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We present a formulation of proper orthogonal decomposition (POD) producing a velocity-temperature basis optimized
with respect to an H1 dissipation norm. This decomposition is applied, along with a conventional POD optimized with
respect to an L2 energy norm, to a data set generated from a direct numerical simulation of Rayleigh-Bénard convection
in a cubic cell (Ra = 107, Pr = 0.707). The data set is enriched using symmetries of the cell, and we formally link
symmetrization to degeneracies and to the separation of the POD bases into subspaces with distinct symmetries. We
compare the two decompositions, demonstrating that each of the 20 lowest dissipation modes is analogous to one of the
20 lowest energy modes. Reordering of modes between the decompositions is limited, although a corner mode known
to be crucial for reorientations of the large-scale circulation is promoted in the dissipation decomposition, indicating
suitability of the dissipation decomposition for capturing dynamically important structures. Dissipation modes are
shown to exhibit enhanced activity in boundary layers. Reconstructing kinetic and thermal energy, viscous and thermal
dissipation, and convective heat flux, we show that the dissipation decomposition improves overall convergence of each
quantity in the boundary layer. Asymptotic convergence rates are nearly constant among the quantities reconstructed
globally using the dissipation decomposition, indicating that a range of dynamically relevant scales are efficiently
captured. We discuss the implications of the findings for using the dissipation decomposition in modeling, and argue
that the H1 norm allows for a better modal representation of the flow dynamics.

I. INTRODUCTION

Flows driven by thermal buoyancy are both of fundamen-
tal interest and of relevance to a wide range of applications
within e.g. engineering, geophysics, and astrophysics. Such
flows are often studied through simplified configurations such
as the Rayleigh-Bénard cell, in which a fluid layer between
two horizontal plates is heated from the bottom and cooled
from the top. For a given geometry the relevant control pa-
rameters are the Rayleigh number, Ra, and the Prandtl num-
ber, Pr,

Ra =
βg∆T H3

νκ
, Pr =

ν

κ
, (1)

where β is the thermal expansion coefficient, g the acceler-
ation due to gravity, ∆T the temperature difference between
the plates, H the fluid layer height, ν the kinematic viscos-
ity, and κ the thermal diffusivity. The Rayleigh number mea-
sures the ratio of buoyancy and dissipative effects, while the
Prandtl number depends only on the fluid, measuring the ratio
of momentum diffusivity to thermal diffusivity. The resulting
behavior of the flow is described through the Nusselt number,
Nu, and the Reynolds number, Re:

Nu =
⟨wT ⟩A,t −κ ⟨∂zT ⟩A,t

κ∆T H−1 , Re =
UH

ν
, (2)

where ⟨·⟩A,t denotes the average over a horizontal plane and
time, w is the vertical velocity component, T the temperature,

∂z the vertical derivaive, and U a characteristic mean velocity.
The Nusselt number is the non-dimensionalized heat flux,

including both convective and conductive contributions. A
central question is to determine the dependence of the heat
transfer, characterized by a Nusselt number, on the control
parameters Ra and Pr. Shraiman and Siggia 1 have estab-
lished strong relationships between these parameters and the
thermal and viscous dissipation, valid in the case of adiabatic
side walls, showing in particular that Nu = ⟨εθ ⟩, where ⟨εθ ⟩
is the non-dimensional volume-averaged total thermal dissi-
pation, and that (Nu−1)Ra = ⟨εu⟩, where ⟨εu⟩ is the non-
dimensional volume-averaged total viscous dissipation.

Grossmann and Lohse 2 have developed a successful the-
ory for predicting Nu from Ra and Pr. It is based on a
scaling analysis of the relative contributions of the bulk and
the boundary layer to the global kinetic and thermal dissipa-
tion, taking into account the relative thickness of the thermal
and viscous boundary layers. Crucial dynamical information
is therefore contained in these boundary layers, as pointed
out by Siggia 3 , Chillà and Schumacher 4 , and more recently
by Scheel and Schumacher 5 , who identified strong inhomo-
geneities in the boundary layers using local analysis. At the
same time, boundary layers present a challenge in the model-
ing of buoyancy-driven flows, as pointed out by Hanjalić 6 ,
due to rapidly varying properties and the lack of universal
scalings for these regions. The theory was further refined
by Grossmann and Lohse 7 to decompose the thermal bulk
contribution into a background part and a plume-dominated
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one. Plumes are coherent structures, akin to detached ther-
mal boundary layers, that carry a large part of the heat flux8

and that are associated with large thermal dissipation events9.
Plume-based analysis was recently used by Vishnu, De, and
Mishra 10 to investigate the statistics of viscous and thermal
dissipation rates in a cubic cell. Shishkina and Wagner 11

found that plumes collect into a large-scale circulation (LSC)
at a sufficiently high Rayleigh number. The connection be-
tween small-scale plumes and the onset of the LSC has also
been evidenced in experiments12. The presence of the LSC
is responsible for the failure of standard one-point turbulence
closures13.

Coherent pattern extraction from velocity and thermal fluc-
tuations can be carried out using proper orthogonal decompo-
sition (POD)14,15, a statistical technique introduced to turbu-
lence studies by Lumley 16 . The first such study of a convec-
tive flow was carried out by Sirovich and Park 17 . Several
configurations have been studied since: Bailon-Cuba, Em-
ran, and Schumacher 18 applied POD to a cylindrical con-
figuration; Podvin and Sergent 19 , Verdoold, Tummers, and
Hanjalić 20 to rectangular cavities; Podvin and Sergent 21 to
two-dimensional cells; and Soucasse et al. 22 to cubic cells.
In all these studies, the decomposition extracts the velocity
and temperature fluctuations with the largest energy. How-
ever, as described above, evidence suggests that the viscous
and the thermal dissipation rates are the fundamental quan-
tities to characterize the flow. This relates to a more gen-
eral issue affecting POD-based models, namely that conver-
gence in energy does not itself guarantee that the model repro-
duces temporal dynamics accurately. In particular, the focus
on large-scale structures resulting from energy optimization
contrasts with the fundamentally multi-scale nature of turbu-
lence dynamics23. Convergence of the gradients (H1 norm)
is a stronger requirement than L2 convergence, and may be
necessary for ensuring that the dynamics of the reduced-order
system reproduce those of the full flow. Aubry, Lian, and
Titi 24 showed that a truncation containing more than 99%
of the energy was not enough to capture the dynamics of the
Kuramoto-Sivashinsky equation. It is therefore of interest to
investigate the ability of POD-based methods to capture struc-
tures optimized with respect to H1 norms rather than the con-
ventional L2 norms.

The formalism underlying POD can be modified to produce
decompositions with respect to any quantity that can be ex-
pressed formally as a norm on some tensor-, vector-, or scalar-
valued field derived from the decomposed data. Using POD
this way produces a basis spanning the space corresponding
to the field in question optimally with respect to the chosen
norm. Examples of such norms are enstrophy and dissipa-
tion, which are H1 norms computed from the velocity gradi-
ent field and strain rate tensor field, respectively. Sengupta
and Dey 25 studied the bypass transition using an enstrophy-
optimized vorticity decomposition, and Lee and Dowell 26 in-
vestigated a gradient basis used in combination with a conven-
tional energy-optimized velocity basis as a method for stabi-
lizing a reduced order model (ROM) of a two-dimensional lid
driven cavity flow. Another example of POD applied to non-
conventional data sets was presented by Schiødt et al. 27 , who

decomposed Lagrangian velocity data of particles suspended
in a turbulent flow.

The extended POD introduced by Borée 28 makes it pos-
sible to select the decomposed quantity and the optimization
quantity independently, enabling the computation of modes
spanning any desired quantity optimally with respect to a
norm computed from a different quantity, subject to the con-
straints discussed above. For example, it allows the compu-
tation of velocity modes optimized with respect to tempera-
ture norm and vice versa, as done by Podvin and Sergent 21 ,
or of velocity modes optimized with respect to the dissipa-
tion norm, as demonstrated by Olesen et al. 29 . This provides
a method for educing dynamically important structures that
may be missed in a conventional POD analysis. In the present
work this approach is used for obtaining velocity-temperature
modes that are optimized with respect to either total energy
or total dissipation. In the light of the role of dissipation in
Rayleigh-Bénard convection discussed above, the dissipation
optimization can be expected to produce structures represent-
ing important aspects of the flow dynamics that are not well
captured in energy optimized decompositions.

In the present work we consider a cubic Rayleigh-Bénard
cell, which has previously been investigated with standard
POD by Soucasse et al. 22 . We apply the dissipation optimized
POD to the data set, and produce velocity-temperature modes
than can be compared directly to their energy-optimized coun-
terparts, in terms of both the per-mode large scale organization
and the convergence of energy, dissipation and heat flux glob-
ally and in the boundary layers.

The remainder of this paper is laid out as follows. In Sec-
tion II we present the generic formalism for POD and the par-
ticular formulations for the energy and dissipation optimized
versions, as well as the data set upon which the subsequent
analysis is based. The data set is symmetrized based on the
geometrical symmetries of the cell, and we analyze the for-
mal consequences that this has on the decomposition in Sec-
tion III. In Section IV we analyze the results of the energy and
dissipation decomposition, including spectra, large-scale or-
ganization of POD modes, and resolved boundary layer struc-
tures. The convergence of reconstructed quantities in consid-
ered in Section V. We discuss the implications of the results
for the applicability of the formalism in a modeling context in
Section VI, and summarize the conclusions in Section VII.

II. POD FORMALISM

POD was introduced to turbulence studies by Lumley 16

as a method for educing large-scale coherent structures in
turbulent flows. It has found use both as a valuable ana-
lytical tool for understanding mechanisms in flow dynamics
(see Bakewell Jr and Lumley 30 and Herzog 31 for early ex-
amples), as a modeling component in the context of reduced-
order models (ROMs)32,33, and for flow control34,35. In gen-
eral terms, POD produces an orthogonal basis for a given data
set such that the convergence of an expansion of the data set
in this basis is optimal in the mean with respect to the norm
on the data set. Formally, we let the data set Q = {qm}M

m=1
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of size M be a subset of a Hilbert space H with the associ-
ated inner product ⟨·, ·⟩ and norm ∥·∥ =

√
⟨·, ·⟩. The data set

is equipped with an averaging operation,
〈
{·m}M

m=1

〉
. Each

mode in the resulting orthogonal modal basis {ϕn}N
n=1 maxi-

mizes the mean projection of the data set,

ϕn = argmax
ϕ∈Hn

〈
{|⟨ϕ,qm⟩|}M

m=1

〉
∥ϕ∥2 , n = 1,2, . . . ,N , (3)

where Hn = H \ span
(
{ϕn′}n−1

n′=1

)
, and N is the number of

modes needed to span the data set, i.e., its effective dimen-
sionality, which satisfies N ≤ M.

The POD modes are eigenmodes of the POD operator R,

Rϕn = λnϕn , Rϕ =
〈
{⟨ϕ,qm⟩ qm}M

m=1

〉
. (4)

This operator is Hermitian and positive semi-definite by con-
struction, ensuring that the eigenmodes resulting from (4)
form a complete orthogonal basis for the data set and that the
eigenvalues are real and non-negative. The eigenpairs are con-
ventionally ordered by decreasing eigenvalues, corresponding
to modes being ordered by decreasing mean amplitude. The
expansion of elements of the data set,

qm =
N

∑
n=1

anmσnϕn , (5)

where σn =
√

λn are the singular values, and expansion coef-
ficients are given by

anm =
1

σn
⟨ϕn,qm⟩ , (6)

is thus optimally robust against truncation, preserving as much
of the mean norm of the truncated expansion as is possible
for any basis. The eigenvalue λn is the mean energy resolved
by the mode ϕn, which can be interpreted as a measure of
the importance of the mode in the reconstruction of the data
set. It should be noted, however, that eigenvalues measure the
importance of modes only in the narrow sense defined by the
inner product; it is thus entirely possible for features of central
importance for the dynamics of the flow to be resolved only
by modes with low eigenvalues. One consequence of this is
the difficulty of constraining a priori the order of POD-based
ROMs needed to achieve the desired model accuracy.

The POD coefficients anm in (5) are uncorrelated,〈
{anman′m}M

m=1

〉
= δnn′ , (7)

where δnn′ denotes the Kronecker delta. Different normaliza-
tion conventions exist regarding the definition of POD coef-
ficients and the expansion in (5), with singular values often
absorbed in coefficients. In that case σn disappears from (5)
and (6), and the right-hand side in (7) becomes λnδnn′ .

The normalization convention chosen in the present work
emphasizes the analogy between the expansion in (5) and the
singular value decomposition (SVD). The scaled data matrix

Q ∈ RN f ×M is formed with entries given by Qi j =
1√
M

q j(xi),
where N f is the number of degrees of freedom in the flow
field. The SVD of Q consists of the decomposition

Q = ΦΣAT , (8)

where Φ ∈ RN f ×N and A ∈ RM×N are orthonormal matrices
with POD modes and modal coefficients as their respective
columns, and Σ ∈RN×N is a diagonal matrix with the singular
values along its diagonal. The eigenvalue problem in (4) can
then be compactly written as

QQT
Φ = ΦΛ , (9)

where Λ = ΣΣT ∈RN×N is a diagonal matrix with eigenvalues
along its diagonal.

Commonly, N f ≫M, and the N f ×N f matrix QQT becomes
impractically large. The method of snapshots introduced by
Sirovich 36 replaces the matrix eigenvalue problem in (9) with
the snapshot eigenvalue problem,

QTQA = AΛ , (10)

where the matrix QTQ ∈ RM×M presents a much more man-
ageable eigenvalue problem. After solving (10) for the coeffi-
cient matrix A and eigenvalue matrix Λ the mode matrix can
be recovered as Φ = QAΣ−1.

In the original formulation by Lumley 16 the data set was
an ensemble of independent flow realizations defined on a
spatio-temporal domain. This method is in principle capable
of capturing the full spatial and temporal dynamics governing
the data set, although the size of the necessary data sets may
make it prohibitively expensive for fully three-dimensional
time-dependent flows. A number of more computationally
tractable approaches have been suggested. Commonly, the
ensemble is formed from a set of measurement or simulation
snapshots, each representing a single instant in time. Only
purely spatial correlations can be captured from such a data
set, as all information relating to temporal structure is dis-
carded in treating the time series as a statistical ensemble.
Zhang et al. 37 demonstrated a domain combining spatial di-
mensions and phase for a two-dimensional periodic lid driven
cavity flow, forming the ensemble from different periods of
the flow. The combined spatial and temporal dynamics within
a period could thus be described. Lumley 16 showed how di-
mensions exhibiting homogeneity and periodicity could be
eliminated from the domain by replacing R with its Fourier
transform along these dimensions, yielding a separate eigen-
value problem for each wave number or frequency. This ap-
proach has become known as spectral POD38 (not to be con-
fused with the identically named method proposed by Sieber,
Paschereit, and Oberleithner 39 ). The method has also been
used to approximate POD modes along dimensions that were
not manifestly periodic, although this introduces certain devi-
ations from the optimality offered by true POD, cf. Hodžić,
Olesen, and Velte 40 .
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A. Energy POD

In this work we consider the decompositions based on two
different ensembles: one formed from a set of snapshots of
velocity and temperature data, leading to a decomposition
optimized with respect to total energy (kinetic + thermal);
and one formed from snapshots of the corresponding strain
rate tensor and temperature gradient data, optimized with re-
spect to total (viscous + thermal) dissipation. The velocity-
temperature data set is described in more detail in Section II D.
In either case the POD is fully specified by defining the en-
semble Q = {qm}M

m=1 and the inner product ⟨·, ·⟩ used in (3),
(4), and (6).

For the energy POD the ensemble QE = {qm}M
m=1 ⊂ HE

consists of combined velocity and temperature snapshots,

qm = (um,vm,wm,θm) , (11)

which are elements in the Hilbert space

HE =
{

ϕ : Ω → R4 |⟨ϕ,ϕ⟩E < ∞} . (12)

This space is equipped with the inner product ⟨·, ·⟩E and norm
∥·∥E corresponding to total (kinetic and thermal) energy, de-
fined as

⟨ϕ,ψ⟩E =
3

∑
i=1

∫
Ω

ϕ
i
ψ

i dx+ γ
2
E

∫
Ω

ϕ
θ

ψ
θ dx , (13a)

∥ϕ∥E =
√
⟨ϕ,ϕ⟩E , (13b)

where ϕ,ψ ∈HE . The first of the two terms in (13a) accounts
for kinetic energy, and the second term accounts for thermal
energy. The weighing factor γE in (13a) is defined so as to
ensure that kinetic and thermal energy contribute equally to
the norm when averaged over the snapshot ensemble,

γE =


〈{

∑
3
i=1

∫
Ω

(
qi

m
)2 dx

}M

m=1

〉
〈{∫

Ω
(θm′)2 dx

}M

m′=1

〉


1
2

. (14)

The total energy POD operator is then

REϕ =
〈
{⟨ϕ,qm⟩E qm}M

m=1

〉
. (15)

Solutions to the eigenvalue problem resulting from setting
R = RE in (4) are temperature-velocity modes optimized with
respect to the total energy. This was done by Soucasse et al. 22

for the data set also considered in this work, in which the re-
sults serve as a point of comparison for results of the dissipa-
tion POD described in the following.

B. Dissipation POD

The dissipation POD is based on the idea of letting mean
dissipation take on the role played by mean energy in the en-
ergy POD formulated in the previous section. The mean dissi-
pation in question is formed by combining mean viscous dis-
sipation, ⟨εu⟩, and mean thermal dissipation, ⟨εθ ⟩. Our task

is therefore to formulate the relevant ensemble, along with an
inner product with an associated norm that produces the total
dissipation when applied to the ensemble. For this purpose,
we consider the strain rate tensor (SRT) and thermal gradient,

qi j
m,srt =

1
2
(
∇

iq j
m +∇

jqi
m
)
, (16a)

qi
m,tg = ∇

i
θm , (16b)

with i, j ∈ {1,2,3}. From the SRT and thermal gradient we
obtain the mean viscous and thermal dissipation, and, by com-
bining these two, the total dissipation,

⟨εu⟩=

〈{
3

∑
i, j=1

∫
Ω

∣∣∣qi j
m,srt

∣∣∣2 dx

}M

m=1

〉
, (17a)

⟨εθ ⟩=

〈{
3

∑
i=1

∫
Ω

∣∣qi
tg,m

∣∣2 dx

}M

m=1

〉
, (17b)

⟨εtot⟩= ⟨εu⟩+ γ
2
D ⟨εθ ⟩ , (17c)

where, similarly to γE in (14), γD in (17c) ensures equal mean
contribution from viscous and thermal dissipation,

γD =

(
⟨εu⟩
⟨εθ ⟩

) 1
2
. (18)

The dissipation POD ensemble QD = {q′m}M
m=1 ⊂ HD is

formed by joining the objects defined in (16),

q′m =Dqm =
(
qm,srt,qm,tg

)
, (19)

to form elements in the Hilbert space HD =Hsrt×Htg. Here,
Hsrt and Htg are Hilbert spaces containing qm,srt and qm,tg,
respectively,

Hsrt =
{

ϕ : Ω → R3×3∣∣⟨ϕ,ϕ⟩srt < ∞
}
, (20a)

Htg =
{

ϕ : Ω → R3∣∣⟨ϕ,ϕ⟩tg < ∞

}
, (20b)

where the inner products ⟨·, ·⟩srt and ⟨·, ·⟩tg and their associ-
ated norms are

⟨ϕsrt,ψsrt⟩srt =
3

∑
i, j=1

∫
Ω

ϕ
i j
srtψ

i j
srt dx , (21a)

∥ϕsrt∥srt =
√
⟨ϕsrt,ϕsrt⟩srt ; (21b)〈

ϕtg,ψtg
〉

tg =
3

∑
i=1

∫
Ω

ϕ
i
tgψ

j
tg dx , (21c)

∥∥ϕtg
∥∥

tg =
√〈

ϕtg,ϕtg
〉

tg , (21d)

where ϕsrt,ψsrt ∈ Hsrt and ϕtg,ψtg ∈ Htg. The operator
D : HE → HD in (19) maps velocity-temperature snapshots
to the corresponding joint SRT and thermal gradients.

The total dissipation inner product and norm can now be
written as〈

ϕ
′,ψ ′〉

D = ⟨ϕsrt,ψsrt⟩srt + γ
2
D
〈
ϕtg,ψtg

〉
tg , (22a)∥∥ϕ

′∥∥
D =

√
⟨ϕ ′,ϕ ′⟩D , (22b)



5

with ϕ ′,ψ ′ ∈ HD. The total dissipation POD operator is

RDϕ
′ =

〈{〈
ϕ
′,q′m

〉
D q′m

}M
m=1

〉
. (23)

The decomposition of QD which is obtained using this op-
erator is optimized with respect to the norm ∥·∥D correspond-
ing to total dissipation,

⟨εtot⟩=
〈{∥∥q′m

∥∥
D

}M
m=1

〉
. (24)

C. The extended snapshot method

The POD eigenvalue problems derived from the operators
defined in (15) and (23) are

REϕE,n = λE,nϕE,n , (25a)

RDϕ
′
D,n = λD,nϕ

′
D,n . (25b)

The solutions of (25a) are energy eigenmodes which span QE
optimally with respect to the inner product ⟨·, ·⟩E , whereas so-
lutions of (25b) are dissipation eigenmodes spanning QD op-
timally with respect to ⟨·, ·⟩D. The eigenmodes in the energy
basis {ϕE,n}N

n=1 and those in the dissipation basis {ϕ ′
D,n}N

n=1
are elements of different Hilbert spaces, and cannot be com-
pared directly.

We generate velocity-temperature modes {ϕD,n}N
n=1 corre-

sponding to {ϕ ′
D,n}N

n=1 using the extended POD method intro-
duced by Borée 28 , combined with the snapshot POD formal-
ism of Sirovich 36 . The resulting procedure is similar to what
was done by Podvin and Sergent 21 , as well as formally equiv-
alent to the procedure presented by Olesen et al. 29 . In the
snapshot formalism we construct the snapshot matrices corre-
sponding to QTQ,

[SE ]m,m′ =
1
M

⟨qm,qm′⟩E , (26a)

[SD]m,m′ =
1
M

〈
q′m,q

′
m′
〉

D , (26b)

and solve the corresponding eigenvalue problems for the co-
efficient vectors {ap,n}N

n=1,

Spap,n = λp,nap,n , p ∈ {E,D} . (27)

Velocity-temperature modes are then constructed using the
coefficients,

ϕp,n =
1

σp,n

〈{
ap,n,mqm

}M
m=1

〉
, p ∈ {E,D} , (28)

where σp,n =
√

λp,n.
The basis {ϕE,n}N

n=1 formed this way is identical to the
eigenbasis obtained from (25a). In contrast, {ϕD,n}N

n=1 is
not the eigenbasis obtained from (25b); the modes satisfy
ϕ ′

D,n =DϕD,n, and form a complete (but non-orthogonal) ba-
sis for the data set. The data set can therefore be reconstructed
using either basis as, cf. (5),

qm =
N

∑
n=1

ap,n,mσp,nϕp,n , p ∈ {E,D} . (29)

Both coefficient sets are uncorrelated, cf. (7),〈{
ap,n,map,n′,m

}M
m=1

〉
= δnn′ , p ∈ {E,D} , (30)

allowing reconstruction of any second order mean quantity
(such as energy, dissipation, heat flux, and stresses) without
the use of cross-modal terms. This lets us decompose mean
quantities into a sum of modal contributions,

Π
p
n =

1
M

n

∑
n′=1

λp,n′Π
[
ϕp,n′

]
, (31)

where Π ∈ {Eu,Eθ ,εu,εθ ,Φ} identifies the reconstructed
quantity (kinetic and thermal energy, viscous and thermal dis-
sipation, and convective heat flux), p ∈ {E,D} designates the
decomposition, n the order of the reconstruction (number of
modes included), and Π[ϕ] denotes the reconstructed quan-
tity computed from mode ϕ . Mean quantities are recovered
as ⟨Π⟩= Π

p
N , which due to the completeness of either basis is

independent of p. This makes it possible to identify the contri-
bution from each mode to each mean profile, and, as we shall
see, to link this to the structures described by the mode.

D. Velocity and temperature fields

The numerical setup and associated data set are the same
as those used in Soucasse et al. 22 . The configuration studied
is a cubic Rayleigh-Bénard cell filled with air, with isother-
mal horizontal walls and adiabatic side walls. The air is as-
sumed to be transparent and thermal radiation effects are dis-
regarded. Direct numerical simulations have been performed
at a Rayleigh number Ra= 107. The Prandtl number Pr= ν/κ

is set to 0.707. All physical quantities are made dimension-
less using the cell size H, the reference time H2/(κ

√
Ra) and

the reduced temperature θ = (T −T0)/∆T , T0 being the mean
temperature between hot and cold walls. Spatial coordinates
are denoted x, y, z (z being the vertical direction) and the ori-
gin is placed at a bottom corner of the cube.

The Navier–Stokes equations under the Boussinesq ap-
proximation are solved using a Chebyshev collocation
method41,42. Computations are made parallel using domain
decomposition along the vertical direction. Time integration
is performed through a second-order semi-implicit scheme.
The velocity divergence-free condition is enforced using a
projection method. The spatial mesh is made of 81 Cheby-
shev collocation points in each direction of space. We have
checked that the number of collocation points is sufficient to
accurately discretize the boundary layers according to the cri-
terion proposed by Shishkina et al. 43 . The resulting Nusselt
number averaged over time and over the horizontal plane is
Nu = 16.24, and the resulting Reynolds number based on the
volume and time average of the velocity magnitude is

Re =

√
⟨uiui⟩v,t Ra

Pr
= 651 . (32)

These values are in good agreement with reference literature
results44.
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A number of 1000 snapshots has been extracted from the
simulation at a sampling period of 10 in dimensionless time
units. Isosurfaces of convective heat flux and stream lines are
shown in Figure 1 for the first snapshot (Figure 1a), for the
conditional mean of realizations with a particular orientation
of integrated angular momentum (Lx < 0, Ly > 0; Figure 1b),
and for the full mean (Figure 1c) of the symmetry-enriched
data set, cf. Section III. The isosurfaces highlight cold (θ < 0)
and warm (θ > 0) convective regions, where appreciable net
upward convective heat transfer (wθ > 0.05) occur due to
warm fluid moving upwards in the case of warm convective
regions, and cold fluid moving downwards in the case of cold
convective regions. Figure 1a,b shows a diagonally aligned
roll producing oppositely oriented convective regions on each
side. This represents the typical overall organization of the
flow, with the orientation of the roll shifting with irregular in-
tervals. This contrasts with the mean flow shown in Figure 1c,
which does not represent a typical flow state.

III. SYMMETRIES

As in Soucasse et al. 22 the data set is enriched by making
use of the statistical symmetries of the flow45. In the cubic
Rayleigh-Bénard cell, four quasi-stable states are available for
the flow at this Rayleigh number: the large-scale circulation
(LSC) settles in one of the two diagonal planes of the cube
with clockwise or counterclockwise motion. Reorientations
from one state to another occur during the analyzed time se-
quence, but each state is not necessarily equally visited. In
order to counteract this bias we construct an enlarged snap-
shot ensemble, obtained by the action of the symmetry group
of the problem on the original ensemble.

The symmetry group is formed from the four basic symme-
try operations Sk∈{x,y,z,d}

45,

Sx :
{

(x,y,z) 7→ (1− x,y,z)
(u,v,w,θ) 7→ (−u,v,w,θ) , (33a)

Sy :
{

(x,y,z) 7→ (x,1− y,z)
(u,v,w,θ) 7→ (u,−v,w,θ) , (33b)

Sz :
{

(x,y,z) 7→ (x,y,1− z)
(u,v,w,θ) 7→ (u,v,−w,−θ)

, (33c)

Sd :
{

(x,y,z) 7→ (y,x,z)
(u,v,w,θ) 7→ (v,u,w,θ) . (33d)

The operations Sx, Sy, and Sz describe mirroring in the
planes x = 0.5, y = 0.5, and z = 0.5, respectively. This in-
volves flipping the sign of the corresponding velocity compo-
nent, and, for Sz, also the sign of the temperature fluctuation,
due to the opposite thermal boundary conditions imposed at
the top and bottom by the cold and the hot plates. The op-
eration Sd describes reflection in the diagonal plane x = y.
The four symmetry operations form a 16-element symmetry
group G , and the enriched data set of M = 16000 realizations
is formed from the images of each of the M̃ = 1000 DNS re-
alizations {q̃m}M̃

m=1 under each of the 16 symmetry group ele-

ments,

{qm}M
m=1 =

⋃
S∈G

{Sq̃m′}M̃
m′=1 . (34)

The symmetries in the data set lead to degeneracies in the
resulting POD bases. Here we show the formal origin and
nature of these degeneracies using the commutation relations
involving the POD and symmetry operators. Since the en-
riched data set is by construction invariant under each element
in the symmetry group, the POD operators Rp∈{E,D} commute
with the symmetry operations. This implies that each POD
operator shares an orthonormal eigenbasis with each symme-
try operation, such that for any symmetry Sk a POD eigenbasis
{ϕp,n}N

n=1 can be chosen satisfying Skϕp,n = µk,p,nϕp,n. The
symmetry operations are unitary such that µk,p,n = ±1, with
the eigenvalue +1 indicating symmetry and −1 indicating an-
tisymmetry with respect to Sk. By combining (33a) and (33d)
we find

SxSd :
{

(x,y,z) 7→ (1− y,x,z)
(u,v,w,θ) 7→ (−v,u,w,θ) , (35a)

SdSx :
{

(x,y,z) 7→ (y,1− x,z)
(u,v,w,θ) 7→ (v,−u,w,θ) , (35b)

implying that [Sx,Sd ] ̸= 0, and by a similar argument,
[Sy,Sd ] ̸= 0. From this it follows that Sx and Sy do not share
orthogonal eigenbases with Sd , which in turn implies that the
POD eigenbases are not unique, and that some form of degen-
eracy must exist.

We can show that SxSd = SdSy and SySd = SdSx, from which
it follows that [Sx +Sy,Sd ] = 0. Simultaneous eigenmodes of
Sx and Sy satisfying µx,p,n = µy,p,n are therefore also eigen-
modes of Sd . Taken together, this means that degenerate POD
eigenspaces of dimension two exist and are spanned by modes
with µx,p,n = −µy,p,n. These degenerate pairs appear as pairs
of repeated eigenvalues in the POD spectra, as shown in Fig-
ure 2 in Section IV.

The pair of degenerate POD eigenmodes spanning a given
eigenspace can be chosen arbitrarily within that eigenspace,
under the constraint of orthonormality. Each degenerate pair
can thus be formed from one mode symmetric under Sx
(µx,p,n = +1) and antisymmetric under Sy (µy,p,n = −1), and
one with the opposite configuration, µx,p,n′ =−1 and µy,p,n′ =
+1. These configurations correspond to modes which are ori-
ented along the x and y axis, respectively, and which are not
eigenmodes of Sd . The degeneracy is responsible for resolv-
ing the different roll orientations, and modes in degenerate
eigenspaces are capable of supporting non-vanishing angular
momenta in the xy plane, though it is not necessary that they
do so. In this work we use the eigenmodes of Sx and Sy to
span degenerate eigenspaces, resulting in modal angular mo-
menta aligned with the x and y axes. One could equally well
have spanned the eigenspaces using pairs of Sd eigenmodes
with µd,p,n = +1 and µd,p,n′ = −1, aligning the modal an-
gular momenta with the diagonals. These modes would not
be eigenmodes of Sx and Sy. While this choice would ar-
guably have been in closer agreement with the physical ori-
entations attained by the flow (cf. Figure 1a,b, showing a typ-
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FIG. 1. The snapshot m = 1 (a), the conditional mean field given Lx < 0, Ly > 0 (b), and the full mean field (c), shown as isosurfaces of scaled
convective heat flux corresponding to Φiso = 0.05 ·maxΩ (wθ) and colored by temperature θ . In this and the similar plots in Figures 4 and 5
the origin is located in the lower left corner of the cell, and the axes are labeled as shown in (a).

ical diagonal-aligned state of the flow), the choice of align-
ing degenerate pairs along the principal axes allows for direct
comparison with modes identified by Soucasse et al. 46 . Since
µd,p,n is undefined whenever µx,p,n ̸= µy,p,n we are left with 12
possible combinations of symmetry eigenvalues, or 12 distinct
isosymmetric families. Within the lowest 20 POD modes we
find each of those families represented by at least one mode,
and in some cases by several modes.

The symmetry operations commute with the mapping D
from velocity-temperature snapshots to SRT-thermal gradi-
ent snapshots in (19), and the preceding discussion therefore
applies to both the POD eigenmodes and to the dissipation
modes formed using (28).

IV. POD SPECTRA AND MODES

Figure 2 shows the POD spectra corresponding to the two
decompositions. It should be emphasized that while the en-
ergy eigenvalue λE,n is the mean energy contribution of the
energy mode ϕE,n, the dissipation eigenvalue λD,n is the mean
dissipation contribution of the dissipation mode ϕD,n. Con-
sequently, as the eigenvalues of the different decompositions
correspond to different norms, they are not directly compara-
ble. Both spectra are dominated by the lowest three modes,
representing circa 60% of the total energy for the energy de-
composition, and 55% of the total dissipation for the dissipa-
tion decomposition. The remaining parts of the spectra decay
slowly, with the energy POD spectrum exhibiting a slightly
faster rate of decay than the dissipation POD spectrum. With
n = 100 modes we thus capture about 80% of the total en-
ergy and 65% of the total dissipation. The asymptotic de-
cay rates are determined by fitting the spectra to power laws,
λp,n ∼ nαp , in the interval 10 ≤ n ≤ 103. This yields the ex-
ponents αE =−0.91 and αD =−0.79 for the energy and dis-
sipation spectra, respectively, confirming the more rapid con-
vergence of the energy POD spectrum.

A. Identification of modes

In order to facilitate a subsequent comparison between the
modes produced by the energy and dissipation decomposition

FIG. 2. POD spectra (solid lines, left axis) and cumulative spectra
(dotted lines, right axis) for PODs optimized with respect to total
kinetic and thermal energy (λE,n) and total viscous and thermal dis-
sipation (λD,n). The spectra are normalized such that ∑n λE/D,n = 1.
Power laws fitted to the spectra in the interval 10≤ n≤ 103 are shown
for the energy (black dashed line) and dissipation spectra (black dot-
ted line).

we assign labels to the lowest 20 modes of each decomposi-
tion, adopting and extending the modal nomenclature intro-
duced for the first 12 energy optimized modes by Soucasse
et al. 22,46 . Each of the energy modes considered here is as-
signed a label G[ϕE,nE ], based on similarities to modes con-
sidered by Soucasse et al. 22,46 , and the same label is then
assigned to the dissipation mode ϕD,nD selected among the
lowest 20 modes that maximizes the overlap defined using the
energy inner product and norm in (13):

Γ(nE ,nD) =

∣∣⟨ϕE,nE ,ϕD,nD⟩E

∣∣
∥ϕD,nD∥E

. (36)

The overlap Γ(nE ,nD) ∈ [0;1] measures the degree of sim-
ilarity between modes of the different decompositions, with
Γ(nE ,nD) = 1 in the case when modes are identical up to nor-
malization of ϕD,nD , while the overlap vanishes in case of or-
thogonal modes.

Table I summarizes all the modes investigated in this way
in the present work, their assigned label, their angular mo-
mentum and symmetry properties, and the overlap of modes
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with G[ϕE,nE ] = G[ϕD,nD ]. The assignment of shared labels
between decompositions is found to be largely consistent with
shared large scale organization, as discussed in Section IV C.

I II III IV V
G[ϕ] nE nD Li ̸= 0 µx µy µz µd Γ(nE ,nD)

M 1 + + + + 1.000{
Lx 2 x + − −

0.9996
Ly 3 y − + −
D 4 − − + + 0.9981{

BLx 5 7 x + − −
0.9103

BLy 6 8 y − + −
C 7 5 + + + − 0.9870
C∗ 8 6 + + − − 0.9642
D∗ 9 − − − + 0.9129{
BL∗

x 10 + − +
0.9741

BL∗
y 11 − + +

M∗ 12 + + − + 0.9297{
L†

x 13 19 x + − −
0.6037

L†
y 14 20 y − + −

M† 15 16 + + + + 0.8949
Lz 16 17 z − − + − 0.6461
C† 17 13 + + + − 0.9446{
K†

x 18 14 + − +
0.9092

K†
y 19 15 − + +

D† 20 18 − − − − 0.8413

TABLE I. Characteristics of the lowest 20 POD modes of either de-
composition, ϕE,nE and ϕD,nD with nE/D ≤ 20. Brackets on the left
designate degenerate pairs. Mode labels in group I are consistent
with those previously introduced by Soucasse et al. 22,46,47 , with ad-
ditional modes designated using "†". Group II shows mode indices
in the energy (nE ) and dissipation (nD) optimized decompositions; a
single number is given when nE = nD. Group III lists non-vanishing
angular momentum components. Group IV shows symmetries (+)
and anti-symmetries (−) with respect to each of the four basic sym-
metry operations Sx, Sy, Sz, and Sd , corresponding to eigenvalues
µk of the symmetry operation, cf. Skϕ = µkϕ . Group V shows the
overlap of modes from the two decompositions as defined in (36)
and shown in Figure 3. Since the overlap is the same for each pair
of modes in a degenerate set only a single value is given for those.
Boldface text denotes outlying overlap values. Rows are grouped to
aid reading.

The overlaps Γ(nE ,nD) for nE ,nD ≤ 20 are shown in Fig-
ure 3, where we have also highlighted pairs of modes for
which G[ϕE,nE ] = G[ϕD,nD ]. Of such pairs, several modes
(nE/D ≤ 4 and 9 ≤ nE/D ≤ 12) preserve their indices between
the decompositions, and exhibit large overlaps; these appear
in Figure 3 as framed red squares positioned on the diagonal.
A number of modes are indexed differently, but still exhibit a
large overlap (framed red squares off the diagonal); the sig-
nificance of the reordering of energy modes 5–8 is discussed
below. Lastly, a few of the modes considered show only mod-
erate overlap (framed non-red squares). Non-framed squares
denote overlaps between modes designated with different la-
bels. The overlap matrix is sparse, as the overlap vanishes for

FIG. 3. Non-vanishing overlap magnitudes Γ(nE ,nD) between en-
ergy and dissipation modes with nE ,nD ≤ 20, as defined in (36).
Pairs with matching labels G[ϕE,nE ] = G[ϕD,nD ] are marked with
black frames, and the diagonal nE = nD is shown as a dashed line.

mode pairs with non-identical symmetry signatures. Taken
together, this points to a large degree of similarity between
the decompositions, which will be investigated further in Sec-
tion IV C. It should be emphasized, however, that the similar-
ity between the decompositions tends to diminish when con-
sidering modes higher than the ones investigated here.

A notable reordering of modes is the promotion of the C and
C∗ modes from indices 7 and 8 in the energy decomposition
to indices 5 and 6 in the dissipation decomposition, ahead of
the degenerate boundary roll mode pair BLx/y. The promotion
is moderately significant, in that the eigenvalue of the BLx/y
modes exceed that of the C modes by about 16% in the en-
ergy decomposition, whereas the eigenvalue of the C mode
exceeds that of the BLx/y mode by BLx/y modes by 37% in the
dissipation decomposition. The C mode was found by Sou-
casse et al. 22 to have a destabilizing effect on the LSC, and
the promotion of this mode could thus be taken as an indica-
tion that certain dynamically important structures are captured
more efficiently by the dissipation decomposition than by the
energy decomposition.

For the modes nE/D ≤ 20 the ordering is to a large extent
preserved between the decompositions, although this trend
breaks down when considering higher modes. Lee and Dow-
ell 26 found that ordering energy-optimized modes for a two-
dimensional lid driven cavity flow by their modal contribution
to mean enstrophy led to only a small amount of reordering
compared to the native ordering of modes by energy, with the
least amount of reordering found for low-index modes. Re-
ordering was found to increase when increasing Re. To the
same effect, Olesen et al. 29 showed for a channel flow that
both the mean dissipation contribution of energy modes and
the mean energy contribution of dissipation modes tended to
decrease with mode number. In both cases this was taken as
an indication that the flow in question was as a whole dom-
inated by a few structures spanning all relevant scales, and
that the lowest POD modes were capturing structures on this
range of scales. Such a lack of separation of scales could be
a consequence of the moderate Rayleigh number of the flow
investigated in this study.
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B. Large-scale organization of energy modes

The energy decomposition of the data set used in this
work has been considered by Soucasse et al. 22,46,47 , who de-
scribed the structures contained in the lowest several modes
along with the dynamics arising from a ROMs based on these
modes. In this section we summarize and expand on the struc-
tural analysis, so as to gain a point of comparison for subse-
quent investigation of the corresponding dissipation modes.

The large-scale organization of the lowest 20 modes of
each decomposition is shown in Figures 4–5 as temperature-
colored heat flux isosurfaces along with stream lines. The
lowest 20 energy modes are shown in order of increasing
mode number, each juxtaposed with the dissipation mode
sharing the label of the energy mode. Modes marked by "⋆"
(not to be confused with "∗") represent one of a degenerate
pair, for which the complimentary mode (not shown) can be
obtained by rotating the mode shown by π

2 around the central
vertical axis.

The M, Lx/y, D, BLx/y and C modes (ϕE,1–ϕE,7) shown in
Figure 4a,c,e,g, i, are identical to those obtained by Soucasse
et al. 22 , who used the same data set as in the present work.
The M mode is approximately equal to the mean of the field
taken over the full data set, covering all possible orientations
of the LSC. It consists of a pair of counter-rotating toroidal
structures which captures most of the thermal stratification.
The Lx/y modes form a degenerate pair, each mode describing
a single roll along a principal axis; they combine to form the
diagonal rolls characterizing the LSC. The D mode consists
of eight rolls, and transports fluid between the corners while
stabilizing circulation along the diagonal. Together, the M,
Lx/y, and D modes form the LSC. The BLx/y and C modes
represent the dominant fluctuations superposed on the LSC.
Each of the BLx/y modes corresponds to a co-rotating pair of
longitudinal rolls that connect the core to the boundary layers
and modulate the Lx/y modes. The C mode corresponds to a
corner structure that brings in fluid from one roll to another,
and plays an important role in the LSC reorientations. The
reader is referred to the paper by Soucasse et al. 22 for a more
detailed discussion of these modes.

Additionally, modes similar to the C∗, D∗, BL∗
x/y, M∗, and

Lz modes (ϕE,8–ϕE,12 and ϕE,16), shown in Figures 4k,m,o
and 5a,g, were identified and discussed for Ra = 106 and
108 by Soucasse et al. 46 . The C∗ and D∗ modes are some-
what similar to the C and D modes, respectively, except that
each mode has rolls extending along the full height of the cell,
where the rolls in their non-asterisked counterparts are con-
fined to the upper and lower half-cells. Correspondingly, as
seen in Table I the C∗ and D∗ modes are antisymmetric with
respect to Sz, while the C and D modes are symmetric with
respect to Sz; symmetries are otherwise similar between the
respective modes. The BL∗

x/y modes form a pair of counter-
rotating rolls (compare with the co-rotating rolls in the BLx/y
modes). The angular momenta of the rolls cancel out, mean-
ing that the BLx/y modes as a whole carry no angular momen-
tum. As before the BLx/y and BL∗

x/y modes are linked by sim-
ilar symmetries, except for symmetry vs antisymmetry with

respect to Sz. Likewise, the M∗ mode is an Sz-antisymmetric
counterpart to the M mode, consisting of a single thermally
unstratified toroidal roll extending the full height of the cell.
Lastly, the Lz mode consists of a vertical roll surrounded by
horizontal rolls. This mode is the only one out of those con-
sidered capable of supporting a non-zero vertical angular mo-
mentum component, which is needed to resolve fluctuations
in this component away from zero.

The last set of energy modes to be considered has not been
discussed in prior literature, and consists of the modes L†

x/y,

M†, C†, K†
x/y, and D† (ϕE,13–ϕE,15 and ϕE,17–ϕE,20), shown in

Figure 5c,e, i,k,m. The L†
x/y modes form a degenerate pair

which shares symmetry signatures with the Lx/y and BLx/y

pairs. The L†
x mode features a central roll along the x axis,

which buckles around near the corners to form eight rolls per-
pendicular to the main roll, one near each corner. Together the
central roll and the cross rolls give rise to temperate convec-
tion zones on the flanks of the central roll, while the cross rolls
drive cold and hot convection zones along the vertical edges of
the cell. The M† mode shares its symmetry signature with the
mean mode M. It features a pair of counter-rotating toroidal
structures, localized in the lower and upper half of the cell.
These produce vertically split convection zones along the ver-
tical center line, which are surrounded by convection regions
along the top and bottom edges as well as opposite convection
zones towards the middle of the vertical edges. Of all modes
considered here only the M and M† modes have non-vanishing
thermal energy at the top and bottom walls, implying that M†

serves as a first correction to the M mode in resolving the ther-
mal stratification.

The C† mode shares its symmetry signature with the C
mode, and consists of four vertical rolls along the vertical
edges, separated by pairs of short horizontal rolls. It moves
fluid between the vertical walls and the center of the cell. The
K†

x/y modes form another degenerate pair, with symmetry sig-

natures identical to those of the BL∗
x/y modes. The K†

x mode
consists of a horizontal roll near each of the eight corners,
aligned along the y axis and with alternating rotations. These
are connected by an additional set of horizontal rolls lodged
between the first and orthogonal to these. The angular mo-
mentum contribution of all the rolls cancel in each direction,
and like the BL∗

x/y modes the K†
x/y modes therefore carry no

angular momentum. Lastly, the D† mode is unique among the
modes considered in being antisymmetric with respect to all
of the basic symmetry operations. It consists of eight vertical
rolls aligned along the vertical sides and edges. The rolls pro-
duce eight alternatingly hot and cold convective regions, each
extending the full height of the domain.

C. Large scale organization of dissipation modes

The dissipation decomposition is motivated by the desire
to better resolve dynamically important structures which are
not well captured by the energy decomposition. As demon-
strated in Section IV A the results of the two decompositions
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FIG. 4. Energy-optimized POD modes ϕE,1–ϕE,10 juxtaposed with their similar dissipation-optimized POD modes ϕD,1–ϕD,10,
shown as isocontours of scaled convective heat flux corresponding to Φiso = 0.05 × maxΩ

(
ϕwϕθ

)
and colored by scaled temperature

θscale = ϕθ/maxΩ

(∣∣ϕθ
∣∣). For modes marked with ⋆ (c,d,g,h,o, p) only one mode of a degenerate pair is shown; the other mode in the

pair is obtained by rotating the mode shown by π

2 around the central vertical axis.

differ both in the structures contained in the modes and in the
ordering of those modes, although as evidenced by the near-
unity overlaps the structural differences are mostly modest for
the modes considered. In this section we take a closer look at
the differences in large-scale organization between the modes,
while details relating to boundary layer structures are consid-
ered in Section IV D.

Apart from reordering, the large-scale organization of the
modes corresponding to nE/D ≤ 12 show little change between
the two decompositions, as seen from Figures 4 and 5. Several
modes (M, Lx/y, D, C, BL∗

x/y, and C†) are found with virtually

unchanged large scale organization; these modes also gen-
erally exhibit overlaps very close to unity, cf. Table I. Some
changes that are notable from Figures 4 and 5 include a defor-
mation of rolls in the BLx/y modes leading to pinching of the
hot and cold convection zones at mid height and elongation of
the temperate convection zones towards the top and bottom;
a narrowing of rolls in the C∗ and D∗ modes also around mid
height; and a splitting of the rolls at the vertical edges along
the mid height plane in M∗.

The changes in modal structure when moving from the en-
ergy decomposition to the dissipation decomposition impact
the modal contributions to reconstructed flow quantities. Ver-
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FIG. 5. Energy-optimized POD modes ϕE,12–ϕE,20 juxtaposed with their similar dissipation-optimized POD modes ϕD,12–ϕD,20,
shown as isocontours of scaled convective heat flux corresponding to Φiso = 0.05 × maxΩ

(
ϕwϕθ

)
and colored by scaled temperature

θscale = ϕθ/maxΩ

(∣∣ϕθ
∣∣). For modes marked with ⋆ (c,d,k, l) only one mode of a degenerate pair is shown; the other mode in the pair

is obtained by rotating the mode shown by π

2 around the central vertical axis.

tical modal profiles of kinetic and thermal energy, viscous and
thermal dissipation, and convective heat flux corresponding
to the contribution of individual modes to the mean profiles
are obtained by averaging individual terms in (31) along the
x and y directions. In Figure 6 we compare such profiles for
some selected modes of each decomposition. The profiles for
the M and Lx/y modes (not shown) are virtually identical be-
tween decompositions. For the D, BLx/y, and C modes the
profiles are very similar among the decompositions, showing
only minor variations; the greatest deviation for those modes
is found for the BLx mode profiles, which are shown in Fig-

ure 6a-e. For higher modes the profiles differ between de-
compositions in a mostly consistent manner, with notable ex-
ceptions highlighted below. While the shape of profiles varies
somewhat between modes, for each of the quantities consid-
ered the profiles obtained from dissipation modes generally
contribute more than the energy modes in the region near the
top and bottom. The contributions are reversed or similar in
the core of the cell.

In the L†
x dissipation mode in Figure 5d the central roll is

widened compared to the energy mode in Figure 5c, and the
cross rolls align with the horizontal diagonals instead of be-
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FIG. 6. Profiles of kinetic and thermal energy, viscous and thermal dissipation, and convective heat flux associated with BLx modes ϕE,5 and
ϕD,7 (a–e), L†

x modes ϕE,13 and ϕD,19 ( f – j), and Lz modes ϕE,16 and ϕD,17 (k–o). The profiles are symmetric around the mid plane, and only
z values corresponding to the lower half of the cell are shown. A dotted line marks the extent of the boundary layer, z = δ = 0.03.

ing orthogonal to the roll axis. This also causes a wider tem-
perate convection zone, splitting the edge convection zones
vertically. The diagonally aligned cross rolls produce addi-
tional convection zones above and below the central roll. The
splitting of the edge convection zone diminishes the thermal
fluctuation and the heat flux near mid-height of the cell, re-
sulting in a reduced contribution from the dissipation mode to
the vertical mean thermal energy and convective heat flux pro-
files shown in Figure 6g, j. The substantially different struc-
tures and heat flux profiles found for the energy and dissipa-
tion L†

x/y modes (ϕE,13 and ϕD,19) are reflected in the rather
modest overlap between the modes, at Γ(13,19) = 0.6037.

In the M† dissipation mode in Figure 5 f the opposite con-
vection zones near the corners are strengthened compared to
the energy mode, and they extend further towards the horizon-
tal walls and mid plane of the domain. The convection zone
along the top and bottom edges largely disappear.

The Lz modes shown in Figure 5g,h exhibit substantial dis-
similarities between the decompositions. In the dissipation Lz
mode the vertical roll is much narrower than in the energy
mode, and the mode is instead dominated by the surround-

ing horizontal rolls. The dissimilarity is also supported by
the mode overlaps; while the greatest overlap for the energy
Lz mode (ϕE,16) found among the modes investigated here
was with the Lz dissipation mode (ϕD,17) and vice versa, at
Γ(16,17) = 0.6461, both exhibit slightly greater overlaps with
different modes of higher indices; in particular, Γ(30,17) =
0.7053, and Γ(16,72) = 0.7066. For all other modes consid-
ered here the maximum overlapping mode was found within
the set nE/D ≤ 20. The dissimilarity between the Lz modes is
also found in the vertical profiles in Figure 6k–o, which differ
rather substantially between the two modes. The kinetic en-
ergy profile of the Lz energy mode has a marked peak at mid-
height, which is entirely absent in the Lz dissipation mode.
Conversely, the dissipation mode thermal energy profile peaks
within the boundary layer, while the corresponding contribu-
tion from the energy mode is much smaller throughout the do-
main. This suggests that the energy mode is mainly kinetic in
nature, while the dissipation mode is mainly thermal. The dis-
sipation mode contribution to both viscous and thermal dissi-
pation near the wall is notably stronger than that of the energy
mode, which agrees qualitatively with the trends displayed by
other modes. Finally, due to the diminished thermal fluctu-
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ations in the energy mode, the dissipation mode contributes
significantly more to convective heat flux throughout the cell
(except at mid height) than does the energy mode.

While the primary rolls in the K†
x/y energy mode (Figure 5k)

are aligned along the y/x axis and joined by orthogonal hor-
izontal rolls, for the corresponding dissipation mode (Fig-
ure 5l) the first set of rolls are instead aligned along the hori-
zontal diagonals, and cross-rolls are notably wider. In the D†

dissipation mode (Figure 5n) the rolls along the vertical edges
are split into pairs of co-rotating rolls.

To summarize, there is generally a large degree of similar-
ity in the large-scale organization between analogous modes
of different decompositions. This is especially striking for the
lower modes in Figure 4, whereas the higher modes in Fig-
ure 5 tend be more distinct, in agreement with the overlaps
summarized in Table I. Part of the explanation for these sim-
ilarities is the symmetry-imposed constraints on mode mix-
ing. The two bases produced by the decompositions span the
same Hilbert space, indicating that each mode of one basis
can be expanded as a linear combination of modes from the
other basis. As was mentioned in Section IV A, the overlap
vanishes for pairs of modes which do not share their config-
uration of symmetry eigenvalues, implying that only isosym-
metric modes enter in this expansion. This prohibits mixing
between different families of isosymmetric modes, constrain-
ing the dissimilarity between modes produced by different de-
compositions.

Even within such families we find mixing to be lim-
ited, however. Among all modes considered the L†

x/y modes
have the smallest overlap between analogous modes, with
Γ(13,19) = 0.6037 for the L†

x modes ϕE,13 and ϕD,19. The
modes exhibit clear differences in large-scale structures be-
tween the decompositions, as shown in Figure 5c,d. This
dissimilarity is due to mixing within the isosymmetric fam-
ily {Lx/y,BLx/y,L

†
x/y, . . .}, including a substantial overlap of

Γ(5,19) = 0.5828 between the BLx mode ϕE,5 and the L†
x

mode ϕD,19. On the other hand, little mixing happens between
the Lx/y and BLx/y modes, with Γ(2,7)= 0.1255 and Γ(5,2)=
0.0211. Other isosymmetric families include {M,M†, . . .},
{C,C†, . . .}, and {BL∗

x/y,K
†
x/y, . . .}; naturally, the remaining

modes also belong to isosymmetric families, although those
modes are each the sole representative of their respective fam-
ilies within the set of modes considered here. Mixing within
the families considered here is generally rather limited, which
results in large-scale organization being mostly stable across
decompositions. Again, however, we remark that while this is
true for modes of low indices, the stability diminishes when
considering higher index modes.

The stability up to reordering of large-scale organization
of modes under varying decompositions was also found by
Podvin and Sergent 21 when comparing kinetic and thermal
energy modes for a two-dimensional square Rayleigh-Bénard
cell. They attributed the similarity between the decomposi-
tions to the close coupling between velocity and temperature,
as the motion is entirely driven by temperature fluctuations. In
the present work, the observation that the first several modes
of both energy and dissipation decompositions describe struc-

tures much more similar than what is required by symmetry
constraints supports the hypothesis of a coupling between en-
ergetic and dissipative structures discussed in Section IV A.
Due to the modest Rayleigh and Reynolds numbers Ra = 107

and Re = 651, as defined in (1) and (32), we expect only a
moderate separation between energetic and dissipative scales,
leading to a tighter coupling between the associated structures.
We would thus expect a greater amount of mode dissimilarity
and reordering given higher values of Ra and Re.

We note that the remarkable stability of the LSC modes M,
Lx/y, and D across decompositions may further be attributed
to the degree to which the structures they encode dominate the
flow.

The stability of large-scale structures between decomposi-
tions notwithstanding, certain subtle but consistent changes
are found. Dissipation modes tend to contribute more to ver-
tical mean profiles of kinetic and thermal energy, viscous and
thermal dissipation, and heat flux in the boundary layer re-
gion than do energy modes. This trend is seen in Figure 6,
and it is also found in the corresponding profiles of other
modes (not shown). Conversely, in the core of the domain
the contributions are either similar between decompositions
or diminished for dissipation modes. A similar observation
was made by Olesen et al. 29 for profiles of kinetic energy and
of viscous dissipation reconstructed using decompositions op-
timized with respect to these quantities. This was ascribed to
the different spatial distributions of the quantities with respect
to which the decompositions were optimized. Kinetic energy
is located mainly in the core of the cell, viscous dissipation
is concentrated along the walls (both horizontal and vertical),
and thermal energy and thermal dissipation peak near the top
and bottom. The energy and dissipation decompositions each
give equal weight to the two terms of energy and dissipation,
respectively. This causes the energy decomposition to give
roughly equal emphasis to the core and boundary regions, and
the dissipation decomposition to emphasize structures in the
boundary layer region.

Finally, we note that Figure 6 demonstrates the failure of
the assumption used in isotropic eddy-diffusivity models, as
pointed out by Hanjalić 6 , that heat flux locally scales as
Φ ∼

√
⟨EuEθ ⟩. For example, in the energy BLx/y mode both

Eu and Eθ show local minima at z = 0.1 (Figure 6a,b), while
Φ increases monotonically with z up to around z = 0.2 (Fig-
ure 6e). This is attributed to the unequal distribution of kinetic
energy among the available degrees of freedom.

D. Boundary layer structures

As discussed in Section I, boundary layers are of special
interest in Rayleigh-Bénard convection. In this section we
consider the boundary layer structures resolved by energy and
dissipation modes. Since viscous and thermal dissipation are
both concentrated in the boundary layer region we expect this
region to be particularly sensitive to the choice of decompo-
sition. The analysis presented here highlights some subtle
but potentially important differences between the decompo-
sitions.
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In Figure 7 we show horizontal cross sections of the bottom
boundary layer (z = 0.01) of selected modes. The cross sec-
tions are colored by heat flux, and also show the direction of
the horizontal components of the flow field. The LSC modes
M, Lx/y, and D were found in Section IV C to be largely sta-
ble under the change of decomposition, and the cross sections
obtained from these modes (not shown) exhibit no discernible
differences between the decompositions. For the BLx modes
shown in Figure 7a,b the dissipation mode exhibits an en-
hanced heat flux along the edges at y = 0 and y = 1, as well
as in separated pairs of patches along x = 0 and x = 1. These
correspond to the convective regions seen in Figure 4g,h, re-
flecting the extension of the temperate convective regions dis-
cussed in Section IV C. Figure 7a,b thus demonstrates that the
changes in these features extend well into the boundary layer.
This extension and strengthening of features into the bound-
ary layer in dissipation modes compared to analogous energy
modes represents a general trend that is also seen for the L†

x
and Lz modes shown in Figure 7e–h, as well as for most of the
modes nE,D ≤ 20 not shown in Figure 7.

A deviation from this trend is seen in the horizontal cross
sections of the bottom boundary layer of the C modes shown
in Figure 7c,d. We note little difference between the two
decompositions, although a slight narrowing of the wedge-
shaped regions of positive (upward) heat flux can be dis-
cerned. The cross sections show a high level of activity in
the boundary layer for both modes, consisting of said wedge-
shaped zones marginally separated from narrow stretches of
slight negative (downward) heat flux along the edges. Com-
paring with Figure 4i, j we see that the wedge-shaped zones
correspond to downwards movement of cold fluid near the
x = 0 and x = 1 walls, and upwards movement of warm fluid
near the y = 0 and y = 1 walls. The zones of negative heat
flux are found to correspond to inversions of the vertical ve-
locity, implying large velocity gradients in the margins sep-
arating the regions. It was noted in Section IV A that the C
mode is important in promoting LSC reorientations, and that
its promotion in the dissipation decomposition could reflect
an improved representation of the flow dynamics in this de-
composition; in this light it is interesting to note that the mode
itself appears to change relatively little in its large-scale orga-
nization as well as in its boundary layer layout between the
decompositions.

The L†
x/y and Lz modes were found in Section IV C to differ

substantially in their large scale organization between the de-
compositions. Horizontal cross sections of the L†

x modes are
shown in Figure 7e, f . Moving from the energy to dissipation
decomposition brings about changes in the cross section rem-
iniscent of those seen for BLx in Figure 7a,b, with regions of
positive heat flux towards the corners being stronger and more
well-defined in the dissipation mode, as well as additional re-
gions appearing around x = 0.5. This corresponds to the ad-
ditional regions of positive convection appearing in Figure 5d
compared to Figure 5c as discussed in Section IV C.

We show horizontal cross sections of the Lz mode in Fig-
ure 7g,h. While the qualitative pattern observed changes little
between the decompositions, the convective regions are sub-
stantially enlarged and strengthened in the dissipation mode.

FIG. 7. Horizontal cross sections taken near the bottom (z = 0.01)
of the BLx modes ϕE,5 (a) and ϕD,7 (b), the C modes ϕE,7 (c) and
ϕD,5 (d), the L†

x modes ϕE,13 (e) and ϕD,19 ( f ), and the Lz modes
ϕE,16 and ϕD,17. Slices are colored by scaled convective heat flux,
Φscale = ϕwϕθ/maxΩ

(
ϕwϕθ

)
. Arrows show the direction of the

in-plane velocity.

Comparing with Figure 5g,h we see that the stronger verti-
cal movement in the dissipation mode compared to the energy
mode causes the convective regions to reach further towards
the top and bottom.

To summarize, there is an general trend towards increased
boundary layer activity in the dissipation modes compared to
energy modes, expressed through more extensive and well-
defined zones of substantial convective heat flux in these
modes.
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The theory proposed by Grossmann and Lohse 2,7 referred
to in Section I suggests that important modeling parameters
include the relative contributions of viscous and thermal dis-
sipation in the boundary layers and in the whole cell. This mo-
tivates analyzing the modes in terms of these parameters. In
Figure 8 we compare on a per-mode basis the ratio of bound-
ary layer contributions to the full-cell viscous (Figure 8a)
and thermal dissipation (Figure 8b) for energy and dissipa-
tion modes, as well as the ratio of thermal to viscous dissi-
pation (Figure 8c), for the LSC modes M, Lx/y, and D; the
BLx/y and C modes describing the leading fluctuation terms;
and the Lz mode which was found to deviate from several of
the trends established in Sections IV C and IV D. The values
averaged over the modes (excluding the M modes) are shown
by dashed lines, and eigenvalues are shown to indicate the rel-
ative importance of the modes in the reconstructed flow.

Figure 8a shows the fraction of total viscous dissipation lo-
cated in the top and bottom boundary layers. These contri-
butions amount to 0.2–0.5, except for the M mode where it
is around 0.1. Averaged over modes 1 < nE/D ≤ 20 (i.e., ex-
cluding M modes) the mean fraction is 0.32 for energy modes
and 0.41 for dissipation modes. The boundary layer contri-
butions are enhanced for most dissipative modes compared to
energy modes, except for the M and Lx/y modes where ra-
tios are nearly identical; a more substantial difference is ob-
served for the Lz modes. The trend of enhanced boundary
layer contributions for dissipation modes is maintained by the
remaining modes nE/D ≤ 20 (not shown), with the difference
between the fractions for dissipation modes and for energy
modes tending to increase for higher modes. The enhanced
boundary layer contributions from dissipation modes reflect
the increased boundary layer activity that was found for most
of the modes considered in Figure 7.

The fraction of thermal dissipation contributed from the
boundary layer is shown in Figure 8b, where we also find ap-
proximately constant ratios around 0.6–0.8 among the modes
considered, with the exception of the Lz energy mode for
which the fraction is around 0.4. The average fractions for
modes 1 < nE/D ≤ 20 are 0.69 for energy modes and 0.76 for
dissipation modes. The thermal dissipation boundary layer
fraction is thus generally on the order of twice the viscous
dissipation boundary layer fraction. This difference is likely
caused by the exclusion of the vertical boundary layers, which
contribute appreciable viscous dissipation and little thermal
dissipation. The difference in thermal dissipation boundary
layer fraction between energy and dissipation modes is gen-
erally small compared to the difference in the viscous dissi-
pation boundary layer fraction, with the most substantial dif-
ference again found for the Lz modes. The increased bound-
ary layer activity for dissipation modes compared to energy
modes thus has a smaller relative impact on the thermal dissi-
pation boundary layer fraction than on the viscous dissipation
boundary layer fraction.

The ratios of thermal to viscous dissipation over the whole
cell are shown in Figure 8c. The M modes stand out with a
ratio of 5.1, their dissipation being strongly dominated by the
thermal contribution. This supports the finding by Soucasse
et al. 22 that the M modes capture the thermal stratification of

FIG. 8. Modal viscous (a) and thermal (b) dissipation fraction in
boundary layer, and modal ratio of thermal to viscous dissipation
(c) for the modes up to C (left axes). Dashed lines show the mean
values for each decomposition, excluding the M modes. The relative
importance of modes is given by eigenvalues, which are plotted with
lines (right axes).

the flow. The remaining modes (including the higher modes
not shown here) are dominated by viscous dissipation, with
average ratios for modes 1 < nE/D ≤ 20 of 0.26 for energy
modes and 0.34 for dissipation modes. For the modes up to
and including C ratios are mostly consistent between energy
and dissipation modes. Variability between the decomposi-
tions increases for higher modes, in agreement with the trend
of decreasing similarity found in Sections IV A and IV C. The
C modes, along with a few higher modes, have substantially
higher ratios than those found for Lx/y, D, and BLx/y modes.
It is possible that the destabilizing effect of the C modes on
the LSC is linked to the relative importance of thermal dissi-
pation in this mode. The Lz energy mode has a remarkably
small ratio, whereas the ratio of the corresponding dissipa-
tion mode matches the average dissipation mode ratio. This
matches the observation from Figure 6 in Section IV C that
the energy mode was mainly kinetic in nature, whereas the
dissipation mode was mainly thermal.

We see from the preceding analysis that dissipation modes
in general tend to have a greater fraction of both viscous and
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thermal dissipation localized in the boundary layers than do
energy modes. This is a consequence of the increased activ-
ity in the boundary layer for dissipation modes. Also, while
modes of either decomposition are as a rule dominated by vis-
cous dissipation, dissipation modes tend toward a higher ratio
of thermal to viscous dissipation.

V. MODAL CONVERGENCE

The energy and dissipation POD bases each allow recon-
struction of second order mean quantities using (31). Here we
investigate the convergence of such reconstructions of kinetic
and thermal energy, viscous and thermal dissipation, and con-
vective heat flux. We consider the convergence of quantities
integrated over the full domain (Ω) as well as over the region
consisting of the horizontal top and bottom boundary layers,
BL = [0;1]× [0;1]× ([0;δ ]∪ [1−δ ;1]),

Π
p,Ω′

(n) =
∫

Ω′
Π

p
n dx , (37)

where Ω′ ∈ {Ω,BL}. Here we use δ = 0.03 as an estimate
of the boundary thickness, based on the kinetic and thermal
boundary layer thicknesses δu = 0.027 and δθ = 0.03143.

We compare the convergence achieved for each integrated
quantity using the energy decomposition to that achieved with
the dissipation decomposition. The convergence of each re-
construction is shown in Figure 9. Considering the cumulative
values (dotted lines) we see that for all reconstructed quanti-
ties the three lowest energy modes contribute the same as the
corresponding dissipation modes, as these modes are nearly
identical (cf. Section IV). The M mode captures much of the
thermal stratification in the flow, and accordingly accounts for
most of the thermal energy and thermal dissipation in both the
full domain and in the boundary layers.

For the reconstruction of kinetic energy Eu in the full do-
main, shown in Figure 9a, the energy decomposition con-
verges slightly faster than the dissipation decomposition, as
would be expected because of the energy optimization. How-
ever, the converse is true for the reconstruction of kinetic en-
ergy in the boundary layer (Figure 9b). The convergence of
thermal energy (Figure 9c,d) is very rapid, and the two de-
compositions show little difference in convergence rates, in
the full domain as well as in the boundary layer. A very small
lead can be ascertained for the energy decomposition in the
full domain.

For the reconstructions of viscous (εu) and thermal dissi-
pation (εθ ) in the full domain (Figure 9e,g) the two decom-
positions are again very similar, with a marginal advantage to
the dissipation decomposition; the same applies to the recon-
struction of the thermal dissipation in the boundary layer (Fig-
ure 9h). However, in the reconstruction of viscous dissipation
in the boundary layer (Figure 9 f ) the dissipation decomposi-
tion exhibits a substantially more rapid convergence than the
energy decomposition.

The reconstruction of convective heat flux Φ in the full do-
main and in the boundary layer (Figure 9i, j) repeat the pattern
for kinetic energy, with faster convergence using the energy

decomposition in the full domain, and using the dissipation
decomposition in the boundary layer. However, given the very
limited amount of convective heat flux in the boundary layer
the convergence rate of convective heat flux in the boundary
layer is of limited importance.

The overall picture emerging from this is that in the bound-
ary layer the dissipation decomposition reconstructs all quan-
tities investigated at least as efficiently as the energy decom-
position, while results are more mixed when considering the
full domain. This suggests that the dissipation decomposi-
tion not only gives the most efficient representation of total
dissipation, for which it is optimized, but provides an overall
improvement in the spectral resolution of the boundary layer
region.

The per-mode contributions for each quantity in Fig-
ure 9 approximately follow power law decays in the range
10 ≤ n ≤ 103. The exponents have been determined by fit-
ting power functions to per-mode contributions in this inter-
val, and are summarized in Table II. In agreement with the
trends identified above, the energy decomposition for the full
cell exhibits faster convergence for kinetic energy and con-
vective heat flux compared to the dissipation decomposition,
while the convergence rates are nearly identical for thermal
energy. Conversely, the dissipation decomposition gives the
faster convergence rate for both viscous and thermal dissi-
pation. In the boundary layer the dissipation decomposition
yields faster convergence for all quantities than does the en-
ergy decomposition. This also includes thermal energy, for
which no substantial difference on convergence rate was ap-
parent from Figure 9d due to the very fast initial convergence
caused by the thermally stratified M mode. We observe that
all quantities converge faster in the boundary layer than in the
full domain, with the exception of the energy reconstruction
of the convective heat flux, although as mentioned the con-
vective heat flux contribution from the boundary layer is neg-
ligible. Finally, we note that the dissipation-based reconstruc-
tions in the full cell converge with approximately the same
rate (α ≈ −0.8) for all quantities. This might be taken as an
indication that the dissipation decomposition is able to capture
a wide range of scales more uniformly than is the case for the
energy decomposition.

Ω′ p Eu Eθ εu εθ Φ

Ω
E -0.98 -0.79 -0.75 -0.59 -0.95
D -0.84 -0.78 -0.81 -0.79 -0.79

BL
E -1.08 -0.83 -0.99 -0.79 -0.71
D -1.27 -1.04 -1.15 -1.02 -0.91

TABLE II. Asymptotic decay exponents α for the convergence plots
shown in Figure 9. The exponents are obtained by fitting power func-
tions ∆Πp,Ω′ ∼ nα

p in the range 10 ≤ n ≤ 103 to per-mode contribu-
tions to each reconstruction.

We may also reconstruct full profiles using (31). Figure 10
shows the mode-by-mode cumulative reconstruction of verti-
cal profiles (with the mean field profile subtracted) of kinetic
and thermal energy, viscous and thermal dissipation, and con-
vective heat flux. In the figure, the color of each reconstructed
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FIG. 9. Modal convergence of kinetic (a,b) and thermal energy (c,d), viscous (e, f ) and thermal dissipation (g,h), and heat flux (i, j) in the
full domain (top row) and in the boundary layer (z ∈ [0;δ ]∪ [1− δ ;1] with δ = 0.03, bottom row). Fully drawn lines show the per-mode
contribution (left axes), and dotted lines the cumulative value (right axes). Also shown are power laws fitted to per-mode contributions in the
interval 10 ≤ n ≤ 103. All values are normalized with respect to their full reconstruction.

profile corresponds to the number of modes included for that
profile, and differences in the shape of each isochrome be-
tween the respective decompositions signify local differences
in convergence of the profile. Note that each full reconstruc-
tion (n = N) exactly matches the corresponding mean profile,
illustrating the completeness of both bases.

As discussed above the lowest four modes are nearly iden-
tical, and the profiles corresponding to modes 2, 3, and 4 in
Figure 10 differ only imperceptibly between the decomposi-
tions. The profiles corresponding to mode 1 are nearly identi-
cal to the subtracted mean field profile, and are not shown. For
higher modes differences can be ascertained by studying the
details in each plot. When a given isochrome extends further
to the right in the energy decomposition profile than in the
corresponding dissipation decomposition profile for a given
vertical position it implies a faster convergence of the energy
decomposition at that position, and vice versa.

However, extracting meaningful differences in the recon-
struction by inspecting isochromes in Figure 10 can be diffi-
cult. Therefore, profiles corresponding to n = 20 have been
marked in Figure 10, and the corresponding profiles from the
two decompositions are shown together for comparison in the
top row plots in Figure 10. Comparing the emphasized recon-
structions for n = 20 allows us to see the variations in conver-
gence with the vertical coordinate more clearly for these par-
ticular reconstructions. The energy modes reconstruct more of
the emphasized energy and heat flux profiles near the center
of the cell, while little difference can be seen for the remain-
ing quantities. The converse is true near the lower wall, with
more of each profile being reconstructed using the dissipation
decomposition than using the energy decomposition.

In agreement with what was found from the global conver-
gence discussed above, we find a trend of greater reconstruc-
tion efficiency near the boundary of the domain using dissipa-
tion decomposition, and near the core of the domain using the
energy decomposition.

VI. PERSPECTIVES FOR MODELING

An important motivation for considering the dissipation
decomposition is its potential for use as a modeling tool.
Energy-based POD modes frequently serve as the basis in
Galerkin projections, in which governing equations are pro-
jected on the chosen basis to produce a set of equations for
the modal coefficients48. The number of coefficients, and
thus the number of equations to be solved, can be reduced
by truncating the basis, projecting the dynamics into the sub-
space spanned by the truncated basis. The suitability of such
ROMs relies on how well the projected dynamics approximate
the full dynamics of the flow, and whether the truncation er-
ror can be compensated for by use of an additional model-
ing layer. One important source of truncation error lies in
the multi-scale nature of turbulence in combination with the
emphasis on large-scale structures assumed for energy-based
POD. This is particularly an issue in the case of high-Re flows,
where the range of scales can be considerable, and the cou-
pling between energetic large-scale structures and small-scale
dissipative structures diminishes. This generally causes an
under-modeling of dissipation, for which a compensating clo-
sure model will be required.

The dissipation POD is intended as an approach to tackle
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FIG. 10. Cumulative reconstructions of vertical profiles, with the mean field profile Π [⟨q⟩] subtracted, of kinetic energy (a,b), thermal energy
(c,d), viscous dissipation (e, f ), thermal dissipation (g,h), and convective heat flux (i, j) reconstructed using energy (top row) and dissipation
decomposition (bottom row). Shown are each profile using the first n modes for each n ≤ 40, every 10 profiles for 40 < n ≤ 800, and every
100 profiles for 800 < n < 16000. Colors show the number of modes included. The mean profile is shown as a dashed line, and a dotted
line at z = δ = 0.03 marks the extent of the boundary layer. Profiles corresponding to n = 20 are emphasized with darker lines, cf. the legend
on the upper right. The profiles for n = 20 from the dissipation decomposition (lower row plots) are reproduced in the upper row plots for
comparison. All profiles are vertically symmetric and are shown only for the lower half of the domain.

FIG. 11. Ratio of reconstructed profiles using n = 20 modes to the full mean profile, Π
p
n

⟨Π⟩ for Π = Eu (a), Eθ (b), εu (c), εθ (d), and Φ (d), and
p ∈ E,D. A dotted line at z = δ = 0.03 marks the extent of the boundary layer. Gray regions mark the approximate extent of the entrainment
zone, 0.02 ≲ z ≲ 0.1. All profiles are symmetric and shown only for the lower half of the cell.

this issue. As mentioned in the introduction, the energy-based
POD corresponds to L2 convergence of the reconstructed
fields, while the dissipation-based POD enforces H1 conver-
gence, which should ensure a better convergence of the dy-
namics. One of the motivations for the dissipation-based POD
is therefore to capture significant dynamics more efficiently.
While this is only guaranteed asymptotically, we have seen
this is already true at the lowest order. The dissipation-based
POD identifies the C mode as the most significant modifica-
tion of the LSC, which was not the case for the energy POD.
Soucasse et al. 47 found the C mode to be necessary for the
energy POD-based ROM in order to capture reorientations of
the LSC. Linear stability analysis of the ROM confirmed the
destabilizing influence of this mode on the LSC.

More generally, we have established that dissipation-based
POD provides a more accurate reconstruction of all energy

and dissipation quantities in the boundary layers, the dynam-
ics of which are crucial for the Rayleigh-Bénard problem.
As expected, the dissipation-based POD reconstruction of en-
ergy does not converge as fast as the energy POD in the full
cell. However, Table II shows that the asymptotic convergence
rate is about the same for all energy and dissipation quanti-
ties reconstructed in the full cell using the dissipation based
POD, suggesting optimality of the decomposition across the
full range of scales.

An advantage to conventional POD based Galerkin meth-
ods stems from the orthogonality of POD modes, which leads
to a decoupling of the coefficient equations. The dissipation
modes are not orthogonal with respect to the usual inner prod-
uct, creating a potential issue when applying the Galerkin pro-
jection. However, a similar issue is faced e.g. when working
in the vorticity formulation of the Navier-Stokes equation us-
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FIG. 12. Non-vanishing overlap magnitudes between normalized
dissipation velocity-temperature modes with nD,n′D ≤ 30, computed
with the energy inner product ⟨·, ·⟩E .

ing energy modes, as their vorticity fields are not orthogonal.
Rempfer and Fasel 49 argued that the vorticity fields of energy
eigenmodes were sufficiently close to vorticity eigenmodes
that approximate orthogonality could be assumed, and showed
that this assumption lead to acceptable results. In Section IV B
we observed a general trend of similarity between energy and
dissipation modes, which gives some hope that at least an
approximate orthogonality can be achieved for isosymmetric
modes, while non-isosymmetric modes are known to be ex-
actly orthogonal. We test this by computing the overlap matrix
for the lowest 30 dissipation modes, the entries of which are
shown in Figure 12. The modes are normalized such that the
diagonal entries are unity. The off-diagonal part of the matrix
is sparse due to the symmetry-induced constraints on mixing,
and the non-zero off-diagonal entries are generally small com-
pared to the diagonal entries (≲ 0.4). These observations give
reason to believe that modal cross terms could be ignored in
the present case as well, lending credibility to the feasibility
of using dissipation-based velocity (or velocity-temperature)
modes for ROMs. We note that Petrov-Galerkin models allow
the use of non-orthogonal bases50, and that data-driven learn-
ing methods such as SINDY51 could be used to determine the
ROM in the case where these approaches fail.

As seen from (31), reconstruction of any second-order
quantity can be obtained by summing the individual contri-
butions of each mode, weighted by its eigenvalue. Figure
11 suggests that an estimate for the full quantities could be
obtained from a 20-mode reconstruction, using global rescal-
ing factors corresponding to the boundary layer and the core,
with a possible matching law corresponding to the interme-
diate entrainment zone 0.02 ≲ z ≲ 0.1. As a first approx-
imation, almost all the thermal dissipation and thermal en-
ergy, but only ∼60% of the viscous dissipation and kinetic
energy were captured by the 20-mode reconstruction in the
boundary layer. Meanwhile, ∼50% of both thermal and ki-
netic energy were reconstructed in the core, against about re-
spectively 15% and 30% for the thermal and viscous dissi-
pation. A logarithmic interpolation between the core and the
boundary layer values can be used in the entrainment region

for all quantities, except for the kinetic energy reconstruction,
which increased up to 75% in the entrainment zone. We note
that all results reported here have been obtained at Ra = 107.
Soucasse et al. 46 showed that the energy-optimized basis re-
mained stable (with possible reordering among the modes) at
least over the range 106 ≤ Ra ≤ 108, and proposed a Ra-based
scaling for the evolution of the dominant eigenvalues. This
paves the way to an alternative POD-based approach to mod-
eling based on determining the evolution of POD eigenvalues
with the Rayleigh number. Any second-order quantity could
be reconstructed over a range of Rayleigh numbers, based on
a set of dissipation-optimized modes and evolution laws for
the corresponding eigenvalues as well as for the velocity and
temperature global scaling factors.

VII. CONCLUSIONS

We have presented a formulation of POD optimized with
respect to viscous and thermal dissipation, based on replac-
ing the usual L2 norm in the POD optimization problem with
an H1 norm. This was motivated by the desire to improve
the ability of modal decompositions to capture dynamically
important structures, regardless of their energy content. The
dissipation decomposition produces an orthogonal basis for
the combined strain rate tensor and thermal gradient. A corre-
sponding non-orthogonal velocity-temperature basis was pro-
duced using the extended method of snapshots, along with an
energy-optimized orthogonal velocity-temperature basis us-
ing conventional snapshot POD. This allowed direct compari-
son between the dissipation-optimized modes and the energy-
optimized POD basis. The two decomposition procedures
were applied to an enriched data set based on a DNS of a
Rayleigh-Bénard flow in a cubic cell, with Rayleigh number
Ra = 107 and Prandtl number Pr = 0.707. The underlying
DNS data set of 1000 realizations was enriched based on the
geometric symmetries of the convection cell, resulting in a
data set of 16000 realizations. Analyzing commutation rela-
tions for the POD and symmetry operators used for the enrich-
ment led to a characterization of the degeneracy in the POD
spectra, and the enrichment was formally shown to lead to a
separation of each POD basis into distinct subspaces charac-
terized by different sets of symmetries and anti-symmetries,
constraining overlaps between modes of the different decom-
positions as well as the non-orthognality of dissipation modes.

The decompositions were compared in detail for the lowest
20 modes of each, for which several features were found to be
shared between the two decompositions. The lowest 20 dissi-
pation modes were found to each have a direct analog among
the lowest 20 energy modes, with which both symmetry con-
figuration and large-scale organization were shared. Much of
the ordering between modes was found to be preserved be-
tween the decompositions. Both decompositions were dom-
inated by four modes contributing to the large-scale circula-
tion (LSC), labeled M, Lx/y, and D, which were nearly iden-
tical between the decompositions. The corner roll mode C,
which in previous work was found to be associated with LSC
reorientations, was found to be the largest contributor to the
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fluctuations of the dissipation, but not those of the energy.
This lends support to the hypothesis that a dissipation-based
decomposition is an improvement over the energy-based de-
composition in identifying dynamically significant modes.

With some exceptions dissipation modes were generally
found to exhibit greater boundary layer activity and enhanced
contribution to mean kinetic and thermal energy, viscous and
thermal dissipation, and convective heat flux in the boundary
layer compared to analogous energy modes, while showing
similar or decreased contributions to mean quantities in the
core of the cell. Boundary layer structures are known to play
a crucial role in the dynamics of Rayleigh-Bénard flows, and
the enhanced modal representation of such structures there-
fore suggests that the overall dynamics are more efficiently
captured using the dissipation decomposition.

Differences between dissipation modes and their energy
analogs tended to increase for higher modes, and particularly
the roll modes L†

x/y and the vertical mode Lz exhibited substan-
tial dissimilarities between the decompositions. The fact that
large-scale organization was generally preserved between the
decompositions was ascribed to a coupling between energetic
and dissipative structures, caused by the modest Rayleigh and
Reynolds numbers of the flow, at Ra= 107 and Re= 651. The
conservation of large-scale structures between the decomposi-
tions shows that any improvement in the resolution of bound-
ary layers and other small-scale structure does not necessarily
impact the ability of the decomposition to capture large-scale
structures, suggesting instead that a wide range of scales is
captured.

Modal reconstructions of global and boundary layer ki-
netic and thermal energy, viscous and thermal dissipation, and
convective heat flux were carried out using each decompo-
sition, and the convergence of the reconstructions was ana-
lyzed. In all cases the asymptotic convergence rates of the
boundary layer reconstructions were enhanced using the dis-
sipation decomposition compared to the energy decomposi-
tion. The asymptotic convergence rate of global reconstruc-
tions was similar for all quantities using the dissipation de-
composition, while it varied considerably between energy-
based reconstructions. The similar convergence rates of dif-
ferent quantities using dissipation modes support the hypo-
thesis that a wider range of relevant scales are captured by dis-
sipation modes, while the improved convergence in boundary
layers indicates that dynamically important boundary layer
structures are more efficiently captured by these modes.

Some possible drawbacks of applying dissipation modes
as a basis for Galerkin methods were also discussed. While
it was argued that the non-orthogonality of dissipation-
optimized velocity-temperature modes present a potential
complication, the departure from orthogonality was found to
be modest in the presently studied case, suggesting that the
impact of this should be manageable. Based on reconstructed
quantities we suggested a modeling approach based on region-
ally defined scaling of the flow reconstructed using the dom-
inant eigenmodes, combined with Ra-based scaling of domi-
nant eigenvalues.

We have thus shown results indicating that the dissipation-
based decomposition is able to capture dynamically important

structures in a Rayleigh-Bénard convection flow more effi-
ciently than conventional energy-based decompositions. The
study was limited to a single configuration characterized by
a moderate Rayleigh number, and it would be interesting to
determine the effects of increasing the Rayleigh number. In
particular, insight as to whether and how the discrepancy be-
tween the decompositions increases with the Rayleigh num-
ber would be valuable. Even at the moderate Rayleigh num-
ber considered here results suggest that the method poses a
promising alternative to energy-based decompositions in the
context of ROMs. Naturally, any convincing assessment of
the potential of this method must revolve around the even-
tual implementation and evaluation of such models, which we
hope will be attempted in future studies.
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