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I INTRODUCTION

A Comparison of the State-of-the-Art Reinforcement
Learning Algorithms for Health-Aware Energy &
Emissions Management in Zero-emission Ships

Namireddy Praveen Reddy, Student Member, IEEE, Roger Skjetne, Senior Member, IEEE,
Oliver Stugard Os, Student Member, IEEE, and Dimitrios Papageorgiou, Member, IEEE

Abstract—Zero-emission ships (ZES) have gained interest to
comply with the stringent regulations of international maritime
organization. One way to build ZES is the hybridization of fuel
cells with batteries. Traditionally, for a newly built ship, the
Energy & Emissions Management System (EEMS) is designed
based on the initial condition of the fuel cells and batteries
and used with fixed parameters in future execution. However,
for a fuel cell and battery ZES, the EEMS gradually becomes
sub-optimal since the characteristics of fuel cells and batteries
are continuously changing due to aging and degradation. In this
paper, a reinforcement learning (RL) based EEMS is developed
such that it can learn and adapt continuously to changes in
the fuel cell/battery characteristics. Within RL, different types
of algorithms such as double deep Q learning (DDQL), soft
actor-critic (SAC), and proximal policy optimization (PPO) are
implemented. The results are benchmarked against those of a
typical rule-based EEMS. Each RL algorithm is trained with
four reward function formulations; negative cost (r1), negative
quadratic cost (r;), inverse cost (r3), and inverse quadratic
cost (r4). The results demonstrate that health-aware EEMS can
minimize fuel consumption and component degradation costs. r|
has led to the lowest operational expenses (OPEX) followed by 7,
while r3 and r4 have high OPEX. Among the three algorithms,
the DDQL led to the lowest reward followed by the SAC and then
the PPO, when trained with r; and r;.

Index Terms—Energy & emissions management strategy, Hy-
brid power system, Intelligent control, Reinforcement learning,
Zero-emission ship.

I. INTRODUCTION

ERO-emission ships (ZES) have generated considerable

research and development interest in recent years. A main
driver for ship manufacturers and owners for investigating
potentially low- or preferably zero-emission solutions, is to
comply with the International Maritime Organization’s (IMO)
regulations for designated emission-controlled areas (ECAs)
[1]. ZES is defined as a ship that does not produce emissions
of greenhouse gases such as carbon dioxide (CO»), methane
(CH4), and nitrous oxide (N,0O) according to Norwegian
Maritime Authority (NMA) [2]. The schematics in Figure [I]
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adopted from [3]], show a concept of ZES powered by fuel cells
and batteries, where, Prc.rer is the fuel cell power reference,
Pp.es is the battery power reference, Vrc is the fuel cell
voltage, Vp is the battery voltage, Vpc is the DC bus voltage,
ircret 18 the fuel cell current reference, ip.rf iS the battery
current reference, irc is the fuel cell current, ip is the battery
current, upc is the control reference for the fuel cell DC/DC
unidirectional converter, and upg is the control reference for
the battery DC/DC bidirectional converter. The control system
of a ZES is abstracted into several autonomy layers, where
the Energy and Emissions Management System (EEMS) will
include algorithms for optimal guidance of the power plant in
the middle layer.

Fuel cells and batteries have different features and oper-
ational challenges, which directly impact their lifetime and
reliability, and their characteristics are continuously changing
due to aging and degradation. Therefore, the loading of a fuel
cell hybrid power system (FCHPS) should be optimized taking
into account both the state of health and the operating expenses
(OPEX). This is addressed in the executive control layer by
the EEMS.
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Figure 1: A schematic of ZES [3].

Much of the existing literature considers minimizing fuel
consumption as the main objective of the EEMS. However, the
efficiency curve of the fuel cell tends to be flatter compared
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I INTRODUCTION

to that of the internal combustion engine, and as such, its
operating efficiency is much less dependent on active decisions
made by the EEMS. On the other hand, high cost and low
lifetime are the main concerns for fuel cells, hindering their
widespread commercialization [4]. The battery’s lifetime is
mainly dependent on how it is operated. Batteries in hybrid
electric vehicles typically last several years, while fuel cells
last several thousand hours of operation. This depends on
many factors, e.g., how the fuel cell and battery are operated
as discussed in [5], [6]. Hence, consideration of the lifetime
of fuel cells and batteries must be included in the design of
the EEMS. Many studies are reported on the development of
EEMS methods for transport applications, such as [7]], [8] on
automotive applications and [9]-[12] on ship power systems
(SPS).

The EEMS algorithms can be classified as rule-based and
optimization-based methods [13], [8]. The rule-based strate-
gies are easy to understand and implement but are typically
not adaptive to prevailing sailing conditions and, thus, may
give sub-optimal solutions [14]. Optimization-based energy
& emissions management strategies are further divided into
offline and online methods. Though there are many offline
optimization methods, dynamic programming (DP) is widely
used [[8]] since it provides global optimal solutions. However,
the prerequisite for DP optimization is that the load profile
should be known in advance, which implies large uncertainties
in shipping applications. Also, dynamic programming suffers
from the infamous ‘Curse of Dimensionality’ [15], [16].
Typical online optimization methods include equivalent con-
sumption minimization strategy (ECMS) and model predictive
control (MPC). The equivalence factor in ECMS requires
tuning for real-time sailing conditions to find their optimal
values in a trial-and-error manner, which makes ECMS hard
to implement [9], [[17]. The performance of MPC depends on
the prediction accuracy and horizon length of the predicted
sailing profile [18], [[19].

Many of the existing EEMS methods are based on classical
control methods, which require tedious system identification,
construction of detailed mathematical models, and significant
effort in developing control synthesis. In addition, classical
control methods are not adaptive to real-time conditions and
may give sub-optimal solutions for new operating profiles
or system characteristics. In the quest to find a remedy for
these problems, learning-based methods are gaining interest
[20]. Within machine learning, reinforcement learning (RL)
has attracted attention in recent years mainly because of its
adaptability and model-free implementation. Though RL as a
concept was proposed in the early 1980s, its potential to solve
real world problems has been demonstrated through several
pioneering works by Google’s DeepMind [21[]-[25]. The RL-
based controller continuously optimizes the control policy for
the evolving system and sailing conditions. Many advantages
of RL can be realized in applications where the system model
is unknown, not accurate, or continuously changing. A relevant
application is FCHPS, where the characteristics of battery
packs keep changing as the battery packs go through numerous
charging/discharging cycles [26]], the characteristics of a fuel
cell stack keep changing due to aging and degradation [6],

and shiploads are uncertain and difficult to predict as they
depend on many random parameters such as weather condi-
tions, ocean currents, and other external factors. These system
uncertainties can be mitigated by an RL-based controller that
may continuously learn the optimal control policy for the
changing component characteristics and uncertain environment
and loads [27].

Conventional RL-based energy management was proposed
in [28]] for optimizing the fuel economy of a hybrid electric
tracked vehicle; the authors compared the fuel consumption
obtained from RL with rule-based and stochastic dynamic pro-
gramming strategies to prove the optimality. Conventional RL
was also employed for online energy management to minimize
the total energy loss of the hybrid energy storage system in a
plug-in hybrid electric vehicle [29]]; the results were compared
with a rule-based strategy and showed that RL could lessen
the total energy loss and improve the system efficiency under
varying conditions. Going one step further, the authors in [30]
used two novel velocity predictors together with conventional
RL for predictive energy management of a parallel HEV, and
the results of predictive energy management were compared
with non-predictive and dynamic programming to validate the
optimality. To overcome the high computational requirements
of conventional RL, a deep reinforcement learning framework
was implemented by the authors in [16] for energy man-
agement to optimize the fuel economy in a hybrid electric
bus by incorporating simulated terrain information. Deep
reinforcement learning was also implemented by the authors
in [31] for energy management with the aim of minimizing
fuel consumption in a hybrid electric bus by incorporating
traffic information. An energy management strategy, based on
the double deep Q-learning (DDQL) algorithm, was proposed
by the authors in [32] for optimizing fuel consumption of a
hybrid electric tracked vehicle; the results showed that DDQL
has better performance than conventional deep reinforcement
learning in terms of convergence during the training process
and also in optimizing the fuel consumption. Khalatbarisoltani
et al. [33]] integrated model predictive control with federated
reinforcement learning for decentralized energy management
of fuel cell vehicles; the proposed method performs better than
the centralized and fixed-horizon MPC approaches in terms of
its precision, convergence speed, and scalability.

Among many RL algorithms proposed in the existing liter-
ature, tabular Q-learning (TQL) and deep Q-learning (DQL)
algorithms are some of the most popular RL algorithms. TQL
suffers from the “curse of dimensionality” and is feasible
for only low-dimension state and action spaces [27]]. The
difference between TQL and DQL is the deep neural network
(DNN) that approximates the Q-value. Traditional DQL has
several issues such as overoptimism and instability during
training, both caused by the fact that the same DNN is
used for the selection and evaluation of control action [21]].
To overcome these issues, Hasselt er al. [24] proposed the
DDQL. Additionally, many state-of-the-art RL algorithms such
as the soft actor-critic (SAC) by [34] and the proximal policy
optimization (PPO) by [35]], are proposed recently. Although
recent research has primarily explored reinforcement learning
(RL) methods in transportation applications, a comprehensive
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comparison of state-of-the-art RL algorithms, such as DDQL,
SAC, and PPO, particularly within the context of marine
transport is missing, which highlights a significant research
gap. Implementing these RL algorithms in real-life scenarios
with continuous state-action spaces is computationally inten-
sive and complex, necessitating extensive iterations for training
and hyperparameter tuning. This calls for the development of
computationally efficient yet accurate models for fuel cells
and batteries that can effectively capture aging and degra-
dation effects—an area of active research. Furthermore, the
performance of reinforcement learning algorithms primarily
depends on the formulation of the reward functions. To the
best of the authors’ knowledge, investigations of different ways
of formulating reward functions using the realistic operational
cost function have been missing in the literature.

The contributions of this paper, which arise from the quest
to bridge these critical research gaps in the existing literature,
can be summarised as:

1) Implementation of RL algorithms, including DDQL,
SAC, and PPO, to develop an EEMS that continuously
adapts its policies to accommodate the evolving char-
acteristics of fuel cells and batteries, considering the
impact of degradation and uncertain shiploads. This
contribution extends the applicability of RL methods to
the maritime transportation domain, offering dynamic
and efficient solutions to energy management challenges.

2) To facilitate the computationally efficient training of
RL algorithms, a novel hybrid model is proposed. This
model combines linearized polarization curve models
whose parameters dynamically adjust in response to
nonlinear aging and degradation effects. However, the
performance of trained RL agents is validated with
nonlinear models combined with nonlinear aging and
degradation effects. This approach represents a step
in the ease of implementing RL methods in maritime
transportation.

3) A realistic cost function is formulated to represent the
operational expenses of Fuel Cell and Battery Hybrid
Power Systems (FCHPS), including a unique formula-
tion for battery degradation cost tailored to maritime
transport applications. The paper also explores and
experiments with four alternatives for formulating the
reward function, focusing on operational cost repre-
sentation. This contribution ensures a comprehensive
understanding of the cost implications associated with
various operational states, enhancing the realism of RL
algorithms in maritime transportation scenarios.

These contributions advance the implementation of state-of-
the-art RL algorithms in addressing energy management chal-
lenges, offering practical solutions and insights. By addressing
critical gaps in RL algorithm implementation, models for
energy system components, and cost function formulation, this
research possesses implications for both practical applications
and theoretical understanding.

II. REWARD FUNCTION FORMULATION (RFF)

The performance of RL algorithms strongly depends on how
the reward function is formulated. In this work, the reward is

formulated based on the total operational expenses (OPEX)
including the costs of fuel and component degradation. In this
section, the overall goal of minimizing the cost of OPEX of
the FCHPS denoted as Cypex, is covered. C,pex is given by

Copex = Cfuel + CFC,deg + Cbat,deg’ (D

where Cpruer > 0 is the cost of fuel, Crc,gee = 0 and
Chat,deg = 0 are the costs due to degradation of the fuel
cell (FC) and battery, respectively. These costs are elaborated
in the subsections below; Cre; and Cpar geg are formulations
proposed in this paper while Crc geq is based on Fletcher er
al. [4]. There are several ways to formulate the reward function
using the OPEX (); four different ways will be explored: r;
is the negative cost (NC),

ry = _Copex (2
rp is the negative quadratic cost (NQC),
r = _sz)pex (3)

r3 is the inverse cost (IC),
1

r3= ——— ()]
3 Copex +€

r4 is the inverse quadratic cost (IQC),
3 1
C,Z,,,ex +&

r4 &)
where 0 < & << 1 is added to the denominator to ensure
that errors are not encountered when C, .. approaches zero
during the simulation.

A. Fuel cost

A fuel cell uses hydrogen as fuel to generate power to supply
the power loads and to charge the battery. The calculation
of fuel cost consists of three components: the fuel consumed
by the FC (Crc,fuer) [9, the equivalent consumption to
supply the battery power losses (Cpqr.1055), and the equivalent
consumption to supply the change in SOC of the battery
(CAS()C):

Cfuel = CFC,fuel + Cbat,loss + CAsoc (6)
M
Crc. fuet = Cr, ¥ ooz Ircdt (7
-
Hj,

ons

N My, Roail},,

Coar.loss = CH, F 1000  Vgc v
N Mp, (SOCinis = SOC
Casoc = Ch, A 1006 : . Vrc e )

Here, Cp, is the price of fuel per kg in [$/kg], set to 6 $/kg
[36], H>,,,, is the total consumed hydrogen mass in [kg], N
is the number of cells in the stack, F is the Faraday constant
in [C/mol], My, is the molar mass of hydrogen in [g/mol],
Irc is the FC current in [A], df is the evaluation time step,
Ry, is the battery internal resistance in [Q2], I, is the battery
current in [A], Vgc is the fuel cell voltage in [V], SOC;y;; and
SOC,.,q are the initial and final states of charge of the battery,
respectively, expressed as a fraction of nominal capacity, and
Onom 1s the nominal battery capacity in [Ws].
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II REWARD FUNCTION FORMULATION (RFF)

B. Fuel cell cost

A major portion of the operating cost in FCHPS is due
to the degradation of the fuel cell. Computing the degradation
cost precisely using a mathematical model of multiple complex
chemical phenomena is computationally inefficient. Therefore,
avoiding a high-fidelity model, a simplified approach based on
[4]] is applied to calculate the degradation cost. The EMS can
optimize the degradation by taking the following operational
actions as explained in [4]]:

« FC Low power operation (FC-LPQO): Minimize running
the fuel cell at low current (power) to limit reduction
of the catalyst layer due to the formation of oxides.
Operation of the fuel cell at lower power than a lower limit
of approximately 10 % of the rated capacity contributes
to degradation. Hence, the cost factor Dy, is defined by

0.1Ppmax—Prc dt
>

0.1Pax if PFC < O.IPmax

D Qlow
low =
0, otherwise,

(10)

where «;,, is the degradation rate for the low-power
operation condition.

« FC High power operation (FC-HPO): Minimize run-
ning the fuel cell at a high current (power) to prevent
reactant starvation that can lead to reduction of the
catalyst layer. Moreover, the excessive temperatures due
to high current can lead to the damage of cathode support
and degradation of the fuel cell membrane. Operating
the fuel cell at higher power than an upper limit of
90 % of the rated capacity contributes to degradation.
Correspondingly, the cost factor D ;g is defined as

Prc—=0.9Pmnax dt
9

0P if Prc > 0.9P0x

D Xhigh
high = .
0, otherwise,

Y

where apign is the degradation rate for the high power
operation condition.

« Fuel cell transients (FC-T): Limit the rate of change of
the fuel cell power and minimize the transient loads to
maintain a stable temperature and humidity in the cell.
This also prevents local fuel starvation [37]. In this work,
the maximum rate of change in fuel cell power is limited
to 10 % of the rated capacity per second based on the
work by Zhang et al. [38]. The degradation cost factor
due to high power transients D;.4,s is correspondingly
defined by

dPFC

Dirans = B dr

dr = B|dPrcl, 12)

where [ is the degradation rate due to high power
transients.

« Startup/shutdown cycles: Minimize the number of start-
up/shut-down cycles to prevent the nonuniform distribu-
tion of fuel and thereby prevent localized starvation. The
FC is assumed to be running all the time as the aim is to
minimize OPEX during a sailing trip, thus avoiding the
cost of startup/shutdown. The degradation cost factor due

to start-up/shut-down cycles Dcycres is thus neglected,
that is,

Dcycles =0. (13)

The total fuel cell degradation cost Crc geg becomes
CFC,deg =Crc - (Dl()w + Dhigh + Ditrans + Dcycles)v (14)

where Cpc is the acquisition cost of the fuel cell. The
degradation parameters @jow, @nigh, and § are summarized in
Table [ [4]; these values are based on laboratory experiments
(391, [40]. @jow and a@pien were applied as constant values
in [4]. To make the cost more realistic, @jon and @p;gn are
applied as linearly varying variables while keeping the average
value equal to the desired constant value. The degradation rates
and costs are scaled to suit the size of the fuel cell stack. The
nominal FC voltage is 629 V, the fuel cell has 900 cells, the
end of life (EOL) is considered when the open circuit voltage
degrades to 10 % of the rated voltage, and the FC acquisition
cost per kW is set to 75 $ [41].

Table I: FC degradation rates and costs [4].

Parameter | Operating condition Deg. rate Deg. cost
Qow High power 20.34 uV/h 1.57 $/h
Qnigh Low power 23.48 uV/h 1.81 $/h

B Transient loading 0.0441 puVikw | 0.0034 $/kW

C. Battery cost

Similar to the fuel cell’s degradation, the battery’s degrada-
tion is a complex electro-chemical phenomenon. Though there
are many factors that influence battery aging and degradation
as shown in Figure [2] adopted from [42], the two main factors
are: 1) cyclic aging, and 2) calendar aging [5[]. Calendar
aging is due to inherent battery aging and mainly depends
on time, therefore, it is not considered in this work. The main
parameters determining the cyclic aging of a battery are the
state-of-charge (SOC), the depth-of-discharge (DOD), and the
C-rate; see Figure [2| for details.
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Figure 2: Ishikawa diagram of the various aging factors leading
to Lithium-ion battery degradation [42].

« State-of-charge: Typically, the battery SOC is con-
strained within SOC € [20%, 80%] to prolong the battery
lifetime. The upper limit SOC,,,,x = 80% is necessary to
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III SHIP POWER SYSTEM MODEL

avoid overcharging and the lower limit SOC,,;;, = 20% is
necessary to avoid deep discharging; both overcharging
and deep-discharging cause significantly higher degrada-
tion. The cost factor Dgoc is defined as

Dsoc =7+ |SOCyer — SOC(1)| dt, (15)

where y € [0, ) is the degradation rate accounting for
the SOC limits (overcharging and deep discharging) and
SOCyef = 50%.

« Depth-of-discharge: The DOD consists of two parame-
ters, DOD charge and DOD gischarge, Which define how
much the battery has charged or discharged without
interruption. Koller et al. suggested a model for
battery degradation due to DOD. Xu et al. argued
that the models used in the literature did not give an
adequate representation of battery degradation. Wang
et al. [45]] performed tests on LiFePO, battery under
different operating conditions such as temperature, DOD,
and C-rate in order to find a function that estimated the
battery degradation. They also conducted experiments on
cyclic aging until the EOL was reached, and then switched
the degradation function to Ah-throughput (Ah,y). After
several experiments, the capacity loss estimate was pro-

posed in [45] is

-E, + BC,
Qloss = Aexp —a_—rae

RT

] (Ahp)®,  (16)

where A is a pre-exponential factor, E, is the activation
energy of the LiFePO, battery examined, B is an expo-
nential factor weighting the C-rate properly, z is a factor
to emphasize the effect of the Ah-throughput, R is the
gas constant, and T is the battery cell temperature.

o C-rate: In an attempt to quantify the effect from DOD
and C-rate on battery degradation, Chen et al. [46] used
(T6) to model the capacity loss in the battery as a function
of DOD and C-rate. First, Ah;;, could be calculated by

Ahin = Qnom - DOD - N A7)

where N is the number of cycles. Using (I7), the number
of cycles the battery can sustain before its EOL, with a
given DOD and C-rate, is quantified by rearranging and

combining (I6) and (17).

Qlosx l
-Eq+BCrate

Aol )

where Qj,ss is the battery capacity loss allowed before
its EOL and Q,,, is the nominal capacity of battery. To
get to @), []Z_B[] assumed a constant C-rate; however,
it would rarely be the case for a real operation where a
varying power demand will cause the C-rate to fluctuate.
Thus, the average C-rate during a given charge/discharge
cycle is used in the above equation. Furthermore, the pre-
exponential factor A varies to some degree with different
C-rates. So, A is set equal to the C-rate corresponding
to 2 C, which is considered the nominal C-rate for the
battery in marine transport applications. The values of
the parameters used in Equation (I8) are based on [43],

nl—

1

N = ,
Qnam -DOD

(18)

[46] and given in Table [[] Figure 3] is based on Eqn. [T§]
and shows that the number of cycles (N) decreases with
the increase in C-rate as well as an increase in DOD. The
cost of half a charge/discharge cycle, given an average C-
rate, is then calculated by dividing by 2N, that is,

1
Dpop.crate = N (19)
The total cost of running the battery becomes
Chat,deg = Cbar - (Dsoc + Dpop,crate) (20)
where Cp,; is the price of the lithium-ion battery.
18.5

C-rate

DOD

Figure 3: Effect of DOD and C-rate on the number of
charging/discharging cycles.

Table II: Li-ion battery parameters , .

Parameter Description Value

Qloss Maximum allowed capacity loss 20 %
E, Activation energy 31.500 J/mol
A Pre-exponential factor 19.300 kWh
B Exponential effect of C,-ate 370.3 J/(mol.A)
z Power law factor 0.55
R The gas constant 8.314 J/(K - mol)
T Battery cell temperature 298.15 K

III. Surp PowER SYSTEM MODEL

The FCHPS has several components for power generation,
distribution, and power consumption that can be mathemat-
ically represented by simple to complex models depending
on the intended use. One of the objectives of this work is
to train the RL algorithms to minimize fuel consumption
and degradation of components, which requires generating a
sufficient amount of data. For this purpose, a simple model
of an FCHPS that includes degradation effects is necessary,
whose modeling aspects are covered in this section. In this
work, reduced models of sufficient fidelity of the fuel cell
and battery are proposed. In the proposed setup, linearized
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polarization curve models combined with nonlinear aging
effects are used for training the RL agents, whereas nonlinear
models are used for validating the performance of the trained
RL agents.

In this study, a passenger ferry, which typically encounters
propulsion loads of around 100 kW during cruising powered
by a 120 kW fuel cell and a 50 kWh Li-ion battery is chosen.
The component selection and sizing are based on the existing
literature works of Bassam et al. [47] and Sulaiman et al.
[8]] among others in similar applications. It’'s worth noting
that while there is room for optimizing component sizing, this
particular aspect is not the primary focus of this research.

A. Fuel cell model

1) Nonlinear model

A generic nonlinear fuel cell model was proposed in [48]],
based on the manufacturer’s data sheet; the proposed model
is shown in Figure f] which depicts a fuel cell stack as
a controlled voltage source (E) in series with an internal
resistance (R,p;m). The output FC power is calculated by

'Eoc )
tFC
Rohm |
—>
lFC
—E—-+() Vo
O

Figure 4: A generic fuel cell model [48].

Prc =ircVrc. (21)

The controlled voltage source of the fuel cell is [48], [49]

Activation loss

E=Eoc— NrcArcln (”:—OC) , (22)

where Epc is the open circuit voltage (OCV), Npc is the
number of cells, Arc is the Tafel slope, irc is the FC current,
and iy is the exchange current. The OCV is obtained by the
Nernst equation, which is affected by the temperature, partial
pressures of hydrogen and air, as well as their concentrations.

The remaining values are found in [48] as follows:

(Vl - Vmax)(imax - 1) - (Vl - Vmin)(imin - 1)

NrcAFc =
Fefre In (imin)(imax - 1) —In (imax)(imin - 1)
(23)
Rohm :Vl - Vmax _l IYFiAlFC In (imin) (24)
min
Vi-E Ronm
io = exp |LL—Z0C T Rohm ) (25)

NA

R,nm is the internal fuel cell resistance, V; is the output voltage
at 1 A, Viom and i,,, are the voltage and the current at
the nominal operation point, respectively and V,;, and i,
are the voltage and the current at the maximum power point,
respectively. The polarization curve in Figure [5] shows how the
output voltage varies with the current and describes the fuel
cell characteristics. The values can be found by examining four
points on the polarization curve as described by Motapon et
al. [48]]. The FC output voltage, V¢, can then be calculated
as

Ohmic loss
—

Vrc = E - Ropmirc - (26)

Figure [5] shows a generic nonlinear polarization curve, which
consists of the activation, ohmic, and mass transport regions.
The output voltage varies nonlinearly in activation and mass
transport regions, whereas it varies approximately linearly in
the ohmic region. The regional differences come from internal
losses that originate from activation losses, ohmic losses, and
concentration losses.

) A Mass
Activation Ohmic region transport
region (Operating region) region
1 4 Y_H

1 1
Eoch | |
1 1
1 1
Vmaxt - - :
1

Vmin

0 Imin Imax

Figure 5: Nonlinear polarization curve of the fuel cell.

2) Linear model

A simplified version is obtained by piecewise linearization
of the generic polarization curve, assuming that the fuel cell
does not operate in the activation region and mass transport
region (see Figure [6). The consequence of this assumption is
that the fuel cell current is constrained by a minimum value
(Inin) and a maximum value (/,,,,). This is a reasonable
assumption, as the efficiency drops drastically and degradation
rates are very high in the activation and mass transport regions.
The linearization parameters are
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Activation Ohmic region
region (Operating region)
—— - \

Eoc

Vmax} - - -

Vmint - - -

0 Imin Imax

Figure 6: Linear approximation of fuel cell’s polarization
curve.

Kyer :ZM 27)
Imin
v — Vi
kopt - max mln’ (28)
Imax - Imin

and the voltage and power becomes

Vie = Vinax — kopt.(iFC = Lpin), if iFCj > Lin 29)
Eoc — kactirc, otherwise
Prc =ircVFc. (30)

The parameters used for the linearized polarization curve
based on [48] are given in Table [[TI}

Table III: Fuel cell parameters [48]].

Parameter Description Value
Eoc Open circuit voltage 900 V
Vinax Voltage at start of Ohmic region | 800 V
Vinin Voltage at end of Ohmic region 430 V
Lyin Current at start of Ohmic region 20 A
Lyax Current at end of Ohmic region 280 A

To model the internal FC delay, the rate of change in current
is constrained to 10 % of I, per second. This constraint
encapsulates the limitations in the dynamic capabilities of
the fuel cell. The fuel supply system has slow dynamics due
to the mechanical valves, which cause fuel starvation during
high transients in the fuel cell current. The consequence is
accelerated degradation of the fuel cell. Therefore, the rate
of change in the current should be limited so that the model
accounts for the slow dynamics of the fuel cell, that is,

|Alrc| < 0.1 IFC,muxdt- 31D
3) Aging effects
Fuel cell degradation is reflected physically in the fuel cell
voltage. A 10 % loss of fuel cell voltage under rated current
is considered the end of life (EOL) [40]. Computing the
fuel cell voltage degradation using physics-based models is
cumbersome. Therefore, empirical models developed based on

experimental data in [39], [40] are used in this work. The fuel
cell voltage degradation (Vrc,qeg) is computed by

(32)
(33)

VFC,deg = Dlow + Dhigh + Dtransients + Dcycles
Eoc(i+1)=Eoc(i) = Vrc,deg-

B. Battery Model

1) Nonlinear model

A generic battery dynamic model based on [50]], [51] is
shown in Figure [/} For the lithium-ion battery type, the model
uses the following equations.
Discharge model (i* > 0):

f(it,i*,iy=Ey—K Quom _je_ g_LQnom_j; g p-bit
Onom — it Onom — it
(34)
Charge model (i* < 0):
fit,i*,i) = Eg— K - Onom__+ _ g_Qrom —it + Ae” B!
it+0.1050m Qnom — it
(35)

where battery voltage E is obtained by the function f(it,i*,i),
i is the battery current, i* is the low-frequency battery current
dynamics, it is the extracted capacity, Ey is battery OCV, Qom
is the nominal battery capacity, K is the polarization constant,
A is the exponential voltage, and B is the exponential capacity.

v
Ebataen = f2(it, 1%, 1)
Ebat,ch = f1(’t; i*; I)

Controlled
voltage
source

Figure 7: A generic model of Li-ion battery [50].

A Li-ion battery’s characteristics can be represented using a
polarization curve similar to that of a fuel cell. The nonlinear
polarization curve is shown in Figure [§] which is based on the
dynamic battery model developed by Tremblay et al. [50]. The
polarization curve is visualized by plotting the output voltage
as a function of capacity, which shows how the output voltage
varies with capacity or SOC. In the exponential zone, the
battery voltage varies exponentially with the SOC. The battery
is usually operated with predetermined SOC limits, typically
Omin = 20%, Qmax = 80%. In the operating zone, the voltage
is varied approximately in a linear manner. This is where the
battery thrives and has the best operating range to prolong
its life. When the SOC falls below Q,;,, the battery voltage
decreases exponentially.
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Exponential Operating
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0
Qnom Qmax

Qmin 0

Figure 8: Nonlinear polarization curve of Li-ion battery.

2) Linear model

The polarization curve can be linearized as shown in Fig-
ure [0] with the assumption that the battery SOC is constrained
within SOC € [20%, 80%]. This is considered fair, as batteries
should not be operated at very high or very low SOC due to
unwanted battery degradation. The relationship between the
SOC and the open circuit voltage, Epc, is found from the
linearized battery characteristic curve.

Operating zone
I

Vmaxt - - -

Vmin

L
Qmin

Qmax

Figure 9: Linearized polarization curve of Li-ion battery.

Vmux - Vmin
Qmax - Qmin (Q len)

The battery output voltage is calculated by compensating for
the internal resistance, that is

Eoc = Vinax — (36)

Vbar = Eoc — Rintipar- (37
and the output power is
Ppar = Vbarivar- (38)

The variation in SOC is based on a simple calculation of how
much current enters or leaves the battery. The resulting model
for change in capacity Q is

0(1) = 0(0) - /O ipardt. (39)

The capacity Q of the battery is given in Ah. As a result,
the SOC is updated in the following way at each time step of
model simulation,

i(r)de
3600Q 0m

The relevant parameters for the battery model based on [50],
[51]] used in training RL algorithms are given in Table

SOC(t +dt) = SOC(t) — (40)

Table IV: Battery parameters [S0], [51].

Parameter Description Value
Onom Nominal capacity 50 kWh
Omax Maximal battery capacity 40 kWh
Omin Minimal battery capacity 10 kWh
Vinax Voltage at end of exponential zone 545V
Vinin Voltage at end of nominal zone 430 V

SOC(0) Initial SOC Ievel 50 %

3) Aging effects

Battery degradation is reflected physically in battery capac-
ity and internal resistance. Typically a 20% loss of battery
capacity is considered the end of life. Battery capacity degra-
dation Qp.; is computed based on [45] [46], according to

Qioss = QoL — QFoL 41)
Queg = L (42)
Opar (i +1) = Qpar (i) = Qdegs (43)

where Qpor and Qpopy are the battery capacities at the
beginning and end of life, respectively.

C. Other components

1) Fuel cell converter

A unidirectional boost DC-DC converter interfaces the fuel
cell stack with the DC bus. A simple model of a fuel cell
converter from [9] is used with the assumption that the primary
control (of the power electronic converter) works as intended.
This assumption is reasonable as the goal is to use the model
in the high-level controller, i.e., the EEMS. The model is

PFC,buS = PFC’]FC,conv (44)
PFC,bux
IFC,bus = IFCkr]FC,conv = V— (45)
DC
Vic
k:=——, (46)
Vbe

where Prc pus and Irc pus are the FC power and FC current
at DC bus, respectively, nrc,conv 15 the efficiency of fuel cell
converter, and Vpc is the DC bus voltage.

2) Battery converter

A bi-directional buck-boost converter is used to interface
the battery with the DC bus. A simple model from [9] is used
to represent the battery converter

Pparbb,acn  Discharging mode

P, s = 1 4
bat,bus nl[’z;af’ Charging mode 47)

Ibat k’]bb,dch Discharging mode
Ipark

bb,ch

Ibat,bus = (48)

Charging mode,
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where k = :,/;’)‘g, Ppat,bus and Ipqe pus are the battery power

and current at the DC bus, respectively. npp.cn and 5pp ach
are the efficiencies of the buck-boost converter during charging
and discharging, respectively.

3) Shiploads

The shiploads are represented by the load power profile of
a typical passenger ferry based on [52], which is shown in
Figure [I0] The modes of operation in a typical passenger ship
load profile can be classified as undocking, sailing (crossing),
harbor maneuvering, and docking.

Sailing (Crossing)

== | 0ad power

100 A

80

60 -

40 T

Load power (kW)

Docking

20 A

0 100 200 300 400 500 600
Time (s)

Figure 10: Load power profile of a typical passenger ferry [52].

IV. RL-BASED ENERGY & EMissToNsS MANAGEMENT
STRATEGIES

In this section, three state-of-the-art RL algorithms imple-
mented for EEMS: the DDQL, the SAC, and the PPO are
elaborated. The aim of RL is to learn optimal policies by con-
tinuously interacting with a potentially uncertain environment
while maximizing cumulative reward in sequential decision
problems. Figure [TT] shows the workflow of a typical RL-based
EEMS in an SPS. For a given current state (sx), the RL-based
EEMS chooses the control action (ax) based on a policy that
seeks optimality. When ay is executed, the SPS transitions
from the current state sy to the next state si,1. Based on sy, ag,
and s, the reward (r¢) is computed, which is used to update
the policy of the RL-based EEMS. Table [V]shows a qualitative

Current
State (sy)

Next
state (Sg+1)

RL based
EEMS

A

v
Control R?W; =
action (ay) fic
A

Ship power | _ _
system

Figure 11: Generic RL algorithm.

ceceeeeed

comparison of the DDQL, the SAC, and the PPO methods,
which are implemented in this work. The action space in the
DDQL is discrete, which limits the action-space dimension.
Both SAC and PPO can work on a continuous state-action

space, which makes them feasible for real-world applications
such as the FCHPS. SAC and PPO use the advantage factor
as the main operator.

Table V: Comparison of RL algorithms.

Algorithm Policy Action-space | State-space | Operator
DDQL Off-policy Discrete Continuous Q-value

SAC Off-policy Continuous Continuous | Advantage

PPO On-policy Continuous Continuous | Advantage

A. Double Deep Q Learning (DDQL) Algorithm

The schematic for the DDQL algorithm proposed by Hasselt
et al. [24]], can be observed in Figure [I2] accompanied by the
corresponding pseudo code available in algorithm [T} The main
idea of the DDQL algorithm [T] is to reduce the issue of over-
optimism in the DQL by using two identical DNNs denoted
as critic network and target critic network for action selection
and action evaluation, respectively. As shown in Figure[I2] the
critic network is trained at every iteration, using transitions
(Sksak, Tk, Sk+1) stored in experience buffer [21]. Whereas the
target critic network copies the parameters of the critic network
periodically. As the aim of the critic network is to predict the
Q-value, the Bellman temporal difference (TD) error

O(sk,ax,0) ,

predicted Q value

TDerror = 1 + 7y max, Q(Sk+l7aa 9) -

target Q value

(49)
should be minimized. Here, y is the discount factor, 6 repre-
sents the parameters of the critic network, § represents the
parameters of the target critic network, Q(sgs1,a,0) is the
maximum target Q value that can be obtained in the state
Sk+1, and Q(sg, ag, 0) is the Q value for s; and ay. The loss
function that the critic network aims to minimize is the square
of the TD error, that is,

Li(6) = [TDerror]*. (50)

Minimizing Ly () is achieved by performing gradient descent
with respect to the parameters 6 of the critic network. The
gradient of the loss with respect to the parameters 6 becomes
VoL (0) = =2TD¢rrorVoQ (s, ag, 0), giving the update rule
of the critic network

Or+1 =0 + A0
A8 =@ (TDerror) VoO sk, a, 0))

where « is the learning rate.
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Figure 12: The framework of DDQL-based EEMS for the FCHPS.

1 Hyper-parameters: discount factor (y), learning rate
(@), greedy policy (e&Ag), mini batch size (n)
Initialize experience buffer D to capacity N
Initialize critic network Q with random parameters 6
4 Initialize target critic network O with parameters
0=0

w N

5 for episode(m) = 1:M do

6 for iteration(k) = 1:K do

7 Choose action

_{Choose random action with probability &

(@)= Otherwise max, Q(sy,a; 0)

8 Execute ay, observe si.1, and compute 7

9 Store transitions (sg, dg, Sk+1, k) in D

10 Sample random mini-batch of transitions
(Sk»> Ak» Sk+1»> k) from D

11 Update critic network: 6 <« 6 — VgL (6)

12 Update target critic network: After every C
iterations copy the parameters
b=0=0=0

13 end

14 end

Algorithm 1: The DDQL Algorithm.

B. Soft Actor-Critic (SAC) Algorithm

The SAC algorithm is one of the recent breakthroughs
within the field of reinforcement learning, proposed by
Haarnoja et al. [34]. It gained reputation as one of
the most stable off-policy methods for continuous control
problems. Its three main features are:

1) SAC has an actor-critic architecture with separate actor-
and critic networks.

2) The actor is called stochastic actor as it is trained to
maximize expected reward and entropy simultaneously,
i.e., to succeed at the task while acting as randomly as
possible. Entropy is a measure of the randomness of the
actions. In the current form of the algorithm, Haarnoja et
al. [34] have automated the calculation of the trade-off
between maximizing the expected reward and entropy,
essentially solving the problem of exploration versus
exploitation dilemma. Increasing entropy leads to more
exploration, which is needed to prevent the policy from
converging to a local optimum.

3) SAC has an off-policy formulation that enables the
reuse of previously collected data, making it more data-
efficient compared with the on-policy counterparts such
as PPO and SQL, where collecting a large number of
data samples at every time step is necessary.

Architectures of the actor- and critic-networks used in the SAC
algorithm are shown in Figure [I3] and Figure [T4] respectively,
where p is the mean and o is the standard deviation of
action-space’s probability distribution. The actor network takes
the state of the FCHPS as input and outputs the probability
distribution of action space. The critic network takes the state-
action pair as input and outputs the state-action value, which
represents the expected cumulative reward from taking action
a in state s. The SAC algorithm learns a stochastic policy,
which aims to maximize both the reward and the entropy of
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the policy. The objective function to be maximized is

T
J(m) = Y Bioayp, [r(s,a) + aH(x(- [ )], (51)
t=0
where H(nw(- | s)) denotes the entropy of the policy n in
state 5. In Eqn. [51] the entropy and the sum of expected
discounted rewards, given a probability distribution for visiting
each state, p,, should be maximized in the long term. The
corresponding pseudo code is given in algorithm [2] where
Ao, Az, A are the soft update coefficients for critic network,
actor network, and temperature parameter (), respectively. A
higher soft update coefficient makes the update more slowly,
while a lower value speeds up the update, and it’s typically
set to a value between 0 and 1. The soft update coefficient
influences the convergence speed and stability of the critic
networks, affects the exploration-exploitation trade-off and the
rate of policy changes, and leads to deterministic or stochastic
policy. In this work, all soft update coefficients are set to 0.5.

1 Hyper-parameters: discount factor (y), learning rate
(@), mini batch size (n)
2 Initialize experience buffer D to capacity N
3 Initialize actor network m with random parameters ¢
4 Initialize critic networks Q; with random parameters
0i
s Initialize target critic networks Q; with parameters
éi =6;
6 for each episode do
7 for each environment step do
8 Observe state (sg) & sample action (ay)
based on policy ~mg (- | sk)
9 Execute ay, observe si,1, and calculate r
10 Store transitions (Sg, ag, Sg+1, 'k) in D
11 end
12 for each gradient step do
13 Sample random mini-batch of transitions
(Sk»> ks Sk+1> Ti) from D
14 Update critic network:
0; — 0; — Ao - Vo, L(6))
15 Update actor network: ¢ < ¢ — A - @¢L(¢)
16 Update parameter 8: 8 «— B—2 - W;L(ﬁ)
17 Update target critic network: Every C
iterations copy the parameters 0; = 6;
=0;=0;
18 end
19 end
Algorithm 2: The SAC Algorithm.
256 256
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Figure 13: Actor network architecture in SAC.
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Figure 14: Critic network architecture in SAC.

C. Proximal Policy Optimization (PPO) Algorithm

The PPO algorithm proposed by [35] is an actor-critic
class of RL algorithm, that uses trust region optimization, by
maximizing the expected return while constraining the change
in policy on each iteration. The actor network used in the PPO
is similar to that of the SAC, whereas the critic network as
shown in Figure [T5]takes only the state of the FCHPS as input
and outputs the estimated value function, which represents the
expected cumulative reward starting from the current state. The

256

256

State
Value

DOD

Critic Network

Figure 15: Critic network architecture in PPO.

objective function (J(¢),) of the PPO aims to maximize the
expected reward while maintaining stability during training by
clipping the policy updates, that is,

J(#); = min(r (4),A, clip(r(¢), 1 — €, 1 +€)A,),

where r(¢); is the ratio of the output of 7 with the new
network parameters and the old parameters, defined as

7T¢(at|5t)

T hora (arlsy) )

(52)

r(¢) = (53)
A is the advantage function, which defines how much better
it is to select action a, in state s, over the average values of
possible actions in s;. There are several ways of approximating
this function, and it is commonly applied in RL, as it reduces
the variance of traditional value functions significantly. The
intention of the clipped value is to constrain how much
the policy is allowed to change. Thus, the probability ratio
satisfies 7(¢); € [1 — €, 1 + €], where € is clipping parameter.
Optimizing the advantage function gives a data-efficient on-
policy RL algorithm, which is easy to implement and does
not require extensive tuning of hyperparameters. The corre-
sponding pseudo code is given in algorithm [3]
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1 Hyper-parameters: discount factor (y), clipping
parameter (€), mini batch size (n);

2 Initialize actor network m with random parameters ¢

3 Initialize critic network with random parameters 6

4 for iteration(k) = 1:K do

5 Execute the current policy 7; = m(¢y) in
environment for t = 1,2, ..., T time steps

6 Compute the rewards (r;) and advantage
estimates (A;)

7 Collect the transitions (7, @z, S;41, ¥¢) in Dy

8 Sample random mini-batch of transitions (s;, ay,
S¢el, Ir) from Dy

9 Update actor network:
¢ — ¢~z - Vg LCHP ()

10 LELP (g), =B, {J(9)r)

11 Update critic network: 6 « 6 — A - Vg L(6)

12 L(g)t :Et {mll’l (V¢(s,)—rt)2}

13 end
Algorithm 3: The PPO Algorithm.

V. REsuLTs

In this section, the results obtained from training and vali-
dating RL agents are presented. The RL agents are trained with
hybrid models, where the linearized models are combined with
nonlinear aging effects. The trained RL agents are validated
with nonlinear models combined with nonlinear aging effects.
The main objectives are to 1) evaluate four RFFs considered;
for this purpose, three RL algorithms (DDQL, SAC, and PPO)
are trained and validated on four RFFs, and 2) compare three
RL algorithms and benchmark them against the rule-based
energy management strategy by [49]]. For the training phase of
our algorithms, Intel(R) Xeon(R) Gold 6146 CPU@3.20 GHz
along with 256 GB of RAM was used. Whereas, the validation
of the algorithms was performed in a separate environment
featuring an Intel(R) Core(TM) 19-9900K CPU@ 3.60GHz
and 128 GB of RAM. The software environment included
Python 3.9.7, TensorFlow 2.0, and Visual Studio Code.

A. Training

The RL agents are trained with each of the four RFFs; the
hyperparameters used and the results obtained are presented.
The hyperparameters for designing and training the DDQL
agent are given in Table [VI] Figure [I6] shows the evolution of

Table VI: DDQL hyperparameters.

Parameter Description Value

Hidden layers 4
DNN parameters Nodos per layer | [128, 256, 256, 128]

Activation function ReLU

Training parameters Optim izer Adam

Learning rate Se-4

Discount factor (y) 0.99

Minibatch size 1000
Other parameters Evaluat_ion inFerval 50
Evaluation episodes 20

reward during training of the DDQL agent for the four RFFs.
It can be observed that the reward improves approximately
until episode 800 and then flattens out for NC and NQC.
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Figure 16: The evolution of rewards during training of the
DDQL agent for four RFFs.

Though a similar trend is observed in IC, the reward is highly
fluctuating. However, in IQC, the reward is highly fluctuating
and it increased steeply from episode 1150 to episode 1400.
The hyperparameters for designing and training the SAC
agent are given in Table [VII] Figure [I7] shows the evolution of

Table VII: SAC hyperparameters.

Parameter Description Value

Hidden layers 4
Nodes per layer [128, 256, 256, 128]
Activation function ReLU

Actor network parameters

Hidden layers 4

Critic network parameters Nodes per layer [128, 256, 256, 128]

Activation function ReLU
Training parameters Optl‘mlzer Adam
Learning rate Se-4
Discount factor (y) 0.99
Minibatch size 1000
Other parameters Evaluat'ion in.terval 50
Evaluation episodes 20

reward during training of the SAC agent for the four RFFs. It
can be observed that the reward is highly fluctuating, which is
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