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I INTRODUCTION 1

A Comparison of the State-of-the-Art Reinforcement
Learning Algorithms for Health-Aware Energy &
Emissions Management in Zero-emission Ships

Namireddy Praveen Reddy, Student Member, IEEE, Roger Skjetne, Senior Member, IEEE,
Oliver Stugard Os, Student Member, IEEE, and Dimitrios Papageorgiou, Member, IEEE

Abstract—Zero-emission ships (ZES) have gained interest to
comply with the stringent regulations of international maritime
organization. One way to build ZES is the hybridization of fuel
cells with batteries. Traditionally, for a newly built ship, the
Energy & Emissions Management System (EEMS) is designed
based on the initial condition of the fuel cells and batteries
and used with fixed parameters in future execution. However,
for a fuel cell and battery ZES, the EEMS gradually becomes
sub-optimal since the characteristics of fuel cells and batteries
are continuously changing due to aging and degradation. In this
paper, a reinforcement learning (RL) based EEMS is developed
such that it can learn and adapt continuously to changes in
the fuel cell/battery characteristics. Within RL, different types
of algorithms such as double deep Q learning (DDQL), soft
actor-critic (SAC), and proximal policy optimization (PPO) are
implemented. The results are benchmarked against those of a
typical rule-based EEMS. Each RL algorithm is trained with
four reward function formulations; negative cost (𝑟1), negative
quadratic cost (𝑟2), inverse cost (𝑟3), and inverse quadratic
cost (𝑟4). The results demonstrate that health-aware EEMS can
minimize fuel consumption and component degradation costs. 𝑟1
has led to the lowest operational expenses (OPEX) followed by 𝑟2,
while 𝑟3 and 𝑟4 have high OPEX. Among the three algorithms,
the DDQL led to the lowest reward followed by the SAC and then
the PPO, when trained with 𝑟1 and 𝑟2.

Index Terms—Energy & emissions management strategy, Hy-
brid power system, Intelligent control, Reinforcement learning,
Zero-emission ship.

I. Introduction

ZERO-emission ships (ZES) have generated considerable
research and development interest in recent years. A main

driver for ship manufacturers and owners for investigating
potentially low- or preferably zero-emission solutions, is to
comply with the International Maritime Organization’s (IMO)
regulations for designated emission-controlled areas (ECAs)
[1]. ZES is defined as a ship that does not produce emissions
of greenhouse gases such as carbon dioxide (𝐶𝑂2), methane
(𝐶𝐻4), and nitrous oxide (𝑁2𝑂) according to Norwegian
Maritime Authority (NMA) [2]. The schematics in Figure 1,
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adopted from [3], show a concept of ZES powered by fuel cells
and batteries, where, 𝑃𝐹𝐶-ref is the fuel cell power reference,
𝑃𝐵-ref is the battery power reference, 𝑉𝐹𝐶 is the fuel cell
voltage, 𝑉𝐵 is the battery voltage, 𝑉𝐷𝐶 is the DC bus voltage,
𝑖𝐹𝐶-ref is the fuel cell current reference, 𝑖𝐵-ref is the battery
current reference, 𝑖𝐹𝐶 is the fuel cell current, 𝑖𝐵 is the battery
current, 𝑢𝐹𝐶 is the control reference for the fuel cell DC/DC
unidirectional converter, and 𝑢𝐵 is the control reference for
the battery DC/DC bidirectional converter. The control system
of a ZES is abstracted into several autonomy layers, where
the Energy and Emissions Management System (EEMS) will
include algorithms for optimal guidance of the power plant in
the middle layer.

Fuel cells and batteries have different features and oper-
ational challenges, which directly impact their lifetime and
reliability, and their characteristics are continuously changing
due to aging and degradation. Therefore, the loading of a fuel
cell hybrid power system (FCHPS) should be optimized taking
into account both the state of health and the operating expenses
(OPEX). This is addressed in the executive control layer by
the EEMS.

Figure 1: A schematic of ZES [3].

Much of the existing literature considers minimizing fuel
consumption as the main objective of the EEMS. However, the
efficiency curve of the fuel cell tends to be flatter compared
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I INTRODUCTION 2

to that of the internal combustion engine, and as such, its
operating efficiency is much less dependent on active decisions
made by the EEMS. On the other hand, high cost and low
lifetime are the main concerns for fuel cells, hindering their
widespread commercialization [4]. The battery’s lifetime is
mainly dependent on how it is operated. Batteries in hybrid
electric vehicles typically last several years, while fuel cells
last several thousand hours of operation. This depends on
many factors, e.g., how the fuel cell and battery are operated
as discussed in [5], [6]. Hence, consideration of the lifetime
of fuel cells and batteries must be included in the design of
the EEMS. Many studies are reported on the development of
EEMS methods for transport applications, such as [7], [8] on
automotive applications and [9]–[12] on ship power systems
(SPS).

The EEMS algorithms can be classified as rule-based and
optimization-based methods [13], [8]. The rule-based strate-
gies are easy to understand and implement but are typically
not adaptive to prevailing sailing conditions and, thus, may
give sub-optimal solutions [14]. Optimization-based energy
& emissions management strategies are further divided into
offline and online methods. Though there are many offline
optimization methods, dynamic programming (DP) is widely
used [8] since it provides global optimal solutions. However,
the prerequisite for DP optimization is that the load profile
should be known in advance, which implies large uncertainties
in shipping applications. Also, dynamic programming suffers
from the infamous ‘Curse of Dimensionality’ [15], [16].
Typical online optimization methods include equivalent con-
sumption minimization strategy (ECMS) and model predictive
control (MPC). The equivalence factor in ECMS requires
tuning for real-time sailing conditions to find their optimal
values in a trial-and-error manner, which makes ECMS hard
to implement [9], [17]. The performance of MPC depends on
the prediction accuracy and horizon length of the predicted
sailing profile [18], [19].

Many of the existing EEMS methods are based on classical
control methods, which require tedious system identification,
construction of detailed mathematical models, and significant
effort in developing control synthesis. In addition, classical
control methods are not adaptive to real-time conditions and
may give sub-optimal solutions for new operating profiles
or system characteristics. In the quest to find a remedy for
these problems, learning-based methods are gaining interest
[20]. Within machine learning, reinforcement learning (RL)
has attracted attention in recent years mainly because of its
adaptability and model-free implementation. Though RL as a
concept was proposed in the early 1980s, its potential to solve
real world problems has been demonstrated through several
pioneering works by Google’s DeepMind [21]–[25]. The RL-
based controller continuously optimizes the control policy for
the evolving system and sailing conditions. Many advantages
of RL can be realized in applications where the system model
is unknown, not accurate, or continuously changing. A relevant
application is FCHPS, where the characteristics of battery
packs keep changing as the battery packs go through numerous
charging/discharging cycles [26], the characteristics of a fuel
cell stack keep changing due to aging and degradation [6],

and shiploads are uncertain and difficult to predict as they
depend on many random parameters such as weather condi-
tions, ocean currents, and other external factors. These system
uncertainties can be mitigated by an RL-based controller that
may continuously learn the optimal control policy for the
changing component characteristics and uncertain environment
and loads [27].

Conventional RL-based energy management was proposed
in [28] for optimizing the fuel economy of a hybrid electric
tracked vehicle; the authors compared the fuel consumption
obtained from RL with rule-based and stochastic dynamic pro-
gramming strategies to prove the optimality. Conventional RL
was also employed for online energy management to minimize
the total energy loss of the hybrid energy storage system in a
plug-in hybrid electric vehicle [29]; the results were compared
with a rule-based strategy and showed that RL could lessen
the total energy loss and improve the system efficiency under
varying conditions. Going one step further, the authors in [30]
used two novel velocity predictors together with conventional
RL for predictive energy management of a parallel HEV, and
the results of predictive energy management were compared
with non-predictive and dynamic programming to validate the
optimality. To overcome the high computational requirements
of conventional RL, a deep reinforcement learning framework
was implemented by the authors in [16] for energy man-
agement to optimize the fuel economy in a hybrid electric
bus by incorporating simulated terrain information. Deep
reinforcement learning was also implemented by the authors
in [31] for energy management with the aim of minimizing
fuel consumption in a hybrid electric bus by incorporating
traffic information. An energy management strategy, based on
the double deep Q-learning (DDQL) algorithm, was proposed
by the authors in [32] for optimizing fuel consumption of a
hybrid electric tracked vehicle; the results showed that DDQL
has better performance than conventional deep reinforcement
learning in terms of convergence during the training process
and also in optimizing the fuel consumption. Khalatbarisoltani
et al. [33] integrated model predictive control with federated
reinforcement learning for decentralized energy management
of fuel cell vehicles; the proposed method performs better than
the centralized and fixed-horizon MPC approaches in terms of
its precision, convergence speed, and scalability.

Among many RL algorithms proposed in the existing liter-
ature, tabular Q-learning (TQL) and deep Q-learning (DQL)
algorithms are some of the most popular RL algorithms. TQL
suffers from the “curse of dimensionality” and is feasible
for only low-dimension state and action spaces [27]. The
difference between TQL and DQL is the deep neural network
(DNN) that approximates the Q-value. Traditional DQL has
several issues such as overoptimism and instability during
training, both caused by the fact that the same DNN is
used for the selection and evaluation of control action [21].
To overcome these issues, Hasselt et al. [24] proposed the
DDQL. Additionally, many state-of-the-art RL algorithms such
as the soft actor-critic (SAC) by [34] and the proximal policy
optimization (PPO) by [35], are proposed recently. Although
recent research has primarily explored reinforcement learning
(RL) methods in transportation applications, a comprehensive
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II REWARD FUNCTION FORMULATION (RFF) 3

comparison of state-of-the-art RL algorithms, such as DDQL,
SAC, and PPO, particularly within the context of marine
transport is missing, which highlights a significant research
gap. Implementing these RL algorithms in real-life scenarios
with continuous state-action spaces is computationally inten-
sive and complex, necessitating extensive iterations for training
and hyperparameter tuning. This calls for the development of
computationally efficient yet accurate models for fuel cells
and batteries that can effectively capture aging and degra-
dation effects—an area of active research. Furthermore, the
performance of reinforcement learning algorithms primarily
depends on the formulation of the reward functions. To the
best of the authors’ knowledge, investigations of different ways
of formulating reward functions using the realistic operational
cost function have been missing in the literature.

The contributions of this paper, which arise from the quest
to bridge these critical research gaps in the existing literature,
can be summarised as:

1) Implementation of RL algorithms, including DDQL,
SAC, and PPO, to develop an EEMS that continuously
adapts its policies to accommodate the evolving char-
acteristics of fuel cells and batteries, considering the
impact of degradation and uncertain shiploads. This
contribution extends the applicability of RL methods to
the maritime transportation domain, offering dynamic
and efficient solutions to energy management challenges.

2) To facilitate the computationally efficient training of
RL algorithms, a novel hybrid model is proposed. This
model combines linearized polarization curve models
whose parameters dynamically adjust in response to
nonlinear aging and degradation effects. However, the
performance of trained RL agents is validated with
nonlinear models combined with nonlinear aging and
degradation effects. This approach represents a step
in the ease of implementing RL methods in maritime
transportation.

3) A realistic cost function is formulated to represent the
operational expenses of Fuel Cell and Battery Hybrid
Power Systems (FCHPS), including a unique formula-
tion for battery degradation cost tailored to maritime
transport applications. The paper also explores and
experiments with four alternatives for formulating the
reward function, focusing on operational cost repre-
sentation. This contribution ensures a comprehensive
understanding of the cost implications associated with
various operational states, enhancing the realism of RL
algorithms in maritime transportation scenarios.

These contributions advance the implementation of state-of-
the-art RL algorithms in addressing energy management chal-
lenges, offering practical solutions and insights. By addressing
critical gaps in RL algorithm implementation, models for
energy system components, and cost function formulation, this
research possesses implications for both practical applications
and theoretical understanding.

II. Reward function formulation (RFF)
The performance of RL algorithms strongly depends on how

the reward function is formulated. In this work, the reward is

formulated based on the total operational expenses (OPEX)
including the costs of fuel and component degradation. In this
section, the overall goal of minimizing the cost of OPEX of
the FCHPS denoted as 𝐶𝑜𝑝𝑒𝑥 , is covered. 𝐶𝑜𝑝𝑒𝑥 is given by

𝐶𝑜𝑝𝑒𝑥 = 𝐶 𝑓 𝑢𝑒𝑙 + 𝐶𝐹𝐶,𝑑𝑒𝑔 + 𝐶𝑏𝑎𝑡,𝑑𝑒𝑔, (1)

where 𝐶 𝑓 𝑢𝑒𝑙 ≥ 0 is the cost of fuel, 𝐶𝐹𝐶,𝑑𝑒𝑔 ≥ 0 and
𝐶𝑏𝑎𝑡,𝑑𝑒𝑔 ≥ 0 are the costs due to degradation of the fuel
cell (FC) and battery, respectively. These costs are elaborated
in the subsections below; 𝐶 𝑓 𝑢𝑒𝑙 and 𝐶𝑏𝑎𝑡,𝑑𝑒𝑔 are formulations
proposed in this paper while 𝐶𝐹𝐶,𝑑𝑒𝑔 is based on Fletcher et
al. [4]. There are several ways to formulate the reward function
using the OPEX (1); four different ways will be explored: 𝑟1
is the negative cost (NC),

𝑟1 = −𝐶𝑜𝑝𝑒𝑥 (2)

𝑟2 is the negative quadratic cost (NQC),

𝑟2 = −𝐶2
𝑜𝑝𝑒𝑥 (3)

𝑟3 is the inverse cost (IC),

𝑟3 =
1

𝐶𝑜𝑝𝑒𝑥 + 𝜀
(4)

𝑟4 is the inverse quadratic cost (IQC),

𝑟4 =
1

𝐶2
𝑜𝑝𝑒𝑥 + 𝜀

(5)

where 0 < 𝜀 << 1 is added to the denominator to ensure
that errors are not encountered when 𝐶𝑜𝑝𝑒𝑥 approaches zero
during the simulation.

A. Fuel cost
A fuel cell uses hydrogen as fuel to generate power to supply

the power loads and to charge the battery. The calculation
of fuel cost consists of three components: the fuel consumed
by the FC (𝐶𝐹𝐶, 𝑓 𝑢𝑒𝑙) [9], the equivalent consumption to
supply the battery power losses (𝐶𝑏𝑎𝑡,𝑙𝑜𝑠𝑠), and the equivalent
consumption to supply the change in SOC of the battery
(𝐶Δ𝑠𝑜𝑐):

𝐶 𝑓 𝑢𝑒𝑙 = 𝐶𝐹𝐶, 𝑓 𝑢𝑒𝑙 + 𝐶𝑏𝑎𝑡,𝑙𝑜𝑠𝑠 + 𝐶Δ𝑠𝑜𝑐 (6)

𝐶𝐹𝐶, 𝑓 𝑢𝑒𝑙 = 𝐶𝐻2
𝑁
𝐹

𝑀𝐻2
1000 𝐼𝐹𝐶d𝑡

𝐻2𝑐𝑜𝑛𝑠

(7)

𝐶𝑏𝑎𝑡,𝑙𝑜𝑠𝑠 = 𝐶𝐻2

𝑁

𝐹

𝑀𝐻2

1000
𝑅𝑏𝑎𝑡 𝐼

2
𝑏𝑎𝑡

𝑉𝐹𝐶
d𝑡 (8)

𝐶Δ𝑠𝑜𝑐 = 𝐶𝐻2

𝑁

𝐹

𝑀𝐻2

1000
(𝑆𝑂𝐶𝑖𝑛𝑖𝑡 − 𝑆𝑂𝐶𝑒𝑛𝑑)𝑄𝑛𝑜𝑚

𝑉𝐹𝐶
(9)

Here, 𝐶𝐻2 is the price of fuel per kg in [$/kg], set to 6 $/kg
[36], 𝐻2𝑐𝑜𝑛𝑠 is the total consumed hydrogen mass in [kg], N
is the number of cells in the stack, F is the Faraday constant
in [C/mol], 𝑀𝐻2 is the molar mass of hydrogen in [g/mol],
𝐼𝐹𝐶 is the FC current in [A], d𝑡 is the evaluation time step,
𝑅𝑏𝑎𝑡 is the battery internal resistance in [Ω], 𝐼𝑏𝑎𝑡 is the battery
current in [A], 𝑉𝐹𝐶 is the fuel cell voltage in [V], 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 and
𝑆𝑂𝐶𝑒𝑛𝑑 are the initial and final states of charge of the battery,
respectively, expressed as a fraction of nominal capacity, and
𝑄𝑛𝑜𝑚 is the nominal battery capacity in [Ws].
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II REWARD FUNCTION FORMULATION (RFF) 4

B. Fuel cell cost
A major portion of the operating cost in FCHPS is due

to the degradation of the fuel cell. Computing the degradation
cost precisely using a mathematical model of multiple complex
chemical phenomena is computationally inefficient. Therefore,
avoiding a high-fidelity model, a simplified approach based on
[4] is applied to calculate the degradation cost. The EMS can
optimize the degradation by taking the following operational
actions as explained in [4]:
• FC Low power operation (FC-LPO): Minimize running

the fuel cell at low current (power) to limit reduction
of the catalyst layer due to the formation of oxides.
Operation of the fuel cell at lower power than a lower limit
of approximately 10 % of the rated capacity contributes
to degradation. Hence, the cost factor 𝐷𝑙𝑜𝑤 is defined by

𝐷𝑙𝑜𝑤 :=

{
𝛼𝑙𝑜𝑤

0.1𝑃𝑚𝑎𝑥−𝑃𝐹𝐶

0.1𝑃𝑚𝑎𝑥
d𝑡, if 𝑃𝐹𝐶 < 0.1𝑃𝑚𝑎𝑥

0, otherwise,
(10)

where 𝛼𝑙𝑜𝑤 is the degradation rate for the low-power
operation condition.

• FC High power operation (FC-HPO): Minimize run-
ning the fuel cell at a high current (power) to prevent
reactant starvation that can lead to reduction of the
catalyst layer. Moreover, the excessive temperatures due
to high current can lead to the damage of cathode support
and degradation of the fuel cell membrane. Operating
the fuel cell at higher power than an upper limit of
90 % of the rated capacity contributes to degradation.
Correspondingly, the cost factor 𝐷ℎ𝑖𝑔ℎ is defined as

𝐷ℎ𝑖𝑔ℎ :=

{
𝛼ℎ𝑖𝑔ℎ

𝑃𝐹𝐶−0.9𝑃𝑚𝑎𝑥

0.1𝑃𝑚𝑎𝑥
d𝑡, if 𝑃𝐹𝐶 > 0.9𝑃𝑚𝑎𝑥

0, otherwise,
(11)

where 𝛼ℎ𝑖𝑔ℎ is the degradation rate for the high power
operation condition.

• Fuel cell transients (FC-T): Limit the rate of change of
the fuel cell power and minimize the transient loads to
maintain a stable temperature and humidity in the cell.
This also prevents local fuel starvation [37]. In this work,
the maximum rate of change in fuel cell power is limited
to 10 % of the rated capacity per second based on the
work by Zhang et al. [38]. The degradation cost factor
due to high power transients 𝐷𝑡𝑟𝑎𝑛𝑠 is correspondingly
defined by

𝐷𝑡𝑟𝑎𝑛𝑠 = 𝛽

����d𝑃𝐹𝐶

d𝑡

���� d𝑡 = 𝛽 |d𝑃𝐹𝐶 | , (12)

where 𝛽 is the degradation rate due to high power
transients.

• Startup/shutdown cycles: Minimize the number of start-
up/shut-down cycles to prevent the nonuniform distribu-
tion of fuel and thereby prevent localized starvation. The
FC is assumed to be running all the time as the aim is to
minimize OPEX during a sailing trip, thus avoiding the
cost of startup/shutdown. The degradation cost factor due

to start-up/shut-down cycles 𝐷𝑐𝑦𝑐𝑙𝑒𝑠 is thus neglected,
that is,

𝐷𝑐𝑦𝑐𝑙𝑒𝑠 = 0. (13)

The total fuel cell degradation cost 𝐶𝐹𝐶,𝑑𝑒𝑔 becomes

𝐶𝐹𝐶,𝑑𝑒𝑔 = 𝐶𝐹𝐶 · (𝐷𝑙𝑜𝑤 + 𝐷ℎ𝑖𝑔ℎ + 𝐷𝑡𝑟𝑎𝑛𝑠 + 𝐷𝑐𝑦𝑐𝑙𝑒𝑠), (14)

where 𝐶𝐹𝐶 is the acquisition cost of the fuel cell. The
degradation parameters 𝛼𝑙𝑜𝑤 , 𝛼ℎ𝑖𝑔ℎ, and 𝛽 are summarized in
Table I [4]; these values are based on laboratory experiments
[39], [40]. 𝛼𝑙𝑜𝑤 and 𝛼ℎ𝑖𝑔ℎ were applied as constant values
in [4]. To make the cost more realistic, 𝛼𝑙𝑜𝑤 and 𝛼ℎ𝑖𝑔ℎ are
applied as linearly varying variables while keeping the average
value equal to the desired constant value. The degradation rates
and costs are scaled to suit the size of the fuel cell stack. The
nominal FC voltage is 629 V, the fuel cell has 900 cells, the
end of life (EOL) is considered when the open circuit voltage
degrades to 10 % of the rated voltage, and the FC acquisition
cost per kW is set to 75 $ [41].

Table I: FC degradation rates and costs [4].

Parameter Operating condition Deg. rate Deg. cost
𝛼𝑙𝑜𝑤 High power 20.34 𝜇V/h 1.57 $/h
𝛼ℎ𝑖𝑔ℎ Low power 23.48 𝜇V/h 1.81 $/h
𝛽 Transient loading 0.0441 𝜇V/kw 0.0034 $/kW

C. Battery cost
Similar to the fuel cell’s degradation, the battery’s degrada-

tion is a complex electro-chemical phenomenon. Though there
are many factors that influence battery aging and degradation
as shown in Figure 2 adopted from [42], the two main factors
are: 1) cyclic aging, and 2) calendar aging [5]. Calendar
aging is due to inherent battery aging and mainly depends
on time, therefore, it is not considered in this work. The main
parameters determining the cyclic aging of a battery are the
state-of-charge (SOC), the depth-of-discharge (DOD), and the
C-rate; see Figure 2 for details.

Figure 2: Ishikawa diagram of the various aging factors leading
to Lithium-ion battery degradation [42].

• State-of-charge: Typically, the battery SOC is con-
strained within 𝑆𝑂𝐶 ∈ [20%, 80%] to prolong the battery
lifetime. The upper limit 𝑆𝑂𝐶𝑚𝑎𝑥 = 80% is necessary to
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III SHIP POWER SYSTEM MODEL 5

avoid overcharging and the lower limit 𝑆𝑂𝐶𝑚𝑖𝑛 = 20% is
necessary to avoid deep discharging; both overcharging
and deep-discharging cause significantly higher degrada-
tion. The cost factor 𝐷𝑆𝑂𝐶 is defined as

𝐷𝑆𝑂𝐶 := 𝛾 ·
��𝑆𝑂𝐶𝑟𝑒 𝑓 − 𝑆𝑂𝐶 (𝑡)

�� d𝑡, (15)

where 𝛾 ∈ [0,∞) is the degradation rate accounting for
the SOC limits (overcharging and deep discharging) and
𝑆𝑂𝐶𝑟𝑒 𝑓 = 50%.

• Depth-of-discharge: The 𝐷𝑂𝐷 consists of two parame-
ters, 𝐷𝑂𝐷𝑐ℎ𝑎𝑟𝑔𝑒 and 𝐷𝑂𝐷𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒, which define how
much the battery has charged or discharged without
interruption. Koller et al. [43] suggested a model for
battery degradation due to DOD. Xu et al. [44] argued
that the models used in the literature did not give an
adequate representation of battery degradation. Wang
et al. [45] performed tests on 𝐿𝑖𝐹𝑒𝑃𝑂4 battery under
different operating conditions such as temperature, DOD,
and C-rate in order to find a function that estimated the
battery degradation. They also conducted experiments on
cyclic aging until the EOL was reached, and then switched
the degradation function to Ah-throughput (𝐴ℎ𝑡ℎ). After
several experiments, the capacity loss estimate was pro-
posed in [45] is

𝑄𝑙𝑜𝑠𝑠 = 𝐴exp
[
−𝐸𝑎 + 𝐵𝐶𝑟𝑎𝑡𝑒

𝑅𝑇

]
(𝐴ℎ𝑡ℎ)𝑧 , (16)

where 𝐴 is a pre-exponential factor, 𝐸𝑎 is the activation
energy of the 𝐿𝑖𝐹𝑒𝑃𝑂4 battery examined, 𝐵 is an expo-
nential factor weighting the C-rate properly, 𝑧 is a factor
to emphasize the effect of the 𝐴ℎ-throughput, 𝑅 is the
gas constant, and 𝑇 is the battery cell temperature.

• C-rate: In an attempt to quantify the effect from DOD
and C-rate on battery degradation, Chen et al. [46] used
(16) to model the capacity loss in the battery as a function
of DOD and C-rate. First, 𝐴ℎ𝑡ℎ could be calculated by

𝐴ℎ𝑡ℎ = 𝑄𝑛𝑜𝑚 · 𝐷𝑂𝐷 · 𝑁 (17)

where 𝑁 is the number of cycles. Using (17), the number
of cycles the battery can sustain before its EOL, with a
given DOD and C-rate, is quantified by rearranging and
combining (16) and (17).

𝑁 =

[
𝑄𝑙𝑜𝑠𝑠

𝐴𝑒

(
−𝐸𝑎+𝐵𝐶𝑟𝑎𝑡𝑒

𝑅𝑇

)
] 1

𝑧 1
𝑄𝑛𝑜𝑚 · 𝐷𝑂𝐷

, (18)

where 𝑄𝑙𝑜𝑠𝑠 is the battery capacity loss allowed before
its EOL and 𝑄𝑛𝑜𝑚 is the nominal capacity of battery. To
get to (18), [46] assumed a constant C-rate; however,
it would rarely be the case for a real operation where a
varying power demand will cause the C-rate to fluctuate.
Thus, the average C-rate during a given charge/discharge
cycle is used in the above equation. Furthermore, the pre-
exponential factor 𝐴 varies to some degree with different
C-rates. So, 𝐴 is set equal to the C-rate corresponding
to 2 C, which is considered the nominal C-rate for the
battery in marine transport applications. The values of
the parameters used in Equation (18) are based on [45],

[46] and given in Table II. Figure 3 is based on Eqn. 18
and shows that the number of cycles (N) decreases with
the increase in C-rate as well as an increase in DOD. The
cost of half a charge/discharge cycle, given an average C-
rate, is then calculated by dividing by 2N, that is,

𝐷𝐷𝑂𝐷,𝐶𝑟𝑎𝑡𝑒 :=
1

2𝑁
. (19)

The total cost of running the battery becomes

𝐶𝑏𝑎𝑡,𝑑𝑒𝑔 = 𝐶𝑏𝑎𝑡 · (𝐷𝑆𝑂𝐶 + 𝐷𝐷𝑂𝐷,𝐶𝑟𝑎𝑡𝑒), (20)

where 𝐶𝑏𝑎𝑡 is the price of the lithium-ion battery.

Figure 3: Effect of DOD and C-rate on the number of
charging/discharging cycles.

Table II: Li-ion battery parameters [45], [46].

Parameter Description Value
𝑄𝑙𝑜𝑠𝑠 Maximum allowed capacity loss 20 %
𝐸𝑎 Activation energy 31.500 J/mol
𝐴 Pre-exponential factor 19.300 kWh
𝐵 Exponential effect of 𝐶𝑟𝑎𝑡𝑒 370.3 J/(mol.A)
z Power law factor 0.55
𝑅 The gas constant 8.314 J/(K · mol)
𝑇 Battery cell temperature 298.15 K

III. Ship Power System Model
The FCHPS has several components for power generation,

distribution, and power consumption that can be mathemat-
ically represented by simple to complex models depending
on the intended use. One of the objectives of this work is
to train the RL algorithms to minimize fuel consumption
and degradation of components, which requires generating a
sufficient amount of data. For this purpose, a simple model
of an FCHPS that includes degradation effects is necessary,
whose modeling aspects are covered in this section. In this
work, reduced models of sufficient fidelity of the fuel cell
and battery are proposed. In the proposed setup, linearized
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III SHIP POWER SYSTEM MODEL 6

polarization curve models combined with nonlinear aging
effects are used for training the RL agents, whereas nonlinear
models are used for validating the performance of the trained
RL agents.

In this study, a passenger ferry, which typically encounters
propulsion loads of around 100 kW during cruising powered
by a 120 kW fuel cell and a 50 kWh Li-ion battery is chosen.
The component selection and sizing are based on the existing
literature works of Bassam et al. [47] and Sulaiman et al.
[8] among others in similar applications. It’s worth noting
that while there is room for optimizing component sizing, this
particular aspect is not the primary focus of this research.

A. Fuel cell model

1) Nonlinear model
A generic nonlinear fuel cell model was proposed in [48],

based on the manufacturer’s data sheet; the proposed model
is shown in Figure 4, which depicts a fuel cell stack as
a controlled voltage source (𝐸) in series with an internal
resistance (𝑅𝑜ℎ𝑚). The output FC power is calculated by

Figure 4: A generic fuel cell model [48].

𝑃𝐹𝐶 = 𝑖𝐹𝐶𝑉𝐹𝐶 . (21)

The controlled voltage source of the fuel cell is [48], [49]

𝐸 = 𝐸𝑂𝐶 − 𝑁𝐹𝐶𝐴𝐹𝐶 ln
(
𝑖𝐹𝐶

𝑖0

)Activation loss

, (22)

where 𝐸𝑂𝐶 is the open circuit voltage (OCV), 𝑁𝐹𝐶 is the
number of cells, 𝐴𝐹𝐶 is the Tafel slope, 𝑖𝐹𝐶 is the FC current,
and 𝑖0 is the exchange current. The OCV is obtained by the
Nernst equation, which is affected by the temperature, partial
pressures of hydrogen and air, as well as their concentrations.

The remaining values are found in [48] as follows:

𝑁𝐹𝐶𝐴𝐹𝐶 =
(𝑉1 −𝑉𝑚𝑎𝑥) (𝑖𝑚𝑎𝑥 − 1) − (𝑉1 −𝑉𝑚𝑖𝑛) (𝑖𝑚𝑖𝑛 − 1)

ln (𝑖𝑚𝑖𝑛) (𝑖𝑚𝑎𝑥 − 1) − ln (𝑖𝑚𝑎𝑥) (𝑖𝑚𝑖𝑛 − 1)
(23)

𝑅𝑜ℎ𝑚 =
𝑉1 −𝑉𝑚𝑎𝑥 − 𝑁𝐹𝐶𝐴𝐹𝐶 ln (𝑖𝑚𝑖𝑛)

𝑖𝑚𝑖𝑛 − 1
(24)

𝑖0 = exp
(
𝑉1 − 𝐸𝑂𝐶 + 𝑅𝑜ℎ𝑚

𝑁𝐴

)
. (25)

𝑅𝑜ℎ𝑚 is the internal fuel cell resistance, 𝑉1 is the output voltage
at 1 A, 𝑉𝑛𝑜𝑚 and 𝑖𝑛𝑜𝑚 are the voltage and the current at
the nominal operation point, respectively and 𝑉𝑚𝑖𝑛 and 𝑖𝑚𝑎𝑥

are the voltage and the current at the maximum power point,
respectively. The polarization curve in Figure 5 shows how the
output voltage varies with the current and describes the fuel
cell characteristics. The values can be found by examining four
points on the polarization curve as described by Motapon et
al. [48]. The FC output voltage, 𝑉𝐹𝐶 , can then be calculated
as

𝑉𝐹𝐶 = 𝐸 − 𝑅𝑜ℎ𝑚𝑖𝐹𝐶

Ohmic loss

. (26)

Figure 5 shows a generic nonlinear polarization curve, which
consists of the activation, ohmic, and mass transport regions.
The output voltage varies nonlinearly in activation and mass
transport regions, whereas it varies approximately linearly in
the ohmic region. The regional differences come from internal
losses that originate from activation losses, ohmic losses, and
concentration losses.

Figure 5: Nonlinear polarization curve of the fuel cell.

2) Linear model
A simplified version is obtained by piecewise linearization

of the generic polarization curve, assuming that the fuel cell
does not operate in the activation region and mass transport
region (see Figure 6). The consequence of this assumption is
that the fuel cell current is constrained by a minimum value
(𝐼𝑚𝑖𝑛) and a maximum value (𝐼𝑚𝑎𝑥). This is a reasonable
assumption, as the efficiency drops drastically and degradation
rates are very high in the activation and mass transport regions.
The linearization parameters are
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III SHIP POWER SYSTEM MODEL 7

Figure 6: Linear approximation of fuel cell’s polarization
curve.

𝑘𝑎𝑐𝑡 :=
𝐸𝑂𝐶 −𝑉𝑚𝑎𝑥

𝐼𝑚𝑖𝑛

(27)

𝑘𝑜𝑝𝑡 :=
𝑉𝑚𝑎𝑥 −𝑉𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

, (28)

and the voltage and power becomes

𝑉𝐹𝐶 =

{
𝑉𝑚𝑎𝑥 − 𝑘𝑜𝑝𝑡 (𝑖𝐹𝐶 − 𝐼𝑚𝑖𝑛), if 𝑖𝐹𝐶 > 𝐼𝑚𝑖𝑛

𝐸𝑂𝐶 − 𝑘𝑎𝑐𝑡 𝑖𝐹𝐶 , otherwise
(29)

𝑃𝐹𝐶 =𝑖𝐹𝐶𝑉𝐹𝐶 . (30)

The parameters used for the linearized polarization curve
based on [48] are given in Table III.

Table III: Fuel cell parameters [48].

Parameter Description Value
𝐸𝑂𝐶 Open circuit voltage 900 V
𝑉𝑚𝑎𝑥 Voltage at start of Ohmic region 800 V
𝑉𝑚𝑖𝑛 Voltage at end of Ohmic region 430 V
𝐼𝑚𝑖𝑛 Current at start of Ohmic region 20 A
𝐼𝑚𝑎𝑥 Current at end of Ohmic region 280 A

To model the internal FC delay, the rate of change in current
is constrained to 10 % of 𝐼𝑚𝑎𝑥 per second. This constraint
encapsulates the limitations in the dynamic capabilities of
the fuel cell. The fuel supply system has slow dynamics due
to the mechanical valves, which cause fuel starvation during
high transients in the fuel cell current. The consequence is
accelerated degradation of the fuel cell. Therefore, the rate
of change in the current should be limited so that the model
accounts for the slow dynamics of the fuel cell, that is,

|Δ𝐼𝐹𝐶 | ≤ 0.1 𝐼𝐹𝐶,𝑚𝑎𝑥d𝑡. (31)

3) Aging effects
Fuel cell degradation is reflected physically in the fuel cell

voltage. A 10 % loss of fuel cell voltage under rated current
is considered the end of life (EOL) [40]. Computing the
fuel cell voltage degradation using physics-based models is
cumbersome. Therefore, empirical models developed based on

experimental data in [39], [40] are used in this work. The fuel
cell voltage degradation (𝑉𝐹𝐶,𝑑𝑒𝑔) is computed by

𝑉𝐹𝐶,𝑑𝑒𝑔 = 𝐷𝑙𝑜𝑤 + 𝐷ℎ𝑖𝑔ℎ + 𝐷𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑠 + 𝐷𝑐𝑦𝑐𝑙𝑒𝑠 (32)
𝐸𝑂𝐶 (𝑖 + 1) = 𝐸𝑂𝐶 (𝑖) −𝑉𝐹𝐶,𝑑𝑒𝑔 . (33)

B. Battery Model
1) Nonlinear model
A generic battery dynamic model based on [50], [51] is

shown in Figure 7. For the lithium-ion battery type, the model
uses the following equations.
Discharge model (𝑖∗ > 0):

𝑓 (𝑖𝑡, 𝑖∗, 𝑖) = 𝐸0 − 𝐾
𝑄𝑛𝑜𝑚

𝑄𝑛𝑜𝑚 − 𝑖𝑡
𝑖∗ − 𝐾 𝑄𝑛𝑜𝑚

𝑄𝑛𝑜𝑚 − 𝑖𝑡
𝑖𝑡 + 𝐴𝑒−𝐵𝑖𝑡

(34)

Charge model (𝑖∗ < 0):

𝑓 (𝑖𝑡, 𝑖∗, 𝑖) = 𝐸0 − 𝐾
𝑄𝑛𝑜𝑚

𝑖𝑡 + 0.1𝑄𝑛𝑜𝑚

𝑖∗ − 𝐾 𝑄𝑛𝑜𝑚

𝑄𝑛𝑜𝑚 − 𝑖𝑡
𝑖𝑡 + 𝐴𝑒−𝐵𝑖𝑡

(35)

where battery voltage 𝐸 is obtained by the function 𝑓 (𝑖𝑡, 𝑖∗, 𝑖),
𝑖 is the battery current, 𝑖∗ is the low-frequency battery current
dynamics, 𝑖𝑡 is the extracted capacity, 𝐸0 is battery OCV, 𝑄𝑛𝑜𝑚

is the nominal battery capacity, 𝐾 is the polarization constant,
𝐴 is the exponential voltage, and 𝐵 is the exponential capacity.

Figure 7: A generic model of Li-ion battery [50].

A Li-ion battery’s characteristics can be represented using a
polarization curve similar to that of a fuel cell. The nonlinear
polarization curve is shown in Figure 8 which is based on the
dynamic battery model developed by Tremblay et al. [50]. The
polarization curve is visualized by plotting the output voltage
as a function of capacity, which shows how the output voltage
varies with capacity or SOC. In the exponential zone, the
battery voltage varies exponentially with the SOC. The battery
is usually operated with predetermined SOC limits, typically
𝑄𝑚𝑖𝑛 = 20%, 𝑄𝑚𝑎𝑥 = 80%. In the operating zone, the voltage
is varied approximately in a linear manner. This is where the
battery thrives and has the best operating range to prolong
its life. When the SOC falls below 𝑄𝑚𝑖𝑛, the battery voltage
decreases exponentially.
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III SHIP POWER SYSTEM MODEL 8

Figure 8: Nonlinear polarization curve of Li-ion battery.

2) Linear model
The polarization curve can be linearized as shown in Fig-

ure 9 with the assumption that the battery SOC is constrained
within 𝑆𝑂𝐶 ∈ [20%, 80%]. This is considered fair, as batteries
should not be operated at very high or very low SOC due to
unwanted battery degradation. The relationship between the
SOC and the open circuit voltage, 𝐸𝑂𝐶 , is found from the
linearized battery characteristic curve.

Figure 9: Linearized polarization curve of Li-ion battery.

𝐸𝑂𝐶 = 𝑉𝑚𝑎𝑥 −
𝑉𝑚𝑎𝑥 −𝑉𝑚𝑖𝑛

𝑄𝑚𝑎𝑥 −𝑄𝑚𝑖𝑛

(𝑄 −𝑄𝑚𝑖𝑛) (36)

The battery output voltage is calculated by compensating for
the internal resistance, that is

𝑉𝑏𝑎𝑡 = 𝐸𝑂𝐶 − 𝑅𝑖𝑛𝑡 𝑖𝑏𝑎𝑡 . (37)

and the output power is

𝑃𝑏𝑎𝑡 = 𝑉𝑏𝑎𝑡 𝑖𝑏𝑎𝑡 . (38)

The variation in SOC is based on a simple calculation of how
much current enters or leaves the battery. The resulting model
for change in capacity 𝑄 is

𝑄(𝑡) = 𝑄(0) −
∫ 𝑡

0
𝑖𝑏𝑎𝑡d𝑡. (39)

The capacity 𝑄 of the battery is given in Ah. As a result,
the SOC is updated in the following way at each time step of
model simulation,

𝑆𝑂𝐶 (𝑡 + d𝑡) = 𝑆𝑂𝐶 (𝑡) − 𝑖(𝑡)d𝑡
3600𝑄𝑛𝑜𝑚

. (40)

The relevant parameters for the battery model based on [50],
[51] used in training RL algorithms are given in Table IV.

Table IV: Battery parameters [50], [51].

Parameter Description Value
𝑄𝑛𝑜𝑚 Nominal capacity 50 kWh
𝑄𝑚𝑎𝑥 Maximal battery capacity 40 kWh
𝑄𝑚𝑖𝑛 Minimal battery capacity 10 kWh
𝑉𝑚𝑎𝑥 Voltage at end of exponential zone 545 V
𝑉𝑚𝑖𝑛 Voltage at end of nominal zone 430 V

𝑆𝑂𝐶 (0) Initial SOC level 50 %

3) Aging effects
Battery degradation is reflected physically in battery capac-

ity and internal resistance. Typically a 20% loss of battery
capacity is considered the end of life. Battery capacity degra-
dation 𝑄𝑏𝑎𝑡 is computed based on [45] [46], according to

𝑄𝑙𝑜𝑠𝑠 = 𝑄𝐵𝑂𝐿 −𝑄𝐸𝑂𝐿 (41)

𝑄𝑑𝑒𝑔 =
𝑄𝑙𝑜𝑠𝑠

𝑁
(42)

𝑄𝑏𝑎𝑡 (𝑖 + 1) = 𝑄𝑏𝑎𝑡 (𝑖) −𝑄𝑑𝑒𝑔, (43)

where 𝑄𝐵𝑂𝐿 and 𝑄𝐸𝑂𝐿 are the battery capacities at the
beginning and end of life, respectively.

C. Other components
1) Fuel cell converter
A unidirectional boost DC-DC converter interfaces the fuel

cell stack with the DC bus. A simple model of a fuel cell
converter from [9] is used with the assumption that the primary
control (of the power electronic converter) works as intended.
This assumption is reasonable as the goal is to use the model
in the high-level controller, i.e., the EEMS. The model is

𝑃𝐹𝐶,𝑏𝑢𝑠 = 𝑃𝐹𝐶𝜂𝐹𝐶,𝑐𝑜𝑛𝑣 (44)

𝐼𝐹𝐶,𝑏𝑢𝑠 = 𝐼𝐹𝐶 𝑘𝜂𝐹𝐶,𝑐𝑜𝑛𝑣 =
𝑃𝐹𝐶,𝑏𝑢𝑠

𝑉𝐷𝐶

(45)

𝑘 : =
𝑉𝐹𝐶

𝑉𝐷𝐶

, (46)

where 𝑃𝐹𝐶,𝑏𝑢𝑠 and 𝐼𝐹𝐶,𝑏𝑢𝑠 are the FC power and FC current
at DC bus, respectively, 𝜂𝐹𝐶,𝑐𝑜𝑛𝑣 is the efficiency of fuel cell
converter, and 𝑉𝐷𝐶 is the DC bus voltage.

2) Battery converter
A bi-directional buck-boost converter is used to interface

the battery with the DC bus. A simple model from [9] is used
to represent the battery converter

𝑃𝑏𝑎𝑡,𝑏𝑢𝑠 =

{
𝑃𝑏𝑎𝑡𝜂𝑏𝑏,𝑑𝑐ℎ Discharging mode
𝑃𝑏𝑎𝑡

𝜂𝑏𝑏,𝑐ℎ
Charging mode

(47)

𝐼𝑏𝑎𝑡,𝑏𝑢𝑠 =

{
𝐼𝑏𝑎𝑡 𝑘𝜂𝑏𝑏,𝑑𝑐ℎ Discharging mode
𝐼𝑏𝑎𝑡 𝑘

𝜂𝑏𝑏,𝑐ℎ
Charging mode,

(48)
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IV RL-BASED ENERGY & EMISSIONS MANAGEMENT STRATEGIES 9

where 𝑘 := 𝑉𝑏𝑎𝑡

𝑉𝐷𝐶
, 𝑃𝑏𝑎𝑡,𝑏𝑢𝑠 and 𝐼𝑏𝑎𝑡,𝑏𝑢𝑠 are the battery power

and current at the DC bus, respectively. 𝜂𝑏𝑏,𝑐ℎ and 𝜂𝑏𝑏,𝑑𝑐ℎ
are the efficiencies of the buck-boost converter during charging
and discharging, respectively.

3) Shiploads
The shiploads are represented by the load power profile of

a typical passenger ferry based on [52], which is shown in
Figure 10. The modes of operation in a typical passenger ship
load profile can be classified as undocking, sailing (crossing),
harbor maneuvering, and docking.

Figure 10: Load power profile of a typical passenger ferry [52].

IV. RL-based Energy & Emissions Management
Strategies

In this section, three state-of-the-art RL algorithms imple-
mented for EEMS: the DDQL, the SAC, and the PPO are
elaborated. The aim of RL is to learn optimal policies by con-
tinuously interacting with a potentially uncertain environment
while maximizing cumulative reward in sequential decision
problems. Figure 11 shows the workflow of a typical RL-based
EEMS in an SPS. For a given current state (𝑠𝑘), the RL-based
EEMS chooses the control action (𝑎𝑘) based on a policy that
seeks optimality. When 𝑎𝑘 is executed, the SPS transitions
from the current state 𝑠𝑘 to the next state 𝑠𝑘+1. Based on 𝑠𝑘 , 𝑎𝑘 ,
and 𝑠𝑘+1, the reward (𝑟𝑘) is computed, which is used to update
the policy of the RL-based EEMS. Table V shows a qualitative

Figure 11: Generic RL algorithm.

comparison of the DDQL, the SAC, and the PPO methods,
which are implemented in this work. The action space in the
DDQL is discrete, which limits the action-space dimension.
Both SAC and PPO can work on a continuous state-action

space, which makes them feasible for real-world applications
such as the FCHPS. SAC and PPO use the advantage factor
as the main operator.

Table V: Comparison of RL algorithms.

Algorithm Policy Action-space State-space Operator
DDQL Off-policy Discrete Continuous Q-value
SAC Off-policy Continuous Continuous Advantage
PPO On-policy Continuous Continuous Advantage

A. Double Deep Q Learning (DDQL) Algorithm

The schematic for the DDQL algorithm proposed by Hasselt
et al. [24], can be observed in Figure 12, accompanied by the
corresponding pseudo code available in algorithm 1. The main
idea of the DDQL algorithm 1 is to reduce the issue of over-
optimism in the DQL by using two identical DNNs denoted
as critic network and target critic network for action selection
and action evaluation, respectively. As shown in Figure 12, the
critic network is trained at every iteration, using transitions
(𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘+1) stored in experience buffer [21]. Whereas the
target critic network copies the parameters of the critic network
periodically. As the aim of the critic network is to predict the
Q-value, the Bellman temporal difference (TD) error

𝑇𝐷𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑘 + 𝛾max𝑎 𝑄̂(𝑠𝑘+1, 𝑎, 𝜃)
target Q value

− 𝑄(𝑠𝑘 , 𝑎𝑘 , 𝜃)
predicted Q value

,

(49)
should be minimized. Here, 𝛾 is the discount factor, 𝜃 repre-
sents the parameters of the critic network, 𝜃 represents the
parameters of the target critic network, 𝑄̂(𝑠𝑘+1, 𝑎, 𝜃) is the
maximum target Q value that can be obtained in the state
𝑠𝑘+1, and 𝑄(𝑠𝑘 , 𝑎𝑘 , 𝜃) is the Q value for 𝑠𝑘 and 𝑎𝑘 . The loss
function that the critic network aims to minimize is the square
of the TD error, that is,

𝐿𝑘 (𝜃) = [𝑇𝐷𝑒𝑟𝑟𝑜𝑟 ]2 . (50)

Minimizing 𝐿𝑘 (𝜃) is achieved by performing gradient descent
with respect to the parameters 𝜃 of the critic network. The
gradient of the loss with respect to the parameters 𝜃 becomes
∇𝜃𝐿𝑘 (𝜃) = −2𝑇𝐷𝑒𝑟𝑟𝑜𝑟∇𝜃𝑄(𝑠𝑘 , 𝑎𝑘 , 𝜃), giving the update rule
of the critic network

𝜃𝑘+1 = 𝜃𝑘 + Δ𝜃
Δ𝜃 = 𝛼 (𝑇𝐷𝑒𝑟𝑟𝑜𝑟 ) ∇𝜃𝑄(𝑠𝑘 , 𝑎𝑘 , 𝜃))

where 𝛼 is the learning rate.
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IV RL-BASED ENERGY & EMISSIONS MANAGEMENT STRATEGIES 10

Figure 12: The framework of DDQL-based EEMS for the FCHPS.

1 Hyper-parameters: discount factor (𝛾), learning rate
(𝛼), greedy policy (𝜀&Δ𝜀), mini batch size (𝑛)

2 Initialize experience buffer 𝐷 to capacity 𝑁
3 Initialize critic network 𝑄 with random parameters 𝜃
4 Initialize target critic network 𝑄̂ with parameters

𝜃 = 𝜃

5 for episode(m) = 1:M do
6 for iteration(k) = 1:K do
7 Choose action

(𝑎𝑘)=
{
Choose random action with probability 𝜀
Otherwise max𝑎 𝑄(𝑠𝑘 , 𝑎; 𝜃)

8 Execute 𝑎𝑘 , observe 𝑠𝑘+1, and compute 𝑟𝑘
9 Store transitions (𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1, 𝑟𝑘) in 𝐷

10 Sample random mini-batch of transitions
(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1, 𝑟𝑘) from 𝐷

11 Update critic network: 𝜃 ← 𝜃 − ∇𝜃 𝐿𝑘 (𝜃)
12 Update target critic network: After every C

iterations copy the parameters
𝜃 = 𝜃 ⇒ 𝑄̂ = 𝑄

13 end
14 end

Algorithm 1: The DDQL Algorithm.

B. Soft Actor-Critic (SAC) Algorithm
The SAC algorithm is one of the recent breakthroughs

within the field of reinforcement learning, proposed by
Haarnoja et al. [53] [34]. It gained reputation as one of
the most stable off-policy methods for continuous control
problems. Its three main features are:

1) SAC has an actor-critic architecture with separate actor-
and critic networks.

2) The actor is called stochastic actor as it is trained to
maximize expected reward and entropy simultaneously,
i.e., to succeed at the task while acting as randomly as
possible. Entropy is a measure of the randomness of the
actions. In the current form of the algorithm, Haarnoja et
al. [34] have automated the calculation of the trade-off
between maximizing the expected reward and entropy,
essentially solving the problem of exploration versus
exploitation dilemma. Increasing entropy leads to more
exploration, which is needed to prevent the policy from
converging to a local optimum.

3) SAC has an off-policy formulation that enables the
reuse of previously collected data, making it more data-
efficient compared with the on-policy counterparts such
as PPO and SQL, where collecting a large number of
data samples at every time step is necessary.

Architectures of the actor- and critic-networks used in the SAC
algorithm are shown in Figure 13 and Figure 14, respectively,
where 𝜇 is the mean and 𝜎 is the standard deviation of
action-space’s probability distribution. The actor network takes
the state of the FCHPS as input and outputs the probability
distribution of action space. The critic network takes the state-
action pair as input and outputs the state-action value, which
represents the expected cumulative reward from taking action
𝑎 in state 𝑠. The SAC algorithm learns a stochastic policy,
which aims to maximize both the reward and the entropy of
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IV RL-BASED ENERGY & EMISSIONS MANAGEMENT STRATEGIES 11

the policy. The objective function to be maximized is

𝐽 (𝜋) =
𝑇∑︁
𝑡=0
E(𝑠,𝑎)∼𝜌𝜋

[𝑟 (𝑠, 𝑎) + 𝛼H(𝜋(· | 𝑠))] , (51)

where H(𝜋(· | 𝑠)) denotes the entropy of the policy 𝜋 in
state 𝑠. In Eqn. 51, the entropy and the sum of expected
discounted rewards, given a probability distribution for visiting
each state, 𝜌𝜋 , should be maximized in the long term. The
corresponding pseudo code is given in algorithm 2, where
𝜆𝑄, 𝜆𝜋 , 𝜆 are the soft update coefficients for critic network,
actor network, and temperature parameter (𝛽), respectively. A
higher soft update coefficient makes the update more slowly,
while a lower value speeds up the update, and it’s typically
set to a value between 0 and 1. The soft update coefficient
influences the convergence speed and stability of the critic
networks, affects the exploration-exploitation trade-off and the
rate of policy changes, and leads to deterministic or stochastic
policy. In this work, all soft update coefficients are set to 0.5.

1 Hyper-parameters: discount factor (𝛾), learning rate
(𝛼), mini batch size (𝑛)

2 Initialize experience buffer 𝐷 to capacity 𝑁
3 Initialize actor network 𝜋 with random parameters 𝜙
4 Initialize critic networks 𝑄𝑖 with random parameters

𝜃𝑖
5 Initialize target critic networks 𝑄̂𝑖 with parameters

𝜃𝑖 = 𝜃𝑖
6 for each episode do
7 for each environment step do
8 Observe state (𝑠𝑘) & sample action (𝑎𝑘)

based on policy ≈𝜋𝜃 (· | 𝑠𝑘)
9 Execute 𝑎𝑘 , observe 𝑠𝑘+1, and calculate 𝑟𝑘

10 Store transitions (𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1, 𝑟𝑘) in 𝐷
11 end
12 for each gradient step do
13 Sample random mini-batch of transitions

(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1, 𝑟𝑘) from 𝐷

14 Update critic network:
𝜃𝑖 ← 𝜃𝑖 − 𝜆𝑄 · ∇̂𝜃𝑖 𝐿 (𝜃𝑖)

15 Update actor network: 𝜙← 𝜙 − 𝜆𝜋 · ∇̂𝜙𝐿 (𝜙)
16 Update parameter 𝛽: 𝛽← 𝛽 − 𝜆 · ∇̂𝛽𝐿 (𝛽)
17 Update target critic network: Every C

iterations copy the parameters 𝜃𝑖 = 𝜃𝑖
⇒𝑄̂𝑖 = 𝑄𝑖

18 end
19 end

Algorithm 2: The SAC Algorithm.

Figure 13: Actor network architecture in SAC.

Figure 14: Critic network architecture in SAC.

C. Proximal Policy Optimization (PPO) Algorithm
The PPO algorithm proposed by [35] is an actor-critic

class of RL algorithm, that uses trust region optimization, by
maximizing the expected return while constraining the change
in policy on each iteration. The actor network used in the PPO
is similar to that of the SAC, whereas the critic network as
shown in Figure 15 takes only the state of the FCHPS as input
and outputs the estimated value function, which represents the
expected cumulative reward starting from the current state. The

Figure 15: Critic network architecture in PPO.

objective function (𝐽 (𝜙)𝑡 ) of the PPO aims to maximize the
expected reward while maintaining stability during training by
clipping the policy updates, that is,

𝐽 (𝜙)𝑡 = min(−𝑟 (𝜙)𝑡 𝐴̂, clip(−𝑟 (𝜙)𝑡 , 1 − 𝜖, 1 + 𝜖) 𝐴̂𝑡 ), (52)

where −𝑟 (𝜙)𝑡 is the ratio of the output of 𝜋 with the new
network parameters and the old parameters, defined as

−
𝑟 (𝜙)𝑡 =

𝜋𝜙 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜙𝑜𝑙𝑑

(𝑎𝑡 |𝑠𝑡 )
. (53)

𝐴̂ is the advantage function, which defines how much better
it is to select action 𝑎𝑡 in state 𝑠𝑡 over the average values of
possible actions in 𝑠𝑡 . There are several ways of approximating
this function, and it is commonly applied in RL, as it reduces
the variance of traditional value functions significantly. The
intention of the clipped value is to constrain how much
the policy is allowed to change. Thus, the probability ratio
satisfies −𝑟 (𝜙)𝑡 ∈ [1 − 𝜖, 1 + 𝜖], where 𝜖 is clipping parameter.
Optimizing the advantage function gives a data-efficient on-
policy RL algorithm, which is easy to implement and does
not require extensive tuning of hyperparameters. The corre-
sponding pseudo code is given in algorithm 3.
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V RESULTS 12

1 Hyper-parameters: discount factor (𝛾), clipping
parameter (𝜖), mini batch size (𝑛);

2 Initialize actor network 𝜋 with random parameters 𝜙
3 Initialize critic network with random parameters 𝜃
4 for iteration(k) = 1:K do
5 Execute the current policy 𝜋𝑘 = 𝜋(𝜙𝑘) in

environment for 𝑡 = 1, 2, ..., 𝑇 time steps
6 Compute the rewards (𝑟𝑡 ) and advantage

estimates (𝐴̂𝑡 )
7 Collect the transitions (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 ) in 𝐷𝑘

8 Sample random mini-batch of transitions (𝑠𝑡 , 𝑎𝑡 ,
𝑠𝑡+1, 𝑟𝑡 ) from 𝐷𝑘

9 Update actor network:
𝜙← 𝜙 − 𝜆𝜋 · ∇̂𝜙𝐿𝐶𝐿𝐼𝑃 (𝜙)

10 𝐿𝐶𝐿𝐼𝑃 (𝜙)𝑡 = Ê𝑡 {𝐽 (𝜙)𝑡 }
11 Update critic network: 𝜃 ← 𝜃 − 𝜆 · ∇̂𝜃 𝐿 (𝜃)
12 𝐿 (𝜃)𝑡 = Ê𝑡

{
min

(
𝑉𝜙 (𝑠𝑡 ) − 𝑟𝑡

)2}
13 end

Algorithm 3: The PPO Algorithm.

V. Results
In this section, the results obtained from training and vali-

dating RL agents are presented. The RL agents are trained with
hybrid models, where the linearized models are combined with
nonlinear aging effects. The trained RL agents are validated
with nonlinear models combined with nonlinear aging effects.
The main objectives are to 1) evaluate four RFFs considered;
for this purpose, three RL algorithms (DDQL, SAC, and PPO)
are trained and validated on four RFFs, and 2) compare three
RL algorithms and benchmark them against the rule-based
energy management strategy by [49]. For the training phase of
our algorithms, Intel(R) Xeon(R) Gold 6146 CPU@3.20 GHz
along with 256 GB of RAM was used. Whereas, the validation
of the algorithms was performed in a separate environment
featuring an Intel(R) Core(TM) i9-9900K CPU@ 3.60GHz
and 128 GB of RAM. The software environment included
Python 3.9.7, TensorFlow 2.0, and Visual Studio Code.

A. Training
The RL agents are trained with each of the four RFFs; the

hyperparameters used and the results obtained are presented.
The hyperparameters for designing and training the DDQL
agent are given in Table VI. Figure 16 shows the evolution of

Table VI: DDQL hyperparameters.

Parameter Description Value

DNN parameters Hidden layers 4
Nodes per layer [128, 256, 256, 128]

Activation function ReLU

Training parameters Optimizer Adam
Learning rate 5e-4

Discount factor (𝛾) 0.99
Minibatch size 1000

Other parameters Evaluation interval 50
Evaluation episodes 20

reward during training of the DDQL agent for the four RFFs.
It can be observed that the reward improves approximately
until episode 800 and then flattens out for NC and NQC.

(a) Negative cost (𝑟1) (b) Negative quadratic cost (𝑟2)

(c) Inverse cost (𝑟3) (d) Inverse quadratic cost (𝑟4)

Figure 16: The evolution of rewards during training of the
DDQL agent for four RFFs.

Though a similar trend is observed in IC, the reward is highly
fluctuating. However, in IQC, the reward is highly fluctuating
and it increased steeply from episode 1150 to episode 1400.

The hyperparameters for designing and training the SAC
agent are given in Table VII. Figure 17 shows the evolution of

Table VII: SAC hyperparameters.

Parameter Description Value

Actor network parameters Hidden layers 4
Nodes per layer [128, 256, 256, 128]

Activation function ReLU

Critic network parameters Hidden layers 4
Nodes per layer [128, 256, 256, 128]

Activation function ReLU

Training parameters Optimizer Adam
Learning rate 5e-4

Discount factor (𝛾) 0.99
Minibatch size 1000

Other parameters Evaluation interval 50
Evaluation episodes 20

reward during training of the SAC agent for the four RFFs. It
can be observed that the reward is highly fluctuating, which is
expected since the objective of the SAC algorithm is not only
to maximize reward but also entropy.

The hyperparameters for designing and training the PPO
agent are given in Table VIII. Figure 18 shows the evolution
of reward during training of the PPO agent for the four RFFs.
The number of training episodes in the PPO is twice that
of the DDQL and the SAC as the PPO is an online policy
algorithm, which is data inefficient and hence requires longer
training. The fluctuations in reward are much less compared
to that of the DDQL and the SAC, due to the clipping of
objective function to constrain the too-large policy updates.
During the initial stages of training, the reward in 𝑟1, 𝑟2, and
𝑟3 showed fluctuations, which eventually increased steadily and
settled into a consistent average value. In contrast, the reward
in 𝑟4 decreased steadily over time and settled into a consistent
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(a) Negative cost (𝑟1) (b) Negative quadratic cost (𝑟2)

(c) Inverse cost (𝑟3) (d) Inverse quadratic cost (𝑟4)

Figure 17: The evolution of rewards during training of the
SAC agent for four RFFs.

Table VIII: PPO hyperparameters.

Parameter Description Value

Actor network parameters Hidden layers 4
Nodes per layer [128, 256, 256, 128]

Activation function ReLU

Critic network parameters Hidden layers 4
Nodes per layer [128, 256, 256, 128]

Activation function ReLU

Training parameters Optimizer Adam
Learning rate 5e-4

Discount factor (𝛾) 0.99
Minibatch size 1000

Other parameters Evaluation interval 50
Evaluation episodes 20

average value. These observations suggest that the RFFs have
a varying impact on the PPO agent’s performance.

B. Validation: Comparison of RFFs
The four RFFs are validated with respective trained DDQL

agents and the results are presented here. The fuel cell power,
the battery power, and the battery SOC profiles are shown in
Figure 19. The fuel cell power is nearly constant while the
battery takes care of the load fluctuations in NC and NQC.
However, both fuel cell power and battery power are highly
dynamic in IC and NQC.

The operational costs including the cost of fuel, fuel cell,
and battery are shown in Figure 20. The fuel cost is dominant
compared to the degradation costs in the four RFFs. In NC and
NQC, the degradation cost of the fuel cell is lower compared
to that of the battery since the battery compensates for the
fluctuating loads while fuel cell power is nearly constant.
Whereas, in IC and IQC, the degradation cost of the fuel cell
is higher compared to that of the battery since the fuel cell
transients are expensive compared to that of the battery. The
total OPEX is lowest for NC at $10.88, followed by NQC at

(a) Negative cost (𝑟1) (b) Negative quadratic cost (𝑟2)

(c) Inverse cost (𝑟3) (d) Inverse quadratic cost (𝑟4)

Figure 18: The evolution of rewards during training of the PPO
agent for four RFFs.

Figure 19: Validation of RFFs with DDQl agents - the fuel
cell power, the battery power, and the battery SOC profiles.

$11.61, while IC and IQC incurred significantly higher costs
at $16.24 and $23.71, respectively.

The degradation parameters of the fuel cell and battery
are shown in Figure 21 and Figure 22, respectively. It can
be observed that NC and NQC have nearly negligible FC
degradation, whereas IC and IQC have significantly higher
FC degradation. Battery degradation is lowest in IC, while it is
highest in IQC. However, the difference in battery degradation
is not as significant as fuel cell degradation among the four
RFFs.
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Figure 20: Validation of RFFs with DDQl agents - operational
costs.

Figure 21: Validation of RFFs with DDQl agents - FC voltage
degradation.

C. Validation: Comparison of RL algorithms
The RL agents for each of the three algorithms are trained

with 𝑟1(NC) and the validated results are presented for com-
parison and benchmarking against the rule-based EMS by [49].
The fuel cell power, the battery power, and the battery SOC
profiles are shown in Figure 23. It can be observed that all the
RL agents tried to minimize the fast fuel cell power transients
and used the battery to compensate for the fast load changes. In
the PPO, the fuel cell power is following the load power while
minimizing the fuel cell transients. Whereas, in the DDQL, the
fuel cell power is following the load power while remaining
close to the average load power. However, in the SAC, the fuel
cell power is following the load power at a much slower pace.

The operational costs, including the cost of fuel, fuel cell,
and battery are shown in Figure 24. It can be observed
that the fuel cost is dominant compared to the degradation
costs in all the RL-based EEMS strategies. The difference
among algorithms in terms of either the fuel cost or the total
degradation cost is not significantly higher. The PPO agent
tries to achieve a very good balance between the degradation
cost of the fuel cell and the battery. Whereas, the degradation

Figure 22: Validation of RFFs with DDQl agents - battery
capacity degradation.

Figure 23: Comparison of RL algorithms with 𝑟1(NC) - the
fuel cell power, the battery power, and the battery SOC
profiles.

cost of the fuel cell is much lower compared to that of the
battery in the DDQL and SAC agents. The total OPEX is
lowest for DDQL at $10.88, followed by RB at $11.81, while
SAC and PPO incurred slightly higher costs at $12.70 and
$12.72, respectively.

The degradation parameters of the fuel cell and battery are
shown in Figure 25 and Figure 26, respectively. The fuel cell
degradation is lowest in rule-based followed by DDQL while
it is highest in SAC followed by PPO. The battery degradation
is similar both in DDQL and PPO while it is highest in SAC
and lowest in rule-based.

D. Key Performance Indicators (KPIs)
In each algorithm, the RL agent is trained with each RFF

and is subsequently validated with four distinct RFFs; the

This article has been accepted for publication in IEEE Journal of Emerging and Selected Topics in Industrial Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JESTIE.2023.3331230

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10,2023 at 10:11:00 UTC from IEEE Xplore.  Restrictions apply. 



VI CONCLUSIONS 15

Figure 24: Comparison of RL algorithms with 𝑟1(NC) -
operational costs.

Figure 25: Comparison of RL algorithms with 𝑟1(NC) - FC
voltage degradation.

computed rewards and OPEX are defined as the KPIs. The
rewards and the OPEX of the DDQL, SAC, and PPO algo-
rithms are summarized and presented in Table IX, Table X,
and Table XI, respectively. Furthermore, OPEX data pertaining
to three specific cost components fuel cost (𝐶1), fuel cell cost
(𝐶2), and battery cost (𝐶3) is presented in Table XII for the
case of RFF 𝑟1.

A careful examination of KPIs reveals several noteworthy
observations. Firstly, it is evident that the choice of the RFF
within each algorithm significantly impacts the OPEX across
all three RL algorithms (DDQL, SAC, and PPO). RFFs 𝑟1 and
𝑟2 consistently result in lower OPEX values compared to 𝑟3
and 𝑟4. This highlights the sensitivity of OPEX to the specific
RFF used for training and testing. The second observation
is that the RFF 𝑟1 consistently exhibits the lowest OPEX,
followed by 𝑟2, while 𝑟3 and 𝑟4 each consistently result in
significantly higher OPEX across all three algorithms. This
may indicate that these RFFs are more challenging from a
cost perspective and may require optimization or adaptive
strategies. The third critical observation is that, across all three
algorithms, the KPIs reveal that RFFs 𝑟1 and 𝑟2 exhibit the
highest reward values when they are specifically trained with

Figure 26: Comparison of RL algorithms with 𝑟1(NC) - battery
capacity degradation.

RFFs 𝑟1 and 𝑟2 as RFFs, respectively. However, a consistent
pattern is not observed for the KPIs pertaining to RFFs 𝑟3 and
𝑟4. The disparity in outcomes for these RFFs highlights the
complexity and variability of the RL algorithm’s performance
when dealing with different RFFs. These observations shed
light on the nuanced relationships between RL algorithm
outcomes and the characteristics of RFFs, contributing to a
deeper understanding of the algorithmic dynamics. Moreover,
among the three algorithms DDQL, SAC, and PPO, the DDQL
algorithm consistently yields the lowest overall rewards, fol-
lowed by SAC, and then PPO when trained with RFFs 𝑟1 and
𝑟2. However, for RFFs 𝑟3 and 𝑟4, the differences in rewards
between these algorithms are less pronounced, despite the
increased OPEX values. This suggests that the algorithm’s
performance varies with different RFFs.

Furthermore, comparing the OPEX for RFF 𝑟1 (NC) be-
tween rule-based and RL algorithms, it is noteworthy that the
rule-based approach incurs an OPEX of $11.81, while the
DDQL algorithm achieves the lowest OPEX at $10.88. This
observation demonstrates the potential cost-saving benefits of
RL algorithms compared to traditional rule-based methods.
The SAC and PPO algorithms result in higher OPEX compared
to DDQL for RFF 𝑟1. SAC incurs an OPEX of $12.70, while
PPO incurs a slightly higher OPEX of $12.72. This suggests
that the choice of RL algorithm can impact OPEX outcomes
for specific RFFs.

These observations underline the critical role of the RFF
and the choice of RL algorithm in influencing the OPEX of
the FCHPS. The findings also emphasize the potential cost-
efficiency benefits of RL algorithms over rule-based methods
in optimizing operational costs for specific scenarios. Further-
more, the study highlights the need for adaptive strategies in
managing the variability in OPEX across different RFFs.

VI. Conclusions

In this work, state-of-the-art reinforcement learning al-
gorithms, including double-deep Q-learning (DDQL), soft-
actor critic (SAC), and proximal policy optimization (PPO)
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Table IX: Comparison of RFFs with DDQL agent.

Train
Test

𝑟1 𝑟2 𝑟3 𝑟4 𝐶1 𝐶2 𝐶3 𝐶𝑡𝑜𝑡

𝑟1 -10.9 -0.1 4.6e5 1.7e8 7.3 0.8 2.7 10.9
𝑟2 -11.1 -0.01 4.1e5 1.3e8 7.7 0.3 3.5 11.1
𝑟3 -15.6 -0.5 4.7e5 2.1e8 8.3 5.6 2.4 15.6
𝑟4 -23.0 -0.8 4.8e5 2.5e8 13.1 8.1 2.6 23.8

Table X: Comparison of RFFs with SAC agent.

Train
Test

𝑟1 𝑟2 𝑟3 𝑟4 𝐶1 𝐶2 𝐶3 𝐶𝑡𝑜𝑡

𝑟1 -12.7 -0.1 3.8e5 1.2e8 7.6 0.6 4.5 12.7
𝑟2 -12.7 -0.1 3.8e5 1.2e8 7.7 0.6 4.5 12.7
𝑟3 -34.2 -1.1 1.1e5 8.4e6 14.4 12.7 7.1 34.2
𝑟4 -20.9 -0.3 1.9e5 2.9e7 11.2 3.4 6.2 20.9

algorithms, were introduced in the quest to develop an En-
ergy & Emissions Management Strategy (EEMS) that does
not become sub-optimal and remains optimal throughout the
operational lifespan of Zero-emission Ships (ZES) powered by
fuel cells and batteries. The implementation of such algorithms
is not only computationally intensive but also cumbersome
since it requires training with a large number of iterations
and significant efforts in hyper-parameter tuning and selection
of appropriate software tools. To overcome these challenges,
a novel modeling approach was devised and implemented
in a Python environment which is much faster than the
MATLAB/Simulink environment.

In the proposed novel modeling approach, a hybrid model
setup achieved by the integration of linearized polarization
curve models with nonlinear aging effects is used for training
reinforcement learning (RL) agents. Furthermore, the valida-
tion of these trained RL agents’ performance is conducted
through the utilization of nonlinear models combined with
nonlinear aging effects, thereby facilitating a comprehensive
assessment of our approach.

Another contribution of this work is the formulation of
rewards based on realistic operational expenditure (OPEX).
In order to render the degradation cost of the fuel cell more
realistic, cost coefficients that vary linearly with different
operational states are introduced, all the while maintaining the

Table XI: Comparison of RFFs with PPO agent.

Train
Test

𝑟1 𝑟2 𝑟3 𝑟4 𝐶1 𝐶2 𝐶3 𝐶𝑡𝑜𝑡

𝑟1 -12.7 -0.1 3.8e5 1.3e8 7.6 2.5 2.6 12.7
𝑟2 -13.0 -0.1 3.6e5 1.1e8 7.6 2.3 3.1 13.0
𝑟3 -18.9 -0.2 2.5e5 6.4e7 9.9 4.7 4.3 18.9
𝑟4 -20.5 -0.3 2.1e5 4.2e7 10.7 4.8 5.1 20.5

Table XII: Comparison of RL algorithms 𝑟1(NC) - OPEX.

Algorithm Fuel cost FC cost Battery cost Total cost
Rule-based $7.55 $2.41 $1.85 $11.81

DDQL $7.34 $0.82 $2.74 $10.88
SAC $7.64 $0.59 $4.48 $12.70
PPO $7.57 $2.51 $2.63 $12.72

average value at a constant level. Additionally, the formulation
of the battery degradation cost is conducted in a unique
manner, informed by a comprehensive literature review, as
explained in Section II-C. For the experimentation, four reward
function formulations representing operational costs, 𝑟1(NC),
𝑟2(NQC), 𝑟3(IC), and 𝑟4(IQC) are explored. Each RL agent is
trained with each RFF and validated with four RFFs.

The 𝑟1(NC) has led to the lowest OPEX among the RFFs
with the DDQL agent followed by 𝑟2(NQC) which resulted
in slightly higher OPEX. The 𝑟3(IC) and 𝑟4(IQC) resulted in
significantly higher OPEX than 𝑟1(NC). Therefore, it can be
concluded that the 𝑟1(NC) and 𝑟2(NQC) are the most suitable
RFFs to train RL agents. Among the three RL algorithms,
the DDQL has led to the lowest OPEX while the SAC and
the PPO have resulted in similar but slightly higher OPEX.
It should be noted that the DDQL can only be implemented
in discrete action space which is not suitable for real-life
applications such as a zero-emission ship, where action space
is continuous. Moreover, the PPO algorithm is an online
policy-based algorithm, therefore, it is not data efficient and
requires significantly higher data and longer training periods
than its off-policy counterparts. Hence it may be concluded
that the SAC algorithm with 𝑟1(NC) is the most computation-
ally efficient algorithm to implement as an EEMS for zero-
emission ships.

The implementation of reinforcement learning (RL) algo-
rithms in real-world hardware poses significant challenges due
to complexities, uncertainties, and associated costs. To address
this, a practical approach involves creating digital twins with
varying fidelity levels. Low-fidelity versions simplify training
and hyperparameter tuning, offering a cost-effective solution,
while high-fidelity versions rigorously validate RL algorithms
in real conditions while maintaining safety through predefined
limits. This approach balances computational, safety, and cost
considerations.

RL algorithms can be easily generalized in automotive ap-
plications, where numerous similar vehicle models are preva-
lent on the roads. In contrast, maritime transportation typically
involves highly customized ships designed for specific use
cases. In such scenarios, the development of digital twins,
replicating the unique characteristics and constraints of the
specific use case, and then using it to train RL algorithms
could be a better strategy. This approach ensures that RL
algorithms are appropriately trained for the specific use case,
and optimize their performance and adaptability. Therefore,
while RL algorithms offer versatile capabilities, their suc-
cessful deployment in maritime transport and similar tailored
applications benefits from a more customized and case-specific
approach. In specific cases like this work, RL implementation
aligns when the scaling and costs of fuel cells and batteries
are proportional, but adjustments are essential when these vary,
or if batteries serve different functions. As a future work, it
would be interesting to try and implement different variants of
these RL-based algorithms. For example, one idea could be to
train the PPO algorithm with entropy and the SAC algorithm
without entropy.
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