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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Multivariate data analysis of SERS maps 
enabled MTX prediction in patient 
samples. 

• More accurate quantification with 
multivariate vs. univariate data analysis. 

• The model can be built directly in 
commercial serum and applied to pa-
tient samples. 

• The genetic algorithm identified specific 
wavenumbers from complex SERS 
spectra. 

• Image threshold segmentation was 
applied to select relevant map pixels.  

A R T I C L E  I N F O   
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A B S T R A C T   

Despite the technological development in Raman instrumentation that has democratized access to 2D sample 
scanning capabilities, most quantitative surface-enhanced Raman scattering (SERS) analyses are still performed 
by only acquiring a single or a few spectra per sample and performing univariate data analysis on those. This 
strategy can however reach its limit when analytes need to be detected and quantified in complex matrices. In 
that case, surface fouling and competition between the target analyte and interfering compounds can impair 
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univariate SERS data analysis, underlining the need for a more in-depth data analysis strategy based on 
exploiting of full-spectrum information. 

In this paper, a multivariate data analysis strategy was developed, for analyzing SERS maps of methotrexate 
(MTX) from patient samples, including all steps from baseline correction, selection of wavelength, and the 
relevant pixels in the map (image threshold segmentation), as well as quantitative model construction based on 
partial-least squares regression. 

Among the different baseline correction methods evaluated, standard normal variable transformation and 
Savitzky-Golay smoothing proved to be more suitable, while the genetic algorithm wavelength screening method 
was able to screen out MTX-related SERS spectral regions more efficiently. Importantly, with the here-developed 
process, it was sufficient to use MTX-spiked commercial serum when building quantitative models, removing the 
need to work with MTX-spiked patient samples, and consequently enabling time- and resource-saving quanti-
tative analyses. Besides, the developed multivariate data analysis approach showed superior performances 
compared with univariate analysis, with 30 % improved sensitivity (detection limit of 5.7 µM), 25 % higher 
reproducibility (average relative standard variation of 15.6 %), and 110 % better accuracy (average prediction 
error of − 10.5 %).   

1. Introduction 

Surface-enhanced Raman scattering (SERS) has been reported to be a 
powerful analysis tool with applications notably in medicine [1,2], food 
safety [3,4], and environment monitoring [5]. The main advantage of 
SERS compared to Raman is that the Raman signal of the target analyte, 
either bonded or adsorbed onto the surface of SERS-active substrates, is 
significantly enhanced, therefore enabling sensitive detection and 
quantification even in complex samples [6]. 

Both qualitative and quantitative information can be gathered from 
SERS spectra. A widespread practice in quantitative SERS is to combine 
colloids with the fast single-point measurement acquisition setting 
[7–10]. Thanks to the relative homogeneity of nanoparticle suspensions, 
collecting a single or a few spectra can give an overview of the analyzed 
sample within seconds and can be conducted even with handheld de-
vices [7,8]. With the view of achieving more reproducible results and 
improving batch-to-batch variability, the development of solid SERS 
substrates has expanded, as they could provide more defined hotspot 
geometries [11]. 

Compared with single-point analysis, SERS mappings of larger sub-
strate areas can provide more representative, objective, and accurate 
information about the analyzed samples by accounting for spot-to-spot 
intensity fluctuations [12–14]. These fluctuations typically occur, 
especially with solid SERS substrates and at low analyte concentrations, 
as only a few molecules located in the hotspots contribute to the 
recorded SERS spectra [15]. The data collected during SERS mappings 
generally consists of a three-dimensional data cube, with two spatial 
(length*width, x*y) and one spectral (Raman shifts, λ) dimension, 
consequently rich in information. SERS mappings have been applied in 
various areas, including the detection of food contaminants [16,17], 
quantification of bacterial secondary metabolite [18], or detection of 
drugs in human biological matrices [1,19]. However, in most of these 
cases, exhaustive exploitation of the hyperspectral data was not per-
formed; on the contrary, solely a mean spectrum was extracted as output 
from the maps for univariate quantitative analysis, primarily based on 
peak height or area under the curve analysis of one or few defined 
spectral features [1,16,18]. 

While discriminative SERS data are generally handled with chemo-
metrics tools, it is still not a standard rule to apply the latter to quan-
titative SERS data [20–25]. Moreover, surprisingly, chemometrics 
algorithms are almost exclusively used on quantitative data collected 
from single-point analyses [7–10,26–28], with hardly any applications 
to maps in the literature [18,29,30], to the best of our knowledge. 

The most common algorithm applied to SERS data is noise reduction 
pre-processing. Different kinds of interfering signal and noise can appear 
in SERS spectra, notably from Raman spectrophotometer, SERS sub-
strate, or interfering compounds in the sample matrix [31]. Therefore, 
interfering signals in SERS mapping data may increase while expanding 
the scanned area. Spectral pre-processing such as Savitzky-Golay 

smoothing (SG) [7,8,18,26], multiple scattering corrections (MSC) 
[7–9], standard normal variable transformation (SNVT) [7–9,28], 
wavelet transform [32], first derivative (FD) [7–9,18,28,29], and second 
derivative (SD) [7–9,28] are some examples of algorithms, previously 
used on SERS data, that can be applied to reduce the spectral noise. 

Furthermore, applying algorithms to the analysis of spectral data is 
also essential to improve the quantification performances of SERS, 
especially considering complex sample matrices [6,15]. SERS mapping 
data suffer from dimensionality issues where a high number of unin-
formative, undesired and/or interfering wavelength variables need to be 
removed. Therefore, selecting the most informative wavelengths is 
critical in constructing robust quantification models. Additionally, the 
number of samples is often much smaller than the number of wavelength 
variables collected, which can lead to overfitting, i.e., great prediction 
performances in training samples but poor prediction performances on 
newly introduced samples [15]. Both of the above aspects in data 
analysis of SERS spectra lead to a significant challenge in building a cost- 
effective and robust calibration model [33]. Wavelength selection al-
gorithms used for this purpose enable retaining informative variables 
and removing uninformative or interfering ones, thereby improving the 
prediction performance of calibration models. Yet, applying these al-
gorithms to quantitative SERS mapping data is still not a common 
practice, which could be due to the complexity of the required data 
analysis, which is not automated. However, algorithms such as genetic 
algorithm (GA) [8,9,28], competitive adaptive reweighted sampling 
(CARS) [7,8,10], uninformative variable elimination (UVE) [34], suc-
cessive projection algorithm (SPA) [7], and synergy interval partial least 
squares (SI) [28] have been used to improve SERS quantitative models. 
The selection of variables is based on the model’s performance, gener-
ally using partial least square regression (PLSR) through iterative se-
lection, which yields the subset of variables with the best model 
performance [7–10,28]. However, variable selection strategies have 
specific constraints, and the algorithms perform differently according to 
the data set. Comparison and screening of algorithms performances is 
hence required for each new type of data set. 

Combining SERS mapping with multivariate spectral data analysis 
would notably benefit the field of SERS-based bioanalysis [35]. Bio-
logical matrices, like blood or serum, are complex, with variable 
composition and patient-to-patient differences. Even in the case of the 
same patient, the sample matrix composition could be influenced by 
physiological and pathological factors, such as sampling time, food 
intake, or the presence of an underlying condition [35]. This can entail 
significant spectral variations in terms of both peak intensity and peak 
(dis)appearance, making the reliability of a univariate quantitative 
model low [35]. 

Previously, Göksel et al. developed a nanopillar-assisted separation 
(NPAS) SERS-based detection method to quantify methotrexate (MTX) 
in the serum of leukemic pediatric patients receiving high-dose MTX 
therapy [1]. Due to the NPAS process, MTX was well localized in a 
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specific area on the SERS substrates and univariate data analysis, based 
on a single spectral feature peak intensity, was successfully implemented 
on the averaged SERS spectra when building calibration curves even in 
commercial serum samples. However, when working with patient 
samples, the high intra- and inter-patient serum variability greatly 
influenced MTX peak intensity and led to spectral feature variations. To 
mitigate this high variability and enable quantification of MTX in pa-
tient samples, the serum of each patient, collected before MTX infusion, 
was used to build a calibration curve for each patient by spiking it with 
MTX. Still, despite this fact, the vast information included in the SERS 
maps was not fully utilized, leading to poor prediction ability, with an 
average prediction error of 21 %. Although a calibration curve was built 
for each patient, MTX peak intensity could be impacted by interfering 
serum species competing with MTX for hotspots. Moreover, matrix 
components could even produce interfering SERS peaks, decreasing the 
accuracy of MTX quantification. Additionally, constructing calibration 
curves for every patient is not a viable strategy in clinical practice. A 
single quantification model, ideally built using commercial serum, 
would instead be preferred to predict MTX concentrations from all pa-
tient samples. 

Accordingly, the current work aimed to develop an accurate, rapid, 
reproducible, and easy-to-implement data analysis method for quanti-
fying MTX in patient samples by fully exploiting the previously pub-
lished SERS mapping dataset [1]. To that end, chemometrics algorithms 
were applied to reduce spectral noise (SNVT, MSC, FD, detrend, and SG), 
to screen and select meaningful wavelength variables (CARS, GA and 
SI), and to select the regions of the SERS substrate carrying significant 
MTX information (image threshold segmentation). As indicated earlier, 
this in-depth data analysis is one of the few where spectral data collected 
in maps are used for building an analytical model for quantification. 

2. Materials and methods 

2.1. Description of the used dataset 

All the SERS data used in this work was collected and presented by 
Göksel et al. [1]. More information regarding experimental parameters 
can be found in Section 1 of the Supporting Information. The data set 
consisted of 2 quantitative models (i and ii) and 1 type of data used to 
test the models (iii):  

(i) SERS maps of commercial serum samples spiked with MTX at 
concentrations of 0, 5, 10, 15, 25, 30, 50, 75, 100, 125 or 150 μM. 
Each concentration level consisted of between 3 and 16 maps (n 
= 3 – 16). 

(ii) SERS maps of patient’s serum samples drawn before adminis-
tration of MTX, and spiked with MTX at concentrations of 0, 25, 
50, 75, 100 or 125 μM. Each concentration level consisted of 
between 3 and 12 maps (n = 3 – 12).  

(iii) SERS maps of patient’s serum samples collected 24 h after MTX 
administration (n = 3 maps for each patient), with a known MTX 
concentration (immunoassay measurement performed in Rig-
shospitalet, Copenhagen, Denmark). Three maps were acquired 
for each sample (n = 3). 

The SERS maps comprised around 43 × 43 spectra and 1686 wave-
lengths per spectrum. Each map was collected onto a new piece of SERS 
substrate from a different aliquot of the same sample (technical repli-
cates, n). 

2.2. Baseline correction methods 

To reduce the noise in the SERS spectra and correct their baseline, 
the FD (window size of 17), MSC, detrend, SNVT and SG (window size of 
15, derivative order of 2) algorithms were applied as pre-processing. 

2.3. Variable selection methods 

As the SERS spectra contain numerous wavenumbers that do not 
include useful information for MTX quantification, variable selection 
methods were employed to select the most meaningful variables to 
include in the PLSR model. Both discontinuous wavelength screening 
(CARS and GA) and continuous wavelength screening (SI) methods were 
tested. 

In the CARS algorithm, the importance of wavelength variables was 
determined by the absolute value of PLSR model coefficients [36]. CARS 
algorithm mainly included the following steps: (i) Monte Carlo method 
for sampling, and random selection of the calibration set samples; (ii) 
deletion of the wavelength variables with lower contribution rates for 
the PLSR model (with max 15 principal components) based on an 
exponentially decreasing function; (iii) adaptive weighted sampling 
adopting the “survival theory of the fittest” to eliminate variables 
competitively and retain variables whose weight was greater than the 
threshold (20); and (iv) comparison of cross-validation root mean square 
error (RMSECV) values acquired by 5-fold cross validation in subsets 
after 50 sampling times, and selection of the subset with the smallest 
RMSECV value. 

In GA algorithm, the initial population (30 chromosome samples) of 
the subset was randomly generated by binary coding, where “1″ repre-
sents the selection of the corresponding wavelength and “0” means the 
non-selection [37,38]. The population evolved through the probability 
of crossover (0.5) and the probability of mutation (0.01) operations. The 
variables were screened based on the principle of “survival of the 
fittest”, i.e., variables with high predictive ability for the PLSR model 
were included in the next population. Finally, after 100 iterations, the 
population converged to the wavelength variables containing necessary 
information. Genetic algebra was used as the termination condition. 
When it reached the optimized algebra number, the search process in GA 
was terminated [38,39]. 

The SI algorithm divided the spectra evenly into N = 20 sub- 
intervals, removed one sub-interval, and established a PLSR model 
with the remaining N-1 sub-intervals [40]. The first excluded subinter-
val replaced each subinterval in the PLSR model established by N-1 
subintervals, and the stability and prediction accuracy of these sub- 
models were assessed through RMSECV. Among these, the most stable 
sub-model was used as the first SI-PLS model, and then the above steps 
were repeated for the remaining N-1 sub-interval. Finally, the model 
with the smallest RMSECV was found from the established sub-models as 
the SI-PLS model, and this sub-interval was also the optimal wavelength 
variable subset. 

All the above-described variable selection methods (CARS, GA and 
SI) were combined with PLSR. The samples were divided into training 
and prediction sets (sample ratio of 2/1). The RMSECV, root mean 
square error of prediction (RMSEP), and determination coefficient in the 
training set (Rt2) and the prediction set (Rp2) were calculated to assess 
the performance of the PLSR model. To further test the accuracy of the 
prediction results of the model, the predicted concentrations of patient 
samples were compared with their nominal values, and relative standard 
deviation (RSD) and prediction error (PE) were calculated. 

Generally, reliable models have higher R2 value and lower RMSE 
value, and the difference between Rt2 and Rp2 and between RMSECV 
and RMSEP should be as small as possible. 

2.4. Optimization of the image threshold segmentation 

As mentioned earlier, only certain parts of the SERS maps contain 
MTX-related information. Appropriate threshold segmentation can be 
applied to the maps to extract spectral information only from the regions 
where MTX molecules are located. 

When MTX is present at a specific location of the SERS substrate, the 
SERS intensity at the characteristic MTX wavelengths should be rela-
tively higher than the background signal. Therefore, threshold 
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segmentation can isolate these areas with high SERS intensity and then 
calculate the average SERS intensity in these areas (Supporting Infor-
mation). The PLSR models can subsequently be built with these aver-
aged intensity data. 

2.5. Data analysis software 

All the data pre-processing and chemometrics analysis were per-
formed using MATLAB Version 2014b (Eigenvector Research Inc., 
Wenatchee, WA, USA). 

3. Results and discussion 

In our previous paper [1], when using univariate, single spectral 
feature-based data analysis on the same data set used in this work, a 
calibration curve had to be built for each patient serum to quantify the 
MTX concentration in the respective patient sample. This practice is very 
time- and sample-consuming, thus not suitable for quantitative analysis 
in real life. On the contrary, the optimal solution would be to construct a 
single quantitative model, preferably with commercial serum, to accu-
rately predict MTX concentration in patient samples. The model would 
ideally be able to extract relevant MTX features without being influ-
enced or sensitive to matrix variations and interferences. 

3.1. Comparison of different baseline correction methods 

When acquiring SERS maps, it is common that the baseline moves up 
and down or drifts (Figure S1A) [41]. These perturbations will reduce 
the stability of the model, so it is necessary to pre-process the SERS 
spectrum before a quantitative model is built. This work compared 
different baseline correction methods, such as SNVT, MSC, FD, detrend, 
and SG, to select the most suitable SERS maps. 

In the spectra obtained using the MSC pretreatment method, several 
abnormal spectra were obtained, which did not occur in the raw spectra 
(Figure S1B). Many spectral features (peaks) obtained after FD pre-
treatment were negatives (Figure S1C), which made FD pretreatment 
unsuitable for the subsequent image analysis. 

Compared with the raw spectra, the detrend and SNVT methods 
produced pre-processed spectra with similar baselines (Figure S1D and 
E, respectively). These methods were thus better suited to SERS maps. 

As the next step, PLSR models were built on the data pre-processed 
with these 4 methods (detrend, SNVT, MSC, FD) to compare them. 
The Rt2, Rp2, RMSECV and RMSEP are displayed in Table 1, and it can be 
seen that, among the models, the one based on SNVT-corrected spectra 
showed better predictions. 

Although SNVT could correct the baseline effectively, noise can 
clearly be observed in the pre-processed spectra (Figure S1E). An addi-
tional SG smoothing processing was therefore employed to reduce the 
noise in the SERS maps (Figure S1F), which resulted in improved model 
performances (Table 1, group 6); therefore this SNVT-SG processing was 
used for further data analysis. 

To further verify the effectiveness of the SNVT-SG pretreatment, it 
was applied before univariate data analysis using MTX characteristic 
peak (679 cm− 1) and compared to non-baseline corrected data [1] 
(Table S1). As can be observed in Table S1, univariate models based on 2 
points baseline-corrected spectra used in our previous work also pro-
duced better prediction results than non-baseline corrected data [1]. 

3.2. Comparison of variable selection methods 

While the SERS spectrum of MTX has several characteristic peaks (as 
indicated by pink arrows in Fig. 1, Figure S2 and locations specified in 
Table S2), in our previous work, we only focused on a single peak to 
perform univariate quantitative analysis [1]. In this work, we aimed to 
improve the prediction accuracy by considering several MTX charac-
teristic peaks in the quantification model. As can be observed in Fig. 1, 
only a few wavenumbers contain relevant information assigned to MTX. 
Furthermore, despite implementing sample pretreatment (protein pre-
cipitation and NPAS) prior detection, interferences originating from the 
complex serum matrix could remain in the pretreated sample and 
compete with MTX for the substrate surface. This matrix effect is further 
accentuated in the case of patient samples, where, due to the disease and 
used therapy, the serum composition can broadly vary, and the presence 
in serum of co-administered drugs is expected together with the target 
analyte. 

In summary, it would be highly beneficial not to rely only on a single 
spectral feature peak from the SERS spectra, for data analysis. Selecting 
the characteristic analyte peaks manually is time-consuming and it can 
be subjective. An automatic wavelength screening method for finding 
these distinct peaks would be much more efficient. 

As described in the Material and Methods section, 3 different vari-
able screening algorithms, namely GA, CARS, and SI, were investigated 
in this work to select the most relevant wavelengths. PLSR models were 
then constructed using 128 spiked commercial serum samples based on 
these chosen variables. The variable screening algorithms were 
compared and their suitability was assessed by looking at the prediction 
accuracy of MTX from patient samples (Table 2). 

GA is a method based on the theory of natural selection and bio-
logical evolution [42]. Each spectrum with wavelength variables in GA 

Table 1 
PLSR model results after spectra pre-processing with different baseline correc-
tion methods. The PLSR models were constructed using 128 spiked commercial 
serum samples, based on the full spectrum and the whole map pixels, and used to 
predict the same samples.  

Group Baseline correction 
method 

Rt2 Rp2 RMSECV RMSEP PC 

(µM) (µM) 

1 None  0.69  0.70  23.61  24.32 12 
2 MSC  0.80  0.50  18.52  43.63 10 
3 FD  0.69  0.77  23.48  21.40 11 
4 Detrend  0.68  0.73  23.82  22.90 11 
5 SNVT  0.78  0.84  19.03  17.54 12 
6 SNVT-SG  0.79  0.84  18.67  17.29 12  

Fig. 1. SERS spectra of MTX in spiked commercial serum after SNVT-SG pre- 
processing. The characteristic SERS peaks of MTX are highlighted by pink ar-
rows. The plain black and dashed red vertical lines display the wavelengths 
selected by the GA and CARS algorithms, respectively. The highlighted purple 
areas are the spectral regions selected by the SI algorithm. 
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it is regarded as a biological individual. The spectral group with the 
highest explained variance will be selected as the final selected wave-
length variable [39]. CARS can also play a powerful and influential role 
in determining wavelength variables. CARS does not only reduce the 
influence of collinear variables on the model, but also further avoids 
over-fitting in the modeling process. It hence improves the prediction of 
the model [36]. GA and CARS algorithms screen out discontinuous 
variables. Nørgaard et al. introduced SI as a method for selecting 
continuous variables [40]. The accurate model is obtained by dividing 
the spectrum into smaller equidistant subintervals, then comparing the 
preferred combined spectral regions. 

As shown in Table 2 and Fig. 1, 63, 76 and 208 wavenumbers were 
selected from the whole SERS spectrum by GA, CARS and SI, respec-
tively. Among these algorithms, GA selected the lowest proportion of 
uninformative variables (Table S2). The proportion of informative var-
iables included in the model by GA were between CARS and SI, while 
more MTX characteristic peaks were selected by GA than by CARS and SI 
(Table S2). Therefore, among these 3 methods, GA was the most efficient 
for spectrum screening and for selecting MTX characteristic peaks. 

Table 3 and Figure S3 show the MTX prediction results from 3 patient 
samples (n = 3) based on PLSR models constructed with 128 spiked 
commercial serum samples, comparing the 3 different variable selection 
methods. When predicting MTX concentration from patient samples, the 
RMSECV of the 3 PLSR models were quite close. However, the RMSEP of 
the PLSR model based on GA-selected wavenumbers was lower than the 
ones based on CARS and SI-selected wavenumbers. Based on these re-
sults, we concluded that the PLSR model constructed using variables 
screened by GA predicts better MTX concentration than models built 
using CARS and SI-selected variables. The difference between Rt2 and 
Rp2, and RMSECV and RMSEP in the PLSR models based on GA-selected 
wavenumbers were also lower than that for the 2 other models (CARS 
and SI), which proves the improved performance of the PLSR model 
constructed by GA-selected variables. 

In addition, it can be noticed in Table 3 that the GA method yielded 
the lowest SD, RSD, and PE. Therefore, the model established on 
wavelengths selected by the GA algorithm provided the best prediction 

results, which was consistent with the fact that the proportion of 
informative variables included by GA was the highest. 

When comparing the results of the PLSR model based on SNVT-SG 
pre-processing and GA-selected variables (Group 1 in Table 3) with 
the univariate model based on 679 cm− 1 MTX peak intensity (Group 3 in 
Table S1), it could be noticed that the SD, RSD, and PE obtained with the 
multivariate model were lower than for the univariate model. Based on 
this finding, we concluded that the multivariate model was more accu-
rate than the univariate one and therefore, the SNVT-SG-GA analysis 
method was selected for further data analysis. 

3.3. Influence of the sample matrix on the model performance 

The model’s performance is affected by the data analysis method and 
the nature of the samples included in the model. As a general rule, the 
prediction results of PLSR models are the best when the samples used to 
build the model are similar to the ones that need to be predicted. In this 
work, serum from two different sources was used to build the models: 
commercial serum and serum collected from patients before the initia-
tion of their MTX therapy. It is expected that serum originating from 
patients would have more variability (patient-to-patient and intra- 
patient) and be a more complex matrix than the somewhat standard-
ized commercial serum due to the altered physiological condition of 
patients. Therefore, the effect of the sample matrix was also evaluated in 
this study. 

When spiked patient samples were used to construct the PLSR model 
to predict the MTX concentration in patient samples undergoing MTX 
therapy (Group 1 in Table 4), the overall values of RSD, PE, RMSECV 
and RMSEP were the lowest. Furthermore, it can be seen from 
Figure S4A that the patient samples were predicted with higher accuracy 
in that case. On the contrary, when a mix of spiked commercial and 
patient serum samples were used to build the PLSR model (Group 2 in 
Table 4) to predict the MTX concentration, the overall values of RSD, PE, 
RMSEP and RMSECV were much higher. The model could only accu-
rately predict the concentration of 1 of the 3 patient samples 
(Figure S4B). 

The MTX concentration prediction results were the worst when only 
spiked commercial serum samples were used to build PLSR models 
(Group 3 in Table 4). The RMSEP, the difference between RMSEP and 
RMSECV, and Rt2 and Rp2 were quite large, and only 1 patient sample 
could be accurately predicted (Figure S4C). 

By comparing these 3 groups of results, it was thus concluded that 
the PLSR model built with only spiked commercial serum samples 
resulted in the poorest prediction performances for patient samples. In 
contrast, as expected, the model built with only patient samples yielded 
the best prediction performances. When the samples used to create the 
models and for prediction are comparable, it is easier to eliminate 
similar spectral interferences, and the resulting model shows better 

Table 2 
Comparison of different variable selection algorithms in terms of number of 
selected wavenumbers.  

Variable 
selection 
methods 

Number 
of 
selected 
variables 

Informative 
variables 

Uninformative 
variables (%) 

Informative 
variable 
included (%) 

GA 63 27 36 (57 %) 17 
CARS 76 22 54 (71 %) 14 
SI 208 60 148 (71 %) 38 
None 935 157 778 (83 %) 100  

Table 3 
Comparison of PLSR model results for different variable selection methods, using the top 20 % pixels of the maps, obtained by image threshold segmentation. Spectra 
were pre-processed using SNVT-SG.  

Group Variable screening method Reference conc. Predicted conc. SD RSD PE Rt2 Rp2 RMSECV RMSEP PC 

(µM) (µM) (µM) (%) (%) (µM) (µM) 

1 GA 104  111.80  4.27  3.82  7.55  0.85  0.73  16.13  14.81 4   
64.3  56.90  13.14  23.11  − 11.58        
88  77.10  15.20  19.72  − 12.38      

2 CARS 104  96.27  7.06  7.34  − 7.44  0.84  0.73  16.70  38.54 16   
64.3  21.80  19.43  89.13  − 66.09        
88  43.29  12.76  29.48  − 50.81      

3 SI 104  81.79  7.24  8.85  − 21.36  0.85  0.54  16.29  29.82 10   
64.3  34.91  17.18  49.20  − 45.71        
88  68.88  24.45  35.50  − 21.73      

4 None 104  130.03  3.71  2.85  25.03  0.83  0.56  16.96  24.59 8   
64.3  68.03  24.81  36.46  5.80        
88  85.00  22.02  25.91  − 3.41       
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prediction results. It is worth noting that models constructed and veri-
fied with the same batch of samples are prone to overfitting, meaning 
that the models can only be used to predict samples from this batch. The 
prediction results are usually poor when testing new samples from 
different natures. This is why a large number of samples from a wide 
range of sources are generally collected in multivariate modeling 
[43,44]. Nevertheless, as samples from only a few different patients (3) 
were included in the model, the prediction accuracy of the latter could 
be further improved by including samples from a larger number of pa-
tients. In this way, the physiological and pathological variability of 
serum in-between patients and within the same individuals would be 
taken into account in the model. 

3.4. Influence of the number of samples on the model performance 

We also investigated the model’s performance in correlation with the 
number of samples included. Especially for highly variable and complex 
matrices, such as serum and other biological matrices, it is essential to 
have enough samples to build the model, to consider this high variability 
and create a robust predictive model. 

The performance of PLSR models constructed with 64, 82, 100 or 112 
spiked commercial serum samples were thus compared to investigate 
the effect of sample number (Table 5 and Figure S5). While the Rt2 and 
Rp2 of models built with 64 and 82 samples were similar, increasing the 
number of samples reduced the RMSEP (Table 5 group 1 and 2). When 
the number of samples increased to 100, difference between Rt2 and 
Rp2, and RMSEP were lower, (Table 5 group 3). Further increasing the 
number of samples to 128, increased the Rp2 and decreased the RMSEP, 
and the differences between Rt2 and Rp2, and between RMSECV and 
RMSEP were also the smallest (group 4 in Table 5). We also found that 
this model could accurately predict the concentration of almost all pa-
tient samples (group 4 in Table 5 and Figure S5D). 

It was thus concluded that increasing the number of samples 
included in the models could help mitigate sample-to-sample spectral 
variability by having additional matrix background information, 
resulting in improved prediction performance. 

3.5. Optimization of the image threshold segmentation process 

During the NPAS process, as explained by Göksel et al. [1], sample 
migration and analyte separation from matrix compounds occur on the 
SERS substrate due to a wicking effect. 

Considering this, only a portion of the SERS substrates contains the 
relevant spectral information related to MTX, and the distribution of 
MTX on the SERS substrate is mainly localized in the migration region. 
This distribution can also vary slightly from sample to sample. Appro-
priate image threshold segmentation methods could thus be used to 
solely include pixels containing relevant information related to MTX in 
the constructed PLSR models. Including less noise would, as a result, 
benefit the models in terms of MTX concentration prediction perfor-
mance due to improved signal-to-noise ratios. 

Different percentages (top 10 %, 20 %, 30 %, 40 % and 100 %) of 
image threshold segmentation were investigated to build PLSR models 
with 128 spiked commercial serum samples, and the performance of 
these models were compared by predicting the MTX concentration in 3 
patient samples (Fig. 2 and Figure S6). In Table 6, it can be seen that 
when the top 30 % or top 20 % pixels (group 3 and 4, respectively) of 
spectral intensity were used for threshold segmentation, the results of 
training and prediction were the best, probably due to the most effective 
noise reduction. In both cases, all patient samples were predicted 
accurately, with slightly better performances of the top 20 % model 
(Table 6 group 4 and Fig. 2). On the contrary, including more pixels in 
the model increased the noise and deteriorated prediction performances 
(Table 6 group 1 and 2, and Figure S6A and B). Moreover, further 

Table 4 
Influence of the sample type on PLSR results for the prediction of MTX concentration in 3 patient samples (n = 3). Spectra were pre-processed using SNVT-SG-GA. The 
top 20 % pixels of the maps, selected by image threshold segmentation, were used to build the models.  

Group Samples for training Reference 
conc. 

Predicted 
conc. 

SD RSD Prediction 
error 

Rt2 Rp2 RMSECV RMSEP PC 

(µM) (µM) (µM) (%) (%) (µM) (µM) 

1 48 spiked patient samples 104  119.17  7.51  6.30  14.59  0.85  0.79  18.45  16.24 6  
64.3  55.80  4.20  7.53  − 13.22       
88  86.17  20.28  23.53  − 2.08      

2 48 mixed samples (24 spiked patient and 24 
spiked commercial samples) 

104  105.01  5.10  4.85  0.97  0.87  0.81  18.35  20.23 6  
64.3  42.20  16.89  40.03  − 34.37       
88  68.97  8.01  11.62  − 21.63      

3 48 spiked commercial samples 104  108.89  6.40  5.88  4.70  0.89  0.51  16.67  22.30 5  
64.3  55.20  24.38  44.17  − 14.15       
88  74.92  24.04  32.09  − 14.87       

Table 5 
Influence of the amount of samples used to build the model on PLSR results for the prediction of MTX concentration in 3 patient samples (n = 3). Spectra were pre- 
processed using SNVT-SG-GA. The top 20 % pixels of the maps, selected by image threshold segmentation, were used to build the models.  

Group Samples for training (commercial 
serum) 

Reference 
conc. 

Predicted 
conc. 

SD RSD Prediction 
error 

Rt2 Rp2 RMSECV RMSEP PC 

(µM) (µM) (µM) (%) (%) (µM) (µM) 

1 64 104  139.29  5.23  3.76  33.94  0.92  0.56  14.25  41.82 11  
64.3  39.73  36.82  92.67  − 38.21       
88  58.70  33.99  57.91  –33.30      

2 82 104  125.91  1.72  1.37  21.07  0.91  0.53  13.60  26.05 7  
64.3  61.19  25.93  42.38  − 4.84       
88  80.93  28.64  35.38  − 8.03      

3 100 104  123.86  4.44  3.59  19.10  0.86  0.68  16.77  20.20 4   
64.3  62.00  17.61  28.40  − 3.58        
88  90.27  22.12  24.50  2.58      

4 128 104  111.80  4.27  3.82  7.55  0.85  0.73  16.13  14.81 4  
64.3  56.90  13.14  23.11  − 11.58       
88  77.10  15.20  19.72  − 12.38       
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decreasing the amount of data included in the model also resulted in 
performance degradation (Table 6 group 5, and Figure S6D), which 
could be explained by the too-low amount of data included in the 
models. 

A clear improvement was also noticed compared to the univariate 
model built (Group 3 in Table S1), with reduced SD (10.9 µM vs 13.2 
µM), RSD (15.6 % vs 20.8 %), and PE (10.5 % vs –22.6 %). 

The limits of detection and quantification (LOD and LOQ) of MTX 
using this data analysis strategy, for the model built with the top 20 %, 
were found to be 5.7 μM (LOD) and 17.0 µM (LOQ). The calculated LOD 
and LOQ values, using the here developed and the optimized multi-
variate method, based on multiple spectral features, proved to be lower 
than the ones obtained with the univariate model previously published 
[1], where the LOD and LOQ were 8 μM and 26.5 μM, respectively. 

These results show that the data analysis method developed in this 
study based on the combination of standard normal variable trans-
formation, SG smoothing, GA and image threshold segmentation (SNVT- 

SG-GA-ITS-PLSR) can predict the concentration of MTX in patient 
samples based on a model solely constructed with spiked serum samples. 

4. Conclusion 

The developed data analysis strategy for SERS maps, based on the 
combination of SNVT-SG-GA-ITS-PLSR, enabled accurate prediction of 
MTX concentration in patient samples based on chemometrics models 
constructed with only commercial serum samples. Notably, SNVT 
baseline correction and GA screening method applied for data pre- 
processing showed better performance than other pre-processing and 
selection methods such as MSC, FD, detrend, CARS or SI. During opti-
mization of the image threshold segmentation, we found that using the 
top 20 % pixels of spectra intensity led to better prediction performance. 

Not only were the prediction results superior to the previously re-
ported univariate, single spectral feature-based, data analysis method, 
with lower RSD (15.6 % vs 20.8 % from multivariate model with top 20 

Fig. 2. Scatter plots of the PLSR model constructed with an image threshold segmentation of top 20 % pixels. The blue stars represent the samples used to build the 
models while the red circles represent the predicted 24 h MTX therapy patient samples. 

Table 6 
PLSR model results based on different percentages of image threshold segmentation for the prediction of MTX concentration in 3 patient samples (n = 3).  

Group Image threshold segmentation percentage 
(%) 

Reference conc. Predicted conc. SD RSD PE Rt2 Rp2 RMSECV RMSEP 

(µM) (µM) (µM) (%) (%) (µM) (µM) 

1 100 104  106.1  4.51  4.25  2.05 0.79 0.75 19.08 21.93 
64.3  42.9  3.18  7.4  –33.24 
88  66.2  21.84  32.98  − 24.75 

2 40 104  112.7  11.03  9.79  8.36 0.84 0.69 16.78 18.57 
64.3  53.3  16.3  30.58  − 17.12 
88  69.8  10.96  15.7  − 20.67 

3 30 104  112.8  8.28  7.34  8.46 0.84 0.75 16.53 15.28 
64.3  55.5  13.44  24.23  − 13.75 
88  77.1  13.31  17.26  − 12.41 

4 20 104  111.8  4.27  3.82  7.55 0.85 0.73 16.13 14.81 
64.3  56.9  13.14  23.11  − 11.58 
88  77.1  15.2  19.72  − 12.38 

5 10 104  99.83  0.57  0.57  − 4.01 0.86 0.46 15.54 16.34 
64.3  64.00  12.30  19.22  − 0.47 
88  89.13  25.10  28.17  1.29  
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% pixels vs univariate model, respectively), and PE (10.5 % vs 22.6 % in 
average, respectively), but the samples used for model construction 
were also more readily available (commercial serum instead of patient 
samples). In addition, avoiding constructing calibration models in each 
patient serum represents a time- and resource-saving benefit. The 
developed method is relatively user-friendly, could be automated, and 
the constructed models could be updated with upcoming new samples to 
make it more robust. Moreover, the method can quickly complete data 
extraction, analysis and prediction (2 min). 

In conclusion, the main scientific advance of this work is the com-
bination of multivariate data analysis with SERS mapping. The devel-
oped and optimized data analysis approach proved to be accurate, rapid, 
easy to implement for quantifying MTX in patient serum by fully 
exploiting the information contained in SERS maps and could be 
implemented in SERS-based assays in real-life settings. We believe that 
the presented methodology could be adapted to other quantitative SERS- 
based assays. 
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