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Abstract: Although numerous studies support a dose–effect relationship between Endocrine dis-
ruptors (EDs) and the progression and malignancy of tumors, the impact of a chronic exposure
to non-lethal concentrations of EDs in cancer remains unknown. More specifically, a number of
studies have reported the impact of Aldrin on a variety of cancer types, including prostate cancer.
In previous studies, we demonstrated the induction of the malignant phenotype in DU145 prostate
cancer (PCa) cells after a chronic exposure to Aldrin (an ED). Proteins are pivotal in the regulation
and control of a variety of cellular processes. However, the mechanisms responsible for the impact
of ED on PCa and the role of proteins in this process are not yet well understood. Here, two com-
plementary computational approaches have been employed to investigate the molecular processes
underlying the acquisition of malignancy in prostate cancer. First, the metabolic reprogramming
associated with the chronic exposure to Aldrin in DU145 cells was studied by integrating transcrip-
tomics and metabolomics via constraint-based metabolic modeling. Second, gene set enrichment
analysis was applied to determine (i) altered regulatory pathways and (ii) the correlation between
changes in the transcriptomic profile of Aldrin-exposed cells and tumor progression in various types
of cancer. Experimental validation confirmed predictions revealing a disruption in metabolic and
regulatory pathways. This alteration results in the modification of protein levels crucial in regulating
triacylglyceride/cholesterol, linked to the malignant phenotype observed in Aldrin-exposed cells.

Keywords: prostate cancer; endocrine disruptor; genome-scale metabolic modeling; data-driven
analysis; metabolic reprogramming

1. Introduction

Prostate cancer (PCa) is the most common type of cancer and a second leading cause
of cancer deaths in the male population. Almost one million new cases are diagnosed
globally per year, imposing a high burden on healthcare systems worldwide [1,2].

Similarly to numerous other types of cancer, prostate cancer has also been linked
to particular environmental exposures. It is widely accepted that environmental factors
play a significant role in tumor initiation, progression, and phenotype. In this sense, a
number of studies describe a dose–effect relationship between endocrine disruptors (EDs)
and the onset and progression of prostate cancer (PCa). These compounds can disrupt
the endocrine system by mimicking the effect of certain hormones which alters the cancer
metabolism, enhancing tumor progression and malignancy [3,4]. More specifically, several
studies have found a correlation between an exposure to Aldrin, an endocrine disruptor,
and an increased risk of aggressive prostate cancer [5]. Although sub-lethal concentrations
of endocrine disruptors (EDs) have been linked to prostate cancer (PCa) progression and
malignancy acquisition, our current knowledge on the underlying mechanisms remains
limited. In a previous study, we demonstrated that a prolonged exposure to a non-lethal
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concentration of Aldrin can lead to significant alterations in the lipidomic profile of DU145,
a prostate cancer cell line. Additionally, it was found that this exposure also enhanced the
malignant phenotype of these cells, highlighting the potential carcinogenic effects of this
chemical [6]. Aldrin is an organic pollutant that exhibits ED characteristics. It disrupts gene
regulation, altering protein levels and activity through processes such as phosphorylation,
ultimately leading to an abnormal tumor metabolism (metabolic reprogramming) [7,8].

Thus, to fully understand the metabolic processes involved in a complex and multi-
faceted disease such as cancer, it is crucial to take a global perspective. This requires an
integrated approach that considers the entire metabolic network, as well as the cross-talk
with regulatory mechanisms.

In this context, genome-scale metabolic models (GEMs) have emerged as a potential
solution to decipher the complexity of the molecular mechanisms underlying cancer within
the framework of systems biology [9,10]. This computational tool represents the biochemical,
genetic, and genomic knowledge of a given organism [11–13]. GEMs present a highly benefi-
cial framework for integrating omics data [14], and they serve as an excellent analytical tool
for studying metabolic fluxes within a network through the application of constraint-based
techniques such as flux balance analysis (FBA) [15]. This model-driven approach has proven
to be effective at uncovering valuable insights into the molecular mechanisms driving the
aberrant cancer metabolism and identifying potential vulnerabilities [16–18]. However, the
alterations in the metabolic secondary response associated with a chronic exposure to a sub-
lethal concentration of pollutants such as EDs have not yet been taken into account in these
computational approaches.

While GEMs allow for a comprehensive understanding of the metabolic network’s
activity in a given condition (i.e., Aldrin-exposed or non-exposed conditions), they are not
suitable to study the dysregulated gene regulatory and signaling pathways that contribute
to the abnormal tumoral metabolism, and thus lack the ability to provide a more compre-
hensive understanding of the molecular mechanisms involved. In this context, gene set
enrichment analysis (GSEA) [19] proves to be a more suitable approach to integrate the
entire gene expression profile and identify the underlying cellular mechanisms, including
the gene regulations and signaling pathways, that are associated with a specific phenotype.

This study represents a first approach in the integration of multi-omics data, leveraging
two powerful and complementary systems biology methods, GEMs and GSEA, to unveil
the molecular mechanisms underlying the gain of malignancy in PCa due to the chronic
exposure to non-lethal concentrations of Aldrin, using the well-established DU145 PCa cell
line as a cellular model.

Here, we have integrated metabolomic, lipidomic, transcriptomic and literature-based
data (Figure 1a) by applying two different approaches: (i) integrating the gene expression
of metabolic genes and lipidomic and metabolomic data via constraint-based metabolic
modeling methods to fully characterize the activity state of the metabolic network, and
(ii) applying GSEA to identify potential changes in the regulatory pathways and corre-
late transcriptomic profiles between DU145 Aldrin-exposed cells and tumor progression
in various tumor types obtained from the Cancer Genome Atlas (TCGA) [20]. First, the
metabolomic, lipidomic, and transcriptomic data, obtained from metabolic genes, are inte-
grated into one of the most widely utilized reconstructions of the human metabolism [13].
This is done through the utilization of established algorithms specifically designed for this
purpose [21–23] (Figure 1b). Our integrative approach was employed to simulate, analyze,
and predict metabolic fluxes using flux balance analysis (FBA) for metabolic phenotype pre-
dictions. We identified changes in the metabolic flux profile of DU145 PCa cells following a
long-term exposure to non-lethal concentrations of Aldrin (Figure 1c).



Proteomes 2023, 11, 11 3 of 19Proteomes 2023, 11, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 1. Overall process of omics data integration and analysis. (a) Omics data integrated in this 
study: literature-based, transcriptomics, metabolomics and lipidomics. (b) Metabolomics, 
lipidomics, and transcriptomics (only metabolic genes) are integrated into a GEM of human 
metabolism by applying CBM methods. (c) Result of GEM-based CBM: activity state of the 
metabolic network in Aldrin-exposed and non-exposed conditions. (d) The full transcriptomic 
dataset is integrated into a gene set enrichment analysis. (e) Result of GSEA: regulatory 
mechanisms associated with the gain of malignancy due to the chronic exposure to Aldrin in 
DU145 PCa cells. (f) Cross-talk: combine the output from the GSEA and CBM analyses by means 
of bibliographic search to find the cross-talk between the regulatory and metabolic layers that 
define a unique mechanism involving both layers that underlies the increase in malignancy 
reported in DU145 PCa cells due to the chronic exposure to non-lethal concentrations of Aldrin. 

Commented [M1]: The contents of the subgraphs are 
not legible. Please replace the image with one of a suf-
ficiently high resolution. 

Commented [2]: Reply to MDPI (03/23/2023, 09:55): 
"..." 
Figure replaced 

Figure 1. Overall process of omics data integration and analysis. (a) Omics data integrated in this
study: literature-based, transcriptomics, metabolomics and lipidomics. (b) Metabolomics, lipidomics,
and transcriptomics (only metabolic genes) are integrated into a GEM of human metabolism by
applying CBM methods. (c) Result of GEM-based CBM: activity state of the metabolic network in
Aldrin-exposed and non-exposed conditions. (d) The full transcriptomic dataset is integrated into a
gene set enrichment analysis. (e) Result of GSEA: regulatory mechanisms associated with the gain
of malignancy due to the chronic exposure to Aldrin in DU145 PCa cells. (f) Cross-talk: combine
the output from the GSEA and CBM analyses by means of bibliographic search to find the cross-talk
between the regulatory and metabolic layers that define a unique mechanism involving both layers
that underlies the increase in malignancy reported in DU145 PCa cells due to the chronic exposure to
non-lethal concentrations of Aldrin.
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Second, the entire gene expression dataset of Aldrin-exposed and non-exposed cells
was compared with the curated gene signatures associated with different cellular mech-
anisms (Figure 1d). As result, the gene regulatory and signaling mechanisms associated
with the chronic exposure to Aldrin were uncovered (Figure 1e). Finally, the study utilized
literature-based research to gather information regarding the metabolic changes predicted
by the model-driven analysis and the gene regulatory alterations identified by GSEA, com-
bining them into a unified mechanism that explains the increased malignant phenotype
associated with the chronic exposure to Aldrin in DU145 PCa cells (Figure 1f).

The multi-level computational analysis unveiled the molecular mechanisms involving
both metabolic and gene regulatory processes, including the dysregulation of HMGCoA,
that are consistent with the previously reported enhanced malignant phenotype associated
with the chronic exposure to Aldrin in prostate cancer cells. This method presents a high
potential as it allows for the study of the crucial role that proteins play in human diseases
through the integration and analysis of various omics data.

The proposed approach offers a comprehensive understanding of intricate and multi-
faceted diseases, as demonstrated by the current study. It has the potential to be extrapo-
lated to other human diseases in both clinical and environmental settings.

2. Materials and Methods
2.1. Cell Experiments, Transcriptomic Analysis, and Metabolomic Data Preparation

DU145 prostate cancer cells were obtained from the American Type Culture Collection.
The Aldrin, cell culture media, and reagents were obtained from Merk (Kenilworth, NJ,
USA). DU145 cells were cultured in an RPMI 1640 medium supplemented with 10% heat-
inactivated fetal bovine serum, 100 µg/mL of streptomycin, and 100 U/mL of penicillin.
The cell culture was grown in an incubator humidified with 5% of CO2 at 37 ◦C.

The DU145 PCa cells were exposed to sub-lethal concentrations of Aldrin (not affecting
cell growth) for 50 days (Aldrin-exposed), while the control condition was carried out for
the same period in Aldrin-free media (non-exposed), as described in Bedia et al.’s 2015
study [6]. After 50 days of treatment, samples of both Aldrin-exposed and non-exposed
cells were collected at two time points within the exponential growth phase: at 0 and 5 h.

Transcriptomics: for the transcriptomic analysis, the Aldrin-exposed and non-exposed
DU145 cells were harvested at 85% confluence using a rubber scraper into 2 mL of ice-cold
PBS. The cells were centrifuged at 1300 rpm for 3 min at 4 ◦C and were washed twice with
cold PBS. The NucleoSpin RNA kit (Macherey-Nagel, Düren, Germany) was used to extract
the total RNA [6]. The Agilent 2100 Bioanalyzer platform (Agilent Technologies, Santa
Clara, CA, USA) was used to determine the RNA quality. RNA (2 µg) was retrotranscribed
to cDNA using the Transcriptor First Strand Synthesis Kit (Roche) and stored at −20 ◦C [6].
Finally, gene expression profiles from Aldrin-exposed and non-exposed cells were obtained
by using an HG-U219 array plate (Affymetrix Inc., Santa Clara, CA, USA) and cDNA
samples were obtained from the experiment after 50 days of exposure. Microarray data
were normalized using the RMA method [24] (GSE132063).

Metabolomics: for metabolomics, cells and culture media were used for the analysis.
The cell media was collected in 1.5 mL tubes, centrifuged, and the supernatants were
lyophilized. The cells for lipidomics and metabolomics were harvested using a rubber
scraper into 2 mL of ice-cold PBS. Next, the cells were centrifuged for 3 min at 1300 rpm
and 4 ◦C and were washed twice with cold PBS.

For metabolite extraction, 1 mL of 90% chloroform/methanol mixture 1:9 in water was
added to the cell pellet or media dried samples. This mixture was fortified with 500 pmol
13C D-Glucose standard (CLM-420-PK, Cambridge Isotope Laboratories). The mixture was
vortexed vigorously, sonicated for 5 min, and centrifuged for 10 min at 15,000 rpm. The
supernatant was transferred to another tube and solvent was evaporated under N2 stream.
Next, the samples were resuspended in 150 µL of methanol, centrifugated again 10 min
at 15,000 rpm, and 100 µL was transferred to glass vials for injection. For quantitative
purposes, homemade standard mix solutions of metabolites (including amino acid and
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nucleoside commercial mixtures of Sigma and the selection of metabolites introduced in the
model) at different concentrations ranging from 2.5 to 20 ppm were prepared in methanol.

Chromatographic separations were carried on an the Accela UHPLC system (Thermo
Scientific, Waltham, MA, USA) using a hydrophilic interaction liquid chromatography
(HILIC) column (TSK Gel Amide-80 column: 250 × 2.1 mm, 5 µm) from Tosoh Bioscience
(Tokyo, Japan) at room temperature. Two solvents were used to perform the elution
gradient: acetonitrile (A) and 5 mM of ammonium acetate adjusted to pH 5.5 with acetic
acid (B). Solvents A and B were mixed as follows: 0–8 min, linear gradient from 25 to 30%
B; 8–10 min, from 30 to 60% B; 10–12 min, 60% B; 12–14 min, back from 60% to 25% B;
and from 14 to 20 min, 25% B. The mobile phase flow rate was set to 0.15 mL·min−1 and
the injection volume was 5 µL. The Exactive Orbitrap mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) with heated electrospray (HESI) as an ionization source
was used. HESI was used separately in positive and negative mode and metabolites were
fragmented in HCD collision cell by alternating the MS scans of the precursor ions and all
ion fragmentation (AIF) scans. Mass spectra acquisition was conducted in profile mode
at a resolution of 50,000 full width half maximum (FWHM) at m/z 200. The following
parameters were used: a sheath gas flow rate of 45 arbitrary units (a.u.); an electrospray
voltage of 3.0 kV; an auxiliary gas flow rate of 10 a.u.; and a heated capillary temperature
of 300 ◦C. The range of the full scan mass range was set between m/z 80 and m/z 1000. A
normalized collision energy (NCE) of 25 eV was used to perform the AIF. Raw data were
exported to a cdf format using the Excalibur file converter tool (Thermo Fisher Scientific,
Waltham, MA, USA).

The cdf files from metabolomics and lipidomics were subjected to the ROI proce-
dure [25] to extract the m/z features detected in each chromatographic run. Data were
normalized by the number of cells and the amount of internal standard in each sample.
Only the lipids and metabolites present in the GEM and that could be detected under
the conducted metabolomics/lipidomics analytical procedure were quantified using the
appropriate calibration curves. The annotation of metabolites and lipids was performed
by exact mass matching in Human Metabolome Database [26] and LipidMaps [27] online
databases, the MS2 fragmentation patterns reported in spectral libraries, and the informa-
tion regarding retention times under the same chromatographic conditions collected in
in-house databases from previous works. Further details about the analytical methodolo-
gies used for the metabolomics and lipidomics used in this work are provided in [28–30].
The resulting data were integrated into the GEM reconstruction analysis of Aldrin-exposed
and non-exposed PCa cells.

2.2. Metabolic Model Readjustments/Refinement

In this study, we have used one of the most widely used reconstructions of the human
metabolism [13] as a platform to integrate the metabolomic, lipidomic, and transcriptomic
data. The GEM (Recon 2.2) accounts for 1789 enzyme-encoding genes, 7440 reactions,
and 5063 metabolites distributed over 8 cellular compartments. In order to improve the
omics data integration and analysis, a further adaptation of the model was required. More
specifically, the lipid-associated metabolism was expanded, and reactions that did not
display a steady-state flux other than zero (blocked reactions) were eliminated. These steps
are detailed below.

Enabling GEM for lipidomic data integration: the intracellular lipidomic profiles of
Aldrin-exposed and non-exposed DU145 cells were measured at two time points within
the exponential growth phase (at 0 and 5 h). Since these measurements correspond to the
whole-cell extracts/lysates, the contribution of each cellular compartment defined in the
model is unknown. Thus, in order to integrate the lipidomic data into our computational
analysis, the metabolic model was expanded as follows: (i) first an additional boundary
compartment was defined, along with the corresponding boundary metabolites that en-
compass all the measured lipids present in multiple intracellular compartments (including
cytosolic, mitochondrial, lysosomal, etc.); (ii) subsequently, the transport reactions between
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intracellular lipids and their corresponding boundary lipids were established. (iii) In
addition, a sink reaction was introduced for each boundary lipid and, (iv) finally, a sink
reaction was defined for the measured lipids that are restricted to a single intra-cellular
compartment. This expanded GEM includes a boundary compartment accounting for all
the measured lipids annotated in the metabolic model. Both exchange reactions associated
with boundary lipids and sink reactions enabled the integration of the lipidomic data in
the model-driven analysis in the form of constraints.

Model reduction: in order to reduce the computational time necessary to perform the
analysis, the metabolic model (Recon2.2) [13] was reduced. This was achieved by removing
the blocked reactions in the model. These reactions are those incapable of carrying any
metabolic flux [31]. To this aim, a flux variability analysis (FVA) [32–34] was implemented
using the ‘fluxVariability’ function in the COBRA toolbox [22,23]. This analysis computes
the spectrum of fluxes that each reaction can carry while the value of the objective function
is optimal. As a result, reactions that lack a solution different to zero are classified as blocked
reactions [31] and are subsequently eliminated from the model. Finally, any metabolite that
did not serve as a product or substrate in any reaction was removed from the model. These
were identified as “dead-end metabolites”.

2.3. Characterize the Metabolic Flux Profile of Aldrin-Exposed and Non-Exposed Cells by Applying
Flux Balance Analysis

Before the metabolomics network reconstruction can be used to compute its properties,
an important step must be taken in which the network reconstruction is mathematically
represented. This conversion translates the reconstructed network into a chemically ac-
curate mathematical format, the stoichiometric S matrix that becomes the basis for the
genome-scale model. In the S matrix, the reactions are in the columns and the metabolites
in the rows. Each metabolite’s entry has its stoichiometric coefficient in the corresponding
reaction. The stoichiometric matrix describes the quantitative relations between metabolites
through the metabolic reactions and the steady-state assumption imposes flux balance con-
straints on the network, ensuring that the overall amount of any compound being produced
is equal to the overall amount being consumed. The next step in FBA analysis is to define
the objective function, usually the biomass production. The biomass production represents
the rate at which metabolic compounds are converted into biomass constituents such as
nucleic acids, proteins, and lipids. The objective of biomass production is mathematically
represented by a global biomass reaction that becomes an extra column of coefficients in
the stoichiometric matrix.

Once imposed on a network reconstruction, these balances and bounds define a space
of allowable flux distributions in a network describing the possible rates at which every
metabolite can be produced/consumed in the network. Here, the data integration plays an
important part, in which FBA is able to perform simulations under different conditions by
altering the constraints of the model.

2.4. Enhancing GEMs Predictive Capabilities via Omic Data Integration

The integration of biological information from different “omics” into a metabolic
reconstruction analysis allows to further constraint the space of feasible solutions and
provides a metabolic flux profile specific to a particular event, condition, or environment.
GEMs encompass all known metabolic reactions that are encoded by an organism’s genome.
Therefore, they serve as an ideal platform for integrating a diverse range of omics data,
including transcriptomic and metabolic data. In this work, transcriptomic metabolomic
and lipidomic data have been integrated in a metabolic network reconstruction analysis
as follows.

Transcriptomic data integration into GEMs: gene expression profiles can be mapped
onto a GEM via gene–protein–reaction associations (GPR). These associations enable each
reaction to be connected to single or multiple genes associated with proteins/enzymes
linked to a reaction. Gene expression levels can be utilized to infer metabolic reaction
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activity states via GPRs. This enables the development of a metabolic flux profile that
accurately defines the phenotype associated with a specific gene expression profile.

The transcriptomic data were integrated by applying the iMAT algorithm, which
incorporates gene expression data into a GEM via GPRs to predict global metabolic flux
activity [21]. This approach aims to maximize the similarity between gene expression
and the activity state of the metabolic network. The genes are set to be highly or lowly
expressed by imposing an upper and lower threshold (i.e., 66th and 33rd percentiles as
the upper and lower threshold, respectively). Thus, those genes with an expression level
above the upper threshold are considered highly expressed, the genes below the lower
threshold are considered lowly expressed, and the genes between these thresholds were
considered moderately expressed. Each enzymatic reaction in the model was assigned a
gene-expression-based value by propagating the gene expression through the gene–protein–
reaction relationships (GPRs). Based on the reaction values, two sets of reactions were
generated that consist of highly RH- and lowly RL-expressed reactions.

This information was used to formulate a mixed integer linear problem (MILP) [35],
which is explained in more detail below:

max(∑iεRH (yi
+ + yi

−) + ∑iεRL
(xi)) (1)

S· · · v = 0 (2)

vmin ≤ v ≤ vmax (3)

vi + yi
+(vmin,i − ε) ≥ vmin,i; i ε RH (4)

vi + yi
−(vmax,i + ε) ≥ vmax,i; i ε RH (5)

(1 − xi)vmin,i ≤ vi ≤ (1 − xi)vmax,i; i ε RL (6)

In Equation (1), a MILP is represented which maximizes the number of reactions
whose activity is consistent with their expression state. The mass balance constraint is
enforced in Equation (2), where v is the flux vector and S is a stoichiometric matrix. In
Equation (3), maximum and minimum allowable flux is defined for each reaction by setting
lower and upper flux bounds (vmin and vmax, respectively). For each highly expressed
reaction, the Boolean variables y+ and y− represent whether the reaction is active (in either
direction, thus either y+ or y− is assigned the value 1) or inactive (when both y+ and y− are
equal to 0). For each lowly expressed reaction, a Boolean variable x representing whether
a reaction is inactive or active (1 or 0, respectively) is defined. A reaction associated with
a highly expressed gene reaction is considered to be active if its predicted metabolic flux
above or below the positive (ε) or negative (−ε) thresholds, respectively (Equations (4)
and (5), respectively). A lowly expressed reaction is considered inactive if it does not carry
a flux that is greater than 0 in either direction (Equation (6)). The optimization maximizes
the number of reactions that exhibit similar levels of activity as their expression state.

This approach considers the mRNA levels as clues for the likelihood that the enzyme
in question carries a metabolic flux in its associated reaction(s), and then solves a constraint-
based modeling optimization problem (in this case a MILP) to find a steady-state metabolic
flux distribution by assigning permissible flux ranges to all the reactions in the network
consistent with their expression state. As a final result, the iMAT algorithm provides a
steady-state flux profile that maximizes the number of reactions associated with highly
expressed genes and the number of inactive reactions associated with lowly expressed
genes, while the thermodynamic and stoichiometric constraints embedded into the model
are satisfied.

Metabolomic and lipidomic data integration: endo- and exometabolomics and lipidomic
sampling and measurements were conducted after 50 days of exposure and once again
after 5 h. Thus, the metabolomic/lipidomic dataset considers two time points with trip-
licate sample measurements (Supplementary Material S1), allowing to determine the
increase/decrease in the quantity of measured species between time points [31]. The ex-
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perimental omics data were used to calculate the lower and upper bounds represented in
Formulas (7) and (8).

ub = (c5 + Sd5) − (c0 − Sd0) (7)

lb = (c5 − Sd5) − (c0 + Sd0) (8)

Here, ub and lb are the upper and lower boundaries, respectively, while c0 is the
average concentration of a specie measured in triplicate samples at time zero and c5
the average concentration of the same species measured in triplicate samples after 5 h.
Additionally, Sd0 is a standard deviation of triplicate data at time zero, while Sd5 is a
standard deviation of triplicate data at 5 h.

The metabolomic and lipidomic data were integrated as an exchange reaction of the
lower and upper bounds into our metabolic network reconstruction analysis by applying
the COBRA toolbox function ‘changeRxnBounds’ [22,23].

2.5. Identify the Activity State of the Metabolic Network by Applying Sensitivity and
Robustness Analysis

This study utilizes an optimization method to determine the optimal values of system
variables that maximize a particular objective function while satisfying certain constraints.
In this case, the variables are the computed metabolic fluxes, and the objective function of
the iMat algorithm is to maximize the similarity between the activity state of the metabolic
network and the gene expression profile. In other words, it aims to maximize the number of
active reactions associated with highly expressed genes and the inactive reactions associated
with lowly expressed genes. Although a single solution is provided, there are multiple
optimal solutions that define alternative combinations of metabolic fluxes. To account for
the non-uniqueness of solutions and identify those reactions that are unambiguously active
or inactive across all the solutions, a sensitivity analysis was conducted. Furthermore,
the algorithm requires a predetermined set of thresholds to specify genes that are highly
and lowly expressed. This could potentially offer an arbitrary aspect to the analysis.
Here, a robustness analysis was conducted by performing a sensitivity analysis using
various thresholds. Only reactions that maintained consistent activity states across the
different thresholds are considered. Below a more detailed explanation of the sensitivity
and robustness analysis is provided:

Sensitivity analysis: in gene expression data integration analysis, an optimal solution
can be achieved by maximizing the objective function. However, it should be noted that
this optimal solution may not be unique, meaning there could be multiple solutions with
the same objective function value. Thus, a further exploration is necessary to determine the
most suitable solution for the specific needs of the analysis. This is achieved by applying a
sensitivity analysis [21]. The process involves addressing two MILP problems per reaction
(as described in the transcriptomic data integration into GEMs sub-section), wherein one
enforces the reaction to be active and the other enforces the reaction to be inactive. The
ultimate reaction state is determined by the simulation with the best objective function
value. If both simulations (active and inactive reaction) have optimal results, then the
reaction state remains undetermined. This analysis allows for inferring the activity state of
each reaction and the pathways in the different groups.

Robustness analysis: the algorithm used to integrate the gene expression levels into
GEMs uses upper and lower thresholds to define highly or lowly expressed genes, while
genes with expression values falling within these are considered moderately expressed.
It raises the necessity to perform a robustness analysis in order to demonstrate the lack
of dependency of a model’s predictions to the thresholds used in the analysis. In order
to determine the robustness of the model’s predictions, a sensitivity analysis using the
following pairs of thresholds defining the upper and lower boundaries, respectively, was
conducted: percentiles 30th and 70th, 33rd and 66th, and 40th and 60th. Thereby, a set
of reactions unambiguously predicted to be either active or inactive across the different
thresholds was defined.
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A more detailed explanation of the overall methodology including the sensitivity,
robustness, and significance analysis can be found in Marin de Mas et al. (2018) [31].

2.6. Unveiling Potential Gene Regulation and the Potential Effect on Metabolism by Analyzing
Gene Expression Data via GSEA

Transcriptomic expression data for Aldrin-exposed and non-exposed DU145 cells
(GSE132063) were analyzed using the list of curated gene signatures (Molecular Signa-
tures Database V5.1). Enrichment in the gene set was considered significant for FDR
values ≤ 0.1, NES > 1.5 and a leading edge signal > 50%.

Next, the resulting relevant gene sets were evaluated in order to identify the genes
contributing to the significance of the gene set.

2.7. Identifying the Cross-Talk between Gene Regulatory and Metabolic Mechanisms by Means of
Literature-Based Analysis

Finally, in order to establish a comprehensive understanding of the underlying mecha-
nisms driving different metabolic activities between conditions, a literature-based analysis
was conducted. This analysis sought to connect the relevant genes identified through the
GSEA analysis with the metabolic reactions that exhibit different activity states between
conditions, as determined by the model-driven analysis. This analysis provided a more
holistic perspective on the functional implications of the observed differences.

2.8. Using GSEA to Identify Correlations between the Effects of the Chronic Exposure to Aldrin in
DU145 PCa Cells and PCa Progression and Metastasis

A metabolic gene set with a significant differential expression between Aldrin-exposed
and non-exposed DU145 cells was generated by applying the multivariate discriminant
PLS-DA method [24,36,37]. Relevant genes were those having a VIP (variable’s importance
score) [38] value equal or higher than 1.5. The resulting Aldrin-exposed-enriched metabolic
gene set was applied on an expression dataset for tumor types (Supplementary Material S2)
retrieved from the Cancer Genome Atlas [20] using GSEA. For this analysis, we specifically
selected datasets that include clinical tumor stage information. The samples were then
grouped based on their tumor stages—T1, T2, T3, or T4—and metastatic status. GSEA
was performed on these datasets by applying a weighted scoring scheme and a Pearson
metric with 1000 phenotype permutations. Enrichment along tumor progression of the
Aldrin-exposed DU145 cells metabolic gene set in these datasets was considered significant
for FDR values ≤ 0.250.

2.9. Effects of INSIG2 Inhibition on HMGCoA Levels and Cholesterol Metabolism

siRNA experiments: siRNA sequences (ON-TARGET plus SMART pool, 5 nmol) against
INSIG2 (L-021039) and non-targeting sequences (D-001810) and the transfection reagent Dhar-
maFECT1 were purchased from Dharmacon Thermo Scientific (Lafayette, CO, USA).

Western blot: cells were harvested by trypsinization, centrifuged, and washed twice
with PBS 1X. Next, cell lysed was performed using mammalian lysis buffer 1X (ab179835,
Abcam, Cambridge, UK) together with the cocktail protein inhibitor 1X (Thermo Scientific,
Waltham, MA, USA). The proteins in cell lysates were quantified using the BCA assay
(Thermo Scientific), and 50 mg of proteins per sample was resolved by 10% SDS-PAGE.
Next, PVDF membranes (Roche, Basel, Switzerland) were used to transfer the proteins.
Membranes were blocked with TBS 1X containing 0.1% Tween 20 and probed with the
antibodies to INSIG2 (rabbit polyclonal antibody, 24766-I-AP, Proteintech, Rosemont, IL,
USA), HMGCR (rabbit polyclonal antibody, ab174830, Abcam), and β-actin (ab8227, Ab-
cam). Membranes were developed using the chemiluminescent signal detection kit ECL
Prime Western Blotting detection reagent (GE Healthcare, Chicago, IL, USA) and visualized
using a LICOR C-DiGit blot scanner. The relative quantification of the relative Western blot
band intensity quantification was determined using the software Image Studio Lite version
5.0 (LI-COR Biosciences, Lincoln, NE, USA); values were normalized to those of β-actin,
and differences between the samples were calculated.
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3. Results
3.1. Omics Data Integration and Model Validation

Our study aimed to explore the metabolic mechanisms that contribute to the promotion
of a malignant phenotype in DU145 prostate cancer cells following a chronic exposure
to non-lethal concentrations of Aldrin. The multi-level approach utilized in this study
underwent several phases, which are detailed upon further below.

First, the experimentally measured metabolomic, lipidomic, and transcriptomic data
were pre-processed for integration into a Genome-scale metabolic reconstruction analysis.
Next, a PLS-DA analysis revealed the relevant compounds that were able to discriminate
between treated and non-treated samples. As a result, 167 metabolites and 82 lipids were
selected and mapped into the GEM (Supplementary Material S1). The gene expression
profiles from Aldrin-exposed and non-exposed cells were obtained by using a microar-
ray platform followed by microarray data normalization using the RMA method [24].
Finally, the recon 2.2 GEM was readjusted/refined to integrate the above-mentioned pre-
processed omics data. Metabolomics and lipidomics were integrated by i. first mapping
the compounds on the GEM and adding exchange or sink reactions when required and ii.
integrating the experimental measurements means ± SD, respectively, as upper and lower
boundaries of the corresponding exchange reactions. Transcriptomic data were integrated
through the gene–protein–reaction associations (GPRs) [36].

Next, by applying the iMat algorithm [21], the metabolic network activity state profile
of Aldrin-exposed and non-exposed DU145 cells was inferred. The reliability of the model’s
predictions was determined by performing a sensitivity and a robustness analysis (see
Materials and Methods). Here, different sets of lower/upper thresholds were tested:
percentiles 40–60, 33–66, and 30–70, respectively (Supplementary Material S3).

In order to validate the reliability of the model’s predictions, the consumption/secretion
rates of 55 metabolites not integrated previously in the analysis were compared with the
predicted values from the model, and Fisher’s test was used to determine the statistical
significance of the results (see Supplementary Material S3). This analysis was performed
on all the tested thresholds, showing that the computational model was able to predict
correctly between 79 and 83% of the consumption/production rates with an associated
p < 0.01, which further validates the reliability of the computational model’s predictions.

3.2. Metabolic Network Analysis Unveils Marked Differences in Lipid-Associated Pathways
between Aldrin-Exposed and Non-Exposed DU145 PCa Cells

The comparative analysis of flux profiles of 7696 reactions in the model revealed the
reactions with differential activity states between Aldrin-exposed and non-exposed condi-
tions (Supplementary Material S3). Here, the differential activity state analysis determines
those reactions that are active only in one of the groups (Aldrin-exposed or non-exposed).
Next, the analysis was performed on the pathways represented as sub-systems in the GEM
(Supplementary Material S3), as detailed by Marin de Mas et al. in 2018 [31]. The activity
state of a pathway was defined as the number of active reactions divided by the total
number of reactions in the pathway.

To assess how the thresholds impact the inference of the metabolic pathway’s activity
state, we conducted Fisher’s exact test for each pathway across different threshold values
and applied a corrected Bonferroni p-value [37] to analyze and evaluate the results obtained
(see Supplementary Material S3). The statistical analysis showed no significant differences
in the pathway activity predictions across the different thresholds, except for the D-alanine
pathway. Thus, the mean metabolic activity ratio between Aldrin-exposed and non-exposed
cells together with the maximum Bonferroni p-value were used to define those metabolic
pathways with significant differences. Here, those pathways with differences higher than
10% and a corrected p-value lower than 0.05 were considered differentially activated.

The computational analysis unveiled marked differences in the activity state of DU145
prostate cancer cells in response to the chronic exposure to Aldrin. Aldrin-exposed cells
were predicted to have a more active metabolism with a higher number of active reactions.
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More specifically, transport reactions through the cell membrane or to peroxisome, Golgi
apparatus, or endoplasmic reticulum were found to be more active in this group. Other
relevant metabolic pathways that were predicted to be active in Aldrin-exposed cells were
the metabolism of eicosanoids, glycerophospholipids, folate, N-glycan synthesis, NAD, and
some amino acids such as valine, leucine, isoleucine, thiamine, and glutathione. On the other
hand, the cholesterol metabolism was predicted to be enhanced in DU145 PCa non-exposed
cells (Figure 2a). This finding is consistent with cholesterol levels in non-exposed PCa cells
described by Bedia et al. in 2015. The cholesterol metabolism, as well as triacylglycerides
(TAG) metabolism, is fueled by a common pool of Acetyl-CoA, which is consistent with
previous evidence showing an inverse correlation of cholesterol and TAG levels in both
Aldrin-exposed and non-exposed cells [6]. The reliability of the model’s predictions was
determined by performing a sensitivity and a robustness analysis (see Methods).
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Figure 2. Summary of computational results, experimental validations, and proposed mechanism.
(a) List of relevant pathways with significant differences between Aldrin-exposed (blue) and non-
exposed (green) DU145 PCa cells. Bars represent the ratio of active reactions between conditions.
Transport reactions have been excluded from this figure to avoid distortions due to the high differ-
ences between conditions (full figure can be found in Supplementary Material S3). (b) Experimental
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validation of relevant predicted metabolites with significant differences in consumption/secretion
rates between conditions in AU. (c) Experimental validation of relevant genes with significant
differences between conditions. (d) Experimental validation of HMGCR inhibition and cell viability
measurements using INSIG2 siRNA. HMGCR vs. INSIG2 sensitivity: Aldrin-exposed cells are
1.8 times more sensitive to INSIG2 inhibition (according to the Western blot below the graph), viability:
cell viability is less compromised in non-exposed cells. (e) Proposed mechanism: green arrows:
activation, red arrow: inhibition, black arrows: metabolic reactions, light arrows: inactive/reduced
activity, dark arrows: active/enhanced activity, *: mechanims based on literature search.

A further analysis comparing the activity state of the metabolic reactions between
Aldrin-exposed and non-exposed cells was performed. To identify consistent differences
between the conditions, the metabolic reactions were analyzed for their activity states
across various thresholds. This allowed for the identification of reactions that showed
significant changes in activity levels between conditions and remained consistent across the
different threshold values. From this analysis, two main reactions were found to be active
in Aldrin-exposed cells and inactive in non-exposed cells. One of the reactions corresponds
to the beta-oxidation of Arachidoyl-CoA into Acetyl-CoA (Figure 2b, Supplementary
Material S3). This metabolite is predicted to not be produced endogenously, which is
consistent with the higher arachidonic acid uptake in Aldrin-exposed cells compared with
non-exposed cells, 0.007 mM/h ± 0.0013 and 0, respectively (Figure 2b, Supplementary
Material S3). Another reaction that was predicted to be active only in Aldrin-exposed cells
was the degradation of N-acetylneuraminate to N-acetyl-D-mannosamine and pyruvate.
This prediction was further substantiated through experimental measurements indicating
higher intracellular levels of N-acetylneuraminate in cells that did not undergo an exposure.
(Figure 2b, Supplementary Material S3).

3.3. Identification of Regulatory Pathways Associated with the Chronic Exposure to Aldrin in
DU145 PCa Cells by Applying GSEA on Transcriptomic Data

Previous analysis integrates both metabolomic and transcriptomic data. However,
since the transcriptomic data are integrated through the gene–protein–reaction associa-
tions described in GEMs, only the expression levels of metabolic genes (genes encoding
enzymes) can be used. In this sense, GSEA complements the GEM-based analysis by en-
abling the analysis of the full transcriptomic dataset. More specifically, GSEA was used
to identify gene regulatory mechanisms and signaling pathways strongly correlated with
the genes deferentially expressed between conditions [19]. To this aim, the Aldrin-exposed
and non-exposed cells transcriptomic data (four replicates each) were compared with the
curated gene sets from the Molecular Signatures Database V5.1. As a result, the GSEA
model revealed that hypoxia activation and SOX4-mediated up-regulation mechanisms
were significantly down-regulated in non-exposed cells compared with Aldrin-exposed
cells (MENSE_HYPOXIA_UP and PRAMOONJAGO_SOX4_TARGETS_UP gene sets, re-
spectively, Supplementary Material S2). These two mechanisms are highly overlapped:
14 common genes, while there were 42 and 23 enriched genes in MENSE_HYPOXIA_UP
and PRAMOONJAGO_SOX4_TARGETS_UP gene sets, respectively, which indicates a com-
mon mechanism described in both gene sets. The common genes are described in Table 1.

Table 1. List of overlapped genes between MENSE_HYPOXIA_UP and PRAMOON-
JAGO_SOX4_TARGETS_UP gene sets.

Gene ID Gene Name Ensembl ID

MXI1 MAX interactor 1, dimerization protein ENSG00000119950
EGLN1 egl-9 family hypoxia inducible factor 1 ENSG00000135766
PEX13 Peroxisomal biogenesis factor 13 ENSG00000162928
MAFF MAF bZIP transcription factor F ENSG00000185022
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Table 1. Cont.

Gene ID Gene Name Ensembl ID

RNASE4 Ribonuclease A family member 4 NSG00000258818
PPFIA4 PTPRF interacting protein alpha 4 ENSG00000143847

PPP1R3C Protein phosphatase 1 regulatory
subunit 3C ENSG00000119938

C7orf68 Hypoxia inducible lipid
droplet-associated ENSG00000135245

GPI Glucose-6-phosphate isomerase ENSG00000105220
PLIN2 Perilipin 2 ENSG00000147872
RIOK3 RIO kinase 3 ENSG00000101782

NDRG1 N-myc downstream regulated 1 ENSG00000104419
INSIG2 Insulin-induced gene 2 ENSG00000125629
NFIL3 Nuclear factor, interleukin 3 regulated ENSG00000165030

3.4. Multilevel Approach Combining GSEA and GEMS Analyses Unveils Molecular Mechanisms
Associated with the Chronic Exposure to Aldrin in DU145 PCa Cells

In order to unveil the molecular mechanism underlying the gain of malignancy in
DU145 PCa cells associated with the chronic exposure to Aldrin, the results extracted from
the GEM-based analysis and from the GSEA method were combined. These two com-
plementary approaches describe two different processes occurring at two different layers
within the cell: (i). metabolisms formalized as a genome-scale constraint-based metabolic
network model, and (ii). gene regulation analyzed by applying GSEA. In order to study the
cross-talk between the metabolism and gene regulation, literature-based data were also inte-
grated in the analysis. This information was used to link the metabolic alterations predicted
by the GEM-based analysis with the mechanisms and relevant genes defined in the GSEA
method. Based on the analysis, it was discovered that the two genes, PLIN2 and INSIG2,
play a significant role in regulating the metabolism. The research predicted an increase in
the expression of these genes in cells exposed to Aldrin as opposed to those that were not
exposed (Figure 2c). PLIN2 enhances arachidonoyl-CoA beta oxidation via CD3 [39,40]
(Supplementary Material S3—“Reaction_Activity_State_Threshold_Summary”). In this
case, CD3 was up-regulated in Aldrin-exposed cells compared with non-exposed cells,
which supports this hypothesis. On the other hand, arachidonoyl-CoA inhibits INSIG2 [41].
However, the lower arachidonoyl-CoA levels predicted in Aldrin-exposed cells and val-
idated experimentally reduce its inhibitory capability on INSIG2. Additionally, INSIG2
is predicted to be up-regulated in Aldrin-exposed cells compared with the non-exposed
condition via SOX4 and hypoxia. These findings were supported by experimental measure-
ments of the gene expression showing higher levels in Aldrin-exposed cells. Finally, INSIG2
inhibits HMGCoA protein by ubiquitination [42,43], which is a limiting reaction in the
cholesterol metabolism. In order to validate this hypothesis, a HMGCoA Western blot was
carried out in normal conditions and inhibiting INSIG2 with sh-RNA. This experimental
validation demonstrated a higher sensitivity of cholesterol levels towards INSIG2 inhibition
in Aldrin-exposed cells (59% more sensitive, Supplementary Material S4), which suggests a
higher utilization of this pathway in non-exposed cells.

The rise in cholesterol levels was found to be more significant in cells exposed to Aldrin
as compared to those that were not exposed when INSIG2 was inhibited. This observation
suggests that the inhibition of HMGCoA through INSIG2 is stronger in Aldrin-exposed
cells under basal conditions. In addition, the relative HMGCoA increment was higher in
Aldrin-exposed cells than in non-exposed cells when INSIG2 was inhibited (sensitivity
in A.U.: 5.12 and 2.79 in Aldrin-exposed and non-exposed cells, respectively). This also
indicates a stronger inhibition of HMGCoA in Aldrin-exposed cells in basal conditions.
Finally, the cell viability decreased less in non-exposed cells when INSIG2 was inhibited,
showing that non-exposed SiRNA-INIG2 cells were closer to the basal conditions where the
INSIG2 expression is lower than in the Aldrin-exposed group (Figure 2d, Supplementary
Material S4). Therefore, a unified mechanism that involves metabolic and gene-regulatory
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alterations was identified, leading to changes in the lipidomic profile of DU149 PCa cells
associated with the acquisition of malignancy upon a chronic exposure to Aldrin.

More specifically, PLIN2 and INSIG2 were predicted to be upregulated via hypoxia
and the lack of SOX4-induced inhibition. PLIN2 enhances arachidonoyl-CoA degradation
by activating beta oxidation, which in turn reduces the inhibitory effects of this compound
on INSIG2. The up-regulation of INSIG2 increases HMGCoA protein ubiquitination. This is
the limiting reaction in the cholesterol synthesis pathway which is consistent with measured
lower cholesterol levels in Aldrin-exposed cells (Figure 2e). The inhibition of cholesterol
synthesis increases the levels of TAG as these two processes compete for the same pool
of Acetil-CoA, and this is also reported in DU-145 after a long exposure to non-lethal
concentrations of Aldrin [6].

3.5. Tumor Progression and Metastasis in Several Tumor Types Correlate with the Altered Genes
Associated with the Chronic Exposure to Aldrin in DU-145 Pca

To investigate whether the alterations observed in Aldrin-exposed cells at the tran-
scriptomic level are linked to tumor progression and metastasis, we employed the GSEA
methodology. First, we utilized the PLS-DA method to identify a set of differentially expressed
genes between cells exposed to Aldrin and those that were not. Specifically, we selected genes
with a VIP score of 1.5 or greater. Using this approach, we identified a set of 101 genes that
exhibited significant changes in expression levels (Supplementary Material S1).

The gene set associated with the malignant phenotypic changes observed in Aldrin-
exposed cells was significantly enriched, concomitant with eight types of human tumors.
Thus, the transcriptomic signature of the malignant phenotype found in Aldrin-exposed
cells correlates well with the malignant progression of eight other types of human tu-
mors retrieved from the Cancer Genome Atlas (TCGA) database [20], including uveal
melanoma, lymphoma and lung, bladder, kidney, rectum, and cervical carcinoma (Table 2,
Supplementary Material S5).

Table 2. Tumor types from the TCGA with progression and metastasis that correlate with the gene
set associated with the gain of malignancy in DU145 PCa cells due to the chronic exposure to Aldrin.
ES: enrichment score, NES: normalized enrichment score, FDR: false discovery rate, No. samples:
number of samples.

Cancer ID Cancer Name ES NES FDR No. Samples

LUAD Lung adenocarcinoma 0.41 1.64 0.01 488
BLCA Bladder urothelial carcinoma 0.37 1.48 0.043 128

KIRP Kidney renal papillary
carcinoma 0.37 1.47 0.05 243

READ Rectum adenocarcinoma 0.36 1.41 0.052 93
UVM Uveal melanoma 0.33 1.34 124 27

DBLC Lymphoid neoplasm diffuse
large B-cell lymphoma 0.35 1.34 0.151 35

KICH Kidney chromophobe 0.31 1.24 0.187 66

CESC
Cervical squamous cell

carcinoma and endocervical
adenocarcinoma

0.32 1.2 0.2 211

4. Discussion

A holistic analysis of molecular alterations triggering complex and multi-factorial
diseases such as cancer enables us to increase our understanding of how environmental
perturbations affect tumor progression and malignancy acquisition. Exploring the overall
processes that occur within a cell is essential when investigating the effects of a prolonged
exposure to widespread environmental pollutants such as EDs at non-lethal concentrations.

Bedia et al. [6] reported in 2015 that a non-lethal exposure to various EDs led to an
amplified malignant phenotype in DU145 PCa cells. Here, Aldrin was found to have the
most substantial impact on these cells.
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Developing a comprehensive understanding of the mechanisms involved in the acqui-
sition of malignancy is crucial for the development of more effective therapeutic interven-
tions. It is also important for improving our ability to assess and regulate environmental
pollutants, such as specifically Aldrin and other EDs linked to cancer development.

Systems biology tools, such as genome-scale metabolic network modeling using constraint-
based methods (GEM-based CBM) and gene set enrichment analysis (GSEA), provide a powerful
means to integrate multiple layers of the hierarchical mechanistic structure that govern cellular
processes. By capturing the complexity and dynamics of biological systems, these tools enable
us to analyze them in a comprehensive and holistic manner.

Our study sought to delve into the metabolic mechanisms that contribute to the
enhanced malignant phenotype resulting from a prolonged exposure to non-lethal con-
centrations of Aldrin in DU145 PCa cells. To this aim, two complementary approaches
combining model-driven and data-driven techniques were applied. This strategy facilitated
the investigation of metabolic dysregulations from a mechanistic point of view by means of
constraint-based modeling techniques while finding potential gene regulatory or signaling
mechanisms by applying GSEA.

Finally, a comprehensive literature review was conducted to investigate the cross-
talk between metabolic and gene regulatory processes and establish a single mechanism
explaining the increased likelihood of developing malignancy in cases of a chronic exposure
to Aldrin in PCa. Experimental validations confirmed these findings, while extensive
support from the literature further reinforced them.

Our multi-level approach has enabled us to identify various alterations in important
metabolic pathways. Specifically, changes were detected in eicosanoids, glycerophospho-
lipids, folate, N-glycan synthesis, NAD, as well as key amino acids such as valine, leucine,
isoleucine, thiamine, and glutathione metabolism. Thus, tumorigenic activity has been
reported in some eicosanoid metabolism intermediates [44]; it is also reported that glyc-
erophospholipids [45] and folate [46] are positively correlated with an increased risk of
aggressive prostate cancer. An N-glycomic profile has been described as a biomarker in
PCa, which highlights the relevance of this pathway in PCa progression and malignancy
acquisition [47]. Several studies have established a link between the amino acids described
in our research and their involvement in the progression of PCa and the acquisition of
malignancy [48–50]. In addition, a key role of glutathione has been associated with fer-
roptosis, a recently described apoptotic mechanism that is altered in PCa [51] (Figure 2a).
Furthermore, a unified cross-talk mechanism involving the metabolism and gene regulation
associated with the chronic exposure to Aldrin in DU145 cells was identified. Our findings
are consistent with the up-regulation of PLIN2 and INSIG2 that enhance arachidonoyl-CoA
degradation via beta oxidation and cholesterol metabolism inhibition via HMGCoA ubiqui-
tination, respectively (Figure 2e). Therefore, the ratio of Cholesterol/TAG was modified due
to the competition between these two processes for the Acetil-CoA pool. This observation
has been reported in DU-145 cells following a prolonged exposure to non-lethal levels of
Aldrin [6].

Furthermore, we employed PLS-DA analysis to identify the specific set of genes
associated with a chronic exposure to Aldrin. We then utilized GSEA to compare this
set of genes with the TGCA database. We discovered a strong correlation between the
genes modified in DU-145 prostate cancer cells following a chronic exposure to Aldrin and
tumor progression and metastasis in up to eight distinct cancer types. This implies that this
approach has the potential to be utilized in other cancer types.

In this study, we have identified a potential cellular mechanism underlying the gain
of malignancy associated with the chronic exposure to Aldrin in PCa cells. This approach
allows the study of different levels in the cell hierarchy, such as genomic, proteomic,
or metabolomic, as well as the cross-talk between them. Here, the gene dysregulation
discovered through gene set enrichment analysis (GSEA) has a significant influence on the
levels of HMGCoA protein. This, in turn, directly impacts the metabolism and affects the
ratio TAG/Cholesterol as well as the gene regulatory levels. These findings align with the
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alterations observed in the GEM analysis and are consistent with the results reported by
Bedia et al. [6].

5. Conclusions

Metabolic reactions require enzymatic catalysis to achieve the appropriate rate of
activity due to their proximity to thermodynamic equilibrium. Enzymatic levels and activity
are tightly regulated through intricate gene regulatory pathways and metabolic processes.
This underscores the crucial involvement of proteins in regulating the metabolism and their
contribution to diseases characterized by dysregulated metabolic functions.

Factors that affect enzyme activity include the reactants, substrate, inhibitors, pH,
temperature, and different proteoforms [52]. The role of proteoforms and their production
by alternative splicing, sequence variations, and post-translational modifications, among
others, have been highlighted in prostate cancer [53].

In this work, we have studied different levels of the cell hierarchical mechanisms
by applying two different and complementary approaches, CBM and GSEA, to analyze
gene regulation and metabolism using multiple omics data, including transcriptomic,
metabolomic, lipidomic, and literature-based data.

Our computational analysis revealed that the dysregulation of the HMGCoA enzyme by
the SOX4 gene through INSIG2 in cells exposed to Aldrin altered the ratio of TAG/cholesterol,
leading to an enhanced malignant phenotype in these cells. This method provides a holistic
perspective that enables a more complete understanding of cellular processes.

Furthermore, we also established a correlation between the observed changes in the
gene expression profile of Aldrin in DU145 cells after a chronic exposure to Aldrin and
the progression of the tumor in different cancer types, providing crucial insights into the
underlying mechanisms governing cancer onset and development.

In the present work, two main goals have been achieved. First, we developed a com-
prehensive computational pipeline to investigate the hierarchical molecular mechanisms
occurring within a cell’s various layers. This computational approach presents a significant
conceptual shift in the way we study the metabolism and gene regulation. Rather than
viewing the metabolism as the final product of gene regulation, this study proposes a bi-
directional cross-talk between the metabolic, proteomic, and gene regulatory levels, where
changes in either of them can affect the others. Second, a unified mechanism underlying the
enhanced malignancy in PCa following a chronic exposure to Aldrin has been described.

The approach presented here offers a comprehensive tool for studying the molecular
mechanisms that drive metabolic reprogramming in response to a chronic exposure to sub-
lethal concentrations of pollutants. This not only allows for a more holistic understanding
of the underlying processes but deepens our knowledge of the intricate interplay between
these systems and opens up new avenues for research and discovery, with potential clinical
and environmental applications.
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