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A B S T R A C T

This work employs a contact-aware topology optimization approach for the design of nonlinear springs with
a broad range of prescribed load–displacement responses in both tension and compression. By leveraging the
third medium contact approach to model internal contact, this method enables the utilization of collision
between parts to achieve the desired load–displacement response while minimizing material consumption.
The effectiveness of the proposed computational design approach is demonstrated using axially loaded springs
as a benchmark, but the proposed method is also applicable to more general cases, including the design of
periodic nonlinear material microstructures and metamaterials.
1. Introduction

Designing structures or periodic microstructures and metamate-
rials with tailored elastic load-deformation responses is essential in
various technical applications like footwear, prosthetics, micro-electro-
mechanical devices, among many others. The case of axially loaded
nonlinear springs, in particular, provides in its simplicity an excellent
benchmark for demonstrating how computational design methods can
lead to improved performance in such applications. In this context,
the present work employs contact-aware topology optimization for
designing nonlinear springs with a broad range of prescribed nonlinear
responses in both tension and in compression.

Topology optimization in general, albeit without modeling of inter-
nal contact, has been used in the past for solving similar inverse de-
sign problems. Periodic nonlinear material microstructures have been
among other optimized with regard to desired stress–strain curves [1],
target tangent stiffness [2] or a desired auxetic behavior [3–5]. In-
dependent of the specific objective, all these models are based on
unit cells with periodic boundary conditions. Typically, a homogenized
strain history is prescribed in one specific direction and the objective
is formulated in terms of homogenized stress or stiffness in the same
direction, or as homogenized stress or strain in the transverse direction.
Among these two possibilities, the former one is rather similar to the
case of axially loaded strings, addressed in the present work.

Another related inverse design problem, where topology optimiza-
tion has proved very successful, is the design of compliant mechanisms.
Nonlinear compliant mechanisms, which to a large degree resemble the
nonlinear spring design pursued in the present work, have already been
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treated with topology optimization more than two decades ago [6–8].
These systems are usually slightly more complex than springs in the
sense that they involve non-coinciding input and output regions, where
the mechanism is actuated and where the objective is evaluated, re-
spectively. Moreover the actuation is not always a force or a prescribed
displacement, but it can also be a heat source, or piezoelectric material,
etc. [9,10].

The inverse design of nonlinear springs, has been treated in [11]
using curved beam elements for large deformations and a genetic
algorithm. Bending dominated designs were produced, tailored against
a desired nonlinear response which was either stiffening, or softening,
or a combination of the two. More recently, topology optimization
has been successfully used to synthesize nonlinear springs consisting
of two different elastomer materials tailored against prescribed load-
displacement functions [12]. This method has also been applied to
the aforementioned field of nonlinear material microstructures in three
dimensions [13].

Major difficulties in the inverse design of nonlinear springs stem
from the large deformations involved, which lead to strong geometric
nonlinearities and possible collision between parts of the structure.
Moreover, the inverse design problem does not have a unique solution.
Very dissimilar spring shapes can produce very similar responses. For
this reason, adding a small volume penalization, as suggested in [12],
is essential for formulating a well-posed optimization problem. In this
manner, among all possible spring geometries that can satisfy the
prescribed response, the one with minimal material usage is prioritized.
The main contribution of the present work is to include the modeling
of internal contact in the inverse design process, based on the third
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medium contact approach [14–16]. By this, collision between parts
of the design, is not only accounted for, but can also be exploited to
achieve desired more advanced load–displacement responses with as
little material as possible.

Section 2 summarizes the contact-aware topology optimization
framework from [15], which serves as the foundation of the present
study. Section 3 includes the main results of the present work, a
collection of elastomer spring designs optimized against stiffening
or softening response in compression and in tension, or even for a
combination of different requirements for compression and tension. An
overall evaluation of the proposed method as well as some concluding
remarks are provided in Section 4.

2. Methods

The topology optimization framework from [15] constitutes the
foundation of the present work, however with some adaptations and
improvements described in the following subsections. The main ad-
vantage of this framework is that it provides a self-contained topology
optimization model entirely defined in the continuous setting, prior to
any discretization. For an implementation of the third medium contact
method in a more conventional topology optimization framework, the
reader is referred to [16].

2.1. Notational conventions

A somewhat special syntax is used for directional derivatives, ex-
plained with the following two examples

𝐴,𝑏 (𝑎, 𝑏, 𝑐 ; 𝛽) and 𝐴,𝑏,𝑎 (𝑎, 𝑏, 𝑐 ; 𝛽 ; 𝛼) .

The first expression denotes the directional derivative of a quantity
𝐴 with respect to 𝑏 in the direction 𝛽. The second expression is a
second order derivative with respect to 𝑏 and 𝑎 in directions 𝛽 and 𝛼,
respectively.

The H operator is used for denoting second spatial derivatives,
i.e. Hessians, of scalar and vector fields, respectively defined as

H𝑎 = 𝜕2𝑎
𝜕𝑋𝑖𝜕𝑋𝑗

and H𝑏 =
𝜕2𝑏𝑖

𝜕𝑋𝑗𝜕𝑋𝑘
,

for a scalar field 𝑎 and a vector field 𝑏. The indices 𝑖, 𝑗, and 𝑘, corre-
spond to the first, second, and possibly third dimension of the resulting
tensor and 𝑋 is the position vector in the reference configuration.

Last, the operator ⟨𝑡⟩[𝑎,𝑏] is used to express the linear activation
function between values 𝑎 and 𝑏. Its exact definition is

⟨𝑡⟩[𝑎,𝑏] =

⎧

⎪

⎨

⎪

⎩

𝑎 if 𝑡 ≤ 𝑎,
𝑡 if 𝑎 < 𝑡 < 𝑏,
𝑏 if 𝑏 ≤ 𝑡.

2.2. Optimization problem

A scalar field 𝝌 is defined over the design domain 𝛺, as the
design variable which describes the presence of solid material, for
positive values, or the absence of it, for negative values. The load
history of the structure can be described by means of a series of 𝑁
prescribed displacements imposed on part of the domain boundary 𝜕𝛺.
For example, a set of scalar valued displacements 𝑑⟨𝑗⟩ for 𝑗 = 1…𝑁 ,
can be imposed on the top side 𝛤𝑇 of the design domain shown in Fig. 1.
For each displacement value 𝑑⟨𝑗⟩ in the loading history, a respective
displacement field (𝑢⟨𝑗⟩𝑥 , 𝑢⟨𝑗⟩𝑦 ) is defined as a vector field variable 𝒖⟨𝑗⟩ on
𝛺, which one has to solve for. Moreover, a set of scalar multipliers 𝑞⟨𝑗⟩

are used for imposing the prescribed displacements 𝑑⟨𝑗⟩. Each multiplier
𝑞⟨𝑗⟩ represents the reaction force due to the respective imposed dis-
placement 𝑑⟨𝑗⟩. In total, the set of all control points {𝑑⟨𝑗⟩, 𝑞⟨𝑗⟩} defines
the actual loading path for the structure, that is to be optimized against
a target response.
2

Fig. 1. Rectangular design domain 𝛺 of length 𝐿 and height 𝐻 with boundaries 𝛤𝐿,
𝛤𝐵 , 𝛤𝑅, 𝛤𝑇 . The design is assumed to have an out-of-plane thickness 𝑇 . By convention,
a positive displacement 𝑑⟨𝑗⟩ and a positive reaction force 𝑞⟨𝑗⟩ correspond to tension.

For the optimization problem, an objective function 𝐶 is considered,
which is a function of both the scalar multipliers 𝑞⟨𝑗⟩ and the design
field 𝝌 . For simplicity, the objective function is assumed to be in the
additive split form

𝐶 =
∑

𝑗
𝐶⟨𝑗⟩
𝑞

(

𝑞⟨𝑗⟩
)

+ 𝐶𝝌 (𝝌). (1)

The term 𝐶𝝌 (𝝌) in this expression is used for penalizing the total vol-
ume of solid in the design, and hence favor designs of minimal material
usage [12]. The same term is also used for controlling the steepness and
the evolution of the level-set field 𝝌 during the optimization.

The following sigmoid function is used to convert the design field
𝝌 into a material density quantity

𝜌(𝝌) = 1
1 + e−𝝌

. (2)

By its definition, 𝜌 is bounded by the asymptotic limits 0 and 1,
corresponding to void and solid material, respectively.

Standard RAMP interpolation [17] is used for penalizing nonphysi-
cal intermediate density material. Material stiffness in the domain 𝛺 is
therefore scaled by the following function of the design variable 𝝌


(

𝝌
)

= 0 +
(

1 − 0
) 𝜌(𝝌)

1 + 𝑝(1 − 𝜌(𝝌))
, (3)

where 𝑝 is the RAMP penalization factor and 0 is the material contrast
between void and solid regions, that ensures a minimum residual
stiffness in the void, for numerical reasons. The RAMP penalization
factor 𝑝 = 8 has been used for all examples solved in the present work.

The mechanical equilibrium of a hyperelastic material structure in
𝛺, can be expressed in weak form by means of an appropriate virtual
work expression. Through the material interpolation Eq. (3), the weak
form equation for mechanical equilibrium includes a local scaling with

(

𝝌
)

, i.e. it is also dependent on the design variable 𝝌 , and it can hence
be written as

⟨𝑗⟩
(

𝝌 , 𝒖⟨𝑗⟩, 𝑞⟨𝑗⟩ ; 𝛿𝒖⟨𝑗⟩, 𝛿𝑞⟨𝑗⟩
)

= 0 ∀ 𝛿𝒖⟨𝑗⟩, 𝛿𝑞⟨𝑗⟩, (4)

where 𝛿𝒖⟨𝑗⟩ and 𝛿𝑞⟨𝑗⟩ are virtual variations of 𝒖⟨𝑗⟩ and 𝑞⟨𝑗⟩, respectively.
Eq. (4) defines 𝑞⟨𝑗⟩ as an implicit function of 𝝌 which has to

be accounted for in the minimization of the objective function from
Eq. (1). Introducing adjoint variable fields 𝝀⟨𝑗⟩ and adjoint values 𝜆⟨𝑗⟩,
𝑢 𝑞
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and employing standard adjoint analysis, this implicit dependency can
be incorporated in the augmented functional

𝐶∗ =
∑

𝑗
𝐶⟨𝑗⟩
𝑞

(

𝑞⟨𝑗⟩
)

+⟨𝑗⟩
(

𝝌 , 𝒖⟨𝑗⟩, 𝑞⟨𝑗⟩ ;𝝀⟨𝑗⟩𝑢 , 𝜆⟨𝑗⟩𝑞

)

+ 𝐶𝝌 (𝝌),
(5)

so that the minimization of 𝐶 under the constraint Eq. (4) is equivalent
to finding a stationary point of 𝐶∗. At that point, the variation of 𝐶∗

with respect to 𝑞⟨𝑗⟩, 𝒖⟨𝑗⟩, and 𝝌 , i.e.

𝛿𝐶∗ =
∑

𝑗
𝐶⟨𝑗⟩
𝑞,𝑞

(

𝑞⟨𝑗⟩ ; 𝛿𝑞⟨𝑗⟩
)

+⟨𝑗⟩
,𝑞

(

𝝌 , 𝒖⟨𝑗⟩, 𝑞⟨𝑗⟩ ;𝝀⟨𝑗⟩𝑢 , 𝜆⟨𝑗⟩𝑞 ; 𝛿𝑞⟨𝑗⟩
)

+
∑

𝑗
⟨𝑗⟩

,𝒖

(

𝝌 , 𝒖⟨𝑗⟩, 𝑞⟨𝑗⟩ ;𝝀⟨𝑗⟩𝑢 , 𝜆⟨𝑗⟩𝑞 ; 𝛿𝒖⟨𝑗⟩
)

+ 𝐶𝝌 ,𝝌 (𝝌 ; 𝛿𝝌) +
∑

𝑗
⟨𝑗⟩

,𝝌

(

𝝌 , 𝒖⟨𝑗⟩, 𝑞⟨𝑗⟩ ;𝝀⟨𝑗⟩𝑢 , 𝜆⟨𝑗⟩𝑞 ; 𝛿𝝌
)

(6)

is required to vanish.
The adjoint multipliers 𝝀⟨𝑗⟩𝑢 and 𝜆⟨𝑗⟩𝑞 are chosen to fulfill the adjoint

equations

𝐶⟨𝑗⟩
𝑞,𝑞 (𝑞⟨𝑗⟩ ; 𝛿𝑞⟨𝑗⟩)+

⟨𝑗⟩
,𝑞

(

𝝌 , 𝒖⟨𝑗⟩, 𝑞⟨𝑗⟩ ;𝝀⟨𝑗⟩𝑢 , 𝜆⟨𝑗⟩𝑞 ; 𝛿𝑞⟨𝑗⟩
)

= 0 ∀ 𝛿𝑞⟨𝑗⟩,

⟨𝑗⟩
,𝒖

(

𝝌 , 𝒖⟨𝑗⟩, 𝑞⟨𝑗⟩ ;𝝀⟨𝑗⟩𝑢 , 𝜆⟨𝑗⟩𝑞 ; 𝛿𝒖⟨𝑗⟩
)

= 0 ∀ 𝛿𝒖⟨𝑗⟩,

(7)

so that the first two rows in Eq. (6) vanish, and the stationary point
condition, 𝛿𝐶∗ = 0, yields

𝐶𝝌 ,𝝌 (𝝌 ; 𝛿𝝌) +
∑

𝑗
⟨𝑗⟩

,𝝌

(

𝝌 , 𝒖⟨𝑗⟩, 𝑞⟨𝑗⟩ ;𝝀⟨𝑗⟩𝑢 , 𝜆⟨𝑗⟩𝑞 ; 𝛿𝝌
)

= 0 ∀ 𝛿𝝌 . (8)

In total, the coupled set of Eqs. (4), (7) and (8) constitute the entire
inverse design problem. It remains to provide the specific choices for
the functions 𝐶⟨𝑗⟩

𝑞 and the functionals 𝐶𝝌 , and ⟨𝑗⟩.

2.3. Load path control

The desired nonlinear response for a spring design problem is
provided in terms of a number of given control points {𝑑⟨𝑗⟩, 𝑞⟨𝑗⟩∗ }. Each
contribution 𝐶⟨𝑗⟩

𝑞
(

𝑞⟨𝑗⟩
)

in the objective function is then defined as a
weighted square distance between the actual load 𝑞⟨𝑗⟩ and the target
load 𝑞⟨𝑗⟩∗ , as a measure of deviation from the desired load path, i.e.

𝐶⟨𝑗⟩
𝑞

(

𝑞⟨𝑗⟩
)

=
𝑤⟨𝑗⟩

𝑞

2
‖

‖

‖

𝑞⟨𝑗⟩ − 𝑞⟨𝑗⟩∗
‖

‖

‖

2
. (9)

Different control points along the loading path can be weighted indi-
vidually by choosing the weight constants 𝑤⟨𝑗⟩

𝑞 appropriately.

2.4. Design control and evolution

In this subsection, the dependence of the objective on the design
variable 𝝌 , i.e. the functional 𝐶𝝌 (𝝌) in Eq. (1), will be introduced. One
major component in 𝐶𝝌 (𝝌) is a penalization of the total volume of solid
material used in the design, corresponding to the integral

𝑉 = 𝑇 ⋅∫𝛺
𝜌(𝝌) 𝑑𝛺, (10)

where 𝑇 denotes the out-of-plane thickness of the 3D domain.
In total, apart from the volume penalization, the functional 𝐶𝝌 (𝝌)

ontains three more components, that will be explained below, and is
efined as

𝝌 (𝝌) = 𝑇 ⋅ ∫𝛺
𝑘𝜌 𝜌(𝝌)

+
𝑘𝑖
𝑛

⟨

‖∇𝝌‖ − 8∕𝑙𝑖
⟩𝑛

+
𝑘𝐻
2

H𝝌 ∶ H𝝌

+
𝝌̇2 + 𝑙2𝑡 ‖∇𝝌̇‖

2

𝑑𝛺.

(11)
3

2 o
The volume penalization term in Eq. (11) is scaled with the weight
constant 𝑘𝜌. Without this kind of material cost in the objective, the
target load–displacement curve could in general be achieved with a
multitude of distinct designs, even with designs that include intermedi-
ate gray material. Including a small volume penalization, as suggested
in [12], favors a design of minimum material usage among alternative
solutions with the same performance. In that sense, 𝑘𝜌 should be chosen
small enough so that it does not dominate the main objective, expressed
in 𝐶⟨𝑗⟩

𝑞 , but large enough to promote a unique and discrete design.
There exists a range of values for 𝑘𝜌, for which, the resulting optimized
design is rather insensitive to the choice of 𝑘𝜌.

The second term in Eq. (11), scaled with the weight constant 𝑘𝑖, is
a penalization term that ensures that the slope of the level-set field 𝝌
will not significantly exceed the value of 8∕𝑙𝑖. Due to this constraint,
optimization will converge as the width of the gray material zone
between solid and void decreases towards 𝑙𝑖. The interface width 𝑙𝑖,
given in units of length, needs to be as small as possible but still
not much smaller than the element size, so that the finite element
approximation can represent the solid-void transition sufficiently. The
penalization weight 𝑘𝑖 needs to be sufficiently large to ensure that the
constraint is satisfied. For a wide range of values for 𝑘𝑖, above a certain
level, the optimization result is practically independent of the exact
choice of 𝑘𝑖. The optimization result is also rather independent of the
p-norm exponent 𝑛 within a range of moderate values. The exponent
𝑛 = 6 is used throughout all examples shown in the present work.

The third term in Eq. (11), scaled with the weight constant 𝑘𝐻 ,
provides a very weak regularization of the level-set field 𝝌 in the form
of a penalization of its curvature. This ensures a smooth solution in
regions where the contributions from all other terms of the objective
function eventually vanish. A very small weight 𝑘𝐻 is sufficient, and
for such small values, the exact choice of this regularization parameter
has practically no effect on the final result.

The last term of 𝐶𝝌 , defined in Eq. (11), controls the evolution of
he design field during optimization. It involves the rate 𝝌̇ of the design
ield with respect to pseudo-time 𝑡, which describes the evolution of the
esign during optimization. This term converts the one-shot optimiza-
ion formulation into an ODE based one, as proposed in [18]. At time
ero, the design field 𝝌 corresponds to the initial guess, and at infinite
ime, the final design fulfilling the original optimality is retrieved. In
ll examples shown in the present work, the ODE arising due to this
ime dependent term, is integrated numerically until infinite time. This
eans that in the last time step of the numerical time integration, the

ast term of Eq. (11) is entirely removed. Therefore, an exact optimality
oint is eventually obtained without any contribution from this term.
or the same reason, the diffusivity parameter 𝑙𝑡 present in this term, is
ot essential for the ultimate solution, but it only affects how fast the
ptimization procedure moves towards high-contrast designs.

The directional derivative 𝐶𝝌 ,𝝌 , appearing in the optimality Eq. (8),
an be obtained from Eq. (11) by approximating pseudo-time deriva-
ives with a backward Euler scheme, and applying common differenti-
tion rules. This derivation yields

𝝌 ,𝝌 (𝝌 ; 𝛿𝝌) =

𝑇 ⋅∫𝛺
𝑘𝜌 𝜌

′(𝝌)𝛿𝝌

+ 𝑘𝑖
⟨

‖∇𝝌‖ − 8∕𝑙𝑖
⟩𝑛−1 ∇𝝌 ⋅∇𝛿𝝌

‖∇𝝌‖
+ 𝑘𝐻H𝝌 ∶ H𝛿𝝌

+
(𝝌 − 𝝌∗) 𝛿𝝌 + 𝑙2𝑡 (∇𝝌 − ∇𝝌∗)⋅∇𝛿𝝌

𝛥𝑡
𝑑𝛺,

(12)

where 𝛥𝑡 is the pseudo-time step and 𝝌∗ is the design field in the
previous time instant. With Eq. (12) substituted in Eq. (8), the latter
together with Eqs. (4) and (7), provide an update of the design level-
set field from 𝝌∗ = 𝝌(𝑡 − 𝛥𝑡) to 𝝌 = 𝝌(𝑡). Ultimately, this system of
quations is solved for 𝛥𝑡 = ∞, which makes the final step independent
f 𝝌∗, and the final design 𝝌(𝑡 = ∞) is obtained.
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2.5. Mechanical model

The last model component to be specified is the weak form residual
⟨𝑗⟩ for the mechanical equilibrium Eq. (4). For the sake of simplicity,
the mechanical problem is defined for the two-dimensional, rectangular
design domain of Fig. 1. Under plane strain conditions, the 3D defor-
mation gradient of the material at any point of the domain is defined as

𝑭 = 𝑰 +
⎡

⎢

⎢

⎣

∇𝒖 0
0

0 0 0

⎤

⎥

⎥

⎦

. (13)

plane stress condition is not much more difficult to implement, but
s demonstrated in [19], it constitutes a rather poor approximation
f moderately thin hyperelastic structures with relatively complex
eometry, compared to a 3D model.

A hyperelastic material is considered with a strain energy density
unction

= 
(

𝝌
)

(𝐾
2
ln2 |𝑭 | + 𝐺

2
(

|𝑭 |

−2∕3
‖𝑭‖

2 − 3
)

)

+
𝑘𝑟
2
𝐾𝐻2 

(

𝝌
)

H𝒖 ...H𝒖,
(14)

where the first term is the common isotropic neo-Hookean material
law from [20], with initial bulk modulus 𝐾 and initial shear modulus
𝐺, weighted with the RAMP scaling from Eq. (3). The second term,
involving higher order strains, is used for void regularization as sug-
gested in [15], but in a somewhat simpler form. This term is scaled
with a small dimensionless constant 𝑘𝑟, a dimensional scaling constant
𝐻2, and the void identity function 

(

𝝌
)

. The latter, is a smooth step
unction that transitions from 0 in non-void regions with 𝝌 > −5, to

in void regions with 𝝌 < −6. This smooth step transition function is
dopted from [21] in the form
(

𝝌
)

= 6
⟨

− 5 − 𝝌
⟩5

[0,1]
− 15

⟨

− 5 − 𝝌
⟩4

[0,1]
+ 10

⟨

− 5 − 𝝌
⟩3

[0,1]
. (15)

Altogether, the hyperelastic strain energy 𝛹 from Eq. (14), with
→ ∞ for |𝑭 | → 0, combined with a non-zero void contrast 0,

nsures that the void can act as a third medium for contact between
olid parts [15]. The void regularization term in 𝛹 , weighted with 𝑘𝑟,
xtends the applicability of the third medium contact model to rather
arge deformations and sliding. It should be reminded here, that this
odel has two limitations. It is only available for frictionless contact

nd intermediate density regions at the void solid interface are not fully
ompressed, resulting in a small gap between the contact surfaces, of
ize in the order of 𝑙𝑖.

The internal virtual work expression corresponding to the strain
nergy density function 𝛹 is

,𝒖(𝝌 , 𝒖; 𝛿𝒖) = 
(

𝝌
)

𝑷
(

∇𝒖
)

∶∇𝛿𝒖

+ 𝑘𝑟 𝐾𝐻2 
(

𝝌
)

H𝒖 ...H𝛿𝒖,
(16)

where 𝑷 is the in-plane 2×2 part of the 1st Piola–Kirchhoff stress tensor

𝑷
(

∇𝒖
)

= 𝐾 ln |𝑭 |𝑭 −⊤ + 𝐺 |𝑭 |

−2∕3 dev(𝑭𝑭 ⊤)𝑭 −⊤. (17)

With the help of a scalar multiplier 𝑞 and the Lagrangian

𝛤𝑇

(

𝑢𝑦 − 𝑑
)

𝑞
|

|

𝛤𝑇
|

|

𝑑𝛤 (18)

an average vertical displacement 𝑑 can be imposed on the top side
of the domain, 𝛤𝑇 , simply by seeking the stationary point of the La-
grangian. The scaling of the integrand with 1∕ |

|

𝛤𝑇
|

|

is required because
of the definition of the scalar multiplier 𝑞 in units of force.

In total, combining the virtual work Eq. (16) and the contributions
of the Lagrangian from Eq. (18) for a specific displacement 𝑑⟨𝑗⟩, yields
the weak form for mechanical equilibrium at the corresponding control
4

point 𝑗 as l
⟨𝑗⟩(𝝌 , 𝒖, 𝑞 ; 𝛿𝒖, 𝛿𝑞) = 𝑇 ⋅∫𝛺
𝛹,𝒖 (𝝌 , 𝒖 ; 𝛿𝒖) 𝑑𝛺

−∫𝛤𝑇

𝑞 𝛿𝑢𝑦 +
(

𝑢𝑦 − 𝑑⟨𝑗⟩
)

𝛿𝑞
|

|

𝛤𝑇
|

|

𝑑𝛤 .
(19)

Additional displacement constraints can be imposed by restricting
the solution space for 𝒖 accordingly, i.e. by eliminating degrees of free-
dom or by reducing degrees of freedom through slave-master relation-
ships. For the model shown in Fig. 1 for example, all horizontal degrees
of freedom on the left side 𝛤𝐿 are reduced to a single degree of freedom
𝑢𝐿𝑥. In order to avoid horizontal rigid body motion, all horizontal
degrees of freedom on 𝛤𝑅 are substituted with −𝑢𝐿𝑥. All vertical degrees
of freedom on 𝛤𝐵 are removed and all vertical degrees of freedom on
𝛤𝑇 are reduced to a single master degree of freedom 𝑢𝑇 𝑦. Moreover, pe-
riodicity conditions are imposed by interlinking all horizontal degrees
of freedom on 𝛤𝑇 with the corresponding ones on 𝛤𝐵 , as well as all
vertical degrees of freedom on 𝛤𝑅 with the corresponding ones on 𝛤𝐿.

With the definition of the weak form ⟨𝑗⟩ in Eq. (19), the problem
definition is completed and the system of Eqs. (4), (7) and (8) can be
solved. During the pseudo-time integration towards 𝑡 = ∞, this system
is solved repeatedly, where the only changes from step to step is an
update of the previous design field 𝝌∗, and a possible adaptation of the
time step 𝛥𝑡.

2.6. Robust formulation

In few of the numerical examples shown later, the optimization pro-
cess can exploit the nonlinear behavior of severely deformed interme-
diate density material for achieving the requested nonlinear response.
This can result in non discrete designs despite the volume penalization
in Eq. (11). For this reason, in order to enforce discrete black and white
solutions, robust topology optimization, according to [22,23], is used
for some of the numerical examples.

For the design parametrization described in Section 2.2, it is easy to
realize eroded and dilated designs by applying a constant offset to the
design variable field 𝝌 . On a fully established interface between solid
and void, the slope of the design field 𝝌 is equal to 8∕𝑙𝑖, cf. Eq. (12).
Offsetting the field 𝝌 by a constant 𝜂 results in a uniform dilation of
the solid-void interface by a distance equal to 𝑙𝑖 ⋅ 𝜂∕8. A negative offset

will lead to a corresponding erosion of the design.
In regions of intermediate density material however, where no

lear void-solid interface is established, adding a positive offset 𝜂 to
he design field will shift the entire region very much towards solid,
hile the opposite will occur for a negative offset. This effect can be
tilized when the aim is to prevent the exploitation of nonphysical
ntermediate density material. Including some performance measure for
he dilated or eroded design in the objective function is an effective
ethod for preventing such non nonphysical solutions. For a graphical

llustration of how a design field offset affects the density and stiffness
istributions, the reader is referred to Fig. 15 in Appendix A.

In the present work, for objectives requiring a softening spring
esponse under tension, a dilated design realization is included in the
bjective function. The objective function 𝐶, cf. Eq. (1), contains a con-
ribution 𝐶⟨𝑗𝑑 ⟩

𝑞 from a control point with index 𝑗𝑑 , which corresponds to
he dilated design. This design is subjected to a prescribed displacement
⟨𝑗𝑑 ⟩, with 𝑞⟨𝑗𝑑 ⟩ being the actual reaction force, and 𝑞⟨𝑗𝑑 ⟩∗ the target
eaction force. The only modification in the model equations, for this
pecific control point 𝑗𝑑 , is that 𝝌 in all occurrences of the mechanical
esidual ⟨𝑗𝑑 ⟩ is substituted with 𝝌+𝜂𝑑 , with 𝜂𝑑 being the dilation offset
alue.

.7. Implementation

The system of Eqs. (4), (7) and (8) has been implemented using
he general weak form language and the C++ API of the GetFEM

ibrary [24], within a single monolithic model object. The linearization
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of the provided equations and the assembly of the resulting tangent
system is performed automatically by the framework described in [24].

For the discretization of the equations, a structured mesh has been
used, corresponding to a Cartesian 𝑁 × 𝑁 grid over the domain 𝛺.
Numerical integration is performed in all cases with nine Gauss points
per quadrilateral element. Quadrilateral 9-node Lagrange elements are
used for the solution spaces of all displacement fields 𝒖⟨𝑗⟩ and the
respective test functions 𝛿𝒖⟨𝑗⟩. These finite element spaces are further
reduced according to the boundary conditions described in Section 2.5.
Being already scalars, the unknowns 𝑞⟨𝑗⟩ and corresponding variations
𝛿𝑞⟨𝑗⟩ require no discretization.

A smooth C1-continuous solution space is used for the discretization
of the design field 𝝌 , as well as the respective test functions 𝛿𝝌 , in order
to provide a consistent representation of the higher order derivatives
appearing in the regularization term in Eq. (12). In particular, quadratic
B-spline basis functions are used for 𝝌 , defined in the same Cartesian
grid as the Lagrange finite elements for the displacements. In total,
apart from special B-spline basis functions at the borders, there is one
degree of freedom for 𝝌 per element, and it is reminded that the density
𝜌 is always bounded between 0 and 1, as per definition, cf. Eq. (2).
Due to its higher regularity, the B-spline discretization of 𝝌 , introduced
here, is a superior option compared to the linear elements used previ-
ously in [15]. No boundary conditions are imposed to the design field
𝝌 on the left and right boundaries, 𝛤𝐿 and 𝛤𝑅, respectively. Mirror
symmetry conditions are imposed on the bottom and top side, 𝛤𝐵 and
𝛤𝑇 , simply by removing all basis functions with non-zero gradients in
a direction normal to the respective boundary. In addition, a major
reduction in the solution space of 𝝌 is performed for imposing mirror
symmetry with respect to the horizontal and vertical axes through the
center of the rectangular domain 𝛺, cf. Fig. 2. All degrees of freedom
in the SE, NE, and NW quadrants of the domain are coupled to the
corresponding independent degrees of freedom in the SW quadrant. It
is reminded that this symmetry constraint applies only to the design
variable 𝝌 . The displacement field 𝒖 is defined in the entire domain,
without imposing any symmetry constraint to the solution.

The assembly of the linearized and discretized system results in a
monolithic linear system of equations that forms the core of a Newton–
Raphson loop for performing a design update from 𝝌∗ to 𝝌 . Upon
convergence of the Newton–Raphson loop, the stored previous design
𝝌∗ is updated and the optimization can proceed with the next pseudo-
time step. The number of Newton–Raphson iterations required for
convergence is a very useful and meaningful measure of non-linearity in
the model. For a very small time step 𝛥𝑡, the Newton–Raphson loop will
converge within very few iterations, indicating that larger time steps
may be performed. Using this heuristic, 𝛥𝑡 is adjusted adaptively during
the optimization procedure. If a time step is solved using less than six
Newton–Raphson iterations, 𝛥𝑡 is increased by a factor of two for the
next step, while it is reduced by a factor of four, if the current step fails
to converge, and the step is repeated. The optimization is completed
when the time step 𝛥𝑡 has grown to a level that allows for the coupled
system of optimality, adjoint and mechanical equilibrium equations to
be solved by Newton–Raphson, without any damping with respect to 𝝌 .

3. Numerical results and discussion

A topology optimization model has been introduced for the in-
verse design of nonlinear springs with a pointwise prescribed load–
displacement response. In this section, optimization results are pre-
sented for concrete examples with specific input parameters, initial
design and for different target responses. Moreover, numerical re-
sults are shown from an extension of the plane strain model to the
axisymmetric case.

Fig. 2 shows the density distribution 𝜌(𝝌) of the initial guess that
all optimizations start with, and Table 1 provides all relevant model
parameters, used in the numerical examples, unless otherwise stated in
the text. The length of the mechanical spring is equal to the domain
5

Fig. 2. Initial density distribution. The design is constrained to be symmetric about
both the 𝑥- and 𝑦-axis, as illustrated in the figure.

Table 1
Default model parameters for all examples unless otherwise specified in text.

Domain dimensions 𝐿 ×𝐻 100 × 100 mm2

Out-of-plane thickness 𝑇 1 mm
Mesh size 80 × 80 –
Solid bulk modulus 𝐾 5∕3 MPa
Solid shear modulus 𝐺 5∕14 MPa
Void/solid stiffness contrast 0 10−6 –
Void regularization scaling 𝑘𝑟 10−6 –
Control point weights 𝑤⟨𝑗⟩

𝑞 1 N−2

Volume minimization weight 𝑘𝜌 10−8 –
Minimum interface width 𝑙𝑖 1 mm
Interf. width p-norm exponent n 6 –
Interf. width p-norm weight 𝑘𝑖 10−2 –
Level-set regularization weight 𝑘𝐻 10−9 –
Transient length scale 𝑙𝑡 8 mm

height 𝐻 and control points are considered at fixed end-point displace-
ments of 10% and 20% of the spring length, either in compression or
tension, i.e. 𝑑⟨𝑗⟩∕𝐻 = ±0.1 and 𝑑⟨𝑗⟩∕𝐻 = ±0.2.

Before showing specific numerical examples, it is useful to explain
the optimization convergence for just one representative case. Fig. 3
shows the convergence history for one of the cases that will be shown
later, where a spring is topologically optimized for achieving a linear
response between 10% elongation and 20% compression. The upper-
most diagram shows the pseudo-time step 𝛥𝑡 as a function of the
design iterations in a logarithmic scale. After approximately 85 design
iterations, the time-step increases monotonically until it reaches the
limit of 1020 after 115 design updates. Then, the history dependent term
in Eq. (12) is removed and a final step is performed to solve for the
exact optimality point.

The monolithic solution of physics, optimality and adjoint equa-
tions, just with a damping of the design variable, as described in
Section 2, leads to a monotonically decreasing objective function 𝐶
over the entire optimization history as shown in the second diagram in
Fig. 3. Unlike staggered schemes, there are no oscillations in any phase
of the optimization. It is reminded that according to Eq. (1), 𝐶 includes
the actual optimization objective contributions 𝐶⟨𝑗⟩

𝑞 with regard to the
target response at all control points 𝑗, as well as volume penalization,
design constraints and regularization included in the functional 𝐶𝝌 .

The third diagram in Fig. 3 shows the individual contributions of
the three control points considered in this example. After less than 20
design iterations, all three values become practically zero, indicating
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Fig. 3. Representative design iteration history, for the inverse design of spring C4 with
linear response under compression (cf. Fig. 4 and middle row in Fig. 5). The plotted
value for 𝐶 in the second diagram is evaluated for 𝝌̇ = 0.

hat the target response has been reached with insignificant deviations.
he last diagram in the figure shows the evolution of the design volume
according to Eq. (10). It turns out that after the 40th design iteration,

he volume penalization term dominates the objective. For this reason,
n the last phase of the optimization the total volume of utilized
aterial decreases towards its final value, with all designs during this
hase still fulfilling the target response.

.1. Compression springs

A contact-aware optimization appears to be especially suited for
esigning structures in compression, where internal collisions are more
ikely. Moreover, internal contact can be exploited as a nonlinear effect
or achieving a desired response when designing a spring loaded in
ompression.

For this reason, as a first example, a series of springs have been
esigned, which exhibit either stiffening or softening behavior under
ompression. Fig. 4 shows the target control points along with the
esulting load–displacement responses of the optimized designs. Two
ontrol points for 10% and 20% compression are used for prescribing
he desired, in general nonlinear, response under compression, and one
dditional control point for 10% tension is used in order to ensure
6

Fig. 4. Target control points (circular markers) and resulting load–displacement curves
for the optimized compression spring designs shown in Fig. 5.

Table 2
Target reaction forces at control points with 𝑑⟨1⟩ = 0.1𝐻 , 𝑑⟨2⟩ = −0.1𝐻 , and
𝑑⟨3⟩ = −0.2𝐻 , for all 7 optimized compression springs.

Case C1 C2 C3 C4 C5 C6 C7

𝑞⟨1⟩∗ ⋯ 2 ⋯ N
𝑞⟨2⟩∗ ⋯ −2 ⋯ N
𝑞⟨3⟩∗ −2.5 −3 −3.5 −4 −4.5 −5 −5.5 N

connectivity in the design. The exact values for all target control points
are provided in Table 2.

All seven fully converged designs are shown in Fig. 5 in their unde-
formed state, as well as in deformed states corresponding to the three
control points used for the optimization. All set target points are met
remarkably well. In the range between ±10% end-point displacement,
all designs follow a relatively linear load–displacement relation, as
dictated by the first two control points. Beyond the first control point
in compression, the curves transition smoothly to an either stiffer or
more compliant response in order to match the required target value
at the ultimate control point.

All solutions have the same topology, in the form of a single column
with a hole located at its center, but the shape of the hole varies
significantly. All designs combine two distinct nonlinear mechanisms in
order to achieve the requested response. The first mechanism consists
in a progressive outwards buckling of the walls of the internal hole,
which leads to a reduction in the tangent stiffness of the overall column.
The second effect contributing to the overall nonlinear response of
the structure is the onset of contact between different portion of the
internal hole walls. Although the onset of contact always has a stiffen-
ing effect it is also present in designs that target an overall softening
response. This is to counteract any excessive loss of stiffness due to the
first mechanism. In total, the results from Fig. 5 clearly demonstrate
how the modeling of contact is essential for optimizing structures with
a desired mechanical response under compression. Maybe apart from
the very first case with the strongest softening behavior, none of the
remaining designs could have been obtained without accounting for
internal contact.

Fig. 5 also reports the total material volume for each of the designs.
However, instead of reporting the actual material volume directly, a di-
mensionless quantity is reported which is easier to interpret. Assuming
that the available material is redistributed to form a straight column of
width 𝑊 and height 𝐻 , while preserving the given material volume 𝑉 ,
the following relation holds

𝑊 = 𝑉 . (20)

𝐻𝑇
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Fig. 5. Compression spring designs optimized for the response shown in the last column.
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Table 3
Target reaction forces at control points with 𝑑⟨1⟩ = 0.1𝐻 and 𝑑⟨2⟩ = 0.2𝐻 , for all 6
ptimized tension springs.
Case T1 T2 T3 T4 T5 T6

𝑞⟨1⟩∗ ⋯ 2 ⋯ N
𝑞⟨2⟩∗ 3 3.5 4 4.5 5 5.5 N

The aspect ratio 𝑊 ∕𝐻 of the volume-equivalent straight column is
eported in Fig. 5 instead of 𝑉 . It is seen that the higher the stiffening

requirement imposed by the third control point in the objective, the
larger the material usage.

It is possible that some of the target responses could also be
achieved without relying on internal contact. However, it is unlikely
that such solutions would be as material efficient as the ones reported
in Fig. 5, which deliberately exploit contact for achieving the desired
objective. Designs not involving contact are in fact contained in the
optimization space of the present model, and can actually be reached
unless another local minimum is found first. The fact that only one
solution not involving contact was found (C1), is a strong indication
that leveraging contact is really advantageous in all other cases under
compression. In addition, if the same optimization would be repeated
without modeling internal contact, all resulting designs should be
carefully examined for potential overlaps upon deformation that may
render the solution physically meaningless.

As is the case in most topology optimization problems, the choice
of the initial design will have an impact on which local minimum the
optimization will eventually reach. All cases presented in this section
start with the initial design from Fig. 2 which resembles a column. For
an indication on how the model performs with a less structured initial
design, the reader is referred to Appendix B, where an alternative opti-
mization of case C7 is presented, starting with a randomized grayscale
distribution instead of the regular initial design.

3.2. Tension springs

Although internal contact is more relevant for springs under com-
pression, it is still very interesting to demonstrate how the proposed
method performs when applied to springs under tension. For this
purpose, six target responses are considered, described by two control
points at 10% and 20% tension. Fig. 6 shows all target control points
and the actual load–displacement curves for the designs obtained for
the different targets. The exact coordinates of all control points are
provided in Table 3.

As it was the case for compression springs, all target points are
satisfied remarkably well. There is however, a big difference between
designs that are optimized for a softening response compared to designs
optimized for a linear or stiffening load–displacement curve. A major
challenge for designing springs with a softening response in tension is
that the optimization procedure will in general exploit the low stiffness
of intermediate density material in order to create a zone with strongly
localized deformations that leads to the desired response, but with a
design that is not physical. Such solutions are shown in Fig. 14 in
Appendix A. In order to suppress this possibility, the robust formulation
from Section 2.6 is employed, and an extra control point is added at
20% tension for a design which is dilated with 0.25 mm, compared to
the blueprint design. The offset 𝜂𝑑 of the design field 𝝌 , for achieving
this dilation is found from the condition

𝜂𝑑 ⋅ 𝑙𝑖∕8 = 0.25mm.

his is a new length scale introduced to the model, in addition to the
nterface width 𝑙𝑖. It has to be chosen according to the absolute size
f the small features that need to be controlled. For example the neck
n the undeformed design T1 has a width of approximately 4 mm in
he blueprint version, which then increases to 4.5 mm in the dilated
ersion of the design.
8

Fig. 6. Target control points (circular markers) and resulting load–displacement curves
for the optimized tension spring designs shown in Fig. 7.

The extra control point for the dilated design, at 𝑗𝑑 = 3, is the
ame as the second control point, i.e. 𝑑⟨3⟩ = 𝑑⟨2⟩ and 𝑞⟨3⟩∗ = 𝑞⟨2⟩∗ . The
eight for this control point, 𝑤⟨3⟩

𝑞 = 10−4 N−2, is much smaller than the
tandard weight for all other control points, cf. Table 1. Nevertheless,
t is sufficient for providing the discrete designs shown in the first two
ows in Fig. 7, instead of the respective grayscale designs provided in
ig. 14 in Appendix A. Apart from including a dilated version of the
esign to the objective, for these two cases, it is also necessary to use
finer 160 × 160 mesh, instead of the standard 80 × 80 mesh. The finer
esh allows to better resolve the narrow neck formed at the top and

ottom of the design.
The two cases with a softening load–displacement response, exploit

train localization in a very narrow neck in order to achieve the de-
ired target. Although these designs are not practical, due to excessive
trains, they demonstrate an interesting and new result. To the authors
est knowledge, there are no prior large strain topology optimization
odels that deliberately exploit necking in order to achieve a target

oftening response in tension.
More practical are the designs obtained for a linear or stiffening

esponse under tension, shown in the last four rows in Fig. 7. All of
hem utilize a well-known mechanism in which initially curved and
herefore more compliant members gradually straighten upon loading,
hereby increasing the overall stiffness of the structure. Interestingly,
n addition to this established mechanism, the optimization procedure
or the last three cases also leverages internal contact to achieve the
esired stiffening response.

Material usage is also reported in Fig. 7, again in terms of the
olume-equivalent straight column aspect ratio 𝑊 ∕𝐻 . As expected,

more material is required for designs that target a stronger stiffening
response. The only exception is the first design, which targets a strong
softening response, and it nevertheless utilizes a rather large volume of
material in order to form the neck where strain localization occurs.

3.3. Combined compression and tension springs

The next step is to try to design springs with tailored response in
both compression and tension. Due to the particularities of the designs
obtained for softening in tension, only linear and stiffening responses
are requested for the tension side. These are then combined with
different target responses in compression, which range from softening
to stiffening. Springs have been designed for a series of target responses
between −20% and +20% end-point displacement, described by means
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Fig. 7. Tension spring designs optimized for the response shown in the last column.
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Fig. 8. Tension–compression spring designs optimized for the response shown in the last column.
Table 4
Target reaction forces at control points with 𝑑⟨1⟩ = 0.1𝐻 , 𝑑⟨2⟩ = 0.2𝐻 , 𝑑⟨3⟩ = −0.1𝐻 and
𝑑⟨4⟩ = −0.2𝐻 for all 6 optimized compression–tension springs.

Case CT1 CT2 CT3 CT4 CT5 CT6

𝑞⟨1⟩∗ ⋯ 2 ⋯ N
𝑞⟨2⟩∗ 4 4 4 4.8 4.8 4.8 N
𝑞⟨3⟩∗ ⋯ −2 ⋯ N
𝑞⟨4⟩∗ −3.2 −4 −4.8 −3.2 −4 −4.8 N

of four control points, two on the compression side and two on the
tension side.

Fig. 8 shows results obtained for a linear response in tension and
softening, linear, or stiffening response in compression. Fig. 9, shows
the respective designs obtained for a moderate stiffening response in
tension. All control points for the six cases from these two figures are
defined in Table 4.

3.4. Axisymmetric springs

After having demonstrated how the proposed method performs for
designing springs under plane strain conditions, an extension to axisym-
metric springs is rather simple. A vertical symmetry axis is considered
through the center of the domain 𝛺 shown in Fig. 1. Only half of the
domain for 𝑥 > 0 is considered, denoted 𝛺+, and the coordinate 𝑥 is
renamed to 𝑟.

The mechanical model for the axisymmetric structure is obtained
simply by an appropriate redefinition of the 3D deformation gradient
10
as

𝑭 = 𝑰 +
⎡

⎢

⎢

⎣

∇𝒖 0
0

0 0 𝑢𝑟∕𝑟

⎤

⎥

⎥

⎦

, (21)

instead of the plane strain definition from Eq. (13). In this definition,
𝑢𝑟 is the radial (i.e. horizontal) component of the displacements field.

This change affects the virtual work expression from Eq. (16), which
becomes

𝛹,𝒖(𝝌 , 𝒖; 𝛿𝒖) = 
(

𝝌
)

(

𝑷
(

∇𝒖
)

∶∇𝛿𝒖 + 𝑃33∕𝑟 𝛿𝑢𝑟
)

+ 𝑘𝑟 𝐾𝐻2 
(

𝝌
)

H𝒖 ...H𝛿𝒖,
(22)

where 𝑃33 is the out-of-plane normal stress component of the 1st

Piola–Kirchhoff stress tensor 𝑷 .
Apart from the new definition of 𝑭 , all volume integrals of the

form 𝑇 ⋅∫𝛺 … 𝑑𝛺 need also to be replaced with integrals in the form
∫𝛺+ 2𝜋𝑟… 𝑑𝛺. For instance, the material volume for the axisymmetric
design is computed as

𝑉 = ∫𝛺+
2𝜋 𝑟 𝜌(𝝌) 𝑑𝛺. (23)

and the weak form Eq. (19) for mechanical equilibrium is replaced by

⟨𝑗⟩(𝝌 , 𝒖, 𝑞 ; 𝛿𝒖, 𝛿𝑞) =∫𝛺+
2𝜋𝑟𝛹,𝒖 (𝝌 , 𝒖 ; 𝛿𝒖) 𝑑𝛺

−∫𝛤+
2𝜋𝑟

𝑞 𝛿𝑢𝑦 +
(

𝑢𝑦 − 𝑑⟨𝑗⟩
)

𝛿𝑞

| +|2
𝑑𝛤 .

(24)
𝑇 𝜋 |

|

𝛤𝑇 |

|
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Fig. 9. Tension-compression spring designs optimized for the response shown in the last column.

Fig. 10. Axisymmetric compression spring designs optimized for the softening response shown in the last column.
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Fig. 11. Axisymmetric compression spring designs optimized for the stiffening response shown in the last column.
Fig. 12. Lower left quarter of the body fitted meshes used for post-evaluation of selected designs.
With these rather minor modifications on top of the plane strain
model, the axisymmetric designs shown in Figs. 10 and 11 could
be obtained, respectively, for two softening and two stiffening target
12
responses, under compression. The first three designs possess the topol-
ogy of a hollow tube and the outward buckling of the walls is again
combined with internal contact in order to achieve the target responses,
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Fig. 13. Comparison of load–displacement curves for a selection of density-based optimized designs (solid lines) and corresponding post evaluation curves based on body fitted
meshes (dashed lines).
as was the case for the plane strain model. The same mechanisms are
present also in the last case shown in Fig. 11, which has the topology
of an axisymmetric column with an embedded hole split between the
bottom and the top of the domain. This is the equivalent of the last
plane strain case from Fig. 5.

Figs. 10 and 11 report also utilized material volume for each design.
This is now given for the axisymmetric geometries in terms of the
volume-equivalent solid cylinder aspect ratio 𝐷∕𝐻 , where

𝐷 =
√

4𝑉
𝜋𝐻

(25)

s the diameter of a solid cylinder with height 𝐻 that occupies the same
olume 𝑉 as the respective axisymmetric design.

.5. Post-evaluation

All results shown so far consist of satisfactorily discrete designs
hich contain grayscale material only in a refined zone of width

𝑖 = 1mm at the interface between solid and void, corresponding to ca.
/5 of an element size. Although the intermediate density zone at the
olid-void interface is in the order of only 1/100 of the domain size, it
an still introduce inaccuracies with respect to the actual mechanical
esponse of a fully discrete design. The only reliable manner of eval-
ating such inaccuracies is by remodeling the obtained designs, using
ufficiently fine body fitted meshes and conventional contact modeling.

A total of six cases were selected for reevaluation, among the plane
train designs provided in Sections 3.1 and 3.2. The criterion for this
election was the presence of fine features, where intermediate density
aterial is expected to have the most detrimental effect on the accuracy

f the model. Fig. 12 shows body fitted meshes for the lower left quarter
f each of the six designs. Due to the imposed symmetry in the designs,
uch body fitted meshes were initially created for only one quarter of
ach design, using GMSH [25] at a threshold value 𝝌 = 0, i.e. 𝜌 = 0.5.

The generated meshes, seen in Fig. 12, were then mirrored with respect
to both the horizontal and vertical axes in order to obtain the mesh for
the entire model used in the post-evaluation. For the post-evaluation,
second order elements were used, with six nodes per triangle and nine
nodes per quad element. The same boundary conditions were applied
to the top and the bottom sides of the body fitted meshes, as shown
in Fig. 1 for the topology optimization model. Frictionless contact for
the internal walls of the structure was modeled using the augmented
Lagrangian formulation from [26] with quadratic approximation of the
13

contact multiplier and seven Gauss points per element side.
Load–displacement curves obtained from the post-evaluation of all
six cases are plotted over the respective original load–displacement
curves in Fig. 13. The deviations between the response accounted for
during the optimization and the actual response obtained through the
post-evaluation are visible but rather limited. For the two compres-
sion springs with linear (C4) and stiffening (C7) response, seen in
Fig. 13a, the inaccuracies due to the density-based approximation of
the solid are insignificant. The largest deviation is observed for the
compression spring optimized for a softening response (C1), but still
the post-evaluation response exhibits just slightly stronger softening
behavior than the optimization target. For the three tension springs
(T2,T3,T6) post-evaluation, seen in Fig. 13b, the actual response is just
slightly stiffer in general, but the form of the response curves is not
affected significantly. In total, post-evaluation with body fitted meshes
has demonstrated that the proposed method leads to designs that can
actually reproduce the target response with very satisfactory accuracy.
It only remains to examine in future work, how sensitive these designs
are with regard to manufacturing errors.

4. Conclusion

This work has successfully employed third medium contact topol-
ogy optimization for the inverse design of complex elastomer springs
for both stiffening and softening target responses, in both tension
and compression. Compared to the previous versions of the topology
optimization framework, [15], several improvements have been intro-
duced, leading to faster convergence and designs of higher quality: (1)
a simpler version of the void regularization term, (2) B-spline basis
functions for the level-set design variable and a very weak penalization
of the level-set field curvature, and (3) optional robust formulation
(necessary only in very few examples). These modifications have al-
lowed to run all optimization examples until full convergence. All
final designs reported, correspond to exact saddle points of the overall
monolithic system of equations, equivalent to a fully converged simul-
taneous analysis and design (SAND) optimization.

Similar to previous works, an objective function was considered
which consists of a squared distance sum with respect to a target
path, and a weak penalization of utilized material volume. The ob-
tained designs constitute a novel result, as they both account for
internal collisions and in most of the cases actually also leverage
internal contact in order to achieve the target response. Moreover,
examples have been presented both for plane strain and axisymmet-
ric spring designs. Post-evaluation has clearly demonstrated that the
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inaccuracies introduced due to intermediate densities at the void-
solid interface do not affect the validity of the optimized designs
considerably.

All examples included resemble axially loaded springs, but an ap-
plication of the method for the inverse design of periodic material
microstructures is a natural and rather straightforward next step. An-
other important aspect for future work is to include stress or strain
constraints in order to avoid excessive deformations involved in some
of the designs of the present work.
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Appendix A. Demonstration of robust formulation

For the examples with a softening target response under tension
(cases T1 and T2), it was observed that, unless a robust formula-
tion is used, non-physical designs are obtained. It seems that strain
localization in an intermediate density material region is the most
material-efficient albeit non-physical way of achieving a softening re-
sponse. Such designs can be seen, in their undeformed and deformed
configurations, in columns 2–4 of Fig. 14.

Adding one extra control point for a dilated design at 20% tension,
although with a much smaller weight in the objective function, elim-
inates these artifacts. Due to additional material, the dilated design is
in general expected to have a larger reaction force at the new control
point, deviating significantly from the target value. Nevertheless, this
deviation is much smaller for some designs than others. This is the
14
case for the designs shown in the first column, which were obtained
after the squared distance for the deviation of the dilated design has
been included in the objective, constituting a robust formulation. The
respective load–displacements curves, shown in the last column of
Fig. 14, demonstrate that the blueprint design obtained with the robust
formulation still meets the target as good as the non-robust design but
it is free of intermediate density regions.

Fig. 15. Simplified illustration of the effect of erosion and dilation on the material
stiffness distribution.
Fig. 14. Tension spring designs obtained with and without the robust formulation for a softening target response.
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Fig. 16. Optimization convergence history for case C7, starting with the regular initial design in the first row, cf. Fig. 2, and starting with a random design in the second row of
images.
The working principle of the robust formulation is further illustrated
in Fig. 15. The first plot shows an arbitrary example of the level-set de-
sign variable 𝝌 along a single dimension 𝑥. In regions where 𝝌 is clearly
positive, the density field 𝜌, shown in the second plot, is close to 1, and
in regions where 𝝌 is clearly negative, 𝜌 is close to 0. This example
also includes an intermediate density region with 𝝌 ≈ 0, i.e. 𝜌 ≈ 0.5.
A constant shift in 𝝌 , results depending on the direction in either an
eroded or a dilated design. For both cases, the third plot illustrates the
effect of erosion or dilation on material stiffness, in terms of the RAMP
factor 

(

𝝌
)

. It demonstrates how dilation of intermediate density re-
gions, as those found in the non-robust designs from Fig. 14, will have
a large impact on the stiffness in such regions, hence suppressing strain
localization which is exploited in the blueprint design.

Appendix B. Optimization with alternative initial designs

As for most topology optimization problems, it is unavoidable that
the final optimized design will depend on the initial design that the
optimization starts with. The optimality condition, solved for during
the optimization process, ensures only a local minimum of the objective
function. Depending on the initial design, different local minima may
be reached, especially for problems with strong nonlinearities, like
the problems involving contact, treated in the present work. In order
to provide an indication about the sensitivity of the solution to the
initial design, case C7 has been recomputed starting with an alternative
random initial design.

Fig. 16 shows the two alternative initial designs, in the first column,
and six snapshots during the entire optimization history, in subsequent
columns. The first row of images show the optimization history for the
result presented in Section 3.1, while the second row of images show
the corresponding design iterations when starting with the random
design. The random initial design was generated by perturbing a zero
level-set field 𝜒 with random perturbations defined on uniform 4 × 4,
8×8, and 12×12 meshes over the problem domain. For each element of
the three meshes, uniformly random perturbation values were defined
within ±0.4, ±0.222, and ±0.154, respectively, then interpolated to
the actual 80 × 80 mesh with quadratic B-spline interpolation, and
superimposed together. Moreover, double mirror symmetry has been
enforced.

For the optimization starting with the random design, two halves
of a column emerge at the left and right borders of the domain. The
boundary conditions on these borders act as a symmetry line, making
this split column equivalent to the original one. When the two halves
are put together to form a column, the resulting design is strikingly
similar to the original one despite the different starting guess and posi-
tion in the design domain. This confirms that an efficient local optimum
has been reached by both designs. The quantitative performances differ
slightly, with a volume-equivalent width 𝑊 = 0.2539𝐻 reached for the
15
regular initial design, and 𝑊 = 0.2515𝐻 for the random initial design,
while a number of 153 and 140 iterations were respectively required
for full convergence.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijnonlinmec.2023.104552.
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