
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 10, 2024

LightPay: A Lightweight and Secure Off-Chain Multi-Path Payment Scheme Based on
Adapter Signatures

Liu, Yaqin; Liang, Wei; Xie, Kun; Xie, Songyou; Li, Kuanching; Meng, Weizhi

Published in:
IEEE Transactions on Services Computing

Link to article, DOI:
10.1109/TSC.2023.3333806

Publication date:
2024

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Liu, Y., Liang, W., Xie, K., Xie, S., Li, K., & Meng, W. (in press). LightPay: A Lightweight and Secure Off-Chain
Multi-Path Payment Scheme Based on Adapter Signatures. IEEE Transactions on Services Computing.
https://doi.org/10.1109/TSC.2023.3333806

https://doi.org/10.1109/TSC.2023.3333806
https://orbit.dtu.dk/en/publications/03bbafa2-f964-470b-b766-c0e3b88616be
https://doi.org/10.1109/TSC.2023.3333806


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

LightPay: A Lightweight and Secure Off-chain
Multi-path Payment Scheme based on Adapter

Signatures
Yaqin Liu, Wei Liang, Kun Xie, Songyou Xie, Kuanching Li, and Weizhi Meng

Abstract—The payment channel network aims to solve the
problems of long payment confirmation time and limited through-
put in cryptocurrencies through off-chain payments. Hash Time-
Lock Contract (HTLC) is an off-chain payment protocol that
Lightning Network (LN) adopted. Unfortunately, when perform-
ing high-valued payments off-chain, due to the impact of payment
channel capacity, it is often necessary to split a single payment,
which increases the transaction fees and time. Therefore, we
propose LightPay, an atomic off-chain multi-path payment pro-
tocol based on adapter signature and discrete logarithm problem.
Among different conditions encoded in the multi-path contract,
the multi-path transmission of a single high-valued payment can
be realized under the premise of the unlinkability of partial
payments. We construct an ideal functionality in the Universal
Composability framework and demonstrate that LightPay UC-
realizes it, thereby providing proof of its security and privacy.
Experimental results indicate that the payment success rate of
LightPay can be increased by 11.08% in 0.0025 BTC payments
compared with the single-path payment protocol Multihop HTLC
in LN. Additionally, compared with the multi-path payment
protocol CryptoMaze, the communication overhead required by
LightPay is reduced to about 55.6% on average in the simulated
network. Overall, LightPay has advantages regarding payment
success rate and overhead.

Index Terms—Blockchain, Off-chain Payment, Layer-2 Scal-
ing, Payment Channel Network, Privacy Protection.

I. INTRODUCTION

BLOCKCHAIN is a decentralized distributed ledger tech-
nology, and its core ideas originated from the Bitcoin

white paper published in 2008 by Satoshi Nakamoto [1].
Blockchain has the characteristics of anonymity, tamper proof,
decentralization, and traceability, among others. These features
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have swiftly captured the attention of academia and indus-
try, leading to the widespread utilization of blockchain in
various research fields, including data privacy protection and
identity verification. Compared with centralized applications,
blockchain nodes can establish a trusted channel without the
help of a trusted third party and can be widely used in many
decentralized scenarios, such as insurance claims, supply chain
traceability [2], mobile crowdsourcing, and Internet of Things.

Cryptocurrency is an important application of blockchain,
and there is much related research [3]. The anonymity, trace-
ability, immutability, and decentralization of the blockchain
guarantee the security and privacy of cryptocurrency trans-
actions. However, due to the publicly available transaction
records on the blockchain, where the transaction addresses
and amounts are stored on-chain, which can easily lead to
the leakage of user privacy [4]. For instance, Ron et al. [5]
downloaded the complete historical records of Bitcoin and
generated transaction correlation graphs by studying user be-
havior, hence breaking anonymity. In Ethereum, ledger infor-
mation can be analyzed through address clustering technology
by obtaining the identity relationship between accounts and
real users [6]. The remote side-channel attack [7] can detect
private information such as transaction amount and user IP
address of encrypted currency systems in Zcash. Consequently,
it is crucial to adopt appropriate methods to protect blockchain
privacy when making payments [8], [9].

A Payment Channel (PC) is a temporary channel created on-
chain that allows off-chain payments between two users with-
out recording every transaction on the blockchain [10]. The
PC can realize fast, low-cost payments, an effective method
to protect the privacy of transactions. The PC realizes multiple
off-chain payments by only requiring on-chain transactions
during the opening or closing of the channel. Most of the time,
the transaction records in the PC are only stored locally and are
not uploaded on-chain, so their efficiency and privacy will be
guaranteed. As Figure 1 shows, Bitcoin opens a payment chan-
nel by transferring coins from both nodes to a multi-signature
address. After establishing the payment channel, unlimited-
time payments can be made off-chain without interacting with
the blockchain. When the channel needs to be closed, the coins
of multi-signature address are allocated to each node on-chain
according to the latest balance state of the corresponding PC.
To distinguish between on-chain and off-chain transactions,
we denote off-chain transactions as off-chain payments.

0000–0000/00$00.00 © 2021 IEEE
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Fig. 1. Bitcoin payment channel life cycle.

The Payment Channel Network (PCN) is composed of
multiple payment channels. Two users who have not estab-
lished a payment channel can form a payment path through
multiple intermediaries in PCN to complete the payment
[11]. The sender of the payment can select the appropriate
payment path according to PCN routing protocols [12]–[14].
The Hash Time-Lock Contract (HTLC) protocol implements
atomic payment in the Lightning Network (LN). In particular,
HTLC’s nodes need to agree on a hash value R = Hash(r)
and then require each node to submit the same hash pre-image
r within a certain period of time to complete the payment. If
it expires, all payments promised by the nodes are invalidated.
Nevertheless, HTLC is vulnerable to wormhole attacks, where
malicious users can skip honest intermediaries to complete the
payment, thereby stealing fees. In addition, using the same
hash value in the construction of the off-chain payments may
reveal the privacy of the payment [15].

When making a high-valued payment within a PCN, it is
common to split the payment into multiple smaller single-
path payments due to the limited channel capacity. With the
transaction fees 0.1c and processing time t for each payment
channel, let’s consider a scenario where S intends to pay 6c
to R. We also assume that the high-valued payment can be
divided into three smaller single-path payments: path1 = S →
A→ B → E → R for 2c, path2 = S → A→ C → E → R
for 1c and path3 = S → A → D → R for 3c. The
total fees and processing time are 0.8c and 11t, respectively,
where S pays A three times, and node E pays R twice.
However, in the proposed multi-path payment scheme, the
public part of the three paths (S → A, E → R) does not
need to be paid repeatedly, and the other parts can be executed
concurrently. The total fees and processing time required by
the multi-path payment are 0.6c and 4t. Therefore, multi-path
payment can reduce transaction fees and processing time. In
addition, in a real payment environment, since the three single-
path payments are not executed synchronously, other payments
will likely be inserted in these single-path payments, so these
payments cannot be completed atomically.

A. Related Work

1) Single-path payment protocol: Off-chain payments can
address limitations such as blockchain scalability and trans-
action speed. Green et al. [16] proposed an anonymous pay-
ment channel Bolt based on Zerocash. Bolt combines blind
signature and zero-knowledge proof to realize anonymous

payment, tailor-made for Zcash. Malavolta et al. [17] proposed
a hash time-lock contract suitable for multi-hop payments in
Bitcoin. However, this scheme uses zero-knowledge proof to
protect user privacy, and the calculation and storage overhead
is considerable. At the same time, this scheme does not
support multi-path payment. In 2019, Malavolta Get al. [18]
then provided a single-path off-chain payment scheme called
Anonymous Multi-Hop Locks (AMHL), which is built with
one-way homomorphic functions for those that support script-
ing languages and built with ECDSA signatures for those
only support simple scripting languages. However, AMHL is
challenging to scale to multi-path payment. In 2021, Lukas
Aumayr et al. [15] implemented a payment protocol – Blitz,
based on a round of multi-hop payment forwarding, which
only needs digital signatures and time lock functions to
construct off-chain payment. At the same time, Blitz is also
resistant to wormhole attacks.

Thyagarajan et al. [19] proposed an off-chain payment pro-
tocol compatible with any signature scheme, using scriptless
scripts to construct BLS signatures. These signatures are short,
unique, and aggregatable and have a more negligible overhead,
which can be used for cross-chain atomic payments. In 2022,
the same authors proposed an off-chain atomic swap proto-
col [20] based on adapter signatures and timelock, which can
be applied to multiple asset transfers in different blockchains.
In addition, considering that the long payment path of a single-
path payment leads to large time consumption and increased
overhead, some solutions are based on the payment channel
hub [21].

2) Multi-path payment protocol: In the single-path payment
protocol, only one payment path is allowed, while bifurcation
is not. As the capacity of the payment channel is fixed,
it cannot handle payments larger than the existing channel
balance. Thus, it is difficult for payments to find a suitable
path from the off-chain network for larger amounts. If payment
can be divided into multiple sub-paths, this will allow more
routing options for payment forwarding.

In 2020, Eckey et al. [22] proposed an off-chain payment
scheme named SplitPay, which dynamically divides paths by
intermediaries and uses homomorphic encryption to process
payment information during the forwarding phase. However,
since all partial routing nodes must know the receiver’s public
key when dividing the path, malicious nodes can link payments
through the same public key of the receiver, so the receiver’s
privacy cannot be guaranteed. In 2022, Subhra Mazumdar et
al. [23] proposed a privacy-preserving atomic multi-path pay-
ment protocol-CryptoMaze, extending the xLumi [24] protocol
and uses discrete logarithm operations to set the conditional
value of the off-chain contract, which can resist the wormhole
attack of the multi-path off-chain payment protocol.

B. Our Contributions

In Table I, we summarize the main characteristics of existing
schemes and the proposed scheme, table shows that LightPay
can provide atomicity, unlinkability, wormhole attack resis-
tance, and path privacy. The contributions of this work are
described as follows:
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TABLE I
COMPARATIVE ANALYSIS OF DIFFERENT METHODS

A U W M P
AMHL [18] Ë Ë Ë é Ë
Blitz [15] Ë é Ë é Ë
Multihop HTLC [17] Ë Ë Ë é Ë
SplitPay [22] Ë Ë é Ë é
CryptoMaze [23] Ë Ë Ë Ë Ë
Ours(LightPay) Ë Ë Ë Ë Ë

A, U, W, M, P represent Atomicity, Unlinkability, Wormhole attack
resistance, Multi-path, and Path privacy respectively.

• LightPay uses a simple adapter signature and encryption
process to implement payments without needing custom
complex scripts. The scheme can also provide good
compatibility with existing blockchains.

• LightPay uses discrete logarithms to construct the con-
sumption conditions of each payment channel and sets
different secret values according to the number of right
neighbors of the node to realize the multi-path payment
of high-valued payments.

• To achieve atomicity and improve the confirmation speed,
LightPay completes the process of claiming coins from
receiver to sender in the opposite direction of the payment
path when only one output node responds during the
contract release phase.

• Experimental analyses are conducted and show that
LightPay can achieve security goals such as atomic-
ity and unlinkability. Compared with schemes such as
CryptoMaze, LightPay requires approximately 55.6% less
communication overhead on average.

C. Organization
The remainder of this work is organized as follows. We

present the relevant background in Section II, and introduce
the formal definition of the LightPay protocol along with the
attack model and security goals in Section III. Section IV
provides a security analysis of the protocol, the implementa-
tion and the evaluation of the proposed protocol are presented
in Section V, and finally, the concluding remarks and future
directions of this work are depicted in Section VI.

II. BACKGROUND

In this section, we introduce the background knowledge
about the payment network under the blockchain. The symbols
used in this work and their meanings are explained in Table II.

A payment channel network can be represented by a graph
G := (V,E), where the nodes V and the edges E in the
graph represent the off-chain node P , and the payment channel
β in the payment channel network, and two vertices Pi

and Pj are connected by an edge. The payment channel β
can be defined as a tuple (β.id, β.users, β.coins, β.state),
where β.id ∈ {0, 1}∗ is the unique identifier of the channel,
β.users := (Pi, Pj) is the users connected on the channel,
β.coins := β.users → R≥0 is the distribution of coins of
each user on the channel, β.state := (θ1, · · · , θn) represents
the state of the current channel, which is composed of a list
of coins distribution updates θi and will be updated after each
off-chain payment is completed.

TABLE II
NOTATION DESCRIPTION

Notations Description
G := (V,E) Off-chain payment channel network graph
V The sets of nodes in the graph G
E The sets of payment channels in the graph G
E The set of payment channels in one payment
L Blockchain
IDij The unique identifier of the payment channel

(Ui, Uj) ∈ E
Sij Legal signature of payment channel IDij

G A cyclic multiplicative group with large prime or-
der q

g The generator of G
p A large prime number, where p = 2q + 1
∆ The maximum transaction confirmation time in

blockchain
Us Sender of an off-chain payment
Ur Receiver of an off-chain payment
Ti The timestamp of the first contract request received
τ The waiting time after receiving the contract request

A. Payment Channel

There are three operations when using a Payment Channel
(PC): open channel, update channel, and close channel. Among
them, both open and closed channels need to interact with
the blockchain. The update channel only involves both parties
to the payment, and uploading the payment state to the
blockchain is unnecessary. A brief introduction to these three
operations follows next.

Open channel. To open a PC, two users must post a
transaction on-chain to lock the collateral in a shared address.
For example, Alice and Bob must provide coins αi, αj respec-
tively to build a PC β with the following parameters: capacity
αi + αj , β.id, β.users := (Alice, Bob), β.coins (Alice) =
αi, β.coins (Bob) = αj , β.state = ∅. When the channel is
opened, β is added to G.

Update channel. Two users need to update the current
channel state after paying off-chain. Specifically, when Alice
needs to pay αa(αa ≤ αi) to Bob, a new state θi =
(β.coins (Alice)− = αa, β.coins (Bob)+ = αa). After θi is
confirmed by Alice and Bob, it will be appended to β.state,
thus completing the update of the current channel. This process
does not require the payment to be posted on-chain.

Close channel. Two users claim their coins by posting the
latest state to the chain, and the PC will be closed. At the same
time, the channel β needs to be removed from G. In particular,
when Alice does not receive Bob’s confirmation message for
a long time after sending Bob a request to update the state,
Alice can close the channel and submit the latest state to the
chain. Within ∆ time, if Bob cannot provide a newer version
of the PC state, the state submitted by Alice will be accepted
on-chain.

Nodes need to lock certain collateral on-chain to build a
PC, since each node cannot establish PCs with all nodes, as it
is very resource-consuming. The Payment Channel Network
(PCN) is composed of several PCs, so two nodes that are not
directly connected can complete an off-chain payment through
the participation of other intermediaries. For example, suppose
A and E do not build a PC on-chain; if A intends to pay
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Fig. 2. Build off-chain payment through HTLC.

coins to E, the payment can be made through a PCN, i.e.,
A→ B → C → E → F , called multi-hop payments.

B. Hash Time-Lock Contract

For the convenience of understanding, we omitted the
setting of the transaction fees in the construction of HTLC.
Figure 2 shows the specific process of using HTLC for off-
chain payment. First, the receiver will generate a conditional
value R = Hash(r) and send it to the sender. The sender will
generate an HTLC with the address of both nodes, condition
value, payment amount, and expiration time and send it to
the neighbor node. The neighbor node then constructs HTLC
with a similar structure to the next neighbor node until the
receiver. Then, the receiver will reveal the hash pre-image r
from the condition value and pass it to each node to update
the balance of the channel. It is worth noting that hash time-
locks include hashlocks and timelocks. Hashlocks mean that
the corresponding coins can only be unlocked by revealing the
pre-image value of the hash, while timelocks denote that the
coins can only be spent until a specific time in the future.

In other words, each node must reveal the hash pre-image
within the expiration time set in HTLC to complete payment.
However, since the condition value R of each payment is the
same in each channel, any two nodes can quickly determine
whether they belong to the same transaction and thus can
further infer the sender and receiver of the transaction, which
leaks path privacy for off-chain payments.

C. Wormhole Attack

HTLC sets the same pre-image for each PC in the payment
path to complete the off-chain payments. During the payment
phase, the payment receiver passes the pre-image forward to
complete the payment for each channel. We assume there is
a payment path of A → B → C → E → F , and A needs
to pay αf fees to B, C, and E, respectively. The receiver
F will create a pre-image r, calculate the hash value R =
Hash(r), and then send R to the sender A. Then A constructs
the payment paid to B using R and delivers R according to
the payment path until it is passed to F for confirmation. After
F checks the correctness of R, the pre-image r is sent to the
previous node until it is delivered to the sender, a complete
HTLC protocol process.

However, since each node uses the same pre-image, it is
vulnerable. For example, in the payment phase, F sends r
to E to complete the payment of E→F . Next, there may
be an attack situation: if E and B collude, E can send r to

B directly, and then B sends r to A, to claim coins. Thus
B and E conspire to steal C’s fees, but A cannot detect
the abnormality, which is a wormhole attack. The wormhole
attack causes honest nodes to fail to get the transaction
fees for forwarding transactions. When designing the off-
chain payment scheme, we need to avoid the occurrence of
a wormhole attack.

III. THE PROPOSED PROTOCOL

A. Security Goals

Currently, most off-chain payment schemes are only for
single-path payments and do not allow splitting payments. We
define the following security goals:

• Atomicity. Each payment must be atomic; that is, all
payments involved in the payment process either succeed
or fail. Otherwise, some honest nodes will lose coins.

• Unlinkability. It ensures that nodes participating in
partial payments cannot know the complete payment
information through collusion. It can prevent malicious
nodes participating in partial payments from deliberately
refusing to participate in certain forwarding payments.

• Wormhole attack resistance. When constructing the off-
chain contract of each PC in the payment path, it is
necessary to properly set the secret value to ensure that
malicious nodes cannot skip honest nodes to complete
payment. The protocol must resist wormhole attacks and
prevent honest nodes from losing their fees.

• Balance security. Honest nodes will never lose their
coins when participating in off-chain payments.

• Path privacy. Any intermediate node can only interact
with its direct neighbors and cannot know the information
of other nodes in the entire payment path.

• Endpoint privacy. Any intermediate node cannot know
whether its left (right) node is the sender (receiver) of the
payment or an ordinary intermediate node.

B. Cryptographic Preliminaries

We assume that G is a cyclic multiplicative group with large
prime order q. g is the generator of G, p is a prime number,
where p = 2q + 1. a, b ∈ Zq are secret random numbers.
We consider all elements in G to be in the group Zp, i.e.,
the style of the ga mod p element. For readability purposes,
we omit mod p in the remainder of this work. The proposed
protocol is mainly based on the following two computationally
hard problems. (i) Discrete Logarithm Problem (DLP): Even
if the attacker A knows ga ∈ G, it is computationally hard to
compute a in polynomial time.

Standard hash function. The cryptographic hash function
is a one-way function: H : {0, 1}∗ → {0, 1}λ, where λ is a
security parameter used in the model. Given an input of any
length, H produces a unique fixed-length output.

Adapter signature. An adapter signature scheme [25]
contains four algorithms Σ = (PreSig, PreV f,Adapt, Ext).
σ̂ ← PreSig(sk, mes, Y ) is a pre-signature algorithm, where
sk represents the secret key, mes represents the message that
needs to be pre-signed, Y is a statement, and the output
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is the pre-signature σ̂. σ := Adapt(σ̂, y) is an adaptation
algorithm that inputs the pre-signature σ̂ and the witness y, and
outputs the legal signature σ. PreV f(pk, σ̂) is a pre-signature
verification algorithm that verifies whether the pre-signature
is correct. y := Ext(σ̂, σ, Y ) can obtain the witness y by
inputting the pre-signature σ̂ and signature σ and statement
Y .

C. Formal Definition

Us wishes to effectively transfer val to Ur via G := (V,E),
where Us, Ur ∈ V . The LightPay protocol includes a pre-
processing phase, a contract forwarding phase, and a release
phase. Us constructs an off-chain multi-path payment through
a routing protocol [26], generates a payment channel set E, and
uses it as the input to the pre-processing phase. It is worth not-
ing that HushRelay is a privacy-preserving distributed routing
protocol. Compared with the SpeedyMurmurs [27], HushRelay
can protect the privacy of transaction sender s and the receiver
r by constructing a dummy source node s′ and a target node
r′. Specifically, by adding directed virtual edges of s′ → s
and r → r′ to generate the path, we prevent attackers from
guessing the identity of the transaction recipient and sender,
thereby ensuring the privacy of the routing protocol. At the
same time, since the proposed routing protocol is modular, it
can be used in conjunction with any other privacy-preserving
payment protocols. Next, each phase of the payment protocol
is introduced in detail.

1) Pre-processing Phase: This phase must set the condi-
tional value for each channel in the payment path. Its input is
the channel set E, and the output is the encrypted information
sent to the next neighboring node. We divide this phase into
the following phases, as depicted in Algorithm 1.

a) Us calculates payment secret value: Us generates a
random number r as the payment secret value and starts to
build a signed hidden value for each off-chain contract. The
process is the opposite of the payment process; it builds from
Ur. Us first checks the number of input channels of Ur, the
number of all direct neighbor nodes of Ur. If there are z
input channels IDir ∈ E, then Us selects z random numbers
ni ∈ Zq for Ur, and calculates xir := ni ∗IDir−

∑z
t=1 nt ∗r.

Among them, xir is the key information of the contract
signature Sir calculated by Ur in IDir, and ir = ni ∗ IDir

is the hidden value of Skri . In the contract release phase, Us

will provide r to Ur, and Ur can calculate the signature Sir

through r to release the contract on IDir and ask Ui for the
fee.

b) Signature of off-chain contracts: According to the dif-
ferent topological structures of different PCNs, LightPay con-
structs the signatures of off-chain contracts for the following
four situations in Figure 3: (1) Scenario 1: The intermediate
node Uj has an input node and an output node. (2) Scenario 2:
Uj has multiple input nodes and one output node. (3) Scenario
3: Uj has one input node and multiple output nodes. (4)
Scenario 4: Uj has multiple input nodes and multiple output
nodes. Depending on the different scenarios, the calculation
process of the contract signature is also different. The details
are shown as follows:

Fig. 3. Node distribution of different scenarios.

Scenario 1: If any intermediate node Uj forwards payment
to a single node Uk.
Sij and Sjk denote the legal signatures of channel IDij

and IDjk respectively. If Uj ̸= Ur only forwards payments to
one neighbor Uk, for a pair of channels IDij and IDjk, with
signatures Sij and Sjk. Us calculates xij for Uj according to
Equation 1:

xij = n ∗ IDij − jk, (1)

Sij = xij + jk +H (m ∥ IJ ∥ Pi) ∗ pi, (2)

where n ∗ IDij = ij is the hidden value in the signature Sij ,
and n is a random number. In the contract forwarding phase,
Uj judges whether JK ∗ gxij = IJ is equal to determine the
consistency of the input and output contracts (IJ = gij). In
the contract release phase, Uj calculates the signature Sij of
IDij through Equation 2.

Scenario 2: The number of input nodes of Uj exceeds 1.
To achieve atomicity in the contract forwarding phase, it

must be guaranteed that only when all the input contracts are
received, Uj can send the contract to the output node. We
assume that the number of input channels of Uj is z=3, so Us

selects z random numbers ni, and calculates:

xi1j = n1IDi1j −
z∑

t=1

nt ∗ jk, (3)

xi2j = n2IDi2j −
z∑

t=1

nt ∗ jk, (4)

xi3j = n3IDi3j −
z∑

t=1

nt ∗ jk, (5)

where ni ∗ IDitj = itj is the hidden value in Sitj . Each ijt
needs to know

∑z
t=1 nt first, and only after the intermediate

node Uj receives all the input contracts, Uj sends the contract
to the output node Uk. In the contract forwarding phase, Uj

judges gximj ∗ (JK)
∑z

t=1 nt = ImJ is equal to determine the
consistency of the input and output contracts.

Scenario 3: Uj has multiple output nodes.
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If Uj forwards the payment to multiple neighbor nodes, it
must be ensured that during the release phase, when one of
the neighbors Ukt fails to provide the signature of the IDjkt ,
Uj will not lose its coins. To solve this problem, LightPay
employs a 1-out-of z strategy, when at least one output node
Ukt

returns a signature Sjkt
, Uj can also claim coins from Ui.

In Figure 3 Scenario 3, Uj splits the payment to nodes Uk1 ,
Uk2 and Uk3 . Suppose Uj uses the same hidden value for
nodes Uk1

, Uk2
and Uk3

, then jk1 = jk2 = jk3. If Uk1
, Uk2

and Uk3
collude, they can link their payments. To avoid this

problem, Us assigns different jk1, jk2 and jk3 to channels
IDjk1 , IDjk2 and IDjk3 . Therefore, Us calculates:

S =

z∑
t=1

jkt, (6)

xijt = nS ∗ IDij − jkt, (7)

where nS ∗ IDij = ij. In the contract forwarding phase, the
intermediate node Uj can aggregate and verify the consistency
of the input and output contracts by judging whether gxijt ∗
JKt = IJ is equal. In the contract release phase, Uj only
needs to know any jkt to calculate the hidden value ij of Sij

through Equation 7.
Because jk1, jk2, and jk3 are not equal to each other, even

if the off-chain contract is settled on-chain, miners still cannot
link these three transactions.

Scenario 4: Uj has multiple output and input nodes.
We combine Scenario 2 and Scenario 3 to construct the

hidden value calculation formula of Scenario 4. Assuming that
Uj has y input nodes and z output nodes, we need to ensure
that only after Uj receives the output contracts from Ui1 and
Ui2 , the corresponding input contract can be sent to Uk1 , Uk2

and Uk3
. We achieve the atomicity of the input contract by

selecting m different random numbers. At the same time, we
construct S to implement a 1-out-of z strategy. The calculation
formulas of S and xij are as follows:

S =

z∑
t=1

jkt, (8)

xi1jt = n1S ∗ IDi1j −
y∑

m=1

nm ∗ jkt, (9)

where nmS ∗ IDimj = imj. Similarly, during the contract
forwarding phase, the intermediate node Uj can determine
whether gximjt ∗ (JKt)

∑y
m=1 nm = ImJ is equal to verify

the consistency of the contract.
c) Set timeout: The minimum timeout allocated to all

upcoming contracts of Ui is denoted as tend. From this point
on, all previous contract timeouts are determined.

2) Contract Forwarding Phase: Each node Ui maintains
variables ini, outi, successi and Ti, where ini and outi
represent the total amount of the input and output contracts,
respectively, both initialized to 0. successi is initialized to
false, indicating that all input contracts have not been re-
ceived yet. When all input contracts are received, successi is
set to true. Ti is set to the current time when Ui receives its
first input contract request. Ui waits for time Ti+ τ to receive

Algorithm 1: Pre-processing phase for node Us

Input: Payment channel set
E = IDs1, ID12, . . . , IDnr

Output: The encrypted information ES1 to U1

1 Generate a random number r as a secret value
2 Compute R = gr mod p
3 foreach incoming node j in Ur do
4 compute nj ∈ Zq

5 Sum up all nj to N
6 end
7 xjr = nj ∗ IDjr −N ∗ r
8 jr = nj ∗ IDjr

9 JR = gjr mod p
10 Encrypt (xjr, val, R, tend) to Ejr with pkr
11 foreach edge IDij in Edges do
12 xij = n ∗ IDij − jr
13 Encrypt (xij , valjr, JR, tjr, Ejr) to Eij with pkj
14 end
15 return ES1

all input contract requests, where τ > 0 is the waiting delay.
If the elapsed time is greater than Ti + τ , but successi is
still false, then Ui will send a quit message to the previous
contract to cancel the payment.

For the convenience of understanding, we explain the sit-
uation in Scenario 1 here, and the algorithm is shown in
Algorithm 2. Starting from node Us, after receiving the input
contract (that is, successi=true) and checking the correctness
of related messages, Ui first constructs an adapter signature
S′
ij = H (m ∥ IJ ∥ Pi) ∗ pi for its neighbor Uj , where m

is the payment information of Ui paying Uj . Then sends a
request to Uj to build a contract Reij = (IJ, valij , tij , S

′
ij).

Uj will verify the adapter signature, and after the verifi-
cation is successful, it will send accept information to Ui.
After Ui receives the accept message, it sends the encrypted
message Eij to Uj . After decrypted, Uj can know Dj =
{(IDjk, xij , valjk, JK, tjk, Ejk) : ∀Uk ∈ V, IDjk ∈ E} ,
where Ejk is the encrypted message to be forwarded to node
Uk. Uj judges the consistency of the input and output contracts
by judging whether JK ∗gxij = IJ is true. If the return fails,
Uj sends a quit message to Ui to cancel all off-chain contracts
established with the previous nodes. At the same time, Uj also
needs to ensure ini = outi + fee. When all verification is
successful, Uj starts to forward the payment contract to its
output nodes.

This phase continues until all payments reach Ur. To ensure
the atomicity of the payment, only when all the input contracts
of Ur arrive, Ur calculate the hidden value kr of Skr and
can claim the coins from Uk. Once Ur has received all the
payment contracts within a limited time, it will send the
payment confirmation information to Us. After Us receives
the payment confirmation information, it will send the value
r to Ur through a secure channel, thus triggering the contract
release phase.

3) Release Phase: For the convenience of understanding,
we explain the situation in Scenario 2. Ur has z input nodes
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Algorithm 2: Contract forwarding for Uj ∈ V

Input: Reij = (IJ, valij , tij , S
′
ij) from Ui

Output: Ejk

1 if PreV f
(
pki, S

′
ij

)
= 0 then

2 send quit to Ui

3 end
4 Initialize inj=0, outj=0, Tj=timecur, successi=false
5 inj = inj + valij
6 Accept forward request, then receive Eij from Ui

7 Decrypt Eij to get
Dj = {(IDjk, xij , valjk, JK, tjk, Ejk) : ∀Uk ∈
V, IDjk ∈ E}

8 foreach Uk in Dj do
9 if JK.gxi,j ̸= IJ or tij < tjk +∆ then

10 send quit to Ui

11 end
12 outj = outj + valjk
13 end
14 if outj + fee > inj then
15 wait for Tj + τ
16 if time reached the Tj + τ AND

successi = false then
17 Send quit to Ui

18 end
19 else
20 successi = true
21 S′

jk ← PreSig (skj ,m, JK)

22 send Rejk to Uk

23 if receive accept from Uk then
24 Send Ejk to Uk

25 end
26 end

Uj , and the relevant algorithm is shown in Algorithm 3. Ur

can obtain (JR, valjr, tjr, S
′
jr) from Rejr, and can decrypt

Ejr to obtain (xjr, nj , val, R0, tr). Then Ur sends payment
confirmation information to Us. After receiving the r value
from Us, Ur first checks the correctness of r. That is, verifying
whether R0 = gr is true. Next, Ur calculates xjr = nj ∗
IDjr −

∑z
j=1 nj ∗ r to obtain jr = nj ∗ IDjr, which can be

used to obtain the signature Sjr = jr+H (m ∥ Pj ∥ IR)∗pj .
If the signature is correct, Ur sends the success message to its
left neighbor with the signature Sjr, and claims coins from
its left neighbor; otherwise, it sends a quit message to the left
neighbor, and the payment fails. After the Uj receives Sjr,
it verifies the correctness of the signature and calculates the
signature Sij of the payment for IDij (the process is similar
to the above process) to claim coins from the left neighbor.

Any intermediate node participating in the forwarding
adapter signature payment, as long as at least one output node
returns the correct signature, the current node can ask the input
node for coins. Since the pre-signature will be included in the
request payment information Re in the contract forwarding
phase, the current node only needs to be able to calculate the
hidden value of the adapter signature of the payment. The
calculation of the hidden value depends on the pre-signature,

legal signature, and conditional value provided by the output
node through jr := Ext(S′

jr, Sjr, JR). In other words, the
signature provided by the output node will help the current
node calculate the signature of the payment paid by the input
node to the current node. This release process will continue
until the sender Us, so the payment is successful.

Algorithm 3: Release Phase for Node Uj

Input: r,
(
JR, valjr, tjr, S

′
jr

)
, (xjr, nj , val, R0, tr)

Output: Sij

1 if Uj = Ur then
2 if R0 ̸= gr then
3 send quit to previous node
4 end
5 Initialize R = 0
6 foreach nj from Dr do
7 R = R+ nj

8 end
9 R = R ∗ r

10 jr = xjr −R
11 Sjr := Adapt(S′

jr, jr)
12 Send Sjr to Uj

13 else
14 Initialize ij = 0
15 Receive Sjr from Ur

16 jr := Ext(S′
jr, Sjr, JR)

17 foreach ni from Dj do
18 ij = ij + ni

19 end
20 ij = xij − ij ∗ jr
21 Sij := Adapt(S′

ij , ij)
22 Send Sij to previous node
23 end

IV. SECURITY ANALYSIS

We formalize LightPay’s security and privacy using a
Universal Composability (UC) framework [28] and rely on
a synchronized version with the global UC (GUC) frame-
work [29]. Compared with the UC framework, GUC allows
global settings to model the blockchain as a global ledger FL.
The security of the GUC framework can allow the concurrent
combination of protocols, which means that a protocol can
remain secure when executed simultaneously with any other
protocol.

A. Adversary model and communication model

Adversary model. We assume that the adversary of this
protocol is A using a Probabilistic Polynomial Time (PPT)
algorithm. We adopt a static corruption model, where the
adversary A must specify the node to attack before the
protocol starts [18], [23]. A can control and obtain the internal
status and message transmission methods of some or even
all intermediaries and send and receive arbitrary messages on
behalf of these nodes.
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Communication model. We consider a synchronous com-
munication network where parties communicate in rounds
with an ideal functionality FLP [30]. All messages a user
sends in one round can reach the recipient in the next round.
At the same time, we assume that the parties communicate
through the authenticated channel Fsmt. The adversary can
change the order of sending messages in the same round
but cannot modify or delete the messages. Furthermore, we
assume that the integrity of the communication process and
identity between honest nodes is not compromised by A.

B. Universal Composability (UC) Security

A protocol Π UC-emulates the ideal functionality FLP

if environment Z is indistinguishable for any PPT between
the output of the actual run of the protocol and the
simulation of the ideal functionality FLP . Π is defined as
a hybrid protocol that has access to an ideal functionality
FC consisting of a global ledger FL and an authenticated
channel Fsmt. Environment Z can receive output messages
from real-world and ideal-world parties and provide input
to them. The ideal functionality FLP is attacked by the
ideal-world simulator Sim using the PPT algorithm. We use
EXECFC

Π,A,Z to represent the output set of environment Z
when adversary A interacts with the user running protocol
Π, and EXECFC

FLP ,Sim,Z to represent the output set of
environment Z when the functionality FLP interacts with the
simulator Sim. The formal definition of security is as follows.

Definition 1: If there is a simulator Sim for attacking FLP

for any PPT adversary A that attacks the real protocol Π, given
λ is a security parameter such that no matter which protocol
the PPT environment Z uses as a test, we have:

EXECFC
Π,A,Z ≈ EXECFC

FLP ,Sim,Z , (10)

where ≈ represents the computational indistinguishability. In
this case, the protocol Π GUC-realizes the ideal function FLP .

C. Ideal Functionality of LightPay

Notation. We define the ideal functionality FLP for Light-
Pay, where honest nodes in the network are simulated as
an interactive Turing-machine. These nodes are called virtual
nodes P , and they communicate with each other through the
ideal function FLP . In addition, Us and Ur represent the
payment’s sender and receiver, respectively. Ideal functionality
FLP internal maintenance list P stores the closed channel
list. The list P has the format (IDij , v

all
ij , texij , feeij), where

IDij represents the identifier of the payment channel between
virtual parties Ui and Uj , vallij represents the total capacity of
the channel, texij represents the expiration time of the channel,
and feeij represents the cost of the channel IDij transaction.
In addition, FLP uses list W to store the off-chain payment
list, represented by (IDij , v

re
ij , tij , Txij , S

′
ij), where vreij is the

remaining capacity of the channel, tij is the expiration time
of the payment, Txij is the payment event identifier, and S′

ij

represents the adapter signature. In the pre-processing phase of
LightPay, Us generates a session sid and builds a payment path

in L from Us to Ur that can pay the amount val and supports
the expiration time tend. The set of all payment channels in
the payment path is E, and Us sets the payment amount valij
and payment expiration time tij of each channel according to
the feeij of each channel in E.

We define the EXECUTION operation in the ideal-world,
which is divided into two phases: (1) Contract forwarding
phase and (2) Release phase.

Contract forwarding phase. As depicted in Figure 4, af-
ter Us sends (sid, Payment, Ur, val, tend, {(IDij, valij , tij ,
S′
ij) : IDij ∈ E},E) to FLP , FLP starts this phase and add

Us into the queue Sp. First, FLP will check whether there is an
open channel IDij in L and whether there is sufficient channel
balance. It also checks the correctness of timeout, transaction
amount, adapter signature, and the consistency of input and
output contracts. If these conditions fail, FLP will delete all
off-chain payment entries in W and terminate the protocol.
If all conditions are true, FLP forwards part of the payment
to the next neighboring node Uj . If all input contracts of Uj

hold, it is inserted into Sp. If Uj send abort, all entries in W
are deleted and FLP abort.

Release phase. When the partial payment is forwarded to
Ur, Ur sends a response message (sid,mes) to FLP to trigger
this phase. FLP initializes queue R and adds Ur to the queue.
If mes = abort sent by Ur, indicating that the payment
process failed, FLP delivers abort to all input nodes of Ur and
deletes all entries related to the payment from W . If Ur sends
a success message, FLP will deliver the message to Ur’s input
nodes, update the entry in W , and send the success message
to its input node. We also use vis to denote the access status
of nodes. If another input node of Ur sends abort, the node
is marked as vis and added to Sf .

D. Discussions

In this subsection, we discuss how FLP captures the secu-
rity and privacy properties defined by LightPay in Section III.

Atomicity. The challenge with atomicity is how we design
conditional payments. Therefore, we use adapter signatures
to generate pre-signatures for payments between nodes. The
correct signature can be generated when the next neighboring
node obtains the hidden value, and once the current node
knows this correct signature, it can also obtain the hidden
value by calculation.

As shown in Figure 5 (assuming the payment path is
S → A → B → R), LightPay ensures the atomicity of all
sub-paths in the payment path. In the pre-processing phase, S
generates the corresponding conditional value SA and pre-
signature S′

SA for IDSA. Since the pre-signature is not a
real signature, it cannot be used as a payment certificate for
off-chain state updates. In the contract forwarding phase, S
forwards the puzzle, and the pre-signature and the intermediate
node sequentially pass the corresponding information to the
next neighboring node. Since the intermediate node received
the pre-signature, the coins cannot be released temporarily.
The release phase is triggered when the last node R receives
the information. Since R is the receiver, it can be obtained
by solving the puzzle, and r can be obtained to adapt the
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Contact forwarding phase
On input (sid, Payment, Ur, val, tend, {(IDij , valij , tij , S

′
ij) :

IDij ∈ E},E) from Us, FLP proceeds as follows:
1. For each IDij ∈ E, set ct(sid, IDij) = 0
2 Form a set VE = Ui ∪ Uj such that Ui, Uj ∈ VE and IDij ∈ E.
3. Initialize empty queue Sp. Add Us into Sp.
4. While Sp is not empty:

i. Add Ui into Sp.
ii. For each Uj ∈ VE : IDij ∈ E:

- If Uj send (sid, abort) to FLP then abort.
- If PreV f(pki, S

′
ij) = 0 then abort.

- If IDij not in L or in P then abort.
- Form zij = {(IDjk, valjk, tjk, S

′
jk) : ∀Uj ∈ VE : IDij ∈ E},

if Uj ̸= Ur. Else zir = {val, tend}.
- If tij < ∆+maxUk∈VE:IDjk∈Etjk and

∑
Ui∈VE:IDij∈E

valij ̸=∑
Uk∈VE:IDjk∈E

valjk + fee(Uj) then abort.

- If vreij < valij then abort. Else add dij = (IDij , v
re
ij −

valij , tij , abort) into W .
- Set ct(sid, IDij) = 1. Sample an identifier Txij .
- Send (sid, forward, Ui, IDij , valij , tij , Txij , zij) to Uj .
- For all Ui ∈ VE : IDij ∈ E. If ct(sid, IDjk) = 0 then abort.

Else add Uj into Sp.
Release phase

On input (sid,mes) from Ur, FLP proceeds as follows:
1. For each Uj ∈ VE, Set vis(Uj) = 0.
2. Initialize empty queues R and Sf .
3. Add Ur to R.
4. While R is not empty:

i. Pop node Uj from R.
ii. For each Ui ∈ VE : IDij ∈ E and ct(sid, IDij) = 1:

- Set ct(sid, IDij) = 0.
- If mes = abort then:

Remove dij from W .
Send (sid, abort, Txij) to Ui and Uj ..

- Else if mes = success.
Update dij ∈ W to (−,−,−, Txij), send

(sid, success, Txij)to Ui and Uj .
If Ui sends (sid, abort) then vis(Ui) = 1, add Ui into Sf .
Else if vis(Uj) = 0 and Ui ̸= Us, set vis(Ui) = 1 and add

Ui into R.
5. While Sf is not empty:

i. Pop node Uj from Sf .
ii. For each Ui ∈ VE : IDij ∈ E and ct(sid, IDij) = 1:

- Set ct(sid, IDij) = 0. Remove dij from W .
- If vis(Ui) = 0, set vis(Ui) = 1, add Ui into Sf .

Fig. 4. The ideal functionality FLP .

pre-signature and generate the correct signature SBR. Then R
calculates SBR through r to user B, and B can obtain rBR

through SBR to calculate rAB , so the payment is completed
when S is introduced to SSB and verified to be correct. If
one of the nodes fails to verify the signature, it sends abort,
indicating that the payment failed. Such a scheme can ensure
that when the current node updates the channel state according
to the signature, the previous node can obtain the hidden value
of the current node’s payment according to the signature to
calculate the hidden value of the previous node’s payment,
which ensures the atomicity of the whole process.

Unlinkability. We assume that Uj splits the payment to
nodes Uk1 , Uk2 and Uk3 . To mitigate transaction correlation
attacks caused by the use of identical hidden value, in the pro-
posed protocol, Us assigns different jk1, jk2 and jk3 to chan-
nels IDjk1

, IDjk2 and IDjk3
, even if the off-chain contract

Fig. 5. Atomicity guarantee of LightPay.

is settled on-chain, miners still cannot establish connectivity
between these values. At the same time, FLP will randomly
generate an independent identifier idij for each payment of Ui,
and neighbors cannot find any correlation between payment
identifiers. The probability that a node participating in a partial
payment or miner will link Sjk1

, Sjk2
, Sjk3

without knowing
the random number n is negligible.

Wormhole attack resistance. This protocol designs the
calculation process of the secret value based on a discrete
logarithm problem, so that the secret value of each node Ui is
related to the secret values of all its output nodes Uj . In the
release phase, When node Uj resolves its off-chain contract, it
will send the signature Sij to the previous node, and Ui will
be added to the set R. Ui needs signature Sij to calculate the
secret value of the input contract. If Uj cannot provide the
correct signature, all Ui sends abort. Therefore, no node on
the path can be skipped.

Balance security. In the proposed protocol, honest nodes
cannot lose their coins. The valid signature of any intermediate
node Uj paying to the next neighboring node can restore the
valid signature of the previous node Ui paying to the current
intermediate node. Even if a malicious node sends a wrong
message, an honest node can judge the correctness of the
message and send abort to terminate the payment forwarding.
If Ui receives abort from all successor nodes, it will also abort,
and the balance of all nodes remains unchanged. And when
the payment is successful, honest nodes can get their fees.

Path privacy. This protocol uses onion routing to encapsu-
late forwarded messages to ensure that any intermediate node
forwarding a payment can only communicate with its direct
neighbor nodes. The information received by each node will be
encrypted layer by layer to ensure that only after the previous
node decrypts the information, the latter node can decrypt its
information. intermediaries cannot decrypt their messages in
advance, nor can they decrypt messages belonging to other
nodes, thus ensuring path privacy.

Endpoint privacy. For any intermediate node, the message
it receives is the information of the input contract Reij =
(IJ, valij , tij , S

′
ij) and the information of the output contract

Dj = (xij , valjk, JK, tjk, Ejk). The message format received
by any intermediate node is consistent and does not contain
information about the payment sender and receiver, so it is
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impossible to judge whether Ui (Uj) is the sender (receiver).

E. Security Analysis

In this section, we utilize the set of real-world and ideal-
world outputs of the protocol at different phases to analyze
the indistinguishability of environment Z to ideal-world and
real-world interactions. We describe the simulator Sim used to
handle the situation of nodes corrupted by A and simulate the
execution protocol of the hybrid world while interacting with
the ideal function FLP . Sim will maintain the key set of the
honest nodes being simulated and, therefore, can decrypt and
encrypt information on their behalf. If A sends any invalid
information, then Sim sends the abort instruction to FLP .
According to the execution process of the protocol, this work
defines three situations of node corruption and corresponding
malicious behaviors:

Sender Us is corrupted, and A attempts to set a secret value
that cannot release the contract. In the contract forwarding
phase, A generates data packets (IJ, valij , tij , S

′
ij , Eij)

for each IDij ∈ E, Ui ̸= Ur. Then decrypts Eij to obtain
Dj = {(IDjk, xij , valij , JK, tjk, Ejk) : ∀Uk ∈ VE :
IDjk ∈ E}, when Uj ̸= Ur or Dj = (xkr, nk, R0),
if Uj = Ur. A forwards the data packet Dj to Sim.
For each node Uj ∈ VE : IDij ∈ E, Uj ̸= Us, Ur,
Sim executes the judgment PreV f(pki, S

′
ij) = 0. If

failure is returned, then abort. Next, Sim constructs
the set Mj = {(IDjk, xij , JK, tjk) : ∀Uk ∈ VE :
IDjk ∈ E}, and determines JK ∗ gxij = IJ and
tij ≥ tjk + ∆. If success is returned, execution
continues. Finally, Sim determines

∑
Ui∈VE:IDij∈E

valij ̸=∑
Uk∈VE:IDjk∈E

valjk + fee(Uj); if the check fails, then

abort. If the program is not abort, Sim will send
(sid, pay, Ur, val, tend, (IDij , valij , tij , S

′
ij) : IDij ∈ E,E)

to FLP . Before forwarding the payment, Sim checks the
consistency of the input and output contracts by whether
JK ∗ gxij = IJ is equal. In the release phase, Ur will release
the secret value jr, generate the signature Sjr of IDjr, and
then send it to Sim. Sim will check that jr is generated by
jr := Ext(Sjr

′, Sjr, JR), and then check the correctness
of the discrete logarithmic value jr by judging whether
ij = jr + xij is equal. When the result returns failure, Sim
terminates. Therefore, a contract built by A with a wrong
secret value will be discovered by the Sim and terminated.

Intermediary Uj is corrupted and A attempts to release
Uj’s input contract before the secret value is revealed. In
the contract forwarding phase, assume that all input and
output nodes of Uj are Ui and Uk, respectively. When
Sim obtains(sid, forward, Ui, valij , tij , IDij , idij , zij) from
FLP on behalf of Ui, it will sample jk for each Uk ∈
zij and calculate S =

∑
Uk∈VE:IDjk∈E jk. Sim sends

(forward, IJ, valij , tij), Eij to A on behalf of Ui. Then A
sends (JK∗, valjk, tjk) for all Sims representing Uk. Sim
first checks the correctness of the timeout, transaction amount,
and adapter signature, then checks the consistency of the input
and output contracts, whether IJ = gxjk ∗JK is equal. If any
check fails, an abort is sent to FLP . In the release phase, Ur

generates signatures Smr of all its input contracts and sends
them to Sim. Sim will check the signature and extract the
secret value of the previous contract. If the check fails, the
Sim aborts. Consequently, according to the definition of the
protocol, the probability of A guessing IJ and releasing the
input contract without knowing ij is 1/q.

Receiver Ur is corrupted and A attempts to release the
contract independently. In the contract forwarding phase,
Uj is regarded as all input nodes of Ur, and FLP sends
(sid, forward, Uj , valjr, tjr, IDjr, idjr, zjr) to Sim repre-
senting Uj . Sim takes R0 from A and samples nj , creating
JR = gn ∗ R0, where n =

∑
Uj∈VE:IDjk∈E nj . It represents

all Uj sending (forward, JR, valjr, tjr), Ejr to A. In the
release phase, Sim representing Us sends r information to
A. A calculates the secret value of IDjr through r, and
then further calculates the signature Sjr and sends it to Sim
representing Uj . Sim will check the signature Sjr and, if
successful, continue executing the protocol. If A generates
r and nj without asking Sim event identifier idjr such that
JR = gn ∗ R0, then send an abort to FLP . Because A does
not know the values of r and nj , the probability of A guessing
dlog(JR) is 1/q, that is, the probability of A independently
releasing the contract is 1/q.

It can be seen that when the sender Us, the intermediate
node Ui, or the receiver Ur is corrupted, the values randomly
generated by Sim and the values executed follow the same
distribution and are indistinguishable. There is no difference
between the operating results of Z in the ideal-world and the
hybrid-world. Therefore, we prove that LightPay GUC-realizes
the desired functionality FLP and has the same security as
FLP as defined in Section III.

V. PERFORMANCE ANALYSIS

A. Implementation Details

The experimental platform comprises one Intel(R) Xeon(R)
2-core Gold 6133 2.50GHz CPU and 4GB memory, running
Ubuntu 20.04 LTS operating system. Programming language C
and OpenSSL 1.1.1 1 library are used to implement LightPay,
and the generator g is set to 2). In the experimental process, we
compare the performance of LightPay with CryptoMaze [23],
Multihop HTLC [17], and SplitPay [22], and the experimen-
tal configurations are as follows: CryptoMaze uses elliptic
curve secp224r1 for encryption. Multihop HTLC uses a zero-
knowledge proof library based on C implementation ZKBoo2

and libgcrypt 1.8.43. The number of ZKBoo rounds uses the
default value of 136, and the witness length is set to 32 bytes.
SplitPay uses elliptic curve secp224r1 for encryption and
realizes homomorphic encryption based on libhcs library4. The
following items are the metrics used in the experimentation:

• Success rate. Randomly selecting the sender and receiver
from the network to construct the successful ratio of the
payment path. Building a payment path requires ensuring

1https://www.openssl.org/
2https://github.com/Sobuno/ZKBoo/
3https://gnupg.org/software/libgcrypt/index.html
4https://github.com/tiehuis/libhcs
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Fig. 6. Comparison of off-chain payment success rates on Lightning Network in March 2021, December 2021, and May 2022.

that each channel in the path has sufficient balance to
support payment forwarding.

• Number of off-chain contracts constructed. The num-
ber of off-chain contracts that need to be constructed in
the payment path. Every channel in every path needs to
build an off-chain contract.

• TTP (Time Taken for Payment). The time required to
find a suitable path from the payment network and build
an off-chain contract, including releasing the contract.
The small unit is s.

• Communication overhead. When conducting an off-
chain payment, nodes need to forward the size of the
message in KB.

B. Performance Evaluation in Lightning Network

We selected the snapshot data of the Lightning Network
in March 20215 (11072 nodes), December 20216 (13023
nodes), and in May 20227 (17813 nodes) for the experiment,
using the distributed routing protocol HushRelay [26] for off-
chain payment path routing. In these networks, we conducted
experiments on 5,000 payments with transaction amounts in
the range of 0.0025-0.32BTC (the path length between the
sender and the receiver is 4) and took the average value.
We tested the payment success rate of different protocols and
the number of off-chain contracts that need to be built. It is
worth noting that in the success rate, we compared single-path
and multi-path. Because LightPay, CryptoMaze, and SplitPay
all support multi-path, their success rates are consistent. The
representative of single-path is Multi-hop HTLC. Similarly,
regarding the number of off-chain contracts under multi-path,
we compare the split path (i.e., SplitPay) and the shared path
(i.e., CryptoMaze and LightPay).

Success rate: As shown in Figure 6, the success rate
of the multi-path payment protocol in the lightning net-
work snapshot is generally higher than that of the single-
path payment protocol. In Lightning Network5, when trading

5https://www.dropbox.com/s/fkq7kh5xyu3l33t/LN 25 05 2021.json?dl=0
6https://git.tu-berlin.de/rohrer/discharged-pc-data/-

/blob/master/snapshots/lngraph 2021 12 12 00 00.json.zst
7https://drive.google.com/file/d/1jPZHvm2OCovhKUHso6TkPvmJM89vQS

5F/view

0.0025 BTC, the success rate can be increased by 11.08%.
In Lightning Network6, the success rate can be increased by
5.84%. Similarly, in Lightning Network7, the success rate can
be increased by 9%. This is because when only a single-path
is used for payment, the amount that can be forwarded in
a path depends on the minimum balance of each channel.
After the introduction of multi-path, the selection range of
the channel balance can be increased, thereby improving the
payment success rate. Meanwhile, we can find that as the
payment amount increases, the success rate becomes smaller
because tiny payments dominate the lightning network, and
most of the channel capacity is concentrated between 0.0025-
0.04BTC. This experiment demonstrates that the multi-path
scheme can improve the success rate of off-chain payment.

Number of construction contracts: As shown in Figure 7,
the number of contracts in the shared path scheme is generally
less than that of the split path scheme. In Lightning Network5,
12.39% of contracts can be saved when transacting 0.32 BTC.
In Lightning Network6, the number of contracts built off-chain
can be reduced by 7.36%. Similarly, in Lightning Network7,
6.61% contract construction can be saved. Because in the
shared path, there is no need to build multiple contracts
for repeated sub-paths, and only one contract is needed to
complete payment forwarding. The fewer contracts to build,
the less the transaction fees and processing time is required
to forward the payment. Only one fee for the same channel
with different paths must be paid. At the same time, as the
transaction amount increases, the difference in the number
of off-chain contract constructions between the two protocols
becomes wider. This is because the larger the transaction
amount, the more paths may be split, and the shared path
scheme has fewer contracts. This experiment proves that the
shared path scheme (i.e., CryptoMaze and LightPay) can
reduce the number of contracts that need to be constructed.

C. Performance Evaluation in Simulated Networks

In this section, we generate simulated networks with a
network size of 300-38400 based on the Barábasi-Albert
model [31], implemented based on the igraph library. We
tested the protocol’s TTP and communication overhead in a
simulated network.
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Fig. 7. Comparison of the number of construction contracts for off-chain payment on Lightning Network in March 2021, December 2021, and May 2022.

TTP: In Figure 8, LightPay’s processing time did not
exceed 0.8s in a simulated network with a size below 4800.
When the simulated network size reaches 19200, the process-
ing time does not exceed 5.7s. CryptoMaze’s time overhead
is close to LightPay. SplitPay is 1.6 times that of LightPay
because it uses homomorphic encryption to increase the time
overhead; yet, since Multihop HTLC uses zero-knowledge
proofs, its time overhead is 42.4 times that of LightPay.
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Fig. 8. Comparison of TTP in different protocols on the simulated network.

Communication overhead: As shown in Figure 9, the
communication overhead of LightPay would not exceed 900
KB when the network size reaches 38400. The CryptoMaze
is about 1.8 times that of the LightPay. This is because,
in a path containing n channels, the message that LightPay
needs to transmit in the pre-processing phase is 0 bytes, since
the payment hidden value can be generated locally in the
transaction sender Us and does not need to be communicated
with other nodes. In the contract forwarding phase, each
payment channel needs to exchange 5 messages: IJ , valij ,
tij , S′

ij , and Eij , and the total communication overhead is
120 ·n bytes. In the release phase, each payment channel must
only exchange one signature information Sij , occupying 64 ·n
bytes. Finally, in the phase of updating the off-chain channel,
each node no longer needs to exchange signatures, so the
number of required transmission messages is 0. In these four
phases, LightPay requires a total of 184 ·n bytes of messages
to be transmitted. Similarly, we analyzed that the number of

TABLE III
COMPARISON OF THE NUMBER OF MESSAGES THAT NEED TO BE

DELIVERED IN DIFFERENT PHASES OF EACH PROTOCOL.

MultiHop
HTLC SplitPay CryptoMaze LightPay

Pre-processing 1 1 1 0
Contract forwarding 6 · n 5 · n 4 · n 5 · n

Release n n n n+ 1
Receiver address 1 n 1 1

Signature 2 · n 2 · n 2 · n 0

messages required to be transmitted by CryptoMaze in the pre-
processing, contract forwarding, release, and update channel
phases are 64, 136 · n, 64 · n, and 128 · n bytes respectively,
for a total of 64+328 ·n bytes. Consequently, when there are
10 channels in the path, LightPay’s communication overhead
is approximately reduced to 55% compared to CryptoMaze.
Multihop HTLC is about 330 times that of LightPay, because
it needs to process the zero-knowledge proof message of each
channel, so the communication overhead is relatively large.
Although LightPay is about 1.8 times faster than SplitPay,
SplitPay’s sub-path is vulnerable to wormhole attacks.
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Fig. 9. Comparison of communication overhead in different protocols on the
simulated network.

D. Efficiency Comparison

From theoretical analysis, the number of messages that need
to be delivered in LightPay is shown in Table III.
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In the pre-processing phase, Multihop HTLC, SplitPay, and
CryptoMaze all need one message delivery; that is, the receiver
calculates the hash value R = H (r) of the pre-image r, and
the R is sent to the sender. The sender generates the r of
LightPay, and there is no need to transfer the message in the
pre-processing phase, despite the encrypted R being sent to the
receiver in the forwarding contract phase. In the forwarding
contract phase, Multihop HTLC needs to forward the node
information of both sides of the channel, the hidden value of
the payment, the payment amount, the expiration time, and a
non-interactive zero-knowledge proof, so the protocol requires
6 · n message delivery numbers.

For SplitPay, it is necessary to forward the sender informa-
tion, receiver information, payment amount, hash value, and
homomorphically encrypted ciphertext information, a total of
5 · n messages. In CryptoMaze, 4 · n pieces of information
must be forwarded in the forwarding contract phase, including
payment condition value, payment amount, timeout time,
and encrypted information Mj . Compared with CryptoMaze,
LightPay must deliver an additional adapter signature informa-
tion, 5 ·n messages. Finally, in the release phase, all protocols
require the receiver to transfer the secret value, so n messages
are needed. What is noteworthy is that before this process
in LightPay, the receiver needs to request the original secret
value from the sender, so there is one more message. At the
same time, LightPay passes the legal signature instead of the
hidden value in the release phase, which can simplify the steps
of exchanging signatures after confirming the payment.

It is worth noting that only SplitPay transmits the receiver’s
address information for every node in the payment path. At
the same time, other methods only send the receiver’s address
in the last forwarding contract, since it needs intermediaries to
divide the appropriate path according to the receiver’s address,
which may leak the receiver’s privacy. In addition, LightPay
does not need to deliver signatures, while the other protocols
must provide 2 · n signatures. This is because our protocol
will send the adapter signature to the previous node during
the release phase, and a legal signature can be generated
after the last node completes the adaptation. Therefore, in the
subsequent stage, only another node needs to complete one
round of signatures.

In conclusion, experimental analysis shows that the pro-
posed LightPay can improve the success rate of off-chain
payment, reduce transaction fees, time overhead, and commu-
nication overhead, and provide better all-around performance
than the existing protocols.

VI. CONCLUSIONS AND FUTURE WORK

All transactions on the blockchain require the consensus
of the entire network nodes, so the transaction throughput is
minimal. In the off-chain payment channel, only the confirma-
tion of both parties is necessary to complete the transaction
consensus. To solve the problem of limited payment through-
put in the blockchain, we propose LightPay - an atomic,
private, and efficient off-chain multi-path payment protocol.
LightPay realizes multi-path payment based on the adapter
signature to improve the success rate of the payment and

reduce the fee required for the payment process. To ensure
unlinkability and privacy, LightPay constructs the conditional
value of the off-chain contract according to different scenarios.
Through experiments in Lightning Network and simulated
networks, LightPay has presented better time overhead and
communication overhead than the state-of-the-art schemes.

Due to the frequent one-way coin transfer, it is easy to
cause the problem of channel exhaustion, affecting the success
rate of transactions. In future directions, we will focus on
the dynamic allocation of balances in the payment channel
to further improve the success rate of off-chain payments.
Additionally, we aim to investigate and develop efficient off-
chain payment routing protocols.
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