difference in s3DXRD is the focusing of the X-ray beam such that
only sub-volumes of the crystals are illuminated at any given time. By carefully scanning the sample across the beam, bundles of 2D
diffraction pattern images are acquired. From these images, tomography-like reconstruction methods can be used to estimate the
grain shapes as well as the intragranular strain tensor fields [21–24]. In addition to achieving sub-grain resolution, narrowing the
beam helps alleviate the issue of diffraction spot overlap due to abundant scattering [25]. Unfortunately, despite recent progress in
beam brilliance and detector technology, the scanning type methods are time consuming, with state of the art experiments often
requiring tens of hours for a full 3D scan of a sample, e.g., [26]. On the other hand, classical (full-field) 3DXRD/HEDM microscopy,
using a wide beam, offers a 10–100 times speedup.

For polycrystal samples with a moderate number of grains (100–1000), with minimal diffraction spot overlap, efficient algorithms
for mapping the individual crystal orientations exist [27]. The main drawback of full-field 3DXRD/HEDM, in relation to its scanning
mode, is the loss of information on the spatial origin of diffraction within the grains. This makes reconstruction of orientation and
strain maps over the grain volume very challenging, especially for highly deformed samples [28]. However, valuable intragranular
information can still be attained in terms of probability density distributions over the underlying spatial fields. For example, in
the work of Poulsen et al. [29] and Hansen et al. [30] the probability density of orientation states within the individual crystals
where shown to be recoverable. In similar spirit [31], inspired by Behnken [32], showed how the mean strain tensor state for each
intragranular orientation state can be efficiently baked into the inverse problem, enriching the capabilities of the 3DXRD/HEDM
microscope. The latter of these methods recovers a lattice strain density function (LSDF), sometimes also refereed to as a strain
orientation density function (SODF). As explained by Bernier and Miller [33], the variation in the micromechanical state is not
fully captured by the SODF. To illustrate we may consider a near-perfect crystal, such that the orientation distribution function
approaches a Dirac delta, the resulting SODF will then only provide information on the mean strain tensor in the grain. None the
less, the diffracting grains can possess spatially varying elastic strain fields, even if the grain orientation is close to constant. More
generally, considering an orientation spread within the grain, each individual orientation state in the grain can exist on a spatially
extended sub-volume of the grain over which the strain tensor is unlikely to be constant.
2
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Just as the grain orientation variation unlocks a new type of material parameter estimation [34], higher order statistics on the
istribution of the elastic strain tensors can be used to calibrate micro-mechanical material models. Motivated by this, we decouple
he problem of orientation reconstruction from that of strain and develop a regression framework capable of estimating the strain
ensor probability distribution (strain PDF) inside the individual crystals within a polycrystalline sample. The aim is to recover
he 6-dimensional strain PDF that describes the scalar likelihood of encountering any one particular strain tensor at any randomly
uniformly) selected point within the given grain. We emphasise that our method recovers the strain PDF in a single crystal diffraction
etting.

Our method is primarily aimed at upgrading the full-field mode of the 3DXRD/HEDM microscope, where peak strain broadening
s a known phenomena (c.f [35]). However, our results can be cast abstractly as a regression from sets of histograms of directional
trains attached to an unknown spatial volume. Other neutron and X-ray microscopy methods where such data can reliably be made
vailable will, therefore, be applicable for a similar upgrade. For instance [36] recently showed that the second moment of such
irectional strain histograms can be reliably recovered from neutron Bragg edge transmission measurements on polycrystals.

The structure of the paper is as follows. In Section 2, we describe how the considered diffraction measurements relate to the strain
tate of the crystals and introduce the concept of histograms of directional strain. In Section 3 we define our target reconstruction
uantity – the strain PDF – and present the inverse problem we are solving. In Section 4, we discuss some of the benefits and
imitations of recovering the strain PDF. In Section 5, we derive the mapping between measured and reconstructed quantities. Using
he established measurement model we describe our solution to the inversion problem in Section 6. In Section 7, we discuss the
bservability of the inverse problem for the special case of a multivariate Gaussian strain PDF and provide a closed form solution
or its estimation. To verify our mathematical results we devote Section 8 to a numerical simulation study of a spherical iron (Fe)
rain with a cubic crystal structure in mechanical self-equilibrium. We summarise our findings in Section 9, and give an outlook
or future research in Section 10. Finally, we conclude our paper in Section 11.

. Crystal strains in diffraction measurements

The conditions for diffraction to occur from a crystal can be described by the Laue equations. Under elastic scattering conditions,
etting the incident wavevector, 𝒌, be aligned with the incident photon propagation direction and denoting the scattered wavevector

by, 𝒌′, the Laue equations state that

𝑪𝑇 (𝒌′ − 𝒌) = 2𝜋
⎡

⎢

⎢

⎣

ℎ
𝑘
𝑙

⎤

⎥

⎥

⎦

, 𝒌𝑇 𝒌 = 𝒌′𝑇 𝒌′ = 4𝜋2

𝜆2
, (1)

where ℎ, 𝑘 and 𝑙 are Miller indices and the columns of the matrix 𝑪 are the crystal unit cell vectors in direct space. Eq. (1) represents
a geometrical relation between the X-ray wavelength, 𝜆, and the lattice plane separation, 𝑑ℎ𝑘𝑙, resulting in alignment of the outgoing
scattered wave crests. Reducing the Laue equations (1) to 2D results in the well known Bragg’s law,

2𝑑ℎ𝑘𝑙 sin(𝜃) = 𝑚𝜆, 𝑚 = 1, 2, 3, .. (2)

where 𝜃 is the Bragg angle formed between 𝒌 and the diffracting crystal planes. Considering a small scalar strain, 𝑠, acting on the
lattice planes we find from Bragg’s law (2) that

2(1 + 𝑠)𝑑ℎ𝑘𝑙 sin(𝜃) = 𝑚𝜆 → sin(𝜃) = 𝑚𝜆
2(1 + 𝑠)𝑑ℎ𝑘𝑙

, (3)

i.e, the scattering angle, 𝜃, is sensitive to directional strain. Given some reference angle of scattering, 𝜃0, corresponding to a strain
free crystal, we find that the directional strain, 𝑠, existing along the diffraction vector, 𝑮 = 𝒌′ − 𝒌, can be expressed as

𝑠 =
𝑑ℎ𝑘𝑙 − 𝑑(0)ℎ𝑘𝑙

𝑑(0)ℎ𝑘𝑙

=
sin(𝜃0) − sin(𝜃)

sin(𝜃)
, (4)

where 𝑑ℎ𝑘𝑙 and 𝑑(0)ℎ𝑘𝑙 are the strained and strain free lattice plane separations respectively. The geometrical context of the above
discussed quantities is presented in Fig. 1.

For a more in depth explanation of the fundamental concepts of X-ray scattering see, for example, Als-Nielsen and McMorrow
[37].

2.1. The 3DXRD/HEDM framework

The experimental 3DXRD/HEDM techniques exploit the Laue equations (1) to find the crystal lattices of the individual grains in
a diffracting polycrystalline aggregate. The typical experimental setup is depicted in Fig. 2 where the sample, in this case, rotates
about a single (vertical) axis throughout the measurement sequence. When the angle between the lattice planes and 𝒌 fulfil Bragg’s
law (2) diffraction spots are measured with the 2D detector placed behind the sample. The Laue equations (1) constrain 𝒌′ to fall on
ones of increasingly larger opening angles. As a result, the diffraction pattern seen in Fig. 2 is characterised by non-zero intensity
alling on rings centred around the detector and beam intersection point.

Commonly in the 3DXRD/HEDM type of diffraction applications, the unit cell matrix, 𝑪, is given in a multiplicative form as

𝑪 = 𝑼𝑪 , (5)
𝑐

3
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Fig. 1. Conceptual drawing of scattering from a set of crystal lattice planes. The difference between incident, 𝒌, and scattered, 𝒌′, wavevector forms the diffraction
vector 𝑮, which is orthogonal to the scattering planes. A perturbation to the lattice plane distance 𝑑ℎ𝑘𝑙 will be observed as a change in Bragg angle 𝜃.

Fig. 2. A polycrystalline aggregate is rotated about a single axis, �̂�𝑠 = �̂�𝑙 , while fully illuminated by a beam of high energy X-rays with wavevector along �̂�.
he recorded digital images of spotty diffraction data (black dots) can be used to infer the grain positions and orientations. The Cartesian sample coordinates
ollow the turntable while the Cartesian laboratory frame is fixed with respect to sample motion. A diffraction image is recorded at each turntable rotation
𝜔0 , 𝜔1 , 𝜔2 ..).

here the crystal rotation matrix, 𝑼 , acts to rotate the unit cell vector, now contained in crystal coordinates in 𝑪𝑐 , into the
ample coordinate system. This multiplicative split is motivated by the fact that, while the matrix 𝑪𝑐 is fairly constant between
rystals sharing a phase in the sample, the orientation of the crystals, 𝑼 , can vary drastically between grains. The primary task in
DXRD/HEDM is to find a set of crystal orientations, 𝑼 , such that the measured data can be explained. This procedure is denoted
s grain mapping or grain indexing.

Introducing 𝑩 = 2𝜋𝑪−𝑇
𝑐 and 𝑮ℎ𝑘𝑙 =

[

ℎ 𝑘 𝑙
]𝑇 , we write

𝑮𝑠 = 𝑼𝑩𝑮ℎ𝑘𝑙 , (6)

here subscript 𝑠 has been used to denote that 𝑮𝑠 is given in sample coordinates. As the sample is rotated by an angle 𝜔 around
̂ 𝑠 the corresponding rotation matrix, 𝜴, provides the map between laboratory and sample coordinates. The central equation for
DXRD/HEDM is, therefore,

𝑮𝑙 = 𝜴𝑼𝑩𝑮ℎ𝑘𝑙 , (7)

here 𝑮𝑙 can be computed from observations of 𝒌′𝑙. Thus, given a set of unit cell parameters (defining 𝑩), a selected lattice plane
defining 𝑮ℎ𝑘𝑙), a crystal orientation (𝑼 ) and a sample rotation (𝜴), Eq. (7), can be used to predict 𝑮𝑙 = 𝒌′𝑙 −𝒌𝑙. Given experimental
arameters, such as detector size and position, these equations provide a model connecting the measured diffraction patterns and
he properties of the polycrystalline aggregate. Indeed, sophisticated algorithms have been developed, and refined over years, to
4



A. Henningsson, A.G. Wills, S.A. Hall et al. Comput. Methods Appl. Mech. Engrg. 417 (2023) 116417

r
i
b
d
e

o

F
m
g

w
m

T
t
c

d

w

i
o
f

reconstruct the set of 𝑼 and 𝑩 matrices that correspond to the individual grains within the aggregate, e.g., [11,12,27]. Once
estimated, any proceeding analysis can operate on a per grain basis, separating out the parts of the diffraction images that are
associated to any given crystal.

2.2. Histograms of directional strain

The recording on the detector of diffraction peaks generated by a crystal with known orientation, 𝑼 , are digital images
epresenting a discrete rendering of an underlying 2D photon intensity distribution. The formation of this intensity distribution
s a nontrivial process involving, among other things; the crystal shape, the crystal deformation, the beam coherence, the energy
andwidth of beam, the detector point spread function and the detector pixel size [38,39]. To recover the strain tensor probability
ensity associated to the given crystal, we are interested in modelling the impact of the crystal strain to the peak shape. To this
nd we shall denote the spatial coordinate with 𝒙 ∈ R3 and let the deformation gradient tensor 𝑭 ∈ R3×3 map from reference, 𝒙0,

to current deformed configuration as

𝑭𝒙0 = 𝒙. (8)

We denote the undeformed reference unit cell, 𝑪0, and the current deformed unit cell matrix as 𝑪𝑐𝑢𝑟. Let [⋅] be the diffraction
perator that, given an input unit cell matrix, returns the corresponding set of diffraction vectors, {𝑮1,𝑮2,… ,𝑮𝑚}, observed in

3DXRD/HEDM. Clearly, the measured set of diffraction vectors originates from the deformed configuration as

[𝑪𝑐𝑢𝑟] = {𝑮1,𝑮2,… ,𝑮𝑚}. (9)

However, there exist modes of deformation, which we, here, denote by 𝑭 𝑝, to which the diffraction set is immutable, such that

[𝑭 𝑝𝑪0] = [𝑪0]. (10)

or instance, dislocation glide that results in a constant-volume plastic deformation and leaves the crystal lattice unchanged, has no
easurable effect on the diffraction patterns in 3DXRD/HEDM. This motivates the use of a multiplicative split of the deformation

radient tensor similar to that used in crystal plasticity [40–44],

𝑭 = 𝑭 𝑒𝑭 𝑝, (11)

here the elastic deformation, 𝑭 𝑒, is defined, here, as any deformation to the crystal that will cause a nonzero perturbation in the
easured set of diffraction vectors,

[𝑭 𝑒𝑪0] ≠ [𝑪0]. (12)

he plastic contribution, 𝑭 𝑝, here maps from the reference state to an intermediate stress-free configuration while 𝑭 𝑒 maps from
he intermediate configuration to the current deformed configuration. See Appendix A Fig. 13 for a summary of the discussed
onfigurations.

Building on the above arguments, we define a fictive configuration, 𝑪, that would result from the application of the elastic
eformation to the reference unit cell,

𝑪 = 𝑭 𝑒𝑪0, (13)

ith the special property,

[𝑪] = [𝑪𝑐𝑢𝑟]; (14)

.e the fictive unit cell matrix, 𝑪 , is diffraction equivalent to the true deformed unit cell matrix, 𝑪𝑐𝑢𝑟𝑟. To relate the elastic, diffraction
bservable, deformation, 𝑭 𝑒, to the crystal strain tensor field, we define the total Green–Lagrange strain in the intermediate stress
ree configuration [43] as

𝒆 = 1
2
𝑭 −𝑇

𝑝 (𝑭 𝑇𝑭 − 𝑰)𝑭 −1
𝑝 = 1

2
(𝑭 𝑇

𝑒 𝑭 𝑒 − 𝑰)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝒆𝑒

+ 1
2
(𝑰 − 𝑭 −𝑇

𝑝 𝑭 −1
𝑝 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒆𝑝

, (15)

where the total strain, 𝒆, is decomposed into an elastic part, 𝒆𝑒, and a plastic part, 𝒆𝑝. Working in the limit of small strains, we are
now ready to define our ultimate goal that is to reconstruct the probability density distribution of the elastic strain tensor field, 𝒆𝑒.
By Taylor expansion we find

𝒆𝑒 = 𝒆𝑒(𝒙) =
⎡

⎢

⎢

⎣

𝑒11(𝒙) 𝑒12(𝒙) 𝑒13(𝒙)
𝑒12(𝒙) 𝑒22(𝒙) 𝑒23(𝒙)
𝑒13(𝒙) 𝑒23(𝒙) 𝑒33(𝒙)

⎤

⎥

⎥

⎦

≈ 1
2
(𝑭 𝑇

𝑒 + 𝑭 𝑒) − 𝑰 , (16)

(see e.g., [45] for an introduction to continuum-mechanics). Since all unit cell matrices are invertible, by definition, it follows
from Eq. (13) that

𝑭 = 𝑪𝑪−1. (17)
𝑒 0

5
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Using the Laue Equations (1), we find a reference diffraction vector, 𝑮0, and a measured diffraction vector, 𝑮, as

𝑮0 = 2𝜋𝑪−𝑇
0 𝑮ℎ𝑘𝑙 , 𝑮 = 2𝜋𝑪−𝑇𝑮ℎ𝑘𝑙 . (18)

ombining Eqs. (17) and (18) we find that

𝑮 = 𝑭 −𝑇
𝑒 𝑮0. (19)

ultiplying Eq. (16) from left and right by 𝑮 and making use of Eq. (19), we find

𝑮𝑇 𝒆𝑒𝑮 = 1
2
(𝑮𝑇𝑮0 +𝑮𝑇

0 𝑮) −𝑮𝑇𝑮, (20)

Normalising Eq. (20) by 𝑮𝑇𝑮, we now arrive at a scalar directional strain measure, 𝑠ℎ𝑘𝑙 = �̂�𝑇 𝒆𝑒�̂�, as

𝑠ℎ𝑘𝑙 = �̂�𝑇 𝒆𝑒�̂� =
𝑮𝑇𝑮0

𝑮𝑇𝑮
− 1, (21)

where

�̂� = 𝑮
√

𝑮𝑇𝑮
. (22)

ote that for small elastic deformations the approximation

�̂� = 𝑮
√

𝑮𝑇𝑮
≈

𝑮0
√

𝑮𝑇
0 𝑮0

, (23)

is also valid. Likewise, from Eq. (21), it follows that the directional strain, 𝑠ℎ𝑘𝑙, is only weakly dependent on lattice rotations, as
𝑮𝑇𝑮 = 𝑩𝑇𝑼𝑇𝑼𝑩 = 𝑩𝑇𝑩 and 𝑮𝑇

0 𝑮 = 𝑩𝑇
0 𝑼

𝑇
0 𝑼𝑩 where 𝑼𝑇

0 𝑼 ≈ 1 for moderate deformations. This motivates the decoupling of
strain reconstruction from that of lattice rotations in the presence of small deformations. While it may be possible to extend the
derivations presented above, and in the following, to a large deformation setting we limit the scope of this paper to that of small
elastic strains.

Considering that each of the detector pixels composing a single diffraction peak is associated to a distinct diffraction vector, 𝑮, we
see from Eq. (21) that also 𝑠ℎ𝑘𝑙 will vary over the diffraction peak. As the pixel intensity values of the diffraction peak are proportional
to the diffracting sub volumes of the grain we have access to a histogram, ℎ(𝑠ℎ𝑘𝑙), over directional strains in the crystal. To form
this histogram each normalised pixel intensity weight is to be added to the corresponding bin-count for the associated directional
strain value, 𝑠ℎ𝑘𝑙. Note that this procedure reduces the information contained in the diffraction peak to a one dimensional function
in 𝑠ℎ𝑘𝑙. Importantly, these histograms of directional strain are directly linked to the underlying spatial strain tensor field as

ℎ(𝑠ℎ𝑘𝑙) =
1
𝑉𝛺 ∫

𝑠ℎ𝑘𝑙+𝑤∕2

𝑠ℎ𝑘𝑙−𝑤∕2 ∫R3
(�̂�𝑇 𝒆𝑒(𝒙)�̂� − 𝑠′)𝑑𝒙𝑑𝑠′, 𝑉𝛺 = ∫𝛺

𝑑𝒙, (24)

here  is an indicator function supported on the crystal grain domain 𝛺, 𝑉𝛺 is the volume of the grain and 𝑤 is the histogram
bin width. To simplify our following analysis we introduce a flattened vector notation similar to Henningsson and Hendriks [24].
Utilising the symmetry of the strain tensor we write

𝑬 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑒11
𝑒22
𝑒33
𝑒12
𝑒13
𝑒23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, �̄� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜅2
𝑥

𝜅2
𝑦

𝜅2
𝑧

2𝜅𝑥𝜅𝑦
2𝜅𝑥𝜅𝑧
2𝜅𝑦𝜅𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (25)

nd find that the inner product in Eqs. (21) and (24) become

𝑠 = �̂�𝑇 𝒆𝑒(𝒙)�̂� = �̄�𝑇𝑬. (26)

ith the introduction of the histograms of directional strains we are now ready to formally define our sought quantity; the strain
DF. Once this additional definition is made we can state our full inverse problem formulation.

. Problem formulation

We seek to estimate the probability density function over strain tensors (strain PDF), 𝑝𝑬 (𝝐), that describes the scalar probability
f encountering any one particular strain tensor, 𝝐, at a randomly (uniformly) selected point, 𝒙, in the grain. Formally, we define
he strain PDF, 𝑝𝑬 ∶ R6 → R1, associated to a spatial strain tensor field, 𝑬(𝒙), as

𝑝𝑬 (𝝐) =
1 (𝑬(𝒙) − 𝝐)𝑑𝒙, 𝑉𝛺 = 𝑑𝒙, (27)

𝑉𝛺 ∫R3 ∫𝛺

6
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Fig. 3. The mapping of a spatial field, 𝑬, supported on the unit disc, centred at 𝒙 = [0.5, 0.5], results in a new spatial field, 𝑬′(𝒙) = 𝑬([𝒙]), such that
(𝒙) ≠ 𝑬′(𝒙). Nevertheless, the two corresponding strain PDFs remain identical, 𝑝𝑬 (𝝐) = 𝑝𝑬′ (𝝐), as long as the map, [𝒙], is area preserving.

nd state the inverse problem: Given a set of histograms, ℎ1(𝑠ℎ𝑘𝑙), ℎ2(𝑠ℎ𝑘𝑙), .., ℎ𝑚(𝑠ℎ𝑘𝑙), all of which are associated with a single grain, we
eek an estimation of the strain PDF, 𝑝𝑬 (𝝐), of the given grain, such that the measured histograms can be plausibly explained.

We emphasise that each histogram, ℎ𝑖(𝑠ℎ𝑘𝑙), corresponds to a single diffraction peak and measures directional strain in a known
istinct direction, �̄�𝑖, in the indexed crystal. The task is therefore to find a parametric expression for 𝑝𝑬 (𝝐) such that the measured
istograms, ℎ1(𝑠ℎ𝑘𝑙), ℎ2(𝑠ℎ𝑘𝑙), .., ℎ𝑚(𝑠ℎ𝑘𝑙), are well modelled. To achieve this we will need to establish the transformation from strain
DF to directional histograms of strains. Before pursuing this task, however, we shall discuss some general properties and limitations
f the strain PDF. Especially, we emphasise how the strain PDF provides richer information about the grain deformation state
ompared to the grain average strain tensor.

. Properties of the strain probability density function

We note that while the strain PDF exists for any one spatial strain field 𝑬(𝒙), the mapping is not necessarily unique. As an
xample, let  ∶ R3 → R3 be an area preserving function such that det(′) = 1, ∀𝒙, where ′ is the Jacobian of . Making use of
his map we define a modified spatial strain field as 𝑬′(𝒙) = 𝑬([𝒙]) with 𝒚 = [𝒙]. From the definition of the strain PDF it now
ollows that

𝑝𝑬 (𝝐) =
1
𝑉𝛺 ∫R3

(𝑬(𝒚) − 𝝐)𝑑𝒚 = 1
𝑉𝛺 ∫R3

(𝑬([𝒙]) − 𝝐)𝑑[𝒙] =

1
𝑉𝛺 ∫R3

(𝑬′(𝒙) − 𝝐) det(′)𝑑𝒙 = 1
𝑉𝛺 ∫R3

(𝑬′(𝒙) − 𝝐)𝑑𝒙 = 𝑝𝑬′ (𝝐).
(28)

Simple examples of  on R3 includes combinations of rigid body rotations and translations. In Fig. 3 we give a nonlinear example
on R2, mapping the unit disc centred at 𝒙 = [0.5, 0.5] through the area preserving map

[𝒙] =
[ √

𝑥1
2𝑥2

√

𝑥1

]

, 𝒙 > 0. (29)

The strain PDF provides weaker information on the deformation of the domain compared to the spatial strain tensor field itself.
Nevertheless, in relation to only knowing the mean value of a spatial strain tensor field, the strain PDF is a rich quantity. We
provide an illustration of the concept of a strain PDF in Fig. 4. In this example a Finite Element solver was used to solve for the
equilibrium strain field given a symmetric (across 𝑦) geometry and boundary load. The body was considered linear elastic with
width and height both set to 1 μm, while the out of 𝑥 − 𝑦 thickness was set to 100 μm such that plane strain conditions prevailed.
Owing to the symmetry, a perturbation in Young’s modulus, 𝐸, will correspond to a simple scaling of the strain field. As illustrated
in the projections of the corresponding strain PDFs in Fig. 4 (left column), the mean of the distribution is immutable to such a
scaling of the spatial strain field (the cerise dot marking the mean does not move). The topology of the strain PDF does, however,
change as a result of the perturbation in material stiffness, 𝐸. This motivates the value of retaining deeper statistics on the strain
PDF, beyond the commonly derived mean value. Similar examples can be constructed with respect to perturbations in boundary
load, object topology, Poisson ratio, etc.

5. Measurement model

To solve the inverse problem defined in Section 3 we establish a measurement model that can map the strain PDF to a set of
histograms of directional strain. Let us therefore consider a single histogram, ℎ𝑗 [𝑠𝑗 ], and let us inquire for the bin count at the bin
centre, 𝑠𝑗 = 𝑠∗𝑗 , such that ℎ∗𝑗 = ℎ𝑗 [𝑠∗𝑗 ], where 𝑠∗𝑗 is the directional strain at the bin centre, 𝑠∗𝑗 = �̄�𝑇𝑬∗. The subdomain on strain space
holding the strain tensors, 𝑬∗, that fulfil this equality is then defined by

1
‖�̄�‖2

�̄�𝑇𝑬∗ = 𝑠
‖�̄�‖2

. (30)

Eq. (30) defines a hyperplane on R6 with unit normal �̂� = �̄�∕‖�̄�‖2 and scalar origin offset 𝑡 = 𝑠∕‖�̄�‖2. It follows that the histogram
in count, ℎ∗, is given by the integral across all planes with normal �̂� and origin of-sets 𝑡 ∈ [𝑠∗ − 𝑤∕2, 𝑠∗ + 𝑤∕2] where 𝑤 is the
𝑗 𝑗 𝑗

7
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Fig. 4. Example of the topological shape of a strain PDF (left) revealed in part by its projection onto one of the 15 Cartesian planes in strain space (zoomed
in around the mean strain which is marked out by a cerise dot and a dashed cross). The spatial strain field (right) is the linear elastic Finite Element solution
of a symmetric plane strain boundary value problem using 4944 triangular constant strain elements. Changing the stiffness of the material (top row vs. bottom
row) results in a scaled FEM solution. While the mean of the strain PDF is invariant to a change in stiffness, the full topology of the strain PDF mutates with
the change in material stiffness, 𝐸 (compare left top and left bottom). This illustrates that the strain PDF is a richer quantity than the mean of the spatial strain
ensor field.

istogram bin width. Thus,

ℎ∗𝑗 [𝑠
∗
𝑗 ] = ∫

𝑠∗𝑗+𝑤∕2

𝑠∗𝑗−𝑤∕2 ∫𝝐∈𝛱(𝑡,�̂�𝑗 )
𝑝𝑬 (𝝐)𝑑𝝐𝑑𝑡, (31)

here 𝛱(𝑡, �̂�𝑗 ) is the hyperplane with normal �̂�𝑗 and scalar origin offset 𝑡 = 𝑠∕‖�̄�‖2. This represents a linear measurement model
nd requires the computation of a single volume integral per measured histogram bin. Let us now define the linear operator 𝑗
hich maps any function, 𝑓 (𝝐), to 𝑘 histogram bins modelling all histogram bin counts for the 𝑗:th histogram as

𝑗 [𝑓 (𝝐)] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∫
𝑠1𝑗+𝑤∕2

𝑠1𝑗−𝑤∕2
∫𝝐∈𝛱(𝑡,�̂�𝑗 )

𝑝𝑬 (𝝐)𝑑𝝐𝑑𝑡

⋮
⋮

∫
𝑠𝑘𝑗 +𝑤∕2

𝑠𝑘𝑗 −𝑤∕2
∫𝝐∈𝛱(𝑡,�̂�𝑗 )

𝑝𝑬 (𝝐)𝑑𝝐𝑑𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

ℎ𝑗 [𝑠1𝑗 ]
⋮
⋮

ℎ𝑗 [𝑠𝑘𝑗 ]

⎤

⎥

⎥

⎥

⎥

⎦

, (32)

where 𝑠𝑘𝑗 denotes the 𝑘:th bin centre of the 𝑗:th histogram. A closed form expression for the inverse operator, −1
𝑗 , is not known.

However, by selecting a parametric expression for the strain PDF and a cost function, measuring the difference between model and
measured histograms of directional strain, gradient based optimisation techniques can be used to recover the parameters defining
the strain PDF. We therefore proceed to introduce a finite basis expansion of the strain PDF.

6. Reconstruction approach

6.1. Finite basis strain PDF expansion

Decomposing the strain PDF into a linear combination of 𝑛 basis functions, 𝜑𝑖, as

𝑝𝑬 (𝝐) =
𝑛
∑

𝑐𝑖𝜑𝑖(𝝐), 𝑐𝑖, 𝜑𝑖 ∈ R1, (33)

𝑖

8
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we find the maximum-likelihood estimator in the presence of Gaussian noise as

argmin
𝑐𝑖

𝑚
∑

𝑗
‖ℎ𝑗 −𝑗 [𝑝𝑬 ]‖22, 𝚜.𝚝. 𝑝𝑬 =

𝑛
∑

𝑖
𝑐𝑖𝜑𝑖(𝝐) > 0. (34)

where 𝑐𝑖 are the basis coefficients to be optimised with respect to the scalar cost function. Since 𝑗 is a linear operator it suffices
to compute 𝑗 [𝜑𝑖(𝝐)] to evaluate the cost function and its gradient with respect to 𝑐𝑖. To achieve this we shall adopt a radial basis
function as

𝜑𝑖(𝝐) = exp
(

−
(𝝐 − 𝒑𝑖)𝑇 (𝝐 − 𝒑𝑖)

2𝜎2

)

. (35)

he benefit of this selection is twofold. Firstly, using the error function, we will be able to derive a closed form solution to Eq. (31)
s a sum of error functions. Retaining analytical expressions for the forward model is paramount as the alternative of numerical
ntegration scales poorly with the number of dimensions (which is R6 for our application). Secondly, the selection in (35) simplifies
he requirement 𝑝𝑬 > 0 to a linear constraint in the unknowns 𝑐𝑖 > 0. The optimisation problem given in (34) is therefore rendered
onvex.

.2. Basis function integration

To execute our forward model, 𝑗 [𝜑𝑖], we seek the solution of the integral of the form

∫

𝑠∗𝑗+𝑤∕2

𝑠∗𝑗−𝑤∕2 ∫𝝐∈𝛱(𝑡,�̂�𝑗 )
exp

(

−
(𝝐 − 𝒑𝑖)𝑇 (𝝐 − 𝒑𝑖)

2𝜎2

)

𝑑𝝐𝑑𝑡. (36)

nalysis of Eq. (36) (see Appendix C) leads to a bounded Gaussian integral which can be solved using the error function, erf , as

𝐼𝑡 = 4𝜋3𝜎6
|

|

|

|

erf

(

𝑏

𝜎
√

2

)

− erf

(

𝑎

𝜎
√

2

)

|

|

|

|

, (37)

where 𝑎 = (𝑠∗𝑗 −𝑤∕2)𝒑𝑇𝑖 �̂�𝑗 and 𝑏 = (𝑠∗𝑗 +𝑤∕2)𝒑𝑇𝑖 �̂�𝑗 respectively.

6.3. Maximum-likelihood estimate

In the presence of additive Gaussian noise to the measured histogram bin counts we find the maximum-likelihood estimator of
𝑐𝑖 as

argmin
𝑐𝑖

‖𝒉 −𝑳𝒄‖22, 𝚜.𝚝 𝒄 > 𝟎, (38)

where 𝒄 ∈ R𝑛 is a column vector holding the basis coefficients, 𝑐𝑖, the matrix 𝑳 ∈ R𝑀×𝑛 contains the model integral over each
individual basis function and 𝒉 ∈ R𝑀 is a column vector stacking all histogram bin values for 𝑗 = 1, 2,… , 𝑚 in accordance with 𝑳.
Specifically,

𝑳 =

⎡

⎢

⎢

⎢

⎢

⎣

1[𝜑1] … 1[𝜑𝑛]
2[𝜑1] … 2[𝜑𝑛]

⋮ ⋱ ⋮
𝑚[𝜑1] … 𝑚[𝜑𝑛]

⎤

⎥

⎥

⎥

⎥

⎦

, 𝒄 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑐1
𝑐2
⋮
𝑐𝑛

⎤

⎥

⎥

⎥

⎥

⎦

, 𝒉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℎ1(𝑠1)
ℎ1(𝑠2)

⋮

ℎ1(𝑠𝑘)
⋮

⋮

ℎ𝑚(𝑠1)
ℎ𝑚(𝑠2)

⋮

ℎ𝑚(𝑠𝑘)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (39)

To solve for 𝒄 in Eq. (38) we use the active set method described by Lawson and Hanson [46] and implemented in scipy.
optimize.nnls [47].

6.4. Basis placement

Selecting basis function positions, 𝒑𝑖, over a uniform rectangular grid in R6 and letting 𝑛 → ∞ while 𝜎 → 0 there exist 𝑐𝑖 > 0
such that any positive function 𝑝𝑬 can be approximated. While this is technically true, for any practical application we have to
se a finite number of basis functions, 𝑛, each with some finite, nonzero, radius 𝜎. One could imagine that a grid type approach

to basis placement will maintain a good performance as long as 𝑛 is some large finite number. However, owing to the number of

dimensions of the problem, this approach scales poorly. To illustrate, consider a target strain PDF which is believed to hold relevant

9
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Fig. 5. Illustration of increasingly good basis approximations retrieved from the iteration of Algorithm 1. The current model function and the residual field are
plotted at the end of each batch. The black circles correspond to basis function locations. The radius of the basis function was relaxed as 𝜎 = [0.25, 0.1, 0.06, 0.03]

ith 𝐵 = 20 and 𝐽 = 20.

nformation in a neighbourhood of ±25× 10−4 units of strain around some known mean value. Targeting an approximate resolution
f ±1 × 10−4 units of strain and producing an equidistant grid over strain space centred around the mean strain, we find that we
eed a total of ∼108 basis functions. The corresponding computation of 𝑳 ∈ R𝑀×108 is impractical, if not altogether unfeasible.

Moreover, considering the underlying physics, 𝑝𝑬 may be narrowly supported on R6. For instance, in the case when the underlying
spatial strain tensor field is in a state of plane stain, as is the case in Fig. 4, 𝑝𝑬 will be fully contained by a 3-dimensional hyperplane
on R6. In a more general case, the mechanical equilibrium equations constrain the support of the strain PDF. This means that the
placement of basis functions on a rectangular grid runs the risk of wasting a large portion of the basis set. As an example, in the case
of plane strain, only ≈253(≈104) out of the 108 previously mentioned basis function would be active in approximating 𝑝𝑬 , effectively
wasting ≈99.9936% of the basis function set. Thus, we are presented with the challenge of distributing a sparse set of basis functions
on R6 such that the final approximation of 𝑝𝑬 can explain the observed histograms.

6.4.1. Sequential sampling approach
To address the above described sampling issue, we present a class of stochastic basis placement algorithms that are heuristically

expected to perform well for mapping out the support of smooth, simply connected, positive functions. The central idea evolves
around producing a sparse sequence of basis sets such that the explanatory value of the basis sets with respect to measured data
increases with iteration. The approach is, in part, similar to sequential Monte Carlo methods [48] as the proposal distribution, from
which new basis locations are drawn, is allowed to mutate between iterations. However, to the best of the authors knowledge, the
method we use has not been reported on previously. We summarise our approach in Algorithm 1. The procedure can be summarised
as follows. First a single basis function is placed at a location, 𝝐, at which the target function 𝑝𝑬 is believed to be supported. For
instance, we have found that putting the initial basis function at the mean strain of the grain performs well. Next a basis coefficient 𝑐1
for our single basis function is selected such that 𝑝𝑬 becomes a probability distribution. From this probability distribution 𝐵 samples,
𝝐1, 𝝐2,… , 𝝐𝐵 , are randomly drawn. At each sampled location, 𝝐𝑖, a basis function is now placed such that the approximation of 𝑝𝑬 is
expanded to contain 𝐵+1 basis functions. The coefficients of the basis set is now recomputed such that the likelihood of observing the
strain histogram data is maximised, i.e a least squares problem is solved. Any basis functions that appears to have a small explanatory
value, i.e a small fitted coefficient, 𝑐𝑖 ≤ 𝜉, are now removed from the basis expansion. The value of 𝜉 is selected arbitrarily with
higher values resulting in a sparser number of basis functions and less freedom for the algorithm to match the measured data, while
a smaller value of 𝜉 will result in a more dense basis set and more freedom for the algorithm to match the measured data. For
instance, we found that setting 𝜉 = 0, and thus keeping all basis functions that are on the support of 𝑝𝑬 , performed well in our
strain estimation problem. After the basis set has been pruned of any unwanted basis functions the resulting function 𝑝𝑬 is again
normalised to represent a probability distribution. A new sample of 𝐵 locations, 𝝐1, 𝝐2,… , 𝝐𝐵 , is drawn from the updated distribution
and the procedure of basis coefficient fitting is repeated. This iteration is allowed to continue for a fixed number of redraw iterations
𝐽 . For large selections of 𝐽 the root mean squared error between of the maximum likelihood fit is seen to plateau, i.e a large selection
of 𝐽 will in general perform better than a small selection of 𝐽 , with diminishing returns as 𝐽 grows. So far we have summarised the
inner most sub-iteration of Algorithm 1 which we denote as a batch run. After this sub-iteration/batch comes to an end the standard
deviation (or radius) of the radial basis functions, 𝜎, is decreased and the entire procedure is repeated, carrying forward all basis
functions accumulated in the previous sub-iteration. Note that while the radius, 𝜎, varies globally between iteration it does not vary
between the individual basis functions in the same basis expansion set. Basis locations are now again randomly drawn using the

new, smaller, 𝜎 value in the basis expansion of 𝑝𝑬 and both old and new basis functions are marked for pruning as previously. After
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𝐾 sub-iterations of the algorithm, each featuring 𝐽 basis location draws of size 𝐵, the algorithm terminates at the final smallest
length-scale, 𝜎𝐾 . By decreasing 𝜎 slowly, in many fine steps, better results were found in general, at the expense of computational
complexity. For instance, in the result presented in 8 we used (𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5) = (10.0, 8.4, 7.1, 5.9, 5.0) and 𝐵 = 𝐽 = 25. As 𝜎 is
gradually diminished the algorithm refines the approximation of 𝑝𝑬 and is able to make use of an increasingly larger set of basis
functions.

Algorithm 1: A Stochastic Radial Basis Placement Strategy
Result: 𝑛, 𝜎, 𝒑𝑖 ∀, 𝑖 = 1, .., 𝑛,
Select batch size, 𝐵, and number of batch iterations, 𝐽 ;
Select a relaxation sequence [𝜎1, .., 𝜎𝐾 ], with 𝜎𝑘+1 < 𝜎𝑘;
Select 𝒑1 on the support of 𝑝𝑬 ;
Set 𝑝(11)𝑬 (𝝐) = 𝑐1𝜑1(𝝐);
Fit 𝑐1 with respect to data (solve Equation (38));
for 𝜎𝑘 in [𝜎1, .., 𝜎𝐾 ] do

Set 𝜎 = 𝜎𝑘;
for 𝑗 = 1, .., 𝐽 do

Draw 𝐵 new basis locations, 𝒑𝑖, from 𝑝(𝑘𝑗)𝑬 ;
Let 𝑛 ← 𝑛 + 𝐵;
Extend expansion 𝑝(𝑘𝑗)𝑬 (𝝐) =

∑𝑖=𝑛
𝑖=1 𝑐𝑖𝜑𝑖(𝝐);

Fit 𝑐𝑖 with respect to data (solve Equation (38));
Set prune count, 𝑝 = 0;
for 𝑖 = 1, .., 𝑛 do

if 𝑐𝑖 ≤ 𝜉 then
Mark 𝜑𝑖 for pruning;
Increment prune count 𝑝 ← 𝑝 + 1

end
end
Prune marked 𝜑𝑖 from expansion 𝑝(𝑘𝑗)𝑬 (𝝐) =

∑𝑖=𝑛
𝑖=1 𝑐𝑖𝜑𝑖(𝝐);

Decrement basis set count 𝑛 ← 𝑛 − 𝑝 ;
end

end
Accept 𝑝𝑬 = 𝑝(𝐾𝐽 )

𝑬 =
∑𝑖=𝑛

𝑖=1 𝑐𝑖𝜑𝑖(𝝐) ;

We illustrate the evolving basis expansion produced by our Algorithm 1 in Fig. 5. For illustrative purposes the example case
akes place on R2 with the target data selected as a direct observation of the underlying target function (rightmost plot in Fig. 5).
he residual between the current model function and the target function is seen to decrease as the algorithm produces a sequence
f customised basis sets. The algorithm parameters where set to 𝐵 = 20, 𝐽 = 20 and 𝜎 = [0.25, 0.1, 0.06, 0.03]. This means that the

algorithm can theoretically attain a maximum of 20 × 20 × 4 = 1600 basis functions over the four batch runs. We note that the
final number of accumulated basis functions produced by our algorithm is much sparser (𝑛 = 30). This means that although we
have to solve the inverse problem of fitting 𝑐𝑖 80 times throughout the run, each inversion is fast owing to the low number of
basis functions. This property is especially beneficial when the algorithm used to solve for 𝑐𝑖 scales super-linearly with 𝑛. A concise
python implementation of Algorithm 1 in the setting of Fig. 5 is openly available at https://gist.github.com/AxelHenningsson/
8a9179f859751634859eb7e051ebd804.

7. Observability and reduced models

It is well known that the mean of the strain PDF can be recovered from 6 measured diffraction peaks [15]. This does however
not indicate whether or not the strain PDF itself is well defined from measurements of directional strain. To answer this question
one needs to investigate under what perturbations the strain PDF generates identical histograms of directional strains through the
model, [𝑝𝑬 ]. For an arbitrary functional form of the strain PDF a complete description of this null-space is challenging. However,
a feasible generalisation of a mean value analysis is to let the strain PDF be a multivariate Gaussian.

In the following we shall derive a class of perturbations to multivariate Gaussian strain PDFs that leave the measured histograms
unchanged. From this analysis we will also find a closed form estimator of the strain PDF. We start our analysis by reiterating why
the mean value of the strain PDF is well defined.

7.1. First moments

By definition, the expected value of the strain PDF is

E[𝑬] = 𝑬𝑝𝑬 (𝝐)𝑑𝝐, (40)
∫

11
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p

where E[⋅] denotes the expectation operator. Considering the expected value of any one single measured directional strain histogram,
ℎ𝑗 (𝑠𝑗 ), and using the linearity of expectation, we have

E[𝑠𝑗 ] = E[�̄�𝑇
𝑗 �̄�] = �̄�𝑇

𝑗 E[𝑬], (41)

where the index 𝑗 denotes association to a fixed direction, �̄�𝑗 . We note that (41) holds true regardless of the functional form of
𝑝𝑬 (𝝐). Denoting 𝝁𝑬 = E[𝑬] and collecting a set of �̄�𝑗 and E[𝑠𝑗 ], with 𝑗 = 1,… , 𝑚, in the matrices 𝑲 and 𝝁𝒔, as

𝑲 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̄�𝑇
1

�̄�𝑇
2
⋮

�̄�𝑇
𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝝁𝒔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

E[𝑠1]
E[𝑠2]
⋮

E[𝑠𝑚]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (42)

we may produce a linear system of equations,

𝑲𝝁𝑬 = 𝝁𝒔. (43)

From Eq. (43) we conclude that 𝝁𝑬 is well defined if and only if 𝑲 is full column rank. This requires the collection of a minimum
of 6 linearly independent �̄� vectors. As an illustration, the choice

�̂�1 =
[

1 0 0
]

, �̂�2 =
[

0 1 0
]

, �̂�3 =
[

1 1 1
]

∕
√

3

�̂�4 =
[

1 1 0
]

∕
√

2, �̂�5 =
[

1 0 1
]

∕
√

2, �̂�6 =
[

0 1 1
]

∕
√

2,
(44)

roduces the fully ranked 𝑲 matrix as

𝑲 = 1
3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3 0 0 0 0 0
0 3 0 0 0 0
1 1 1 2 2 2

3∕2 3∕2 0 3 0 0
3∕2 0 3∕2 0 3 0
0 3∕2 3∕2 0 0 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (45)

We note that in this example no �̄� vector is closer than 45◦ to the �̂�𝑠 = [0, 0, 1] axis. This explains why it is possible to reconstruct
mean crystal grains strains in 3DXRD/HEDM using only a single axis of rotation. We note that in practice, to reduce experimental
error, it is common to solve an overdetermined system, using more than 6 observations [15].

7.2. The multivariate Gaussian case

Let the strain PDF be a multivariate Gaussian as

𝑝𝑬 (�̄�) = 𝑛 exp
(

−1
2
(�̄� − 𝜇𝜖)𝑇𝜮−1(�̄� − 𝜇𝜖)

)

, 𝑛 = 1
√

(2𝜋)6𝚍𝚎𝚝[𝜮]
, 𝜮 = 𝜮𝑇 ∈ R6×6, �̄� ∈ R6×1, (46)

such that 𝑝𝑬 (�̄�) describes the scalar probability of encountering any one particular strain tensor, �̄�. Considering 𝑬 ∼ 𝑝𝑬 (�̄�) as a
stochastic variable, we can then form a set of scalar stochastic variables (directional strains) as

𝑆𝑗 = �̄�𝑇
𝑗 𝑬, 𝑗 = 1, 2, 3..𝑚. (47)

Since the transformation from 𝑬 to 𝑆𝑗 is linear, it follows that 𝑆𝑗 ∼ 𝑝𝑆𝑗
(𝑠) is Gaussian with PDF

𝑝𝑆𝑗
(𝑠) = 𝑎 exp

(

−1
2
(𝑠 − �̄�𝑇

𝑗 𝜇𝜖)(�̄�
𝑇
𝑗 𝜮�̄�𝑗 )−1(𝑠 − �̄�𝑇

𝑗 𝜇𝜖)
)

, 𝑎 = 1
√

2𝜋𝚍𝚎𝚝[�̄�𝑇
𝑗 𝜮�̄�𝑗 ]

, 𝑗 = 1, 2, 3..𝑚. (48)

Now, considering that the measurements, ℎ𝑗 (𝑠𝑗 ), are the histograms formed through the binning of the PDFs, 𝑝𝑆𝑗
(𝑠), it follows that,

if 𝑝𝑆𝑗
(𝑠) is invariant under a perturbation of 𝑝𝑬 (�̄�), so are the measurements, ℎ𝑗 (𝑠𝑗 ). The task of characterising the null-space is,

therefore, reduced to that of finding perturbations to 𝑝𝑬 (�̄�) such that 𝑝𝑆𝑗
(𝑠) remains unaltered.

7.2.1. Measurement invariant perturbations
To permute 𝑝𝑬 (�̄�) inside the class of multivariate Gaussians, we can change either the mean or the covariance of the distribution.

Our preceding analysis has already shown that the mean of 𝑝𝑬 (�̄�) is well defined, regardless of the functional form. Thus, we can
immediately turn our analysis to perturbations in 𝜮. To this end, we introduce 𝜮∗ = 𝜮 + 𝑵 , where 𝑵 is some perturbation that
preserves symmetry and positive definiteness, i.e.,

𝑵 = 𝑵𝑇 , 𝒛𝑇 (𝜮 +𝑵)𝒛 ≥ 0, ∀𝒛 ≠ 𝟎. (49)

We find the modified PDF over directional strains as

𝑝∗𝑆𝑗
(𝑠) = 𝑎 exp

(

−1
2
(𝑠 − �̄�𝑇

𝑗 𝜇𝜖)(�̄�
𝑇
𝑗 (𝜮 +𝑵)�̄�𝑗 )−1(𝑠 − �̄�𝑇

𝑗 𝜇𝜖)
)

, 𝑎 = 1
√

2𝜋𝚍𝚎𝚝[�̄�𝑇 (𝜮 +𝑵)�̄� ]
. (50)
𝑗 𝑗

12
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Clearly

𝑝∗𝑆𝑗
(𝑠) = 𝑝𝑆𝑗

(𝑠) 𝑖𝑓𝑓 �̄�𝑇
𝑗 (𝜮 +𝑵)�̄�𝑗 = (�̄�𝑇

𝑗 𝜮�̄�𝑗 ), (51)

and it follows that the null-space requires the existence of 𝑵 such that

�̄�𝑇
𝑗 𝑵�̄�𝑗 = 0, ∀𝑗. (52)

A thorough analysis of Eq. (52) will reveal 6 possible selections of 𝑵 . The somewhat lengthy derivations of these 6 covariance
perturbations are presented in Appendix B and we proceed here immediately to summarise the result of these calculations.

7.2.2. Parametric null-space
In conclusion, if the strain PDF is a Gaussian on R6, with positive definite covariance 𝜮, the null-space of the strain PDF on this

function class is described by the addition of a non-positive-semi-definite symmetric matrix to the strain PDF Gaussian covariance
matrix

𝜮∗ = 𝜮 +𝑵(𝛼, 𝛽, 𝛾, 𝜉, 𝜂, 𝜌), 𝚜.𝚝 𝒛𝑇𝜮𝒛 + 𝒛𝑇𝑵𝒛 > 0, ∀𝒛 ∈ R6, 𝒛 ≠ 𝟎, (53)

where the class of matrices 𝑵 = 𝑵(𝛼, 𝛽, 𝛾, 𝜉, 𝜂, 𝜌) is parameterised as

𝑵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 2𝛼 2𝛽 0 0 2𝛾
2𝛼 0 2𝜂 0 2𝜉 0
2𝛽 2𝜂 0 2𝜌 0 0
0 0 2𝜌 −𝛼 −𝛾 −𝜉
0 2𝜉 0 −𝛾 −𝛽 −𝜌
2𝛾 0 0 −𝜉 −𝜌 −𝜂

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝛼, 𝛽, 𝛾, 𝜉, 𝜂, 𝜌 ∈ R. (54)

Since the scalars 𝛼, 𝛽, 𝛾, 𝜉, 𝜂, 𝜌 can be chosen arbitrarily small it will, in general, be possible to construct such perturbations while
maintaining positive definite 𝜮∗.

7.2.3. Null-space verification
To verify that the null-space leaves the measured histograms unaltered, in Fig. 6 we show the distribution of the directional

strain in the �̂�𝑇 =
√

50∕27[1∕2, 1∕2, 1∕5] direction for a series of perturbations to an underlying simulated strain tensor probability
density.

Each histogram in Fig. 6 was constructed by drawing 20 000 000 strain tensors at random from a multivariate Gaussian, where
the unperturbed covariance matrix was selected as

𝜮 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

63 0 0 0 0 0
0 34 0 0 0 0
0 0 3 0 0 0
0 0 0 49 0 0
0 0 0 0 25 0
0 0 0 0 0 25

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

× 10−7. (55)

s expected, the two histograms in Fig. 6 that are in the null-space described in Section 7.2.2 look identical (triangles and circles).
imilarly, we see in Fig. 6 that perturbations to the strain distribution that are not in the null-space leads to changes in the histogram
squares and stars).

.2.4. Maximum-likelihood estimator for a Gaussian strain PDF
The relationship between the first moment of the strain PDF and the histograms of directional strain was established in Eq. (43).

o fully describe the Gaussian strain PDF we are, therefore, left with the estimation of the covariance matrix 𝜮. Letting V[⋅] be the
ariance operator and denoting the (scalar) variance associated to a single histogram of directional strain by 𝜎2𝑗 we find with the
se of Eq. (47) that

𝜎2𝑗 = V[𝑆𝑗 ] = V[�̄�𝑇
𝑗 𝑬] = �̄�𝑇

𝑗 V[𝑬]�̄�𝑗 = �̄�𝑇
𝑗 𝜮�̄�𝑗 . (56)

hus, by collecting the variance of each histogram in a column vector, 𝝈2
𝒔 = [𝜎21 , 𝜎

2
2 ,…]𝑇 , a system of equations linear in the

omponents of 𝜮 can be established. To express 𝜮 as a function of 𝝈2
𝒔 in a least squares sense we introduce in Appendix B a

flattening of Eq. (56) (in analogy with �̄� and 𝑬 in Eq. (26)). Letting the column vector 𝜮∗ ∈ R21×1 hold the unique components of
the strain PDF covariance matrix 𝜮∗ ∈ R6×6 and letting the matrix 𝑽 ∈ R𝑚×21 operate the outer product maps defined in Eq. (56)
we find that

𝝁𝑬 = (𝑲𝑇𝑲)−1𝑲𝑇𝝁𝒔,

𝜮∗ = (𝑽 𝑇 𝑽 )−1𝑽 𝑇 𝝈2
𝒔 + 𝒖(𝛼, 𝛽, 𝛾, 𝜂, 𝜉, 𝜌),

(57)

where the null-space of the covariance is described by the vector 𝒖 ∈ R21×1 which is the flattening of 𝑵 in Eq. (54). The rows of

are explicitly described in Eq. (80) in Appendix B. Without any further information we set 𝒖 = 𝒖(0, 0, 0, 0, 0, 0) = 𝟎 and find in

13
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Fig. 6. Zoom in on histograms of directional strain in the �̂�𝑇 = [1∕2, 1∕2, 1∕5]∕
√

27∕50 direction corresponding to four realisations of each 20 000 000 strain
ensors drawn from four distinct Gaussian strain PDFs. The covariance components of the four Gaussian strain PDFs, 𝛴∗

𝑖𝑗 , were modified according to the legend.
It is clear to see that when the modification to the covariance is in the null-space (triangles) the original (circles) histogram is recovered. Other perturbations
of the covariance (squares and stars) result in observable changes in the histogram.

conclusion that
𝝁𝑬 = (𝑲𝑇𝑲)−1𝑲𝑇𝝁𝒔,

𝜮∗ = (𝑽 𝑇 𝑽 )−1𝑽 𝑇 𝝈2
𝒔 .

(58)

q. (58) can be thought of as an approximation to the strain PDF which, in general, does not need to be a Gaussian. The main
enefits of the Gaussian approximation compared to the finite basis expansion solution presented in Section 6 is its simplicity and
ow computational complexity.

. Simulation study

To test the derived framework we reconstruct the strain PDF for a synthetically generated data set. Importantly, the simulation
ramework described in this section operates directly on the spatial domain (𝒙 ∈ R3) for data generation. This ensures that we are
ot committing the inverse crime of using one and the same mapping for both regression and data generation. Additionally, as
escribed in Section 8.4, we introduce challenging levels of noise and outliers to test the robustness of the proposed methods.

.1. Strain field generation

Since the underlying spatial strain tensor field is expected to be in equilibrium on the unknown domain 𝛺, we generate a strain
tensor field that satisfies the point-wise equilibrium equations,

𝜕𝜎11
𝜕𝑥

+
𝜕𝜎21
𝜕𝑦

+
𝜕𝜎31
𝜕𝑧

= 0

𝜕𝜎12
𝜕𝑥

+
𝜕𝜎22
𝜕𝑦

+
𝜕𝜎32
𝜕𝑧

= 0

𝜕𝜎31
𝜕𝑥

+
𝜕𝜎32
𝜕𝑦

+
𝜕𝜎33
𝜕𝑧

= 0

, �̄� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎11
𝜎22
𝜎33
𝜎12
𝜎13
𝜎23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝑫𝑬, (59)

where 𝑫 is a 6 × 6 isotropic material stiffness matrix,

𝑫 = 𝐸
(1 + 𝜈)(1 − 2𝜈)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 (1 − 2𝜈) 0 0
0 0 0 0 (1 − 2𝜈) 0
0 0 0 0 0 (1 − 2𝜈)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (60)

To generate a random strain field satisfying (60), we constructed a zero mean Gaussian process, similar to Hendriks et al. [23],
using a squared exponential kernel that we mapped through the partial differential operator that encodes the Maxwell equilibrium
14
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Fig. 7. Volume rendering of spatial strain tensor field in units of [10−4] sampled over a spherical domain using an equilibrium encoded Gaussian process. The
strain tensor field is used to construct synthetic histograms of directional strains considering a cubic crystal structure (space group Im-3m).

Fig. 8. A total of 𝑗 = 1,… , 134 directions, �̂�𝑗 , generated from a cubic iron (Fe) crystal structure are displayed by projecting the unit ball unto the 𝜅𝑥 − 𝜅𝑦-plane
(sample coordinate system). The sampling is seen to be both non-uniform as well as incomplete as a result of the crystal structure and experimental limitations.

stress solutions [49]. We used iron (Fe) like materials parameters, 𝐸 = 200 GPa, 𝜈 = 0.3, and sampled a strain field at random on a
spherical domain with radius 5 μm. The length-scale of the kernel was set to the radius of the sphere and the amplitude of the kernel
was set to 60. An interpolation of the resulting strain tensor field can be visualised in Fig. 7. For strain tensor sampling ∼50 000
spatial coordinates, 𝒙, where selected over the spherical domain on an equidistant grid.

8.2. Crystal generation

With samples from the spatial strain tensor field defined, we are left with the generation of �̂� before histograms of directional
strains can be formed. To mimic a 3DXRD/HEDM experiment we generate �̂� based on a crystal lattice structure. Adopting the cubic
symmetry of iron (Fe) with unit cell parameters,

𝑎 = 2.8665 Å, 𝑏 = 2.8665 Å, 𝑐 = 2.8665 Å, 𝛼 = 90◦, 𝛽 = 90◦, 𝛾 = 90◦, (61)

and a wavelength of 0.19 Å, we consider all reflections that fall on a 2048 × 2048 flat area detector with a 50 μm pixel size. The
resulting diffraction events where confined to fall in the range 𝜃 = [5◦, 15◦]. Without loss of generality, we set the crystal orientation
as 𝑼 = 𝑰 and solve the Laue equations (1) for 𝑮. The corresponding �̂� directions where computed by normalising the 𝑮 vectors,
which, by definition, are orthogonal to the diffracting lattice planes. To simulate the limitations imposed by the finite energy of the
X-rays and the single axis of rotation we remove all �̂� that fall within 10◦ of the rotation ±�̂�-axis. This procedure generated a total
𝑗 = 1,… , 132 directions, �̂�𝑗 . The spread of the generated directions on the unit ball can be viewed in Fig. 8.

8.3. Histogram formation

To form the final histograms of directional strains we must select a histogram bin size. The practical achievable resolution
in terms of bin size depends on the instrument, material, geometry and detector parameters. In this work we select to use 6 bins
spaced equidistantly throughout histogram formation. We select the range of the bins to cover fully the directional strains generated
by multiplying through the sample strain tensors with the generated �̂� directions. Additionally, for visual purposes, we pad the
histogram with an additional bin on each side of this range to illustrate that no strain is falling outside our interval. Note that the
proposed regression method can equally be deployed in the presence of fewer or more histogram bins. Naturally, the number of
accessible bins will regulate what resolution can be expected of the recovered strain PDF.

Given the spatial strain tensor sample, 𝑬(𝒙1),𝑬(𝒙2),… ,𝑬(𝒙𝑚), we generate samples of directional strains as

𝒔 = (𝑠 , 𝑠 , ..𝑠 ) = (�̄�𝑇𝑬(𝒙 ), �̄�𝑇𝑬(𝒙 ),… , �̄�𝑇𝑬(𝒙 )), ∀𝑗. (62)
𝑗 1 2 𝑚 𝑗 1 𝑗 2 𝑗 𝑚
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Fig. 9. Synthetic histograms used as input to the derived regression framework. Each column in the image is a histogram of directional strain in the direction
of a fixed �̂�𝑗 . The pixel colour values represent the (noisy) probability that the directional strain will fall into the respective bin.

or each 𝑗 the corresponding sample of 𝒔𝑗 was used to form a histogram. The histograms were normalised to represent probability
densities.

8.4. Noise model

Before deploying our regression framework, we introduce noise on the measured histogram bin values, ℎ𝑖𝑗 , where ℎ𝑖𝑗 denotes
he 𝑖:th bin in the 𝑗:th histogram. We add independent, identically distributed, Gaussian noise to all bins as

ℎ𝑖𝑗 ← ℎ𝑖𝑗 + 𝑒𝑖𝑗 , 𝑒𝑖𝑗 ∼  (0, 𝜎noise
𝑖𝑗 ), ∀𝑖, 𝑗, (63)

here

𝜎noise
𝑖𝑗 = 10−4 + ℎ𝑖𝑗∕𝑆𝑁𝑅1. (64)

he signal to noise ratio was set to 𝑆𝑁𝑅1 = 50 representing a few percent of noise per bin with the constant 10−4 ensuring that
oise is added to bins featuring zero counts. We simulate outliers in the data by adding an additional larger Gaussian noise to a
andomly (uniformly) selected subset as

ℎ𝑖𝑗 ← ℎ𝑖𝑗 + 𝑒outlier
𝑖𝑗 , 𝑒outlier

𝑖𝑗 ∼  (0, 𝜎outlier
𝑖𝑗 ),∀𝑖, 𝑗 ∈ , (65)

here

𝜎outlier
𝑖𝑗 = 10𝜎noise

𝑖𝑗 (66)

nd ∼20% of the data histogram bins were selected for outlier corruption. The final step of our noise model is a re-normalisation,
nsuring that the histogram bin data are positive. We subtract the minimal bin-count,

ℎ𝑖𝑗 ← ℎ𝑖𝑗 − 𝚖𝚒𝚗
𝑖
(ℎ𝑖𝑗 ), ∀𝑗, (67)

nd normalise,

ℎ𝑖𝑗 ← ℎ𝑖𝑗

(

∑

𝑖
𝑤ℎ𝑖𝑗

)−1
∀𝑗. (68)

ollecting all generated histograms, one for each direction �̂�𝑗 , the total available data can be visualised as an image. In Fig. 9 the
oisy histogram data used for regression is displayed. Each pixel corresponds to a single histogram bin and each column to a single
istogram. The colourmap reveals the bin-count as the probability of encountering a particular directional strain in the crystal.

.5. Results

We deployed the generic radial basis regression framework derived in Section 6 to the synthetic histogram data described in
ection 8. Additionally, using the closed form solution given in Eq. (58), we provide estimates based on a sparsely parameterised
ultivariate Gaussian strain PDF model, as described in Section 7.2.4.

.5.1. Data prediction quality
To assess the quality of reconstruction we present a comparison between predicted and measured histograms of directional strains

n Fig. 10. A good regression model should reject noise while at the same time predict directional strain histogram data in agreement
ith the measurements. The root mean squared error between predicted and measured data was defined as

rmse =

√

∑

𝑖
∑

𝑗 (ℎ
predicted
𝑖𝑗 − ℎtrue

𝑖𝑗 )2

8𝑚
, (69)

where 8𝑚 is the total number of measured bin values across all 𝑚 = 132 histograms.
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t
s

8

Fig. 10. Predicted histograms using a sparsely parameterised multivariate Gaussian model (right) and a generic radial basis regression model (left) compared
o the ground truth noisy histograms (central column). The respective residual fields are shown in the outermost columns. Histogram bins that were randomly
elected to be corrupted into outliers are marked in the residual plots with a black border.

.5.2. Convergence
The parameters for Algorithm 1 were selected as 𝐵 = 𝐽 = 25 and (𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5) = (10.0, 8.4, 7.1, 5.9, 5.0). The convergence of

the algorithm is shown in Fig. 11.

8.5.3. Strain PDF reconstruction quality
To further assess our two models, in Fig. 12 we present a comparison between the predicted strain PDFs and the ground truth

strain PDF (originating from the strain field in Fig. 7). Since the strain PDF is supported on 6-dimensions we present 2-dimensional
projections onto the 15 unique Cartesian planes that can be formed by combining components of the strain tensor. As the directional
strain histogram data resolution is limited, we must expect arbitrary oscillations in the reconstructed strain PDF to occur at length-
scales smaller than the directional strain histogram bin width. Any meaningful comparison should, therefore, be made on a grid
with similar resolution. To this end we have binned the projected strain PDFs into histograms in Fig. 12.

9. Discussion

Comparing the multivariate Gaussian prediction fit in Fig. 10 with the generic radial basis expansion model we observe a
reduction in the residual error using the generic model. This is expected considering that the underlying strain PDF visualised
in Fig. 12 is non-Gaussian. In fact, already from visual inspection of the histograms of directional strains, we may expect that the
strain PDF is non-Gaussian. Nevertheless, despite the strain PDF being non-Gaussian, we observe from Fig. 12 that the Gaussian
model captures multiple features of the strain PDF. Further inspection of Fig. 12 confirms that the full radial basis model offers
additional improvements in terms of predicting the strain PDF shape. Considering the noise introduced into the data, as described
in Section 8.4, these results imply that both regression models are robust in the presence of multiple outliers, limited and non-uniform
�̂� sampling and elevated levels of Gaussian measurement noise.

In terms of compute time, using a non-optimised python implementation, the estimation for the sparsely parameterised
multivariate Gaussian model was in the range of ∼20 ms, while the stochastic radial basis placement algorithm finished in ∼6 s.

These results were achieved with a Dell XPS 15 9560 laptop using a single Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz. Low
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e
S

Fig. 11. Convergence of Algorithm 1 applied to the data generated through the procedure described in Section 8. Each batch represents a fixed radial basis
radius, 𝜎. The number of basis functions used in the expansion of the strain PDF (right axis) is seen to increase with iteration. Likewise, the root mean squared
rror (rmse) is seen to decrease (left axis) with iteration. The minimal obtainable rmse is bounded by the standard deviation of the noise model described in
ection 8.4.

Fig. 12. Binned projections of the strain PDF unto the 15 possible unique Cartesian planes on R6 (the 𝐸2 − 𝐸1-plane, the 𝐸3 − 𝐸1-plane, . . . etc.). The ground
truth strain PDF (central column) originated from the spatial strain tensor field in Fig. 7. The reconstructed strain PDFs, using both the sparsely parameterised
multivariate Gaussian model (right) and the generic radial basis regression method (left) are to be compared to the ground truth strain PDF (central column).
The respective residual fields are shown in the outermost columns.
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compute times are important features of the proposed algorithms, effectively enabling the analysis of polycrystals with large number
of grains (∼1000) without the need for high performance computing resources. On the other hand, if an optimised multi-threaded
implementation is pursued, these benchmarks are reasonable to permit online reconstruction at the same pace as data are being
collected.

The final number of free parameters used by the radial basis regression is observed to be 94 × 6 = 564 from Fig. 11. We
note that the total number of nonzero data bins in the measured histograms are 6 × 132 = 792, which is greater than the 564
parameters, avoiding over parametrisation of the model. In contrast to the 564 parameters used by the radial basis model, the
sparsely parameterised multivariate Gaussian fit uses a mere total of 6 + 21 = 27 model parameters (estimating the mean and
symmetric covariance respectively). This could motivate the use of the Gaussian model in situations when the available data are
scarce.

10. Outlook

The convergence properties of the proposed Algorithm 1 are an ongoing research topic and future research should focus on
parameter selection for 𝐵, 𝐽 , 𝜎 and 𝜉. We believe the algorithm outlined in 1 has potential applications for a wider class of estimation
problems, going beyond the estimation of strain PDFs, where a smooth, positive, simply connected scalar function needs to be
approximated using a sparse basis. One such possible application is (X-ray or neutron) tomographic reconstruction, where a positive
scalar attenuation function is to be estimated from noisy lower dimensional projections.

In terms of designing pilot experiments for the verification of the proposed regression methods, we suggest to perform time
consuming s3DXRD in conjunction with fast full-field 3DXRD. Using the s3DXRD data the spatial strain tensor field can be estimated.
By transforming the reconstructed spatial strain tensor field into a strain PDF and using the methods presented in this paper to
recover the strain PDF from the full-field 3DXRD data independently, experimental validation could be achieved.

The research presented in this paper shows that approximation of the strain PDF, beyond a single mean value, is possible even
with noisy distributions of directional strains. As such, we have provided a catalyst for pursuing algorithms that can optimally
transform raw diffraction images into strain histograms. Since the number of achievable bins in such histograms is strongly related
to the resolution of the detector, we anticipate the histogram resolution will increase with time, following the general trend in
3DXRD/HEDM type experiments. Alternatively, keeping the pixel density unchanged, the detector may be moved further away
from the sample, leading to diffraction spot magnification. This is similar to the high angular resolution 3DXRD method, developed
by Jakobsen et al. [50] (see also [51,52]).

The framework developed within this paper is not strictly limited to 3DXRD/HEDM applications. Other diffraction based
techniques capable of producing histograms of directional strains, such that at least 2 bins can be resolved, will benefit from our
results. As such we foresee a broader application of our findings in the context of non-destructive diffraction based materials research
using both neutrons and X-rays.

11. Conclusions

In the context of high energy X-ray diffraction measurement from polycrystals, we have discussed the estimation of the strain
tensor probability density function from noisy histograms of directional strains. Working in the limit of small strains, we derive a
generic, iterative framework for strain PDF regression using a radial basis expansion as well as a sparsely parameterised multivariate
Gaussian fit to which we provide a closed form solution. For the latter Gaussian class of strain tensor probability density functions, we
give an exact description to the null-space of the inverse problem. The parametric description of the null-space provides insights into
the strain PDF modes that cannot be accurately estimated from the diffraction data. Understanding these modes prevents erroneous
conclusions from being drawn based on the data. The radial basis expansion method was shown to provide more accurate strain PDF
estimations, at the expense of being mathematically involved, compared to the multivariate Gaussian fit which, on the other hand,
represents a conceptually simple first order approximation to the strain PDF. We demonstrate our findings by numerical simulation
considering a cubic iron (Fe) crystal in self-equilibrium. The simulation results imply that the proposed method performs well in the
presence of Gaussian noise, outliers and non-uniform strain sampling. Overall, our findings represent an upgrade to the full-field
3DXRD/HEDM microscope methodology with the potential of broader application to other diffraction based methods.
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𝑭

Fig. 13. Connection between single crystal deformation configurations associated with a multiplicative decomposition of the deformation gradient tensor,

= 𝑭 𝑒𝑭 𝑝. The physical process that yields diffraction from a crystal configuration is denoted by the operator . The fact that the diffraction data in 3DXRD/HEDM
is independent of the plastic deformation, 𝑭 𝑝, is illustrated to the right and left.

Appendix A. Deformation configurations

In Fig. 13 we illustrate that the deformed unit cell matrix is reached from the undeformed state by applying the deformation
gradient tensor as

𝑪𝑐𝑢𝑟 = 𝑭𝑪0 = 𝑭 𝑒𝑭 𝑝𝑪0. (70)

The set of diffraction vectors measured from the current deformed state is denoted [𝑪𝑐𝑢𝑟] = {𝑮1,𝑮2,… ,𝑮𝑚} and could equally
have originated from a crystal with unit cell matrix

𝑪 = 𝑭 𝑒𝑪0, (71)

as indicated to the right of Fig. 13. Similarly the unit cell matrices 𝑪0 and 𝑪𝑝 = 𝑭 𝑝𝑪0 are diffraction equivalent, which is illustrated
to the left in Fig. 13. We note that while we call 𝑭 𝑒 an elastic deformation and 𝑭 𝑝 a plastic deformation the technical definition is
here that 𝑭 𝑒 is any deformation such that

[𝑭 𝑒𝑪0] ≠ [𝑪0], (72)

while 𝑭 𝑝 is any deformation such that

[𝑭 𝑝𝑪0] = [𝑪0]. (73)

This means that, in our formulation, 𝑭 𝑒 can embody deformations that persist in the crystal when the boundary tractions are revoked.

Appendix B. Covariance perturbations

We seek solutions to Eq. (52) which we reiterate here as

�̄�𝑇
𝑗 𝑵�̄�𝑗 = 0, ∀𝑗. (74)

We divide our analysis into two cases; one where 𝑵 is symmetric-positive-definite and one where 𝑵 is symmetric-non-positive-
definite.

B.1. Symmetric positive-definite covariance perturbations

Let us start by analysing the case when 𝒛𝑇𝑵𝒛 ≥ 0, which can be parameterised by the matrix outer product 𝑵 = 𝑨𝑨𝑇 , 𝑨 ∈ R6×𝑘.
Adopting our previous matrix format we have

𝑲𝑨𝑨𝑇𝑲 = 𝟎, (75)

and it follows from the quadratic format that we must require

𝑲𝑨 = 𝟎, (76)

i.e., we must require 𝑲 to have a null-space. This is in contradiction with our previous results in Section 7.1 were we showed that
𝑲 can be fully ranked in general. Thus, no positive semi-definite perturbations to the covariance of the strain PDF exists in general,
such that the measurements remain invariant.
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T

B.2. General symmetric covariance perturbations

We are left with the analysis of perturbations, 𝑵 , that are not positive semi-definite, i.e we shall search over a more general
class of perturbations, requiring only that

𝒛𝑇𝜮𝒛 + 𝒛𝑇𝑵𝒛 ≥ 0, ∀𝒛 ≠ 0, (77)

ensuring that 𝜮∗ is a valid covariance matrix. This requirement effectively puts a bound on the norm of 𝑵 . To proceed with our
analysis we shall vectorise the scalar product equation �̄�𝑇

𝑗 𝑵�̄�𝑗 as

�̄�𝑇
𝑗 𝑵�̄�𝑗 = 𝒗𝑇𝑗 𝒖, 𝒗𝑗 , 𝒖 ∈ R21, (78)

where 𝒖 stacks the 21 unique components of 𝑵

𝒖 = [𝑁11 𝑁21 𝑁31 𝑁41 𝑁51 𝑁61
…𝑁22 𝑁32 𝑁42 𝑁52 𝑁62

…𝑁33 𝑁43 𝑁53 𝑁63
…𝑁44 𝑁54 𝑁64

…𝑁55 𝑁65
…𝑁66],

(79)

and 𝒗𝑗 is arranged accordingly,

𝒗𝑗 = [𝜅4
𝑥 2𝜅2

𝑥𝜅
2
𝑦 2𝜅2

𝑥𝜅
2
𝑧 4𝜅3

𝑥𝜅𝑦 4𝜅3
𝑥𝜅𝑧 4𝜅2

𝑥𝜅𝑦𝜅𝑧
… 𝜅4

𝑦 2𝜅2
𝑦𝜅

2
𝑧 4𝜅𝑥𝜅3

𝑦 4𝜅2
𝑦𝜅𝑥𝜅𝑧 4𝜅3

𝑦𝜅𝑧
… 𝜅4

𝑧 4𝜅2
𝑧𝜅𝑥𝜅𝑦 4𝜅𝑥𝜅3

𝑧 4𝜅𝑦𝜅3
𝑧

…4𝜅2
𝑥𝜅

2
𝑦 8𝜅𝑦𝜅2

𝑥𝜅𝑧 8𝜅𝑥𝜅2
𝑦𝜅𝑧

…4𝜅2
𝑥𝜅

2
𝑧 8𝜅𝑥𝜅𝑦𝜅2

𝑧

4𝜅2
𝑦𝜅

2
𝑧 ].

(80)

he task is now to provide 𝒖 orthogonal to 𝒗𝑗 independently of the selection of 𝑗. Interestingly, the symmetry of 𝒗𝑗 allows for the
following selection

𝒖 = [0 2𝛼 2𝛽 0 0 2𝛾
…0 2𝜂 0 2𝜉 0

…0 2𝜌 0 0
… − 𝛼 −𝛾 −𝜉

…− 𝛽 −𝜌
…− 𝜂],

(81)

with (𝛼, 𝛽, 𝛾, 𝜂, 𝜉, 𝜌) ∈ R1 arbitrary. This class of 𝒖 can be though of as a six dimensional subspace of R21 spanned by the columns of
a matrix 𝑼 ∈ R21×6 as

𝑼 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0 0 0 0 0 0
2𝛼 0 0 0 0 0
0 2𝛽 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 2𝛾 0 0 0
0 0 0 0 0 0
0 0 0 2𝜂 0 0
0 0 0 0 0 0
0 0 0 0 2𝜉 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2𝜌
0 0 0 0 0 0
0 0 0 0 0 0
− 𝛼 0 0 0 0 0
0 0 −𝛾 0 0 0
0 0 0 0 −𝜉 0
0 −𝛽 0 0 0 0
0 0 0 0 0 −𝜌

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

. (82)
⎣ 0 0 0 −𝜂 0 0 ⎦
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It follows that if we can give example of a rank 21 − 6 = 15 matrix, 𝑹, such that

(𝑹 + 𝑼𝑇 )𝒗𝑗 = 𝑹𝑇 𝒗𝑗 , (83)

the column space of 𝑼 depletes the sought null-space. Numerous examples of such 𝑹 can be generated with computer aid. One
possible selection, with all kappa forming angles >26◦ to the 𝒛-axis, is, for example,

�̂�1 =
1
√

3

⎡

⎢

⎢

⎣

1
1
1

⎤

⎥

⎥

⎦

, �̂�2 =
1
√

2

⎡

⎢

⎢

⎣

1
1
0

⎤

⎥

⎥

⎦

, �̂�3 =
1
√

3

⎡

⎢

⎢

⎣

1
1
−1

⎤

⎥

⎥

⎦

, �̂�4 =
1
√

6

⎡

⎢

⎢

⎣

1
1
2

⎤

⎥

⎥

⎦

, �̂�5 =
1
√

6

⎡

⎢

⎢

⎣

1
1
−2

⎤

⎥

⎥

⎦

,

�̂�6 =
1
√

2

⎡

⎢

⎢

⎣

1
0
1

⎤

⎥

⎥

⎦

, �̂�7 =
⎡

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎦

, �̂�8 =
1
√

2

⎡

⎢

⎢

⎣

1
0
−1

⎤

⎥

⎥

⎦

, �̂�9 =
1
√

5

⎡

⎢

⎢

⎣

1
0
2

⎤

⎥

⎥

⎦

, �̂�10 =
1
√

3

⎡

⎢

⎢

⎣

1
−1
1

⎤

⎥

⎥

⎦

,

�̂�11 =
1
√

2

⎡

⎢

⎢

⎣

1
−1
0

⎤

⎥

⎥

⎦

, �̂�12 =
1
√

3

⎡

⎢

⎢

⎣

1
−1
−1

⎤

⎥

⎥

⎦

, �̂�13 =
1
√

6

⎡

⎢

⎢

⎣

1
2
1

⎤

⎥

⎥

⎦

, �̂�14 =
1
√

5

⎡

⎢

⎢

⎣

1
2
0

⎤

⎥

⎥

⎦

, �̂�15 =
1
√

6

⎡

⎢

⎢

⎣

1
−2
1

⎤

⎥

⎥

⎦

.

(84)

Appendix C. Basis integration

We seek to solve the integral given in Eq. (36) which we reiterate here as

∫

𝑠∗𝑗+𝑤∕2

𝑠∗𝑗−𝑤∕2 ∫𝝐∈𝛱(𝑡,�̂�𝑗 )
exp

(

−
(𝝐 − 𝒑𝑖)𝑇 (𝝐 − 𝒑𝑖)

2𝜎2

)

𝑑𝝐𝑑𝑡. (85)

e denote the inner integral 𝐼𝝐 and the outer integral 𝐼𝑡 and initiate our analysis with 𝐼𝝐 . To solve the integral we start by
arameterising all points on 𝛱 by the range of 𝑷 ∈ R6×5 such that the columns of 𝑷 forms a basis for 𝛱 . For reasons that will

become apparent later we select the parametrisation

𝝐 = 𝝐(𝒚) = 𝑷𝒚 + 𝑡�̂�𝑗 + 𝑷𝑷 𝑇 𝒑𝑖 ∈ 𝛱(𝑡, �̂�𝑗 ), 𝒚 ∈ R5. (86)

This simplifies our problem to an unbounded integral over R5 as

𝐼𝝐 = ∫R5
exp

(

−
(𝝐(𝒚) − 𝒑𝑖)𝑇 (𝝐(𝒚) − 𝒑𝑖)

2𝜎2

)

𝑑𝒚. (87)

ithout loss of generality, we now select the columns of 𝑷 to be orthonormal, such that 𝑷 𝑇𝑷 = 𝑰 . Expanding the square in (87)
we find that

𝐼𝝐 = ∫R5
exp

(

−
(𝒚𝑇 𝒚 − 2𝑡𝒑𝑇𝑖 �̂�𝑗 + 𝑡2 − 𝒑𝑇𝑖 𝑷𝑷 𝑇 𝒑𝑖 + 𝒑𝑇𝑖 𝒑𝑖)

2𝜎2

)

𝑑𝒚, (88)

here it was used that 𝑷 �̂�𝑗 = 𝟎. Introducing the scalar minimum squared distance, 𝑑2, between 𝛱 and 𝒑𝑖 as

𝑑2 = (𝒑𝑖 − 𝑷𝑷 𝑇 𝒑𝑖 − 𝑡�̂�𝑗 )𝑇 (𝒑𝑖 − 𝑷𝑷 𝑇 𝒑𝑖 − 𝑡�̂�𝑗 ) = 𝒑𝑇𝑖 𝒑𝑖 − 2𝑡𝒑𝑇𝑖 �̂�𝑗 + 𝑡2 − 𝒑𝑇𝑖 𝑷𝑷 𝑇 𝒑𝑖, (89)

e find by insertion into (87) that

𝐼𝝐 = ∫R5
exp

(

−
(𝒚𝑇 𝒚 + 𝑑2)

2𝜎2

)

𝑑𝒚. (90)

The benefits of the specific parametric selection of 𝛱 is now evident from the cancelled terms. Factoring out the part that is
independent of 𝒚, we have

𝐼𝝐 = exp
(

−𝑑2

2𝜎2

)

∫R5
exp

(

−
𝒚𝑇 𝒚
2𝜎2

)

𝑑𝒚, (91)

here the rightmost integral features an non-normalised Gaussian with covariance 𝑰𝜎2. We solve this Gaussian integral by
ormalisation as

∫R5
exp

(

−
𝒚𝑇 𝒚
2𝜎2

)

𝑑𝒚 = 𝜎5
√

(2𝜋)5 ∫R5

1
𝜎5

√

(2𝜋)5
exp

(

−
𝒚𝑇 𝒚
2𝜎2

)

𝑑𝒚 = 𝜎5
√

(2𝜋)5. (92)

Inserting (92) into (91) we find

𝐼𝝐 = 𝜎5
√

(2𝜋)5 exp
(

−𝑑2

2𝜎2

)

. (93)

e proceed to solve for the outer integral in (36). Using the result in (93) we have

𝐼𝑡 = ∫

𝑠∗𝑗+𝑤∕2

∗
𝐼𝝐𝑑𝑡 = 𝜎5

√

(2𝜋)5 ∫

𝑠∗𝑗+𝑤∕2

∗
exp

(

−𝑑2
2

)

𝑑𝑡. (94)

𝑠𝑗−𝑤∕2 𝑠𝑗−𝑤∕2 2𝜎
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b

w
o

R

Since the distance 𝑑 is linear in 𝑡 and the increments, 𝑑𝑑 = 𝑑𝑡, are one to one, we now find a bounded Gaussian integral that can
e solved using the error function, erf , as

𝐼𝑡 = 𝜎5
√

(2𝜋)5
|

|

|

|

∫

𝑏

𝑎
exp

(

−𝑑2

2𝜎2

)

𝑑𝑑
|

|

|

|

= 4𝜋3𝜎6
|

|

|

|

erf

(

𝑏

𝜎
√

2

)

− erf

(

𝑎

𝜎
√

2

)

|

|

|

|

, (95)

here the transformed bounds, 𝑎 and 𝑏, can be computed as 𝑎 = (𝑠∗𝑗 −𝑤∕2)𝒑𝑇𝑖 �̂�𝑗 and 𝑏 = (𝑠∗𝑗 +𝑤∕2)𝒑𝑇𝑖 �̂�𝑗 , respectively. This concludes
ur integration analysis.
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