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Abstract
Forecasting is of the utmost importance to the integration of renewable energy into power systems
and electricity markets. Indeed, to get electricity from conventional generators such as fuel-based
or nuclear power plants, one is in charge of the production, whereas renewable energy sources are
fundamentally variable and weather-dependent. Full benefits from their integration can only be
reaped if one is given reliable, trustworthy forecasts and therefore the opportunity to accommodate
the actual renewable power generation in an optimal way. In this thesis, we focus on offshore
wind power short-term forecasting, as wind power fluctuations at horizons of a few minutes ahead
particularly affect the system balance and are the most significant offshore. Those very short-term
lead times are not only crucial but also the most difficult to improve the forecasts for, especially
compared to the simple but very effective persistence benchmark.

Forecasts characterize but do not eliminate uncertainty. Therefore, they ought to be probabilistic,
taking the form of distributions. Wind power generation is a stochastic process which is double-
bounded by nature, by zero when there is no production and by the nominal power for high-enough
wind speeds. It is non-linear and non-stationary. For short-term forecasting, statistical methods
have proved to be more skilled and accurate. However, they often rely on stationary, Gaussian
distributions, which cannot be appropriate for wind power generation. We start by extending
previous works on generalized logit-normal distributions for wind power generation. First, we
develop a rigorous statistical framework to estimate the full parameter vector of the distribution
through maximum likelihood inference. Then, we derive the corresponding recursive maximum
likelihood estimation and propose a recursive algorithm which can track the full parameter of the
distribution in an online fashion.

From the observation that bounds are always assumed to be fixed when dealing with bounded
distributions, which may not be appropriate for wind power generation as curtailment actions
happen, we develop new statistical frameworks where the bounds of a distribution are allowed
to vary without being observed. First, we address the bounds as additional parameters of the
distribution and propose an online algorithm for quasiconvex functions which is able to track a new
bound parameter over time along with the original parameters of the distribution. Alternatively, to
account for the uncertainty in the bounds as well, we propose to introduce them in the statistical
model as discrete latent variables. To deal with these additional, missing, variables, we suggest
batch and online algorithms based on the expectation-maximization method.

The algorithms developed during this thesis were run on both synthetic and real power generation
data. We question the k-nearest neighbors imputation method we implicitly used to deal with
missing data in historical records. To address a common shortcoming in such non-parameteric
methods, which is to overlook the distances between the neighbors themselves, we propose to
explicitly acknowledge the structure of the wind farm by considering it as a graph. Then, we design
an augmented imputation method which combines spectral graph theory and online learning to
exploit information from both the wind farm layout and the data already collected.

ix





Resumé
Forudsigelser og prognoser er af største betydning for integrationen af vedvarende energi i elsystemer
og elmarkeder. For at få elektricitet fra konventionelle generatorer, såsom brændstofbaserede eller
atomkraftværker, er man faktisk ansvarlig for produktionen, hvorimod vedvarende energikilder er
fundamentalt variable og vejrafhængige. Det fulde udbytte af deres integration kan kun høstes,
hvis man får pålidelige, troværdige prognoser og derfor mulighed for at imødekomme den faktiske
vedvarende elproduktion på en optimal måde. I dette speciale fokuserer vi på korttidsprognoser for
offshore vindkraft, da produktionsudsving i vindkraft i horisonter på få minutter frem især påvirker
systembalancen og er især markante for offshore. Disse meget kortsigtede horisonter er ikke kun
afgørende, men også de sværeste at forbedre prognoserne for, især sammenlignet med det enkle,
men meget effektive benchmark.

Prognoser karakteriserer, men fjerner ikke usikkerhed. Derfor bør de være probabilistiske i form
af fordelinger. Vindkraftproduktion er en stokastisk proces, som er afgrænset af naturen, når
der ikke er produktion pga., at vinden ikke blæser, og af den nominelle effekt for høje nok
vindhastigheder. Den er ikke-lineær og ikke-stationær. Til kortsigtede prognoser har statistiske
metoder vist sig at være mere dygtige og nøjagtige. De er dog ofte afhængige af stationære,
normalfordelte distributioner, som ikke altid er passende til vindkraftproduktion. Vi starter med at
udvide tidligere arbejde med generaliserede logit-normalfordelinger til vindkraftproduktion. Først
udvikler vi en stringent statistisk ramme for at estimere den fulde parametervektor for fordelingen
gennem maksimal sandsynlighedsinferens. Derefter udleder vi den tilsvarende rekursive maksimale
sandsynlighedsestimering og foreslår en rekursiv algoritme, som kan estimere parameterne for
distributionen online.

Ud fra iagttagelsen af, at grænser altid antages at være faste, når man har at gøre med afgrænsede
fordelinger, hvilket måske ikke er passende for vindkraftproduktion, da der sker afskæringshandlinger,
udvikler vi nye statistiske rammer, hvor grænserne for en fordeling får lov til at variere uden at
blive observeret. Først adresserer vi grænserne som yderligere parametre for fordelingen og foreslår
en online-algoritme for kvasikonvekse funktioner, som er i stand til at spore en ny bundet parameter
over tid sammen med de originale parametre for fordelingen. Alternativt, for også at tage højde
for usikkerheden i grænserne, foreslår vi at introducere dem i den statistiske model som diskrete
latente variable. For at håndtere disse yderligere variable foreslår vi batch- og onlinealgoritmer
baseret på forventningsmaksimeringsmetoden.

Algoritmerne udviklet i løbet af dette speciale blev kørt på både syntetiske og reelle produktionsdata.
Vi sætter spørgsmålstegn og undersøger k-nærmeste naboers imputationsmetode, som vi implicit
brugte til at håndtere manglende data i historiske optegnelser. For at løse en almindelig mangel ved
sådanne ikke-parameteriske metoder, som er at overse afstandene mellem naboerne selv, foreslår
vi eksplicit at anerkende vindmølleparkens struktur ved at betragte den som en graf. Derefter
designer vi en udvidet imputationsmetode, som kombinerer spektralgrafteori og online læring for at
udnytte information fra både vindmølleparkens layout og de allerede indsamlede data.

xi





CHAPTER 1
Introduction

1.1 Context and motivation

Forecasting is of the utmost importance to the integration of renewable energy into power systems
and electricity markets. Indeed, to get electricity from conventional generators such as fuel-based
or nuclear power plants, one is in charge of the production, whereas renewable energy sources are
fundamentally variable and weather-dependent. Full benefits from their integration can only be
reaped if one is given reliable, trustworthy forecasts and hence, the opportunity to accommodate
the actual renewable power generation in an optimal way. Forecasts characterize but do not
eliminate uncertainty. Therefore, they should be probabilistic, taking the form of predictive
probability distributions [1]–[3]. In particular, renewable energy forecasting should be performed
in a probabilistic framework, since point forecasts are not informative enough when it comes to
quantify the inherent uncertainty of renewable power generation.

Attention to energy forecasting has increased to a great level over the years [4]. The choice of a
forecasting method is driven by an important notion in energy forecasting, which is the forecast
horizon. This refers to the length of time into the future for which forecasts are to be prepared,
and typically runs from very short-term to long-term lead times. Short-term forecasts are issued a
few minutes or hours before the event of interest. Long-term forecasts, on the other hand, can be
issued decades ahead of time. For short-term energy forecasting, statistical methods have proved to
be especially skilled and accurate, as the most recent records of the quantity or event to be forecast
next carry a lot of information.

Wind power fluctuations at horizons of a few minutes ahead particularly affect the system balance,
and are the most significant offshore. Experience from Horns Rev offshore wind farm showed that
power fluctuations within 10-minute intervals can be remarkably high due to the concentration
of wind power in a small area [5], [6]. Those very short-term lead times are not only crucial but
also the most difficult to improve the forecasts for, especially compared to the simple yet effective
persistence benchmark. Persistence point forecasting simply takes the last observed value as the
next forecast. To get probabilistic forecasts out of them, persistence point forecasts are often dressed
with point forecast past errors. Even though most efforts in wind power forecasting are placed
on lead times ranging from hours to days, there is a growing interest in alternative approaches to
improve the accuracy of very short-term forecasts, for instance leveraging detailed turbine-level
data [7].

Wind power forecasting has been leading probabilistic forecasting in the energy forecasting field,
thanks to the close collaboration between wind power forecasters and meteorologists. Wind power
generation is a stochastic process which is double-bounded by nature: by zero when there is no
production and by the nominal power for high-enough wind speeds. It is non-linear and non-
stationary [8]. However, short-term statistical models often rely on stationary frameworks and
Gaussian distributions, which cannot be appropriate for wind power generation. Accommodating

1



2 CHAPTER 1. INTRODUCTION

the non-linearity, the non-stationarity and the bounded support of wind power generation may
pave the way to improving both point and probabilistic wind power forecasts.

1.2 Challenges and research directions

Throughout this thesis, focus is placed on very short-term probabilistic forecasting for offshore
wind energy, since short-term fluctuations in power generation are most significant offshore. We are
interested in parametric probability distributions that can handle the non-linearity and bounded
support of wind power generation. Probability distributions suited for continuous bounded random
variables include the beta distribution, truncated distributions and distributions of transformed
normal variables [9]. We work with the generalized logit-normal (GLN) distribution [10], which
belongs to the third category and has been shown to better account for the special characteristics
of wind power generation compared to classical beta and normal assumptions [11]. Lastly, to
accommodate the non-stationarity of wind power generation, we aim to develop online methods.

For forecasting purposes, to choose a parametric distribution is to make assumptions about the
shape of the predictive densities. This choice being made, we still need to get estimates for
the parameters of the chosen distribution, and parameter estimation is more or less challenging
depending on the distribution and the parameter at hand. First, we aim to provide an approach
where all the parameters of a GLN distribution are estimated from data in a rigorous
framework. Easy problems can be solved using least squares methods, for instance in the case of
linear models. A more general estimation method is maximum likelihood inference. It assumes that
the most reasonable values for the parameter vector of a distribution, or more generally a model,
are those for which the probability of the observations is the highest. Indeed, it can be shown that
least squares for a linear model with a Gaussian assumption on its errors is equivalent to maximum
likelihood estimation. So, although the additional assumption of normality seems more restrictive,
the results are the same when estimating the parameters of the linear model. Adding assumptions
about the errors makes it possible to move to probabilistic forecasting, and through maximum
likelihood inference one is now able to estimate the variance as an additional parameter of the linear
model. Maximizing a likelihood comes down to solving an optimization problem with respect to the
parameters of the statistical model, the observations being fixed. Depending on the parameter at
hand, simple closed-form solutions to this optimization problem might exist. This is the case when
estimating the parameters of the linear model, including the variance of the normally distributed
errors. The GLN distribution, on the other hand, relies on three parameters: a location and a scale
parameters, usually denoted as µ and σ2 by analogy with the normal distribution, and a shape
parameter ν which makes the distribution generalized, as for ν = 1 it is just called logit-normal.
The difficulty of maximum likelihood inference for GLN distributions lies with the parameter ν,
since there exists no closed-form expression of its maximum likelihood estimate, thereby requiring
the use of iterative methods.

Next, to accommodate the non-stationarity of wind power generation, we move from batch
to recursive maximum likelihood estimation for the parameter vector of the GLN
distribution to be able to evolve and adjust to new characteristics in the signal. Because
we are to issue probabilistic forecasts only a few minutes ahead of time, the proposed algorithms
should run fast, along with being sparse and efficient, as progress in renewable energy forecasting
should not be made at the cost of intensive computations. Recursive estimation allows for parametric
time-variability and provides information not only on the existence of non-stationarity, but also on
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Figure 1.1: Probability density function of the GLN distribution for different values of its location
parameter µ, its scale parameter σ2, and its shape parameter ν.

the possible nature of the parametric variations [12]. As maximum likelihood inference relies on the
likelihood function, recursive estimation procedures can be derived by introducing a time-dependent
likelihood and getting a new parameter estimate as a function of the previous estimate [13], [14].
Ultimately, our objective is to move towards online learning approaches for wind power probabilistic
forecasting, which make it possible to track a full parameter vector online [15]–[17].

We note that while dealing with bounded distributions, the bounds are always assumed to be fixed,
i.e., the support of the probability distribution does not vary with time or exogenous variables. This
may not be appropriate for wind power generation, as curtailment actions happen, and negatively
impact inference and forecasting. We do not observe these varying bounds nor have reliable
information about them. Therefore, we look at the bounds of the support as additional
parameters of the GLN distribution and aim to develop online algorithms capable of
tracking them over time along with the original parameters. The main challenges here
concern both the inference and the forecasting tasks. Regarding inference, we need to solve a new,
possibly not convex optimization problem, in order to estimate these additional bound parameters.
Moreover, in an online framework we need to allow and handle observations falling outside of the
support of the probability distribution. This needs to be addressed for enabling online inference,
and when moving to forecasting, since it is still possible that the next observation falls outside of
the support of our predictive density.

Alternatively, to account for the inherent uncertainty which comes with the inability to observe the
bounds, we investigate more general frameworks where the bounds are missing random
variables with their own probability distribution. This calls for a range of statistical methods
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which are known as expectation-maximization (EM) algorithms [18]. The EM algorithm is a popular
tool for simplifying difficult maximum likelihood problems. The maximum likelihood estimation
may become difficult if it involves missing variables. Therefore, the EM algorithm is often associated
with problems involving missing variables or data. Let X and Xm be the observed and missing data,
respectively. The algorithm works with the complete log-likelihood, which is the log-likelihood of the
complete data (X,Xm). It relies on two steps: an expectation step, the E-step, and a maximization
step, the M-step. The E-step is about the expectation of the complete log-likelihood conditional on
the observed data X and the current estimate of the model parameter vector; at the M-step, a new
estimate of the parameter vector is computed by maximizing the expectation function from the
E-step. This is a rather general and flexible framework, where the uncertainty in the bounds is
accounted for, since the parameters of the bounds’ distribution are included in the model parameter
vector and updated at the M-step. However, it brings its own challenges, which mostly concern the
EM algorithm. Because there is no closed-form solution for the parameter ν, the M-step of the
EM algorithm entails iterative methods as well and requires what is termed as a generalized EM
algorithm [18]–[20]. Moreover, depending on the distribution which has been chosen for the bounds,
the E-step could be straightforward, or intractable and require Monte Carlo [21] or stochastic
versions of the EM algorithm [22], [23]. Last but not least, getting an online version of the EM
algorithm might be particularly challenging as current works on online/stochastic EM algorithms
largely focus on the exponential family [24]–[26]. Although Titterington’s recursive algorithm
can be applied to probability distributions outside of the exponential family [27], it requires the
computation of the complete-data Fisher information matrix, which would be cumbersome for GLN
distributions.

The algorithms discussed in this thesis are intended to be applied to both synthetic and real power
generation data. When interested in the average production at a wind farm at time t, it is quite
intuitive to work with the average of the wind turbine productions that are recorded in the dataset
at time t. By doing so, one implicitly performs k-nearest neighbors (k-NN) imputation [28]. The
k-NN algorithm is a seminal non-parametric method in machine learning, which uses the k points
closest to a point of interest to make a decision about it [29]–[31]. A common shortcoming in
current non-parametric methods is to only consider the distances between the decision point and
its neighbors, and ignore the geometrical relation between those neighbors. Before we get any
records from its sensors, a wind farm is a graph with its own geometry and we aim to take
advantage of this a priori information to improve the imputation of power generation
missing values. Since the world’s first offshore wind farm, Vindeby in Denmark, which totalled
11 turbines in 1991, the size of offshore wind farms has increased to more than a hundred wind
turbines, e.g., Hornsea 1 in the United Kingdom which totals 174 wind turbines. Because of the
increasing number of turbines in offshore wind farms, the issue of missing data becomes even more
critical than it used to be.

Pursuing the methods and algorithms developed during this thesis originate while considering
wind power forecasting. However, they are of interest for a much broader range of statistical and
forecasting applications, as soon as bounded variables are involved. Staying in the renewable energy
field, one can think of solar power generation since it is also often expressed as a percentage of the
nominal power of the power plant, which can shift over time for no documented reason, see, e.g.,
[32], [33]. Even if the nominal power remains constant, some phenomena may happen that limit
the effective capacity, such as dust in desert areas.
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Figure 1.2: Position and name of the wind turbines at Westermost Rough offshore wind farm
(left) and Anholt offshore wind farm (right).

1.3 Application framework

Many case studies could be considered for the methods and algorithms we aim to develop. In this
thesis, we will make use of two newly available datasets from two offshore wind farms we were
provided with, when evaluating the performance of our algorithms on real data. Both datasets
include metadata about the wind turbines’ location and technical characteristics, along with
supervisory control and data acquisition (SCADA) files, i.e., signals recorded for each wind turbine
such as active power, wind speed, yaw position or ambient temperature. These time series are
available at a temporal resolution of every ten minutes. The two offshore wind farms are Westermost
Rough, situated in the North Sea, England, and Anholt, situated between Djursland and the island
Anholt in the Kattegat, Denmark. Westermost Rough totals 35 wind turbines placed according
to a grid pattern, while Anholt totals 111 wind turbines in a rather non-conventional layout.
Representations of the wind farms through the position and name of their wind turbines are shown
in Figure 1.2.

Westermost Rough We have individual time series over two years, from January 1, 2016, to
December 31, 2017. However, not all time series start on January 1. For wind power generation,
the first complete record, i.e., with values for all wind turbines, is only available on February 2,
2016. About half the total 105,264 records are complete records, i.e., we have the power generation
value for all wind turbines. Most of the incomplete records only miss one (60.80%) or two values
(23.13%). The distribution of the number of missing entries by record is plotted in Figure A.1 of
Appendix A. Sequences of consecutive missing data can be very long for a wind turbine, up to
8,728 time steps, i.e., about 61 days. Depending on the wind turbine, between 0.15 and 5.81% of
individual power generation data are missing over the period.

Anholt We have individual time series over 2.5 years, from January 1, 2013, to June 30, 2015.
Although some individual power generation records start from January 1, 2013, the first complete
record of wind power generation is only available on June 22, 2013. After July 2013, many entries
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are still missing for a few months: October 2014, February 2015 and March 2015. About 66% of
the total 131,184 records are complete records. About 30% of the incomplete records only miss
one value. However, 4.62% of the incomplete records miss 75 values and 4.02% are fully empty
records. The distribution of the number of missing entries by record is plotted in Figure A.2 of
Appendix A. Again, sequences of consecutive missing data can be very long for a wind turbine, up
to 11,024 time steps, i.e., about 77 days. Depending on the wind turbine, between 4.10 and 22.45%
of individual power generation data are missing over the period.

1.4 Scientific contributions

The main objective of this thesis is the design of new methods and algorithms to improve predictive
densities for wind power short-term forecasting. In particular, we focus on accommodating the
non-stationarity of wind power generation through online learning approaches, its non-linearity
and bounds through more appropriate distribution assumptions.

Full recursive estimation of the generalized logit-normal distribution We start by
extending previous work on GLN distributions for wind power generation [11], where not all
the parameters of the distribution were estimated, as the shape parameter ν was selected upon
cross-validation. We propose to revisit this work and to estimate all the parameters of the GLN
distributions within a maximum likelihood framework. In [Paper A] we provide a batch algorithm
which relies on conditional maximization of the model log-likelihood [34]. Conditional maximization
enables us to benefit from the closed-form solutions which are available for the location and
scale parameters of the GLN distribution, and to limit the iterative part of the algorithm to a
one-dimensional Newton-Raphson step. Then, we apply ideas from [13] and [14] to our model and
propose a recursive version of our algorithm. The recursive algorithm makes it possible to estimate
and update the full parameter vector of the GLN distribution in an online fashion. It can be seen
as a quasi-Newton approach, since it uses only first-order information and an approximation of
the Hessian matrix which ensures positive definiteness. Both batch and recursive algorithms are
applied to 10-minute-ahead point and probabilistic forecasting at the Anholt offshore wind farm.
Point forecasts are evaluated through root mean square errors. Probabilistic forecasts are evaluated
according to a strictly proper scoring rule, the continuous ranked probabilistic score (CRPS) [35],
and by looking at reliability diagrams and marginal calibration plots [3], [36]. The recursive
algorithm, in particular, provides significant improvement over batch and Gaussian methods when
issuing predictive densities.

Online tracking of a varying upper bound We are then interested in challenging the
assumption of fixed bounds for bounded variables. We are not aware of previous works on this
matter. We start by considering the bounds as new, additional parameters of the distribution.
Bounds as parameters only make sense in an online framework, as they need to vary with time.
Because our application is wind power generation, we are mostly concerned with the upper bound.
Therefore, we derive the method focusing on this upper bound, but we want to emphasize that
it would be straightforward to apply it to a lower bound. So far, we have worked with an upper
bound assumed to always be 1, as we normalize the wind power generation by the nominal power of
the turbine. We still aim to estimate the full parameter vector of the GLN distribution, which now
includes the upper bound, through maximum likelihood inference. The first challenge when dealing
with the bound as a parameter in a non-stationary framework is to handle past observations which
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are outside of the support of the bounded distribution, and make the log-likelihood to be infinite.
In order to take into account these observations in a soft, finite way, in [Paper B] we introduce a
new term into the log-likelihood which relies on the sigmoid function. We choose to call this new
log-likelihood the extended log-likelihood. The second challenge we need to tackle is that when
considering the bound as a parameter, we cannot be in a classical convex optimization framework
anymore, since the negative log-likelihood appears not to be convex in the bound parameter.
Therefore, we propose to move to quasiconvex optimization, and use recent theoretical results about
local quasiconvexity and (stochastic) normalized gradient descent [37]. We design a batch algorithm
out of normalized gradient descent (NGD), and an online algorithm out of stochastic normalized
gradient descent (SNGD). In addition to these novel quasiconvex algorithms, we propose a more
classical online convex algorithm, which is the recursive algorithm from [Paper A], augmented
to include an upper bound parameter in the statistical model. The proposed algorithms are first
run on synthetic data for checking their tracking abilities. They are also applied to 1-step-ahead
probabilistic forecasting. Here a third challenge arises, as it can always happen that the next
observation falls outside of the support of our predictive density, when the current estimate of
the upper bound is too low. We show that the CRPS is nicely increased by an observation falling
outside of the support of the predictive distribution, to a higher finite value, contrary to, e.g.,
the logarithmic score, another strictly proper scoring rule which becomes infinite. The proposed
algorithms are then applied to 10-min-ahead probabilistic forecasting at the Anholt offshore wind
farm and compared to the recursive algorithm proposed in [Paper A], i.e., for which the bound
is assumed to be fixed to 1. Our online normalized gradient descent (ONGD) algorithm shows
significant improvement over the recursive algorithm of [Paper A], contrary to the updated version
of the recursive algorithm which shows equivalent performances. However, none of the proposed
algorithms achieve probabilistic calibration [36], as prediction intervals are too narrow on average,
i.e., the predictive densities are overconfident.

Online mixture of scaled generalized logit-normal distributions When considered as a
time-varying parameter, a bound can take only one value at time t, and this value cannot be too
far from the previous one. To account for uncertainty and allow sharp variations in the values
successively taken by the bound, we introduce the latter in our model as a random variable with
its own probability distribution. This implies we do not have a single value of the bound when
issuing the predictive density of the bounded variable, but a full distribution. Therefore, if the
distribution of the bound does not change over time, we will always forecast the same values with
the same probabilities. Focusing again on an upper bound, and from the intuition that a grid of
plausible values over the unit interval may matter more to modelling than the accuracy of each
value, we propose to assume the bound to be a discrete random variable which can take K values
over (0, 1]. The marginal probability density function of the bounded variable then becomes a
finite mixture of K scaled GLN distributions, which is similar to a kernel density with scaled GLN
kernels. Ideally, we wish the probabilities assigned to each value of the bound to be updated online
depending on the most recent information, in order for the probabilistic forecasts to achieve better
probabilistic calibration while still being informative. When we do not have information in favor of
certain values over others, equal probabilities would be assigned to all values; otherwise, positive
probabilities would go to a few values only. This framework is very flexible in the sense that one
is free to decide on how many and which values they want for the bound, on covering the whole
unit interval or focusing on a smaller interval with closer GLN kernels. Flexibility also comes with
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more control over the values which can be taken by the bound. The main challenge lies in the
design of online EM algorithms, as we need the distributions of both the bound and the bounded
variable to vary with time for wind power forecasting applications. This work is presented in the
technical report [Paper C] as of now. It has been inspired by wind power forecasting but still is
at exploratory stage, focusing on methodological aspects and simulation studies. We propose a
batch Monte Carlo expectation-conditional maximization (MCECM) algorithm and two online
algorithms for stochastic processes with auto-regressive (AR) dependency. We also provide an
expectation-conditional maximization (ECM) algorithm along with an online algorithm for more
general frameworks where the bounded variables are independent and identically distributed. All
algorithms were run on synthetic data to illustrate their performance for convergence and tracking
purposes. The performance of the online EM algorithms for stochastic processes was also assessed
for forecasting purposes. The batch algorithms and the online EM algorithm for independent
data performed well on the simulation study. However, further work is required on an online EM
algorithm for stochastic processes so it can be applied to real-world data.

Online imputation of missing values using spectral graph theory Having worked with
the power generation averaged over the wind farm, we question the implicit k-NN imputation which
is performed by averaging over available entries when a record is incomplete at time t. We address
the common shortcoming of only considering distances between a point of interest and its neighbors
by using the geometry of the wind farm in [Paper D]. Our method relies on learning Laplacian
eigenmaps out of the graph of the wind farm through spectral graph theory [38], [39]. These learned
representations can be based on the wind farm’s layout only, or additionally account for information
provided by observed data. The corresponding weighted graph is allowed to change with time and
can be tracked in an online fashion. Application to the Westermost Rough offshore wind farm
shows significant improvement over approaches that do not account for the wind farm’s layout
information. Our imputation method does not rely on any model assumptions. Therefore, it can be
used for subsequent supervised learning tasks, such as forecasting, for any kind of learner/predictor.
In [Paper D] we focus on what is known as single imputation, as we try to impute missing entries
as accurately as possible, which gives us only one completed dataset. Multiple imputation on the
other hand consists of predicting M different values for each missing data point, and provides M
imputed datasets. Multiple imputation is usually preferred, especially for inference tasks, as it
ensures the variance is properly accounted for [40]. Because a neighbor’s weight can be seen as the
probability of the missing point to take the value of its neighbor, weighted k-NN nicely enable to
move to multiple imputation, or more generally, towards a probabilistic framework.

1.5 Thesis outline

This thesis gives an overview of the contributions made during this Ph.D. project, based on the
papers written over the period. Chapter 2 sets the statistical framework of using GLN distributions
for wind power probabilistic forecasting. It deals with maximum likelihood inference for both batch
and recursive estimations. We also introduce the evaluation tools we will be using for assessing
our predictive densities throughout the thesis. In Chapter 3, we address the issue of having a
varying support for the GLN distribution without observing the varying bounds. The scientific
contributions related to the bounds as parameters are first presented, followed by those related to
the bounds as discrete random variables. Chapter 4 is dedicated to dealing with missing values in
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general and at offshore wind farms, and in particular while considering the wind farm as a graph.
Finally, Chapter 5 concludes and discusses possible directions for future work.

The corresponding scientific articles are attached at the end of the thesis.
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short-term forecasting”, in Proceedings 2021 IEEE Madrid PowerTech, 2021.

[Paper B] A. Pierrot and P. Pinson, “On tracking varying bounds when forecasting bounded time series”,
submitted to Technometrics, 2023.

[Paper C] A. Pierrot and P. Pinson, “Mixtures of bounded distributions with different bounds: Estima-
tion and forecasting”, to be submitted to the Annals of Applied Statistics, technical report as
of now, 2023.

[Paper D] A. Pierrot and P. Pinson, “Data is missing again – Reconstruction of power generation data
using k-nearest neighbors and spectral graph theory”, submitted to Wind Energy, 2023.





CHAPTER 2
Generalized logit-normal densities

for wind power forecasting
This chapter presents the preliminary methods and algorithms developed in [Paper A] to fully
estimate and issue (predictive) GLN densities for wind power forecasting, and are the base for
subsequent more advanced methods. We introduce the GLN distribution in Section 2.1 and we
show in Section 2.2 how to apply it to wind power generation. This involves accommodating the
serial dependency in the wind power stochastic process and considering densities conditional on
the past of the sequence. We then state the maximum likelihood inference for both stationary
and non-stationary frameworks in Section 2.3, and explain the corresponding batch and recursive
algorithms. Finally, the question of evaluating the forecasts which are to be issued by these models
is addressed in Section 2.4, focusing on predictive densities. This chapter also sets the notations
used throughout this thesis in order to ensure consistency. Note that they might differ from the
ones used in the related articles, in particular from the notations of [Paper A].

2.1 The generalized logit-normal distribution

The practical use of any family of distributions depends on the possible variation in its shape, and
on the ease with which the distribution can be fitted. The GLN distribution is very flexible thanks
to three parameters: the location µ, the scale σ2, and the shape ν. It relies on a generalization of
the logit transform and comes down to the logit-normal distribution when ν = 1 [10]. Let X be the
original random variable, X ∈ (0, 1). The generalized logit transform Y is given by

Y = γ(X; ν) = log Xν

1 −Xν
, (2.1)

where ν > 0 is the shape parameter. When Y is distributed according to a normal distribution
N (µ, σ2), the probability distribution of the original variable X is the GLN distribution Lν(µ, σ2)
[11], [41], [42]. Because the transformed variable is normally distributed, nice properties can be
derived for the original random variable X. In particular, the probability density function p of X
can be expressed as a function of the standard normal density,

p(x; θ) =


1√

2πσ2
ν

x(1−xν ) exp
[
− 1

2

(
γ(x;ν)−µ

σ

)2
]

if 0 < x < 1,

0 otherwise,
(2.2)

where θ = (µ, σ2, ν) is the parameter vector of the distribution.

This distribution belongs to the so-called SB family of distributions [41]. This minimally informative
name comes from the fact that these distributions have a Bounded domain. In the case of the GLN
distribution, the domain is (0, 1). The first analytic characterisation of the logit-normal family was

11
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done in terms of a system of curves constructed from transformations of normal variables [9]. There
are no available analytical expressions for the expectation and the variance. In the Appendix to his
original article [9], Johnson mentioned that "the analytical expressions for these moments must
be very complicated". From the observation that their numerical expression is "straightforward
though tedious", [41] provided a graphical display over the parameter space of the first two moment
functions of L(µ, σ2), i.e., the logit-normal distribution for which ν = 1. These moment functions
were conveniently specified in terms of the signal-to-noise ratio µ/σ and the standard deviation σ

of the normal family from which the logit-normal distributions are derived. The corresponding
systematic numerical integration can be done using any regular software.

2.2 Application to wind power generation

Wind power generation is a double-bounded random variable which naturally belongs to [0, 1] when
scaled by the nominal power of the wind turbine, calling for SB distributions. Note that the logit
transformation, where ν = 1, was used for wind power forecasting in [43]. Nevertheless, when
applied to wind power generation the transformation should allow for asymmetry, as power curves
for low and high power values show different inflections. First inspired by [10], the generalized logit
transformation was proposed for wind power generation in [11]. Moreover, from the observation that
when forecasting wind power generation the standard deviation of the errors is directly linked to
their conditional expectation [44], [45], it is hoped that applying a generalized logit transformation
to wind power generation would lower the effect, and allow predictive densities for which the
variance can be assumed to be independent from the mean.

Wind power generation is a discrete-time stochastic process with continuous state space, i.e., a
sequence of continuous random variables whose realizations define a time series. Let Xt be the
wind power generation measured at time t. The series (xt) is a series of dependent observations.
The simplest dependency structure for a stochastic process is the Markov dependency, where the
distribution of the observation xt conditional on the past values only depends on a fixed number of
past observations. One of the most common (linear) time series models is the AR(p) model, where
AR stands for auto-regressive and p is the lag dependency on the past values. An AR(p) process is
defined by the conditional (given the past) representation

Xt =
p∑
r=1

λrXt−r + ϵt, (2.3)

where (ϵt) is a white noise. Therefore, the model assumes Xt to be a noisy linear combination of the
previous p observations. Often, the white noise is assumed to be normally distributed. Note that
the general AR(p) model is Markovian because the distribution of Xt+1 only depends on the last p
values. Sometimes an intercept term is included to indicate drift, but we ignore this for simplicity.
A stochastic process (Xt)t∈T is strictly stationary if the joint distributions of (X1, . . . , Xk) and
(X1+h, . . . , Xk+h) are the same for all k and k + h ∈ T . A weaker version of stationarity, called
second-order stationarity, imposes invariance in time only on the first two moments of the process.
As shown in [46], an AR process can be second-stationary only if the roots of the polynomial

P(x) =
p∏
r=1

(1 − λrx) (2.4)

are all outside the unit circle in the complex plane. Note that to verify that a given vector
Λ = (λ1, . . . , λp) satisfies this condition requires to find the roots of the p-th degree polynomial P,
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and check that they are all of modulus greater than 1, which makes it difficult to find appropriate
values of Λ for simulation purposes when p becomes large. For low values of p, simulation of
stationary AR processes is easier, since when p = 1, λ1 must satisfy −1 < λ1 < 1; when p = 2, λ1

and λ2 must lie in the triangular region

λ2 + λ1 < 1

λ2 − λ1 < 1

−1 < λ2 < 1

(2.5)

for the process to be stationary [47].

In order to handle the dependency structure between successive realizations of wind power generation,
we replace the constant location parameter µ of the GLN distribution by an AR(p) model. We
only consider AR dynamics as results on offshore data have suggested that such dynamics are
appropriate when considering short lead times [14]. This comes down to assuming the expectation
of the normal transform Yt to be

µt = E(Yt) =
p∑
r=1

λrYt−r. (2.6)

Let Ft−1 be the previous information set, i.e., the σ-algebra generated by X1, . . . , Xt−1, and
xt:(t−p) = (xt, . . . , xt−p). The probability density function of the random variable Xt conditional
on Ft−1 is

p(xt|Ft−1; θ) =


1√

2πσ2
ν

xt(1−xν
t ) exp

[
− 1

2

(
γ(xt;ν)−µt

σ

)2
]

if 0 < xt:(t−p) < 1,

0 otherwise,
(2.7)

where θ = (Λ, σ2, ν), Λ = (λ1, . . . , λp).

Finally, note that while the support of the GLN densities in (2.2) and (2.7) is (0, 1), wind power
generation can actually take values 0 and 1. For simplicity and because we focus on the GLN
distribution, we choose to look at the observation xt ∈ [0, 1] as a coarsened version of Xt [48]. This
coarsened data framework has been formalized by [49] and [50]. An alternative could be to use
Dirac delta masses located at 0 and 1 [11].

2.3 Maximum likelihood inference
In [11] the shape parameter ν of the GLN distribution was assumed to be a meta-parameter
and chosen upon cross-validation once and for all from available data. Because for wind power
applications ν is likely to vary from site to site, it was suggested as a concluding remark to develop
a more rigorous framework, such as maximum likelihood estimation, in order to estimate the
shape parameter along with the other parameters of the distribution. We introduce maximum
likelihood estimation in [Paper A] for both stationary and non-stationary frameworks, along with
corresponding batch and recursive algorithms.

2.3.1 Stationary framework
Let x1:T = (x1, . . . , xT ) be an observed sequence of the stochastic process from distribution (2.7).
The associated likelihood is given by

L(θ|x1:T ) =
T∏

t=p+1
p(xt|Ft−1; θ), (2.8)
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which is the probability of the observed sequence under model pθ and the assumption that the
variables Xt are independent and identically distributed given Ft−1. One must think of L(θ|x1:T )
as a function of θ, the data x1:T being fixed. Note that we do not take into account the distribution
of the first p observed values (x1, . . . , xp) and consider instead the likelihood conditional on them.
Maximum likelihood inference is about recovering the value of θ that maximizes (2.8). The
logarithm of L(θ|x1:T ) being easier to maximize, especially when exponential families are involved,
maximization of the log-likelihood l(θ|x1:T ) = logL(θ|x1:T ) is often preferred.

When maximizing l(θ|x1:T ), or equivalently minimizing the negative log-likelihood −l(θ|x1:T ), we
nicely get closed-form solutions for Λ and σ2 from the transform Yt being normally distributed.
They are the regular closed-form solutions of the normal distribution parameters, applied to Yt.
Let y = (yp+1, . . . , yT ) and Y denote the matrix of stacked vectors By, . . . , Bpy where B is the
backshift operator, Y ∈ R(T−p)×p. Computing the first derivatives of the negative log-likelihood
with respect to the parameters of the distribution we can retrieve stationary points. As for the
parameters Λ and σ2, solving

− ∂

∂Λ l(θ|x1:T ) = 0, (2.9)

− ∂

∂σ2 l(θ|x1:T ) = 0, (2.10)

we get the (usual) maximum likelihood estimators

Λ̂ = (Y⊤Y)−1Y⊤y, (2.11)

σ̂2 = (y − YΛ̂)⊤(y − YΛ̂)
T − p

. (2.12)

Taking the first derivative of the negative log-likelihood with respect to ν we need to solve

−T − p

ν
−

T∑
t=p+1

xνt log xt
1 − xνt

+ (u − UΛ)⊤(y − YΛ)
σ2 = 0, (2.13)

where u = ∂
∂νy, U = ∂

∂νY, ut = (1 + exp yt) log xt. There is no closed-form maximum likelihood
estimator for ν̂ and we need an iterative algorithm to solve (2.13). Note that these stationary
points are (global) minimizers only if the negative log-likelihood is convex in θ.

Convexity in Λ and σ2 It can easily be shown that −l(θ|x1:T ) is convex in Λ, as we have

− ∂2

∂Λ2 l(θ|x1:T ) = 1
σ2 Y⊤Y ≻ 0. (2.14)

As for σ2, we have

− ∂2

∂(σ2)2 l(θ|x1:T ) = −T − p

2σ4 + (y − YΛ)⊤(y − YΛ)
σ6 . (2.15)

Plugging (2.12) into (2.15) we get

− ∂2

∂(σ2)2 l(θ|x1:T )
∣∣∣∣
θ̂

= −T − p

2σ̂4 + (T − p)σ̂2

σ̂6 = T − p

2σ̂4 > 0. (2.16)

Convexity in ν It is more complicated to show convexity in the shape parameter ν. However,
simulation work adapted to our framework allows us to be rather confident in assuming convexity
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in the shape parameter as well, at least for reasonable values. We use ∥.∥ to denote the Euclidean
norm. The second derivative with respect to ν is

− ∂2

∂ν2 l(θ|x1:T ) = T − p

ν2 −
T∑

t=p+1
log(xt)2 xνt

(1 − xνt )2 + (v − VΛ)⊤(y − YΛ)
σ2 + ∥ u − UΛ ∥2

σ2 , (2.17)

where v = ∂
∂νu, V = ∂

∂νU, vt = ut log xt exp yt. We have ∥u−UΛ∥2

σ2 ≥ 0 and T−p
ν2 > 0. We can also

show that
T∑

t=p+1
log(xt)2 xνt

(1 − xνt )2 is upper bounded by T−p
ν2 , since lim

xt→1
xt<1

log(xt)2 xν
t

(1−xν
t )2 = 1

ν2 . Our

simulation studies showed the remaining term (v−VΛ)⊤(y−YΛ)
σ2 to be always positive, as most of

the elements of v − VΛ and y − YΛ shared the same sign and when they did not, they were close
to zero. We did not observe simulations suggesting otherwise. However, we did not run extreme
scenarios, e.g., with values of ν very close to zero or very large. Finally, note that convexity in each
parameter would not ensure the Hessian matrix to be positive semi-definite.

A class of efficient algorithms for minimizing convex functions are Newton methods [51]. They are
gradient descent methods which use the Newton step as a descent direction. Newton’s method in
particular, also known as the Newton-Raphson method, is a powerful algorithm with super-linear
convergence properties. However, it requires second-order information, i.e, to compute a Hessian
matrix for dimensions larger than one. Moreover, the method requires this matrix to be positive
definite, in order to ensure the Newton step is actually a descent direction. Other methods exist
in the optimization literature, in particular cyclic coordinate ascent methods [34], [52]. Although
they are well known for their simplicity and stability, these methods have been less preferred in
practice since they converge only linearly. Because they have shown to be more stable for our
purpose, the algorithm we propose for stationary frameworks in [Paper A] is derived from these
methods. Instead of using a (p+ 2)-dimensional Newton-Raphson algorithm, each iteration of our
conditional optimization algorithm consists in first computing the closed-form maximum likelihood
estimates of Λ and σ2 given the current value of ν, and then applying a (simpler) one-dimensional
Newton step to improve the current estimate of ν, until we reach convergence. This is Algorithm 1
of [Paper A], also referred to as "Batch MLE with diagonalization".

2.3.2 Non-stationary frameworks

Algorithm 1 relies on the assumption that the stochastic process is (weakly) stationary, i.e., the
parameter vector θ of the distribution in (2.2) does not change with time. However, for wind power
generation, several works have shown that the parameter vector, in particular the location-related
parameters, should be allowed to vary at different timescales [14], [53]–[55], as it would be tedious
to properly account for (complicated) relationships to various features in parametric models.

In order to design a recursive algorithm which would enable to recursively update the parameter
vector of the GLN distribution for wind power generation, we express the negative log-likelihood
of x1:t, i.e., the sequence of observations until time t, as a time-dependent objective function to
be minimized at time t. For ease of notation and because the negative log-likelihood is to be
minimized with respect to θ, let p(xj |Fj−1; θ) = pj(θ). The time-dependent negative log-likelihood
to be minimized at time t is

−lt(θ) = − 1
nα

t∑
j=p+1

αt−j log pj(θ), (2.18)
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where α ∈ (0, 1) is an exponential forgetting factor which puts more weight onto the most recent
observations, and nα = 1

1−α is a constant normalizing the weighted negative log-likelihood. Let
θ̂t be the estimate of the parameter vector at time t. A recursive maximum likelihood procedure
relies on a Newton step for obtaining the new estimate θ̂t from the previous estimate θ̂t−1 [13], [14].
Applying one Newton step at time t we have

θ̂t = θ̂t−1 − ∇θlt(θ̂t−1)
∇2
θlt(θ̂t−1)

. (2.19)

Let ht = ∇θpt(θ̂t−1) and R̂ = −∇2
θlt(θ̂t). The recursive estimation relies on a few additional

assumptions which are classic in the online learning framework. First, assuming θ̂t−1 minimizes
−lt−1(θ) we get

∇θlt(θ̂t−1) = (1 − α)ht. (2.20)

Then, assuming pt is (almost) linear in θ in the neighborhood of θt−1 we get the approximation
∇2
θ log pt(θ̂t−1) = −hth⊤

t , which is the key for ensuring that the approximate R̂t of the Hessian
matrix is always positive definite. Finally, we assume that the objective function −lt is smooth
in the vicinity of θ̂t and the adaptation step small enough so that R̂ = −∇2

θlt(θ̂t) ≈ −∇2
θlt(θ̂t−1).

This is a classic assumption for deriving recursive estimation methods for stochastic systems [56].
The two-step recursive scheme at time t is then

R̂t = αR̂t−1 + (1 − α)hth⊤
t , (2.21)

θ̂t = θ̂t−1 + (1 − α)R̂−1
t ht. (2.22)

This is Algorithm 2 of [Paper A], also referred to as "Recursive MLE". Note that an algorithm
based upon such a recursive scheme might face computational issues as it requires inverting a
matrix, the information matrix R̂t, at each iteration. This can be prevented by working directly
with the matrix inverse, the covariance matrix P̂t, which can be computed by using the matrix
inversion rule. Such a matrix P̂t is used in [Paper B]. Finally, note that this algorithm is a
quasi-Newton approach in the sense that it approximates the Hessian matrix with a positive definite
matrix, thanks to first-order information only, contrary to the Newton-Raphson method used for
retrieving an estimate of ν in Algorithm 1.

2.4 Assessment of predictive densities

In [Paper A] Algorithms 1 and 2 are run on the average power generation at Anholt wind farm,
in order to estimate either a static or dynamic parameter vector. Some hyper-parameters need
to be decided prior to running the algorithms. They are the coarsening parameter, see Section
2.2, which we will denote by δ, the lag dependency p of the AR process, see (2.3) and (2.7), and
the exponential forgetting factor α for Algorithm 2, see (2.18). We select them by performing
cross-validation on a validation set. For such a task, we need to decide on one score we wish
to minimize over the set of hyper-parameters, that we will also use to ultimately evaluate our
forecasts. As we issue both point and probabilistic forecasts, we need to use one score for point
forecasting and one score for probabilistic forecasting. The score we choose needs to be easy to
compute and to look at, so we can decide on a set of hyper-parameters in a relatively automated
way and in a reasonable computation time. It will be used when evaluating the forecasts as we
select the best set of hyper-parameters in order to have the best forecasts according to a specific
score. Last but not least, it needs to match the forecast we are to issue. Because our point forecasts
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are expectation-based forecasts, a consistent score is the root mean square error. If they were to be
median-based forecasts, an appropriate choice would rather be the mean absolute error. Since we
are primarily concerned with probabilistic forecasting of wind power generation, we focus in the
following on the main scores and tools for the assessment of predictive densities. Nonetheless, we
want to emphasize the importance of carefully matching the scoring function and the forecasting
task also for point forecasting, and we refer the reader to [57] for details.

2.4.1 Scoring rules

A set of personal probabilities as theorized by [58] and [59] is an important input to decision analysis.
The elicitation of personal probabilities received considerable attention, and various methods were
then developed to help an individual in assessing personal probabilities. Scoring rules belong to
elicitation procedures and were designed in order to encourage a forecaster to honestly reveal its
true beliefs. This is known as the ex ante role of scoring rules, or role in terms of elicitation. The
ex post evaluation role takes place after one knows what actually happened and is to measuring the
goodness of the forecasts, so that accurate forecasts are rewarded and inferior ones are penalized.
The two roles of scoring rules are related, since the ex ante incentive comes from the anticipation
of the ex post evaluation [60]. A scoring rule can be any function of the probability forecasts and
the observations. However, because of the ex ante incentive, one should only be interested in what
is known as (strictly) proper scoring rules, for which a forecaster can minimize their expected score,
when negatively oriented, only by issuing honest probability forecasts.

The development of scoring rules was at first generally restricted to individual probabilities or
discrete probability distributions. Scoring rules for continuous probability distributions were then
designed from scoring rules for binary situations [61]. Let y be a continuous random variable, p the
forecaster’s predictive density for y and r the predictive density the forecaster actually reports. If a
scoring rule gives a score Sx(r) when y = x, the forecaster’s expected score is

Ep[S(r)] =
∫ ∞

−∞
Sx(r)p(x)dx. (2.23)

By analogy with point forecasting, we use scores from scoring rules in negative orientation, the
lower the better. Note that both orientations can be encountered. The scoring rule S is proper if

Ep[S(r)] ≥ Ep[S(p)] for all r, p. (2.24)

It is strictly proper if (2.24) holds with equality if and only if r = p. Strictly proper scoring rules
for continuous random variables include the logarithmic score [62]

Sx(r) = − log r(x), (2.25)

which seems rather suited to frameworks where the predictive densities have been estimated through
maximum likelihood inference. Such a score is a local score for it depends on the predictive density
r only through its value at the event x. It is not sensitive to distance as no reward is granted for
assigning high probabilities to values close to, but different from x. Moreover, often predictive
distributions are not issued as predictive densities, but rather as samples for which scores like (2.25)
cannot be used. Other scores have been proposed, that are sensitive to distance [63], [64]. One of
the most popular scoring rules nowadays, which addresses distance sensitivity and can be defined
in terms of predictive cumulative distribution functions, is the continuous ranked probability score,
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i.e., the CRPS [35], [61]. Let P consist of the Borel probability measures on R, and a probabilistic
forecast in P be identified with its cumulative distribution function F . The CRPS is defined as

CRPSx(F ) =
∫ ∞

−∞
(F (z) − 1z≥x)2dz. (2.26)

The CRPS is proper relative to the class P and strictly proper relative to the subclass P1 of the
Borel probability measures that have finite first moment [35]. The CRPS is the scoring rule we
use to evaluate our predictive densities in [Paper A], [Paper B] and [Paper C]. Often it has a
closed-form expression, when F belongs to a certain family of distributions [53], [65], [66]. This is
not the case for GLN distributions, for the same reason the first moments are not available either,
see Section 2.1. However, if the predictive distribution takes the form of a sample of size N , then
the right side of (2.26) can be evaluated in O(N logN) operations using order statistics [67]. This
is the decomposition method we use for computing the CRPS, as it can be applied to any kind of
predictive distributions we wish to compare our predictive densities to, as soon as they take the
form of a sample.

2.4.2 Sharpness and calibration

Scoring rules are attractive measures of predictive performance for they evaluate calibration and
sharpness simultaneously. Calibration is about the statistical consistency between the probabilistic
predictions and the values which are actually observed. Therefore, it is a joint property of the
forecasts and the observations. On the other hand, sharpness is a property of the forecasts only, for
it refers to the concentration of the predictive distributions, the sharper the more informative.

Calibration Probabilistic calibration is the most widely considered notion of calibration. Let Ft
be a predictive cumulative distribution function, and an outcome xt be a random number with
distribution Gt. The probability integral transform (PIT) value is the value that the predictive
distribution Ft takes at the observation xt,

pt = Ft(xt), (2.27)

see, e.g., [1], [68], [69]. If the forecasts are ideal and Ft is continuous, then the PIT value pt
has a uniform distribution. Uniformity can be checked empirically by looking at PIT histograms
[70]–[72], where 10 or 20 bins generally seem adequate. Asymptotic uniformity of the empirical
sequence pt for probabilistic forecasts of continuous variables was characterized by [36]. Because
the uniformity of the PIT values is a necessary but not sufficient condition for a forecaster to be
ideal [73], work [36] also proposed three major modes of calibration for probabilistic forecasts of
continuous variables: probabilistic, exceedance and marginal calibration. Let

Ḡ(x) = lim
T→∞

{
1
T

T∑
t=1

Gt(x)
}
, (2.28)

and

F̄ (x) = lim
T→∞

{
1
T

T∑
t=1

Ft(x)
}
. (2.29)

Marginal calibration requires that the limit distributions Ḡ and F̄ exist and are equal to each other.
To empirically assess marginal calibration, one can compare the average predictive cumulative
distribution function

F̄T (x) = 1
T

T∑
t=1

Ft(x), x ∈ R, (2.30)
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with the empirical cumulative distribution function of the observations

ĜT (x) = 1
T

T∑
t=1

Gt(x), x ∈ R. (2.31)

We use marginal calibration plots which show the difference

F̄T (x) − ĜT (x), x ∈ R, (2.32)

for the forecasters in the simulation study and use cases of [Paper A] and [Paper B]. From a
practical point of view, F̄T (x) and ĜT (x) are computed over a grid of values of x. In the case
of wind power generation, we have x ∈ [0, 1] and use a grid which is fine enough to capture
the behaviour of the distributions near the bounds, typically x = 0, 0.01, . . . , 0.99, 1. To assess
probabilistic calibration, we use PIT histograms in [Paper B] and reliability diagrams in [Paper
A], which are an equivalent cumulative version of PIT histograms [74].

Sharpness Sharpness is a characteristic of the predictive distributions only. Probabilistic forecasts
should not only be calibrated, they should also be as informative/sharp as possible [3]. Sharpness of
predictive distributions can be assessed by looking at the width of prediction intervals, on average
or using, for instance, box plots [36], [75].

The paradigm of maximizing the sharpness of the predictive distributions suject to calibration was
proposed in [36], under the conjecture that ideal forecasts and the maximization of sharpness subject
to calibration are equivalent. Not only scoring rules are measures of both calibration and sharpness,
when they are proper for the class of predictive distributions at hand, they also incentivize truthful
(calibrated) and informative forecasts [76].





CHAPTER 3
Generalized logit-normal densities

with a varying bound
In Chapter 2 and [Paper A] the support of the GLN distributions is assumed to be (0, 1), according
to the common definition. However, this support could be changed to any interval (a, b) by re-scaling
the bounded random variable. In this chapter, we investigate a new assumption stating that having
fixed values for the bounds which define the support of a bounded distribution is limiting, and that
these bounds should be allowed to vary while not being observed. We focus here on the upper
bound of the interval, as it is the one we are particularly interested in for wind power forecasting.
First, we introduce two possible statistical frameworks when having a varying upper bound. Then,
we address the first one for which the upper bound is a parameter, as in [Paper B], and the second
one for which the upper bound is a discrete latent variable, as in [Paper C].

3.1 A varying upper bound

The support of any bounded distribution in the SB family can be changed to (a, b), where a, b ∈ R,
by scaling a bounded variable Xt ∈ (0, 1), i.e., through the transformation Xt := (b − a)Xt + a.
However, when doing so, the bounds a and b of the interval are always assumed to be fixed and
do not vary over time or depending on exogenous variables. We argue that this assumption is
inappropriate for wind power generation, as for instance curtailment actions may impact the upper
bound b to be lower than 1. In fact, an upper bound greater than 1 can also happen as some
tests are sometimes run on wind turbines that allow them to produce beyond their nominal power.
We are concerned by varying bounds which cannot be observed, or not reliably, and need to be
estimated from the data as well.

So far we have always assumed that we were to observe the realizations xt ∈ [0, 1] of Xt ∈ (0, 1).
We challenge this implicit assumption by suggesting that we in fact may have been observing the
realizations xt/bt of Xt/bt ∈ (0, 1), where bt does not equal 1 anymore, and may even vary with t.
We focus on an upper bound bt but it would be straightforward to apply this new framework to a
lower bound at. There are at least two ways of dealing with a varying bt. In the specific context
of stochastic processes, a first way is to consider the upper bound as a scaling parameter b of a
parametric bounded distribution which belongs to SB , in our case the GLN distribution, to include
it in the parameter vector θ of the distribution, and to assume a non-stationary framework for the
process. Then, we would consider online learning algorithms so that the parameter vector θ can
evolve over time as in Section 2.3.2. The upper bound as a parameter is addressed in Section 3.2,
and refers to [Paper B].

In a more general framework, an alternative is to consider the bounds as missing random variables
which the distribution of the bounded variable Xt is conditional on. The main advantage of this

21
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approach is its generality and flexibility, with a latent upper bound Bt being distributed according
to a well-specified probability distribution, which might depend on exogenous variables. Because
we do not have access to the realizations of the bound, the maximization of the likelihood function
of the realizations xt of Xt might involve complicated high-dimensional integration, possibly
computationally infeasible, and would therefore call for EM-based algorithms [18]. Moreover, with
such a method and for forecasting applications, one needs to first compute (good enough) forecasts
of the bounds in order to be able to forecast the response variable. This framework makes it
possible to specify any kind of model for an upper bound Bt. However, how simple or complicated
the maximum likelihood inference through the EM algorithm will be depends on this specification.
A simple model for Bt will make the inference easier but will likely not perform well when moving
to forecasting. We propose to model Bt as a discrete random variable taking a finite number of
values over (0, 1]. This proposition is presented in Section 3.3 and refers to [Paper C].

3.2 Bounds as parameters

Let us rescale Xt ∈ (0, 1) to the interval (0, b) by applying the transformation Xt := bXt. The
generalized logit transform Yt ∈ R of Xt ∈ (0, b) is given by

Yt = γ(Xt/b; ν) = log (Xt/b)ν

1 − (Xt/b)ν
. (3.1)

The expectation of Yt is now µt =
∑p
r=1 λrγ(xt−r/b; ν) and the probability density function of Xt

conditional on the previous information set Ft−1 becomes

p(xt|Ft−1; θ) =


1√

2πσ2
ν

xt(1−(xt/b)ν ) exp
[
− 1

2

(
γ(xt/b;ν)−µt

σ

)2
]

if 0 < xt:(t−p) < b,

0 otherwise,
(3.2)

where θ = (Λ, σ2, ν, b).

3.2.1 Quasiconvex optimization

The first challenge we face when considering the upper bound b as an additional (scaling) parameter
of the GLN distribution is that the negative log-likelihood minimization problem at hand is not
convex anymore, since the negative log-likelihood is not convex in b. Recall that when assuming
stationarity, maximum likelihood estimation of the parameter vector θ consists of solving the
optimization problem

min
θ

−
T∑

t=p+1
log p(xt|Ft−1; θ). (3.3)

Simulation studies suggest that while not convex in b, the negative log-likelihood to be minimized
in (3.3) might still have a global minimum in θ. A broader class of functions which include convex
functions as a subclass are quasiconvex functions. For simplicity, let us assume that functions are
differentiable. From [51], a definition of quasiconvexity is

Definition 3.2.1 (Quasiconvexity) A function f : Rd → R is called quasiconvex (or unimodal)
if its domain and all its sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α},

for α ∈ R, are convex.
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Quasiconvexity is a considerable generalization of convexity. Still, many of the properties of convex
functions hold or have analogs for quasiconvex functions. Since all convex functions are quasiconvex,
the negative log-likelihood in (3.3) is quasiconvex in Λ and σ2. We focus then on quasiconvexity in
ν and b.

Quasiconvexity in ν Keeping only the terms that depend on ν we get

−
T∑

t=p+1
log p(xt|Ft−1; θ) = − (T − p) log ν +

T∑
t=p+1

log(1 − (xt/b)ν)

+ 1
2σ2

T∑
t=p+1

(
log (xt/b)ν

1 − (xt/b)ν
− µt

)2
+ C,

(3.4)

where C is a constant. In Definition 3.2.1, that a sublevel set Sα is convex means if x1,x2 ∈ Sα,
then wx1 + (1 − w)x2 ∈ Sα for all w ∈ [0, 1], or equivalently x ∈ [x1,x2] is also in Sα. Let
α = αa + αb + αc. It is straightforward to show that for all ν1, ν2 ∈ Sα, ν ∈ [ν1, ν2],

−(T − p) log ν2 ≤ −(T − p) log ν ≤ −(T − p) log ν1 ≤ αa, (3.5)

and
T∑

t=p+1
log(1 − (xt/b)ν1) ≤

T∑
t=p+1

log(1 − (xt/b)ν) ≤
T∑

t=p+1
log(1 − (xt/b)ν2) ≤ αb, (3.6)

so that

−(T − p) log ν +
T∑

t=p+1
log(1 − (xt/b)ν) ≤ αa + αb. (3.7)

When µ is constant, it is also straightforward to show

1
2σ2

T∑
t=p+1

(
log (xt/b)ν2

1 − (xt/b)ν2
− µ

)2
≤ 1

2σ2

T∑
t=p+1

(
log (xt/b)ν

1 − (xt/b)ν
− µ

)2

≤ 1
2σ2

T∑
t=p+1

(
log (xt/b)ν1

1 − (xt/b)ν1
− µ

)2

≤ αc.

(3.8)

This is not straightforward anymore when µ is replaced with µt =
∑p
r=1 λr log (xt−r/b)ν

1−(xt−r/b)ν . However,

note that
∑T
t=p+1

(
log (xt/b)ν

1−(xt/b)ν − µt

)2
is an estimate of (T − p) × σ2 at, or close enough to the

minimum θ̂, so that the third term simplifies to (T − p)/2 and does not depend on ν anymore. It
then seems reasonable to assume the negative log-likelihood to be quasiconvex in ν at least locally,
i.e., not too far from the minimum.

Quasiconvexity in b The same reasoning can be applied to b as

T∑
t=p+1

log(1 − (xt/b1)ν) ≤
T∑

t=p+1
log(1 − (xt/b)ν) ≤

T∑
t=p+1

log(1 − (xt/b2)ν) ≤ αb. (3.9)

Even if the negative log-likelihood still has a (global) minimum, we cannot use a Newton step as
in Chapter 2 for the Hessian matrix is not positive definite anymore. First-order methods such
as ordinary gradient descent with fixed step sizes are known to perform poorly on quasiconvex
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functions for which the gradient might be too small in a plateau area of the function, or explode
in cliff areas. For stationary frameworks, a pioneering paper by [77] was the first to propose an
efficient algorithm, NGD, and to prove that this algorithm converges to an ϵ-optimal solution within
O(1/ϵ2) iterations given a differentiable quasiconvex objective function. There have been several
attempts to tackle plateaus and cliffs among the deep learning community. However, those works
do not provide a theoretical analysis showing better convergence guarantees than NGD.

NGD is similar to gradient descent, except the gradient is normalized. One can feel that to achieve
robustness to plateaus and cliffs, we must ignore the size of the gradient; it is more surprising that
the information in the direction of the gradient is enough to guarantee convergence. A more recent
work extended quasiconvexity by introducing local-quasiconvexity to capture functions which are
not quasiconvex in the former sense, and proved that NGD finds an ϵ-optimal minimum for such
functions within O(1/ϵ2) iterations as well [37].

3.2.2 Learning and forecasting outside of a support

The negative log-likelihood we wish to minimize in (3.3) becomes infinite as soon as an observation
xt is outside of the support of p in (3.2), i.e., is greater or equal than b. This is an implicit constraint
on b when estimating θ̂. Because we want b to be able to adapt to a non-stationary stochastic
process, we do not need nor want b to be greater than all the observations xt in the past. Recall
the time-dependent negative log-likelihood (2.18) in Chapter 2 and let now the parameter vector
θ include b, θ = (Λ, σ2, ν, b). Let Ut = {p + 1, . . . , t}, Ct(θ) = {j ∈ Ut | xj−r < b, r = 0, . . . , p}
and Ct(θ) = {j ∈ Ut | j /∈ Ct(θ)} be the complement of Ct(θ) in Ut. The log-likelihood takes
finite values only for observations xj such that j ∈ Ct(θ). Therefore, we can informally rewrite
t∑

j=p+1
αt−j log pj(θ) as

∑
j∈Ct(θ)

αt−j log pj |b(θ) +
∑

j∈Ct(θ)

αt−j log 0, where pj |b(θ) is the probability

density function pj(θ) restricted to its support (0, b). When estimating the parameter vector θt over
time, we need to take into account all the observations in the past, i.e., even the observations for
which the log-likelihood does not take a finite value, i.e., the observations xj such that j /∈ Ct(θ).
We propose to replace the value 0 in log 0, which originally corresponds to the value of pj(θ) outside
of its support, with a sigmoid function of b− xj ,

sj(b) = 1
1 + exp(−b+ xj)

. (3.10)

The function sj is illustrated in Figure 3.1. It can be seen as the probability of xj to be lower or equal
than b: we have sj(b) → 0+ when xj >> b and sj(b) → 1− when xj << b. Moreover, − log sj(b)
is convex and differentiable in b. Hence, the extended time-dependent negative log-likelihood we
propose to minimize is

−l∞t (θ) = − 1
nα

 ∑
j∈Ct(θ)

αt−j log pj(θ) +
∑

j∈Ct(θ)

αt−j log sj(b)

 . (3.11)

Note that j ∈ Ct(θ) does not necessarily mean we have xj ≥ b, since this may happen because of a
lagged observation xj−r ≥ b. In such a case, i.e., j ∈ Ct(θ) and xj < b, the observation xj will still
increase the value of the total log-likelihood compared to the event {xj ≥ b}, which is also a nice
feature of choosing this specific function sj .

In order to be able to track the bound parameter over time, we have introduced the extended
time-dependent negative log-likelihood −l∞t and allowed bt to vary on R, which makes sense from
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0

1

b = xj

b < xj b > xj

sj(b)

Figure 3.1: Sigmoid function sj(b) on the real line.

an inference point of view. Because we work with sequences of dependent observations, when
moving to forecasting at time t the distribution of the bounded variable Xt+1, we need the current
value bt to be greater than all p former observed values xt, . . . , xt−p+1, for the expected value of
Xt+1 to exist. Therefore, we introduce a projection step, and project the current estimate b̂t on
the convex set (max(xt, . . . , xt−p+1),+∞). We get the projected parameter

b̃t = ΠK(b̂t) =

max(xt, . . . , xt−p+1) + δ if max(xt, . . . , xt−p+1) ≥ b̂t,

b̂t if max(xt, . . . , xt−p+1) < b̂t.

Note that we need to introduce a small δ > 0 as we project b̂t on an open convex set. When looking
at the observation xt as a coarsened version of Xt, δ can be seen as a coarsening parameter, see
Section 2.2. Note that whereas being somehow optimized through cross-validation in [Paper A],
we fix δ = 0.001 in [Paper B]. Indeed, while it can be seen as a hyper-parameter worth tuning for
real-world applications, this is a subsidiary matter in [Paper B] and we would rather choose a
sensible value once and for all than carrying an extra hyper-parameter.

The predictive probability distributions obtained out of this methodology are to be evaluated and
compared to classic benchmarks, in particular benchmarks that assume b = 1. As we work with
predictive densities, one could think of using the logarithmic score, which is a strictly proper scoring
rule relative to all measures that are absolutely continuous, at least to compare the predictive
densities provided by Algorithm 2 of [Paper A] and algorithms minimizing (3.11). However, in our
framework it can always happen that xt+1 falls outside of the support of the predictive density p̂t+1

we have issued at time t, when the current estimate of b is too low. In such a case, the logarithmic
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score is − log p̂t+1(xt+1) = − log 0 = +∞, which is not suitable. In contrast, the CRPS gives

CRPSxt+1(F̂t+1) =
∫ bt

−∞

(
F̂t+1(z) − 1z≥xt+1

)2
dz +

∫ ∞

bt

(
1 − 1z≥xt+1

)2
dz, (3.12a)

=
∫ bt

−∞
F̂t+1(z)2dz +

∫ xt+1

bt

1 dz +
∫ ∞

xt+1

0 dz, (3.12b)

=
∫ bt

−∞
F̂t+1(z)2dz + xt+1 − bt, (3.12c)

where F̂t+1 is the predictive cumulative distribution function we issue at time t and xt+1 is the
value that realizes outside of the support of the predictive distribution. We see in (3.12c) that
the CRPS is indeed increased by an observation falling outside of the support of the predictive
distribution, but to a higher finite value, contrary to the logarithmic score which becomes infinite.

3.2.3 Online learning and stochastic approximation

NGD can be applied to minimize (3.11). However, it is a batch algorithm, designed for stationary
frameworks. Therefore, it would require to run until convergence for each time t to estimate θt.
It can still be used at successive intervals, if θt does not change too quickly. For instance, when
applied to wind power generation at a temporal resolution of every ten minutes, if we run NGD
every 500 time steps, we get a new θ̂t every 3.5 days. NGD can also be used as a warm-up for
subsequent online learning algorithms, i.e., first run on a small batch of data points to provide
better estimates for online learning algorithms to start with.

We present learning algorithms within the framework introduced by [78]. The goal of a learning
system is to find the minimum of an expected risk function

J(θ) = Ex(Q(x, θ)) =
∫
Q(x, θ)dP (x), (3.13)

where θ is the part of the learning system which must adapt to observing events x. The loss
function Q(x, θ) measures the performance of the learning system with parameter θ under the
circumstances described by event x. The occurrence of the events x is modelled as random
independent observations drawn from an unknown probability distribution dP (x). Using successive
observations xt, the learning system is to uncover a part of this unknown truth in the form of
parameter values θ̂t that hopefully decrease J(θ̂t). The expected risk (3.13) cannot be minimized
directly because the distribution is unknown. However, general theorems show that minimizing the
empirical risk

ĴT (θ) = 1
T

T∑
t=1

Q(xt, θ) (3.14)

can provide a good estimate of the minimum of J(θ), for a large enough T [79]. Our learning
problem is a problem of maximum likelihood inference where we assume P to be a GLN distribution
and wish to learn its parameter vector θ through minimizing the empirical risk

− 1
T

T∑
t=p+1

log p(xt|Ft−1; θ), (3.15)

since multiplying the negative log-likelihood of a sample x by 1/T does not change the optimization
problem. Unlike standard, batch algorithms which use the whole sample x to return an hypothesis
θ̂ from the minimization of (3.15), at time t online learning algorithms take in a former hypothesis
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θ̂t and a single example xt as inputs, to return a new hypothesis θ̂t+1 [80]. They are closely related
to stochastic approximation algorithms [81], which were first introduced as recursive adaptive
algorithms [82]. Online learning typically addresses successive observations, with more and more
applications due to the increasing number of continuous streams of data which need to be processed
online. On the other hand, stochastic approximation is often referred to when dealing with (very)
large datasets. There is no reference to sequences of data per se. It is the large number T of
observations which make it prohibitive to minimize the expected risk function at once, and one
will rather choose an observation x at random out of an available sample x, and iteratively update
θ using Q(x, θ) only. What is fundamentally common is that the observed events need to be
independent. Therefore, as long as our framework is designed so that our observations can be
considered to be the realizations of random (conditional) independent variables, both online learning
and stochastic optimization methods can be seen as interchangeable [80], [81], [83]. In [81] the
convergence of online learning algorithms is analyzed using stochastic approximation theory, and
proved under very weak conditions, e.g., without requiring convexity. Note that when studying the
convergence of stochastic algorithms, or regrets in the online learning paradigm, a key condition is
often that the loss function needs be bounded [80], [81].

A seminal algorithm in both domains is online gradient descent (OGD) in the online learning
paradigm and stochastic gradient descent (SGD) for stochastic optimization. Recall the iterative
optimization methods discussed in Section 2.3, in particular gradient descent methods. They consist
of updating the current value of the parameter θ by taking a step in a descent direction, according
to the gradient of the loss function over the complete set of observations x:

θ̂i+1 = θ̂i − ηi
1
T

T∑
i=1

∇θQ(xt, θ̂i), (3.16)

where i is the current iteration and ηi the step size, or learning rate at iteration i. Online/stochastic
gradient descent is obtained by dropping the averaging operation in (3.16) and updating the
parameter θ according to

θ̂i+1 = θ̂i − ηi∇θQ(xi, θ̂i), (3.17)

where xi has been chosen randomly for SGD, i := t and xt are successive observations for OGD.
The simplification relies on the hope that the random noise introduced by this procedure will not
compromise the average behavior of the algorithm. For convex and Lipschitz loss functions, SGD is
guaranteed to find an ϵ-optimal solution within O(1/ϵ2) iterations and requires only an unbiased
estimator for the gradient ∇θJ(θ), which is obtained with only one, as in (3.17), or a few data
samples, as in

θ̂i+1 = θ̂i − ηi
1
m

m∑
j=1

∇θQ(xj , θ̂i), (3.18)

also known as the updating scheme of mini-batch gradient descent (with a mini-batch of size m).
In order to reach convergence, the step size in (3.17) and (3.18) is often set to decrease with i.
When used for tracking a time-varying parameter θt, a standard approach consists of taking a
fixed step size, so the algorithm can adapt to changes in the process. Choosing an appropriate
step size is difficult: if η is too large the statistical fluctuations around θt may be important, while
the algorithm will lose its tracking ability for too small values of η. This is a typical bias-variance
trade-off [84], a tracking/accuracy compromise in the context of adaptive algorithms [85].

In [37] the authors not only extended theoretical results for NGD, they also introduced a new
setup: stochastic optimization of locally quasiconvex functions. For this setup they propose a
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stochastic version of NGD, i.e., SNGD, and show it converges to an ϵ-optimal minimum in O(1/ϵ2)
iterations. Note that unlike SGD which is ensured to converge with m = 1 for convex functions,
SNGD requires a minimal mini-batch size for locally quasiconvex functions. Using the similarity
between online learning and stochastic optimization, we propose to use the equivalent online
normalized gradient descent (ONGD) to track the parameter vector θt = (Λt, σ2

t , νt, bt) of J(θt),
where Q(xt, θt) = log p(xt|Ft−1; θt). In order to get an alternative recursive algorithm, we also
adapt Algorithm 2 of [Paper A] and Section 2.3.2 to the time-dependent negative log-likelihood in
(3.11). This is straightforward and the reader is referred to [Paper B] for computational details.
Algorithm 2 relies on a Newton step whereas (3.11) is not convex. However, as mentioned in
Section 2.3.2, it resembles a quasi-Newton approach as it approximates the Hessian with a positive
definite matrix using only the gradients of (3.11). Although suboptimal, we can hope for this
classic approach to work in an online learning framework if the Hessian approximation is locally
good enough. We call it rMLE.b, while Algorithm 2 is now referred to as rMLE.1, for b = 1 in
Algorithm 2. In [Paper B] we apply NGD, ONGD and rMLE.b on both synthetic data and data
from the real use case in [Paper A]. These new algorithms are compared to usual benchmarks
and rMLE.1. The simulation study allows us to verify the behaviour of the algorithms we propose
and to evaluate the improvement in making the upper varying bound assumption for probabilistic
forecasting. The real case tests the validity of this new assumption for wind power data generation,
based on Anholt dataset.

3.3 Bounds as random variables

3.3.1 Mixtures of scaled GLN distributions

To account for the uncertainty inherent to the case of a missing upper bound, in [Paper C] we
propose to alternatively model it as a latent variable. Assuming it as a sequence of independent
variables also allows for sharper changes in the successive values taken by the bound. The log-
likelihood function of a sample of the bounded variable x = (xt)t=1,...,T is

l(x; θ) = log
∫

b
p(x,b; θ)db. (3.19)

A direct maximization of (3.19) would require complicated high-dimensional integration and is
likely to be computationally infeasible. Moreover, for forecasting purposes, we need to be able to
forecast values for the bound before forecasting the bounded variable. This calls for the use of
EM-based algorithms in order to maximize the log-likelihood [18].

The choice of a probability distribution for the upper bound affects the E-step of the EM algorithm.
In order to keep it as simple as possible, and from the observation that a grid of plausible values may
matter more than accurate continuous values, we propose to model the upper bound as a discrete
random variable taking K values b[1], . . . , b[K] ∈ (0, 1] with probabilities w = (w[1], . . . , w[K]).
By doing so, we also give more control to the forecaster, who is free to feed the statistical model
with a priori values for the bound. The values kt ∈ K = {1, . . . ,K} correspond to the unobserved
states associated with the different values Bt can take. Let Yt be the generalized logit transform,
Yt = γ(Xt/b[kt]; ν). The expectation of Yt is E(Yt) = µt =

∑p
r=1 λryt−r. Let b = (bt)t=1,...,T ,

xt:(t−p) = (xt, . . . , xt−p), bt:(t−p) = (bt, . . . , bt−p) = (b[kt], . . . , b[kt−p]), where kt is the unobserved
state at time t. Finally, let Ft−1 be the previous information set for Xt, i.e., the σ-algebra generated
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by X1, . . . , Xt−1. The conditional pdf of Xt is

p(xt | Ft−1,bt:(t−p); θ) = 1√
2πσ2

ν

xt (1 − (xt/bt)ν) exp
[

−1
2

(
γ(xt/bt; ν) − µt

σ

)2
]
, (3.20)

if 0 ≺ xt:(t−p) ≺ bt:(t−p), p(xt | Ft−1,bt:(t−p); θ) = 0 otherwise. Therefore, the marginal pdf of Xt

can be seen as a mixture of scaled GLN densities whose number of positive components depends
on the possible values for bt:(t−p). The log-likelihood of a sample (x,b) is

T∑
t=p+1

(log p(xt | Ft−1,bt:(t−p); θ) + logw[kt]). (3.21)

3.3.2 Monte Carlo expectation-maximization algorithms

The complete log-likelihood of a sample (x,b) is much easier to maximize than the right-hand side
of Equation (3.19). It is called complete for it refers to the sample we could have if we were to
observe b. Because Bt is missing, the EM algorithm aims to iteratively maximize the expected
value of the complete log-likelihood given the observations x and the current value of the parameter
ψ = (θ,w). This quantity is usually called the Q function and in our model is

Q(ψ|ψ(j)) = E

[
T∑

t=p+1
(log p(xt | Ft−1,bt:(t−p); θ) + logw[kt])

∣∣∣∣ x;ψ(j)

]
. (3.22)

It can be shown that increasing Q at each iteration of EM comes down to increasing the log-
likelihood. Then, the EM algorithm is a strict ascent algorithm for the log-likelihood as long as it
is possible, at iteration j, to find ψ such that

Q(ψ|ψ(j)) > Q(ψ(j)|ψ(j)). (3.23)

Since Xt needs to be considered given the former (missing) values of Bt, it is not straightforward
to compute Q in (3.22). Therefore, we approximate it through Monte Carlo integration by

Q̂M (ψ|ψ(j)) = 1
M

M∑
m=1

T∑
t=p+1

(log p(xt | Ft−1,bmt:(t−p), ; θ) + logw[kmt ]), (3.24)

where M is the number of Monte Carlo samples and bm = (b[km1 ], . . . , b[kmT ]) is distributed according
to the posterior distribution p(b | x;ψ(j)). This leads to the usual E-step of the EM algorithm
being replaced with a Monte Carlo E-step [21].

This kind of algorithm comes with its own challenges, in particular regarding the choice of an
appropriate number of samples M , as it is not efficient to start with a large value of M when the
maximum likelihood estimate might be far from the true value of ψ. Also, a standard stopping rule
for deterministic EM algorithms is to stop and claim convergence when the relative change in the
parameter values from successive iterations is small. This is not possible in the case of MCEM
algorithms, unless the MCEM steps can be resolved into the true EM steps and the Monte Carlo
error [86]. Last, because we work with only an approximate and not with the true function Q,
the ascent property of EM is also lost. An automated MCEM algorithm was proposed in [86], in
that an appropriate value for M is chosen after each iteration and the algorithm is stopped when
changes in the parameter estimates are small after taking the Monte Carlo error into account. A
few years later, [87] built on the work of [86] and [88], [89] by studying a data-driven automated
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MCEM algorithm, and proposed an ascent-based algorithm that recovers EM’s ascent property
with high probability. Both methods proposed in [86] and [87] rely on the central limit theorem,
and quantities involving the derivative of Q̂M and its limiting distribution when M goes to infinity.
We do not propose innovative methods in automating an MCEM algorithm, as we choose to rather
focus on an online version of the algorithm. Therefore, the batch algorithm we propose uses a fixed
size M and a predetermined number of iterations J .

In order to generate a sample (b1, . . . ,bM ) for the Monte Carlo integration in (3.24), we consider
Markov chain algorithms. There are many ways of constructing Markov chains to eventually
approximate the desired expectation [90], [91], but all of them are special cases of the general
framework of [92] and [93]. We use a single-component Metropolis-Hastings (MH) algorithm with
an independence sampler. Let bmt denote the value of bt at the end of iteration m. For step t of
iteration m+1, bt is updated using MH. The candidate B∗

t is generated from a proposal distribution
qt(B∗

t |bmt ,bm−t), where bm−t denote the value of b−t after completing step t− 1 of iteration m+ 1,

bm−t = {bm+1
1 , . . . , bm+1

t−1 , b
m
t+1, . . . , b

m
T }, (3.25)

and components 1, . . . , t − 1 have already been updated. This is the updating scheme of the
single-component MH algorithm, which is in fact the framework originally proposed by [92]. To use
an independence sampler means to use a proposal distribution qt(B∗

t |bm−t) instead of qt(B∗
t |bmt ,bm−t).

In general, the independence sampler can work very well or very badly. For it to work well, qt(.)
should be a good approximation to the target distribution. It is rather easy to fulfill this condition
in our framework as the random variables Bt are independent and identically distributed, hence
qt(B∗

t |bm−t) = qt(B∗
t ), and we can choose qt(.) to be the marginal distribution of bt truncated

according to the observed value xt. A candidate B∗
t is then accepted with a probability which is

straightforward to calculate in our model,

ρ(bm−t, bmt , B∗
t ) = min

(
1,
∏t+p
l=t p(xl | Fl−1, B

∗
t ,bm−t; θ(j))∏t+p

l=t p(xl | Fl−1, bmt ,bm−t; θ(j))

)
. (3.26)

The corresponding MH algorithm is described in the Appendix of [Paper C].

3.3.3 Expectation-conditional maximization algorithms

Once a sample (b1, . . . ,bM ) is available at iteration j, which depends on the current value ψ(j), we
need to maximize the corresponding Q̂M function (3.24) at the M-step. Again, because of the shape
parameter of the GLN distribution, the direct application of EM to our problem would require
iterative methods at the M-step, i.e., inner loop iterations. Moreover, our maximization problem is a
constrained optimization problem, as the probabilities w[k] of the values taken by the bound, i.e., of
the states k = 1, . . . ,K, need to be non-negative and sum up to 1. To benefit from the closed-form
solutions which exist for w, Λ and σ2 conditional on the other parameters, and following [19], we
replace the M-step of the MCEM algorithm with several simpler conditional maximization (CM)
steps. When no Monte Carlo integration is involved, this is the ECM algorithm, which shares all
the appealing convergence properties of EM, such as always increasing the log-likelihood. As argued
by [19], when used for the M-step of EM, simple and stable linear converging methods are often
more suitable than super-linear converging but less stable algorithms such as Newton’s method.
Indeed, the super-linear convergence does not directly transfer to EM-based algorithms, for the
latter converge linearly regardless of the maximization method employed within the M-step. Hence,
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stability is to be preferred since the maximization method is used repeatedly. In each iteration,
first, three CM-steps compute the closed-form solutions of w, Λ and σ2 given the current value of
the other parameters. The fourth CM-step is a one-dimensional Newton-Raphson step which then
updates the current value of ν.

To the best of our knowledge, there are no theoretical results for MCEM outside of exponential
families, even more when replacing the M-step by CM-steps. Nevertheless, let us define the set of
functions G = {gs, s = 1, . . . , S}, with S = 4, g1(ψ) = w, g2(ψ) = Λ, g3(ψ) = σ2 and g4(ψ) = ν.
The condition for the ECM to share the convergence properties with EM is that G is space filling so
that we are guaranteed the resulting maximum is an unconstrained maximum of the log-likelihood
(over the whole space of the parameters). This is verified if

J(ψ) = ∩Ss=1Js(ψ) = {0},

where Js(ψ) = ∂
∂ψ gs(ψ), which can be easily checked in our case (and in many applications).

Note that in the last CM-step, which applies Newton’s method, we do not exactly perform a
maximization step, as we use backtracking line search and not exact line search [51]. However,
performing backtracking line search is simpler and faster, and enough to ensure

Q(ψ(j+1)|ψ(j)) ≥ Q(ψ(j+ S−1
S )|ψ(j)), (3.27)

where the right-hand side of (3.27) is the value of the Q function before updating ν in iteration
j, the left-hand side of (3.27) is the value of Q after updating ν in iteration j, i.e., at the end of
iteration j.

3.3.4 Online and stochastic EM algorithms

The MCECM algorithm presented in Sections 3.3.2 and 3.3.3 is computationally expensive as a
large M is needed to get unbiased maximum likelihood estimates. However, it can be useful as a
warm-up to a subsequent online EM algorithm. Online versions of EM have been mostly designed
for distributions which belong to curved exponential families [24]–[26], unlike the GLN distribution.
In the field of EM, online learning and stochastic approximation are again closely related [24].
Originally, stochastic EM algorithms were alternatives to MCEM algorithms, replacing extensive
Monte Carlo simulation at the E-step with simulation of a single value [22], [23], [94]. Since, SGD
has also inspired EM-based algorithms [95], and stochasticity in EM comes in various forms.

Even if closed-form solutions are available for Λ and σ2, which are the usual closed-form solutions
for a normal distribution, we cannot use the corresponding, convenient recursive equations for
updating them, because of the transformation γ which involves the shape parameter ν. Besides
an algorithm which can handle a large amount of data, we still need the parameters of the GLN
distribution to be allowed to vary with time. Also, when making predictions for the bound, we
wish to put more weight on values that are more likely regarding a rather recent past if we have
information, or put equal weights otherwise, i.e., we want the distribution of the bound to be
allowed to vary with time. Therefore, staying in the online learning paradigm [15], [81], we propose
an online version of our batch algorithm where each EM iteration is a round in a repeated game for
which we take the best position we can given our past choices, without looking backwards. At each
time t, we look at a Q-based function which only depends on the new observation xt and the current
value of the parameter vector ψt. We aim to update ψt by accounting only for the information
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brought by time t and forgetting about the past missing values of Bt. Let Kt = {k ∈ K | b[k] > xt}.
In terms of the function Q, this translates to observing at time t

−Qt(ψ|ψt) = −
∑
k∈Kt

ŵt[k](log p(xt | Ft−1, b[k]; θ) + logw[k]), (3.28)

where the posterior probabilities are

ŵt[k] = p(xt |Ft−1, b[k]; θt) wt[k]∑K
l=1 p(xt |Ft−1, b[l]; θt) wt[l]

. (3.29)

The key lies in p(xt | Ft−1, b[k]; θt), for we do not want the probability of observing xt to still be
impacted by the missing values b(t−1):(t−p).

For the computation of the posterior probabilities in (3.29), integration over possible values of
b(t−1):(t−p) is easy and limited to K(t−1):(t−p) = Kt−1 ×· · ·×Kt−p, since the conditional probability
density function of xt is equal to zero for values of b(t−1):(t−p) outside of K(t−1):(t−p). Let kt−r be
the state corresponding to the value of Bt−r in combinations b(t−1):(t−p), and ŵt−r[kt−r] be the
corresponding posterior probability computed at time t− r according to (3.29). We approximate
p(xt |Ft−1, b[k]; θt) in (3.29) with∑

b(t−1):(t−p)∈K(t−1):(t−p)

p(xt | Ft−1, b[k],b(t−1):(t−p); θt) ŵt−1[kt−1] . . . ŵt−p[kt−p]. (3.30)

The approximation lies in using P (b(t−1):(t−p) | Ft−1; θt) ≈ ŵt−1[kt−1] . . . ŵt−p[kt−p]. Therefore,
we consider the successive posterior probabilities, which have been computed at previous iterations,
of bt−r given xt−r rather than given the whole filtration Ft−r. Moreover, we assume ψt ≈ ψt−1 ≈
· · · ≈ ψt−p.

Integration cannot be considered in (3.28) because of the logarithm. We propose two ways of
dealing with the past missing values of Bt. Let ŵt = (ŵt[1], . . . , ŵt[K]). As a first option, we
replace the past missing values b(t−1):(t−p) with filtered values b̂(t−1):(t−p), such as

b̂t−r =
K∑
k=1

ŵt−r[k] b[k], r = 1, . . . , p, (3.31)

i.e., each missing value bt−r is replaced with its conditional expectation on the observation xt−r and
the current parameter ψt−r. As a second option, we instead simulate a single value of b(t−1):(t−p)

according to the posterior probabilities ŵ(t−1):(t−p). This is closer in spirit to historical stochastic
EM algorithms, see, e.g., [22], [23]. Then, at each time t we have

−Q̂t(ψ|ψt) = −
∑
k∈Kt

ŵt[k](log p(xt | Ft−1, b[k], b̂(t−1):(t−p); θ) + logw[k]), (3.32)

and we update the parameter ψt through a descent step using the gradient of the function −Q̂t.

The online EM we propose borrow ideas from stochastic optimization by using noisy estimates of
the objective’s gradient. The second online EM algorithm was also inspired by historical stochastic
EM algorithms in using simulation at the E-step for the past values of the bound [22], [23]. These
algorithms have connections with Titterington’s generic method [27]. However, in our specific
mixture case, we remain closer to the EM spirit and to [24] by having still an E-step through the
computation of ŵt[1], . . . , ŵt[K], and an M-step through the descent step in the direction of the
negative gradient of −Q̂t. Moreover, we do not need to compute and inverse the complete-data
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Fisher information matrix as in [27], which would be prohibitive in our case. The online algorithms
we propose show nice tracking abilities in changing environments. However, they fail to converge
to unbiased estimates of the parameters of the GLN distribution. We believe this mostly has to
do with the approximation which is performed at the E-step to replace the missing past values
of the bound. We have performed simulation studies with K = 3 and p = 1 or p = 2. Additional
tests are required to evaluate the impact on the bias of an increase of both K and p. Alternative
or complementary approaches need to be considered to reduce this bias. Lastly, the assumptions
which are made at each time t when computing the posterior probabilities of the bound with (3.30)
should also be further investigated.





CHAPTER 4
Data is missing again

We applied the algorithms which were designed over the course of this thesis to real power generation
at Anholt offshore wind farm in [Paper A] and [Paper B]. Because we worked with the average
power generation Xt, when individual, wind turbine data records were missing, we averaged the
records which were available at time t. In our last [Paper D], we question the way we dealt with
missing values and propose a more sophisticated imputation method, which takes advantage of
both the structure of the wind farm and collected data in an online fashion. This chapter first
introduces the issue of having to deal with missing data points when learning from data in general,
and at offshore wind farms in particular. It then summarises the methodology proposed in [Paper
D], which relies on spectral graph theory.

4.1 Dealing with missing values

4.1.1 When learning from data

Whether they rely on statistical assumptions, probability distributions, do not make any assumptions
at all, operate on a batch sample or on data streams, learning methods and algorithms have in
common that they need data to learn. Losing data while recording, collecting or even preparing
them has been an issue since the earliest attempts to build knowledge out of their exploitation,
for it is intrinsically part of the process: sensors or machines fail, people forget or do not want to
answer questions, etc. This becomes an issue when methods at hand assume and require complete
samples, or the most recent records of a data stream. This is the case for most statistical methods
and online algorithms.

The simplest way of dealing with missing values when learning from data is to delete incomplete
records and assume the dataset to be complete. This seems rather appropriate if the number of
complete records left is large enough for the learning method to perform well. As for variables, if
we are missing most observations of a single variable, we would rather delete this variable than
delete all records for which the variable is missing. However, one should not be oblivious of the
missingness mechanism. Three seminal, yet controversial [96], mechanisms have been introduced
by [97]: missing completely at random (MCAR), missing at random (MAR) and missing not at
random (MNAR). Let X and Xm be the observed and missing data of a dataset, respectively.
X is only a subset of the complete data model (X,Xm). Observations are said to be MCAR if
the probability that an observation is missing does not depend on (X,Xm). They are said to be
MAR if the probability that an observation is missing only depends on X. Finally, they are said to
be MNAR in every other case. The first two mechanisms are ignorable mechanisms, in the sense
that they do not make it necessary to explicitly model the missing values distribution. MNAR
on the other hand leads to significant biases in the data X, for the missingness depends on values
which are not observed. For instance, let us focus on the case of maximum likelihood inference,

35
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when one wishes to estimate the parameter θ of a probability density function pθ based on the
realizations of a random variable (X,Xm). In order to do so, one needs to maximize the likelihood
of the observations pθ(X). To acknowledge the presence of missing values, let the missingness
mechanism be an additional variable M with its own probability density function pϕ, Mi = 0 if
Xi ∈ X, Mi = 1 if Xi ∈ Xm. We are to maximize the likelihood of the observations

pψ(X,M) =
∫
pψ(X,Xm,M)dXm, (4.1a)

=
∫
pϕ(M|X,Xm)pθ(X,Xm)dXm, (4.1b)

where ψ = (θ, ϕ). If M does not depend on Xm we get pϕ(M|X,Xm) = pϕ(M|X) and

pψ(X,M) = pϕ(M|X)
∫
pθ(X,Xm)dXm, (4.2a)

= pϕ(M|X)pθ(X). (4.2b)

We see that maximizing the likelihood to get an estimate of θ while acknowledging M comes down
to maximizing pθ(X), since pϕ(M|X) does not depend on θ. However, this is appropriate only
when pϕ(M|X,Xm) = pϕ(M|X), i.e., only for MCAR and MAR mechanisms. The EM algorithm,
see Section 3.3, can be used for maximizing the log-likelihood

log pθ(X) = log
∫
pθ(X,Xm)dXm, (4.3)

when this quantity cannot be computed explicitly.

A popular way of dealing with missing data is imputation, which consists of filling in the missing
values with reasonable estimates to get a completed dataset. Imputation can be single, or multiple
[40]. If one aims to replace missing records as accurately as possible, then they perform single
imputation and get one completed dataset. Multiple imputation on the other hand consists of
generating M possible values for each missing entry, in order to get M completed datasets, so
that the variability across the datasets reflects the variance when predicting each missing entry.
Therefore, the aim of multiple imputation is rather to take into account the uncertainty which
comes from missing values. Note that the objective of estimating parameters of a distribution as
well as possible despite missing values, while properly accounting for their variance, is shared by
the EM approach, which also performs imputation in the E-step, even if imputation here is more
a by-product than a goal per se. The design of methods which do not require the completeness
assumption and are more robust to missing values constitutes another research area. Often, some
filling-in is performed or implied as part of the process and these methods are not imputation-free
[98].

Note that we focus on data which are missing during the learning process, as our probabilistic model
does not require data other than the wind power generation itself, and only uses past recorded
values. Many forecasting models use exogenous variables which were available during training, but
might be missing when the models actually need them for forecasting. For such models it is worth
designing algorithms more robust to missing data at test time [99].

4.1.2 At offshore wind farms

So far we have considered Xt, the average wind power generation at a wind farm at time t. To
be exactly computed, Xt requires a complete record at time t, i.e., (X1

t , . . . , X
N
t ), where Xi

t is
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the wind power generation of wind turbine i at time t, N is the number of wind turbines in the
wind farm. Because the probability of getting complete records decreases with the number of
wind turbines in a wind farm, deleting incomplete records is not an option. As a matter of fact,
complete records are only half of the records in Westermost Rough dataset and 66% of the records
in Anholt dataset, see Section 1.3. When dealing with time series, it is usually advised against
deleting records, for it breaks the dynamics, especially when there are too many to delete: a short
sequence might be relatively easy to fill in, but not a long one. Again, recall that some individual
power generation time series are missing over periods that can be longer than a month in both
Westermost Rough and Anholt datasets (and not only at the beginning of the dataset). Also, it
does not sound sensible to give up on records which miss only one or a few entries. Lastly, missing
entries may be MNAR [100].

The time series (X1
t , . . . , X

N
t )t∈T can be seen as a multivariate time series of N variables Xi

t , i.e.,
the individual power generations at time t. In the case of a wind farm, it is likely that these
variables will be correlated, and a variable Xi

t can be a good estimator when it comes to providing
plausible estimates for another variable whose observation is missing at time t. This is particularly
interesting for extended sequences of missing values. The average power generation Xt at time t is

Xt = 1
N

N∑
i=1

Xi
t . (4.4)

When some entries are missing at time t, assume that, instead, we work with

X̂t = 1
nt

nt∑
j=1

X
(j)
t , (4.5)

where X(j)
t is the power generation at time t for the (j)-th available wind turbine record, nt being

the number of available entries, nt ≤ N . This is the choice we made when working with data from
Anholt in [Paper A] and [Paper B]. Note that we mentioned averaging over 110 wind turbines
when there are actually 111 wind turbines in Anholt wind farm. Indeed, we removed one wind
turbine from the dataset, for a lot of its records were missing over the period which was the best fit
for the other wind turbines. We show that this intuitive averaging choice is equivalent to nt-NN
imputation.

Imputation with k-NN consists of filling in a missing value using the values from its k-nearest
neighbors. Unweighted k-NN give the same weight to each neighbor, when weighted k-NN assign
a higher weight to a closer neighbor. Let us replace each missing value X(l)

t with its unweighted
nt-NN estimate X̂(l)

t = 1
nt

∑nt

j=1 X
(j)
t , where X(j)

t are the nt values available at time t. We have

X̂t = 1
N

(
X

(1)
t + · · · +X

(nt)
t + X̂

(nt+1)
t + · · · + X̂

(N)
t

)
, (4.6a)

= 1
N

nt∑
j=1

X
(j)
t + 1

N

N∑
l=nt+1

X̂
(l)
t , (4.6b)

= 1
N

nt∑
j=1

X
(j)
t + 1

N

N∑
l=nt+1

1
nt

nt∑
j=1

X
(j)
t , (4.6c)

= 1
nt

nt∑
j=1

X
(j)
t . (4.6d)

To work with X̂t in (4.5) is equivalent to filling in the missing values (X(l)
t )l=nt+1,...,N using

unweighted nt-NN estimates, i.e., where each neighbor is assigned the same weight. However, the
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power generation from a wind turbine is likely to be more similar to the power generation from the
real neighbors of this wind turbine, i.e., the wind turbines which are located nearby in the wind
farm. Therefore, accounting for the geographical, structural neighborhoods in the wind farm could
already improve this simple imputation.

Imputation with k-NN is appealing for the associated assumptions are very weak: we do not assume
any model generating the data, observed or missing, and only assume similar groups of observations;
moreover, the method applies for all missing data mechanisms. Staying in the k-NN framework, we
can improve our estimates through the number of neighbors k, the weights we assign to neighbors,
or both. Indeed, to fill in a missing individual power generation record, we can replace it with the
averaged power generation records of k ≤ nt neighboring wind turbines, and this average can be
either weighted or unweighted. Theoretical results about k-NN mostly concern the asymptotic
mode [101]–[103], when nt tends to infinity, which cannot be assumed here as we are limited by the
number N of wind turbines in the wind farm. It is rather critical to choose k in a finite regime,
and it is usually advised to perform cross-validation. This would be cumbersome as we would need
to run cross-validation for each combination of available wind turbine records and for each missing
data point. It would also require quite an amount of complete records. Hence, we propose to keep
k = nt at each time t and rather improve the weights of the nt-NN imputation. A weighted nt-NN
imputation means that we wish to assign greater weights to neighbors which are closer to the
missing data point, according to some distance. Learning the distance metric for k-NN has been
extensively studied and it was found that metric learning may significantly affect the performance
of the method in many applications. Because we perform imputation at each time step t considering
power generation from similar sensors at the same time step t, the Euclidean distance seems a fair
enough metric for our application. Instead, we focus on a common shortcoming in non-parametric
methods, which is to only consider the distances between the point of interest and its neighbors,
and ignore the geometrical relation between these neighbors.

4.2 Imputation at a wind farm using online graphs

4.2.1 Laplacian eigenmaps of a wind farm

In order to account for the geometry of the wind farm, we consider a wind farm as an undirected
graph G = (V,E), where the nodes V = v1, . . . , vN are the wind turbines. As for the edges E, we
connect nodes depending on the layout of the wind farm only, i.e., depending on the position of
the wind turbines with respect to each other. Let A = (aij)i,j=1,...,N be the adjacency matrix of
graph G. All edges are first assumed to have the same strength: aij = 1 if nodes vi and vj are
connected by an edge, aij = 0 otherwise. Note that the diagonal of A is equal to zero, i.e., aii = 0,
as we do not consider self-connections. Through the adjacency matrix A, each wind turbine is
represented by the vector of size N of its connections to the other wind turbines in the wind farm.
Out of this representation, we wish to learn a low-dimensional embedding for each wind turbine
that preserves the structure of the wind farm. We are interested in Laplacian eigenmaps, which
optimally preserve local neighborhood information and produce coordinate maps that are smooth
functions over the original graph [38]. By trying to preserve local information in the embedding,
the algorithm implicitly emphasizes the natural clusters in the data. Close connections to spectral
clustering then become very clear [39].

Let D be the diagonal matrix associated with graph G, whose entries are the degree of each node,
i.e., dii =

∑
j aji. The matrix L = D − A is called the graph Laplacian and we get eigenmaps by
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computing eigenvalues and eigenvectors for the generalized eigenvector problem

Lf = λDf . (4.7)

Using r eigenvectors f we now have new representations, or embeddings, for each wind turbine,
which account for the geometry of the wind farm. Let zi be the embedding of wind turbine vi,
zi ∈ Rr. Distances ∥zi − zj∥ for every pair of wind turbines (vi, vj) can be computed once and for
all and used for assigning weights to a neighbor vj , when power generation has not been recorded
for vi (or conversely).

4.2.2 Accounting for observed data

The former representations embed the structure of the wind farm only, and can be used without
having any other data but the map of the wind farm. So far we have assumed the same strength
to all edges. To take into account both the structure of the wind farm and information from
power generation data when performing imputation, we propose to weigh the edges depending
on a measure of similarity between the power generations of two connected wind turbines. If vi
and vj are connected by an edge, a simple and intuitive choice for the similarity between Xi

t and
Xj
t is st(i, j) = 1 − ∥xit − xjt∥, st(i, j) ∈ [0, 1], where xit and xjt are the recorded values for Xi

t and
Xj
t . Note that if it happens at time t that two wind turbines which are not connected in graph G

have very similar power generations, they remain unconnected. By doing so, we enforce an a priori
on the relationships between the wind turbines upon the structure of the wind farm, but we also
keep a sparse adjacency matrix A. Indeed, A now depends on t and we have At = (at,ij)i,j=1,...,N ,
where at,ij = st(i, j) if nodes vi and vj are connected by an edge, at,ij = 0 otherwise. This implies
to solve the generalized eigenproblem (4.7) at each time step t, which can be done rather easily
when dealing with sparse matrices At.

It may happen that two wind turbines which are a priori connected get disconnected because
st(i, j) = 0 for some time t. In such a case, we can obtain a graph which is not connected
anymore, i.e., we cannot travel through the whole graph from any point in the graph. To compute
eigenmaps, the generalized eigenproblem (4.7) must be solved for a connected graph, which ensures
rank(D) = N and there are N eigenvalues, or λ(L,D) may be finite, empty or infinite [104].
Therefore, when a graph has several components, the algorithm for computing eigenmaps consists
of solving the generalized eigenproblem (4.7) for each connected component. Since we are online
and in high dimension, we need to be able to automatically detect when the graph is not connected
anymore, and what are the components. Let Lrw = D−1L = I − D−1A be the normalized graph
Laplacian, which is the graph Laplacian we use when computing eigenmaps. We recall a very useful
property of this graph Laplacian [39], that makes it easy to derive the connected components of G
at time t if the multiplicity of the eigenvalue 0 of Lrw,t becomes higher than 1:

Proposition 4.2.1 (Number of connected components and spectra of Lrw) Let G be an
undirected graph with non-negative weights. Then the multiplicity d of the eigenvalue 0 of Lrw
equals the number of connected components A1, . . . , Ad in the graph and the eigenspace of 0 is
spanned by the indicator vectors 1Ai

of those components.

The similarities st(i, j) are known at time t among the wind turbines for which data points are
available, but they are not for the edges involving wind turbines for which the record is missing,
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and we need to replace them with estimates. Although the correlations between wind turbine power
generations are unlikely to be stationary, we infer they will be more stable than the individual time
series themselves, and easier to fill in. To avoid specifying a model for the similarities between all
individual time series, we again place ourselves in the online learning framework. Our goal is to
guess the sequence of similarities as precisely as possible, while they are chosen by an adversary
rather than generated stochastically [15], [16]. This turns to the following repeated game: in each
round t = 1, . . . , T , for each similarity between two connected wind turbines st(i, j), an adversary
chooses a real number in [0, 1] and keeps it secret; we try to guess the real number, choosing
ŝt(i, j); the adversary number is revealed and we pay the squared difference (st(i, j) − ŝt(i, j))2.
One should note that the last step of the repeated game when the adversary number is revealed
does not happen if some of the data are missing. Therefore, to allow missing data, the game is
slightly modified and we pay (st(i, j) − ŝt(i, j))2 only if st(i, j) is revealed [98]. Using the notation
1{st(i,j)} as the indicator of the event {st(i, j) is revealed}, we pay now (st(i, j) − ŝt(i, j))21{st(i,j)}.
In such a missing data, convex framework, an online strategy with good theoretical guarantees is
the lazy version of OGD [17]. We also consider the best constant strategy, i.e, the strategy that
minimizes

∑T
t=1(st(i, j) − ŝt(i, j))21{st(i,j)}, which is just constantly choosing ŝt(i, j) to be the

average similarity
∑T
t=1 st(i, j)1{st(i,j)}

/∑T
t=1 1{st(i,j)} at each round.

Because we have a new graph at each time t, we also get new embeddings zit for each wind
turbine vi, which account for the geometry of the wind farm and the online similarities between
power generations. Distances ∥zit − zjt∥ for every pair of wind turbines (vi, vj) and corresponding
time-varying nt-NN weights need to be computed at each time t as well.

4.2.3 From distances to neighbors’ weights

To convert the distances between two wind turbine embeddings into weights for the nt-NN
imputation, we propose to use Nadaraya-Watson estimators [105], [106]. Let K be a given non-
negative measurable function on R, the kernel, h be a positive number, the bandwith, depending
on nt only, and ∥z(j) − z(l)∥ be the Euclidean distance between the representations of two wind
turbines (j) and (l). In case (l)’s record is missing and (j)’s is available at time t, the weight we
assign to X(j)

t when computing a weighted estimate X̂(l)
t =

∑nt

j=1 w
(jl)X

(j)
t of X(l)

t is

w(jl) =
K
(

∥z(j)−z(l)∥
h

)
∑nt

i=1 K
(

∥z(i)−z(l)∥
h

) . (4.8)

Let us sort the neighbors of a wind turbine (l) by increasing distance,

∥z(1) − z(l)∥ ≤ ∥z(2) − z(l)∥ ≤ · · · ≤ ∥z(nt) − z(l)∥.

We choose an adaptive bandwith ht = ∥z(nt) − z(l)∥, so that the weights adjust depending on nt,
i.e., depending on the availability of other records at time t. These Nadaraya-Watson estimators
could be replaced with an algorithm able to compute optimal weights efficiently and adaptively for
each data point we wish to estimate, out of the distances between the wind turbine embeddings
[107]. Of course the price to pay would be more computational effort.
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In [Paper D] we apply weighted nt-NN imputation to Westermost Rough offshore wind farm and
compare it to averaging over available records, i.e., to naive unweighted nt-NN imputation. The
improvement on wind power generation data is already significant overall; it can be more than
20% for some wind turbines, depending on their position inside the wind farm. The method we
propose is useful already in the early stage of a wind farm’s life, as it can start with the edges of
G being unweighted edges, and move to using online weighted graphs Gt as soon as there is one
observed similarity for each pair of connected wind turbines. It can be applied to any task, model
or distribution, while pre-processing batch data, or run on data streams to better deal with recent
missing entries for forecasting purposes.





CHAPTER 5
Conclusion

In this thesis, we focused on probability distributions and statistical models more suited to the special
characteristics of wind power generation than classical Gaussian or beta assumptions in stationary
frameworks. We addressed the non-linearity and the bounded support of wind power generation by
working with the GLN distribution, and extended the methods available for the estimation of this, in
our opinion, underused distribution. In order to accommodate non-stationarity, we always intended
to go towards online learning approaches. This led us to questioning the assumption of stationarity
even for the support of the bounded distribution. The range of applications which could benefit
from such a novel framework is broad and motivated us to generalize the idea. Finally, because
we worked on real datasets from two offshore wind farms, we challenged the way we were dealing
with missing data points, and suggested an augmented imputation method compatible with our
statistical framework and with any learning algorithm. We conclude here with an overview of our
contributions to statistical inference involving GLN distributions in particular, and to applications
involving continuous bounded response variables in general. Lastly, we give a few directions for
future research, inspired by wind power probabilistic forecasting, but with a larger impact in terms
of statistical and forecasting applications.

5.1 Overview of contributions

First, we developed a rigorous statistical framework to estimate the full parameter vector of a GLN
distribution through maximum likelihood inference. We proposed a batch algorithm which takes
advantage of the usual closed-form solutions available for the location and the scale parameters of
the distribution. The algorithm relies on the conditional maximization of each parameter given
the other parameters and, by doing so, only requires a one-dimensional Newton-Raphson step for
retrieving the estimator of the shape parameter. The GLN distribution can be easily applied to
stochastic processes of dependent variables by replacing the constant location parameter µ with an
AR model. Indeed, the coefficients of this AR model also have closed-form solutions, and any sort
of linear regression could be considered for including exogenous variables in the statistical model.
Because we chose to perform maximum likelihood estimation, it was straightforward to derive
the corresponding recursive maximum likelihood estimation. Hence, we were able to propose a
recursive algorithm which can track a time-varying parameter vector and adapt a GLN distribution
to changing environments. Both algorithms were applied to real data from Anholt offshore wind
farm for 10-minute-ahead forecasting, and compared to usual benchmarks such as the probabilistic
persistence and classical Gaussian benchmarks. The recursive algorithm in particular outperformed
the other approaches, improving the CRPS of probabilistic persistence by more than 20% for
probabilistic forecasting. Marginal calibration was also much improved, at the bounds, by replacing
the Gaussian distribution with the GLN distribution.

Next, we made the observation that when dealing with bounded variables, the bounds of the
probability distribution were always assumed to be fixed in the literature. We came to doubt this
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assumption by thinking of wind power generation, but figured that a broad range of statistical
applications may be concerned by varying bounds which are not, or cannot be observed. We first
focused on the statistical framework for wind power forecasting. Indeed, in the context of stochastic
processes, an upper varying bound can be seen as an additional parameter of the GLN distribution.
Considering the bound as a parameter asked for the framework to be non-stationary, or the bound
would never vary. This involved some challenges, in particular because the negative log-likelihood
we wished to minimize when proceeding to maximum likelihood estimation was not convex in this
new bound parameter. The batch algorithm developed at the former stage, for the original GLN
distribution, used a Newton-Raphson step, which was meant for convex optimization problems.
Therefore, it could not be used, even for sequential re-training. As for the former recursive algorithm,
it relies on an approximation of the Hessian which is guaranteed to be positive definite, whether
the optimization problem is convex or not. Nevertheless, this can only be sub-optimal at the best.
From the observation that, if not convex, the optimization problem involving the bound parameter
was with high probability locally quasiconvex, we used recent theoretical results about SNGD for
strictly locally quasiconvex functions to derive an equivalent ONGD for our problem. Because, in
this specific framework, the observations needed to be allowed to fall outside of the support of the
distribution, we proposed to use an extended log-likelihood, i.e, extended outside of its support
through the addition of a sigmoid, convex, function. We also showed that the CRPS dealt nicely
with an observation falling outside of the support of a predictive distribution. ONGD was applied
to real data from Anholt offshore wind farm for 10-minute-ahead probabilistic forecasting and
compared to the former recursive algorithm, i.e., to the assumption of an upper bound fixed to 1.
It improved the CRPS of the recursive algorithm by almost 18%, and the CRPS of probabilistic
persistence by more than 34%. To achieve this performance, the size of the mini-batch, i.e., the
number of observations which are used for updating the parameter vector, required to be set to
1. This suggests that the model calls for fast changes in the value of the upper bound. However,
the predictive densities are overconfident on average, and if marginal calibration is satisfying, no
method has yet achieved probabilistic calibration on Ahnolt dataset.

When considering the bound as a parameter of the GLN distribution, we could learn and forecast
only one value for the bound at a time. Hence, we did not account for the uncertainty of this
value. For probabilistic forecasting purposes, when we are sure about the upper bound, for instance
because observations have been very close to 1 for quite some time, this should be reflected in
our probabilistic forecasts. On the other hand, when we do not have much knowledge about the
current value of the upper bound, because the observations have drifted away from it, we should be
allowed to include this uncertainty in our probabilistic forecasting. Therefore, a general statistical
framework that naturally arose was to consider the bound as a latent variable. Moreover, this
framework could be applied to bounded variables other than stochastic processes, contrary to
the former approach. To directly maximize the log-likelihood of the observations becomes more
challenging when latent variables are involved, and direct maximization is usually replaced with
EM approaches. We proposed to model the bounds as discrete independent variables. Hence,
EM procedures were eased, and the forecaster was free to feed the model with sensible values for
the bound. We started by designing batch algorithms for the case where the bounded variables
were independent and identically distributed, and the case where they were a stochastic process
with AR dependency. For independent response variables, we proposed an ECM algorithm which,
similarly to the algorithm for estimating the parameter vector of a regular GLN distribution, relies
on iterative conditional maximization of the parameters given the others. For stochastic processes,
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we proposed an MCECM algorithm, which needs simulation at the expectation step to handle the
dependency structure. We proposed to perform this simulation by using an MCMC algorithm suited
to our framework. Both batch algorithms performed well on various simulation studies. However,
designing online algorithms was challenging, as we expected. Online EM algorithms were not only
necessary to track the parameter of the GLN distribution in the case of stochastic processes, but
also to allow the rather simple distribution of the bound to vary. Currently, most online - or
stochastic - versions of the EM algorithm are dedicated to the curved exponential family and do not
transfer to the GLN distribution, or distributions involving generalized link functions in general.
Staying in the online learning paradigm, we proposed novel online EM-based algorithms relying on
OGD. For both independent response variables and stochastic processes, they showed nice abilities
in tracking changes in the distribution of the bound. The online EM algorithm for independent
variables also proved to converge to the maximum likelihood estimates of the parameters, whereas
the online EM for stochastic processes did converge, but to biased estimates. As of now, further
work is required to reduce and remove this bias, but the results obtained so far are promising.

Finally, because we ran most of the algorithms designed during this thesis on real data from offshore
wind farms, we questioned the imputation method we implicitly used when dealing with missing
values in historical records. Indeed, working with the average wind power generation at a wind
farm, we used the average of the available entries when the wind power generation had not been
recorded for some of the wind turbines. By doing so, we performed k-NN imputation. A common
shortcoming of non-parametric methods such as the k-NN algorithm is to consider the distances
between a point of interest and its neighbors only, and to overlook the distances between the
neighbors themselves. To address this shortcoming and improve the k-NN imputation, we proposed
to explicitly acknowledge the structure of the wind farm by considering it as a graph. Then, we
combined spectral graph theory and lazy gradient descent to propose an online imputation method
using information from both the wind farm layout and the data already collected. The proposed
approach was applied to wind power generation at Westermost Rough offshore wind farm, and
showed significant improvement over approaches that did not account for the wind farm layout
information.

5.2 Perspectives for future research
Technical directions for further work which apply to all the online algorithms developed in this
thesis concern the issue of choosing a step size, in particular for tracking purposes, as focus has
largely been placed on convergence in the literature. This translates to the choice of a forgetting
factor when using algorithms of the recursive kind. Further work should not only address adaptive
step sizes or forgetting factors over time, but also adaptive to the parameter at hand, as the
parameters of a distribution are unlikely to ask for the same varying pace when adapting to
changing environments. Both directions have been considered in the control and online learning
communities. In the control literature, works have addressed selective and directional forgetting
in adaptive procedures [108]–[110]. In the online learning paradigm, the notions of adaptive and
dynamic regret have been introduced to extend the original static regret [17], [111]–[113]. However,
these works mostly concern either online convex optimization or recursive procedures involving
quasi-Newton approximations. Therefore, they can be considered for the initial GLN distribution,
but not when including the upper bound in the parameter vector.

Following up on our remark about not having been able to achieve probabilistic calibration for
10-minute-ahead forecasting at Anholt offshore wind farm, a future research direction could be
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to address the uncertainty when estimating the parameters of the distribution, whether a bound
parameter is included in the parameter vector or not. Throughout this thesis, the estimation of
the parametric GLN distribution was performed through maximum likelihood inference in what is
known as the frequentist paradigm, with the objective function being the log-likelihood of the data.
From a Bayesian perspective, this is equivalent to performing maximum a posteriori estimation
with uniform prior distributions on the parameters [114]. A research direction would be to move the
estimation to the Bayesian framework, while making different assumptions on the prior distributions
of the parameters: different from the uniform priors, but also different depending on the parameter
at hand, in particular when including a bound parameter in the parameter vector. Of course, this
would need to be done in the online paradigm if the bound parameter is included, or at least in a
recursive way otherwise.

In the context of stochastic processes with serial dependency, we can suggest another approach to
specifically address the uncertainty of not observing the bound, which combines ideas from the
bound as a parameter and the mixtures of GLN distributions with different bounds. We propose to
consider different forecasters, with their own GLN distribution, where the bound is a parameter,
but a fixed parameter, the original parameters of the GLN distribution being estimated. This is far
from trivial as it implies the different forecasters would learn, adapt and issue their forecasts on
sub-samples of the data only, where their bound parameter is compatible with the observations.
Moreover, this research direction requires to be able to combine predictive densities, in an online
fashion. Related research includes forecast combinations [115], [116], expert aggregation [15] or
Bayesian and dynamic model averaging [117], [118].

Finally, we focused in this thesis on the aggregate wind power generation at a wind farm. Because
we have access to the power generation recorded for each wind turbine in the wind farm, future
research could be dedicated to benefiting from the information which is available at the wind
turbine level when forecasting at the wind farm level. Hence, the statistical framework would move
from considering univariate time series to considering multivariate time series, the time series of
power generation at the turbine level. For wind power forecasting, approaches based on vector
auto-regressive models were considered to deal with multivariate time series [119], [120]. Such
works use the logit-normal distribution, i.e., they assume a shape parameter ν = 1. They could be
revisited in order for the model estimation to also include the shape parameter, and even the upper
bound parameter. Note that, in such works, the variables of the multivariate time series were the
wind power generation from different wind farms, stacked into a multivariate time series in order to
benefit from the possible cross-correlations. Working at a turbine level may be more challenging
because power generation is likely to be more noisy and highly non-stationary. Other multivariate
approaches could be graph-based, as proposed in Chapter 4, in order to account for the layout of
the wind farm, or by learning a graph directly out of the cross-correlations of the multivariate time
series. Ultimately, both individual and aggregated levels could be combined to improve probabilistic
forecasting for offshore wind energy, for instance using hierarchical probabilistic forecasting [121].
Indeed, a recent work confirmed that novel bottom-up probabilistic approaches can improve wind
power forecasting at the wind farm level by leveraging data from individual wind turbines [7]. We
could even imagine introducing intermediate levels of aggregation between the individual time
series and the aggregated one, to improve forecasting over the whole wind farm. Future research
could combine such ideas with the frameworks developed in this thesis.
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Figure A.1: Distribution of missing entries in incomplete records
(Westermost Rough).
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Figure A.2: Distribution of missing entries in incomplete records
(Anholt).
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Abstract—There is increasing interest in very short-term and
higher-resolution wind power forecasting (from mins to hours
ahead), especially offshore. Statistical methods are of utmost
relevance, since weather forecasts cannot be informative for
those lead times. Those approaches ought to account for the
fact wind power generation as a stochastic process is non-
stationary, double-bounded (by zero and the nominal power
of the turbine) and non-linear. Accommodating those aspects
may lead to improving both point and probabilistic forecasts.
We propose to focus on generalized logit-normal distributions,
which are naturally suitable and flexible for double-bounded
and non-linear processes. Relevant parameters are estimated via
maximum likelihood inference. Both batch and online versions
of the estimation approach are described – the online version
permitting to additionally handle non-stationarity through pa-
rameter variation. The approach is applied and analysed on the
test case of the Anholt offshore wind farm in Denmark, with
emphasis placed on 10-min-ahead forecasting.

Index Terms—Wind power, Probabilistic forecasting, Dynamic
models, Bounded time-series

I. INTRODUCTION

Forecasting is of utmost importance to the integration of
renewable energy into power systems and electricity markets.
The attention of energy forecasting has increased tremendously
over the years [1]. For instance, thinking of short-term oper-
ational problems, transmission system operators (TSOs) have
to operate reserves optimally to keep the system in balance
at reasonable costs. Indeed, in Denmark, the TSO has some
time argued the 10-min lead time as the most important since
wind power fluctuations at this horizon particularly affect
the system balance, see [2] for instance. Emphasis here is
on offshore wind power forecasting, since those short-term
fluctuations in power generation are most significant offshore.
Even though most efforts in wind power forecasting are placed
on lead times from hours to days, many are investing in
alternative approaches to improve the accuracy of very short-
term forecasts, for instance leveraging detailed turbine-level

The research leading to this work is being carried out as a part of the
Smart4RES project (European Union’s Horizon 2020, No. 864337). The sole
responsibility of this publication lies with the authors. The European Union
is not responsible for any use that may be made of the information contained
therein. The authors additionally acknowledge Ørsted for providing the data
for the Anholt offshore wind farm.

data [3]. Those very short-term lead times are not only crucial
but also those it is the most difficult to improve the forecasts
for, especially compared to the simple but very effective persis-
tence benchmark. Forecasts characterize and reduce but do not
eliminate uncertainty. Thus forecasts should be probabilistic in
nature taking the form of probability distributions, following
the argument of [4] among others.

Wind power generation is a stochastic process which is
double-bounded by nature, both by zero when there is no
production at all, and by the nominal power for high-enough
wind speeds. For short-term forecasting, statistical methods
have proved to be more skilled and accurate. However, those
methods often rely on a Gaussian assumption – which cannot
be appropriate for a double-bounded variable. In [5], it is
proposed to move from the classical Gaussian assumption to
a framework where the wind power variable follows a gener-
alized logit-normal distribution. In this framework though, not
all the parameters of the distribution are estimated and tracked,
the shape parameter being selected upon cross-validation.

Consequently here, we propose to revisit this work and to
estimate all the parameters of the generalized logit-normal
distributions within a maximum likelihood framework. Such a
framework is particularly suitable to obtain skilled probabilis-
tic forecasts. In addition, emphasis is placed on describing
both batch and recursive estimation approaches, in order
to go towards an online learning approach as a basis for
probabilistic forecasting. For a nice introduction to online
learning, the reader is referred to [6]. Online learning (with
exponential forgetting) makes it possible to accommodate the
non-stationarity of wind power generation time-series. The
models and estimation framework are first presented in Section
II, and the resulting algorithms in Section III. They are then
applied to 10-min-ahead point and probabilistic forecasting at
the Anholt offshore wind farm in Section IV. Finally some
concluding remarks and prospects are given in Section V.

II. MODEL AND ESTIMATION FRAMEWORK

A. Generalized Logit-Normal Distribution and its Parameters

For an original random variable X ∈ (0, 1), the generalized
logit transform Y is given by

Y = γ(X; ν) = ln

(
Xν

1−Xν

)
, ν > 0, (1)978-1-6654-3597-0/21/$31.00 ©2021 European Union



where ν is the shape parameter. When Y follows a Gaus-
sian distribution N (µ, σ2), the original variable X follows a
generalized logit-normal distribution Lν(µ, σ2), see [5]. The
probability density function is given by

f(x) =
1√

2πσ2

ν

x(1− xν)
exp

[
−1

2

(
γ(x; ν)− µ

σ

)2
]
. (2)

Let X the wind power random variable. We want ν such as
the transform variable Y is as close as possible to a Gaussian
variable which then can be forecast in a Gaussian framework.
As we have access to some realizations (xt) of X and to the
analytical expression of its density, we can then maximize the
probability of observing the data (xt) depending on ν, µ and
σ2, that is estimate all the parameters of the distribution (2)
using maximum likelihood inference.

In the case of wind power generation, the observa-
tions (xt) are strongly correlated. We thus assume that
Yt|Yt−1, ..., Yt−p ∼ N (µt, σ

2) where µt =
∑p
k=1 φkYt−k,

that is the distribution of Xt|Xt−1, ..., Xt−p is a generalized
logit-normal distribution of density

1√
2πσ2

ν

xt(1− xνt )
exp

[
−1

2

(
yt −

∑p
k=1 φkyt−k
σ

)2
]
, (3)

where yt = γ(xt; ν). While the density in (3) is defined only
for x ∈ (0, 1), the wind power generation can take values 0
and 1. We thus choose to look at the observations xt ∈ [0, 1]
as a coarsened version of X , see [7]. This coarsened data
framework has been formalized by [8] and [9].

B. Maximum Likelihood Inference

Let Φ = (φ1, ..., φp)
> ∈ Rp. The maximum likelihood

inference is based on the likelihood function, given by

L(ν,Φ, σ2|x) =
N∏

t=1

f(xt|xt−1, ..., xt−p, ν,Φ, σ
2), (4)

which is the probability of the observed data under the
model f , assuming the realizations of Xt|Xt−1, ..., Xt−p
are independent and identically distributed. We think of
L(ν,Φ, σ2|x) as a function of ν, Φ and σ2, the data (xt)
being fixed. The method of maximum likelihood chooses the
values (ν,Φ, σ2) = (ν̂, Φ̂, σ̂2) to maximize L(ν,Φ, σ2|x). The
logarithm of L being easier to maximize, especially when
exponential distributions are involved, it is used instead of the
likekihood. For model f the negative log-likelihood function
is

l̃(ν,Φ, σ2|x) =
N − p

2
ln(σ2)− (N − p) ln(ν)

+

N∑

t=p+1

ln(1− xνt )

+
1

2σ2
(y− YΦ)>(y− YΦ) + C,

(5)

where y = (yp+1, ..., yN )> ∈ RN−p, Y is a matrix with
columns By, B2y, ..., Bpy ∈ R(N−p)×p, B being the backshift

operator, C is a constant which does not depend on ν, Φ or σ2.
Computing the first derivatives of (5) w.r.t. the parameters of
the distribution we can retrieve stationary points. It is worth
noting that those points are minimizers only if the negative
log-likelihood is convex. Taking the derivative of (5) w.r.t.
Φ, resp. σ2, and setting it equal to zero, leads to the usual
maximum likelihood estimators

Φ̂ = (Y>Y)−1Y>y, σ̂2 =
(y− YΦ̂)>(y− YΦ̂)

N − p . (6)

Taking the derivative of (5) w.r.t. ν, we thus need to solve

−N − p
ν
−

N∑

t=p+1

ln(xt)xt
ν

1− xtν
+

(u− UΦ)>(y− YΦ)

σ2
= 0, (7)

where u = ∂y
∂ν with ut = ln(xt)(1 + xt

ν

1−xtν ), U = ∂Y
∂ν with

columns Bu, B2u, ..., Bpu. Unlike Φ̂ and σ̂2, ν̂ does not have
a closed-form solution and a descent algorithm is then to be
used to solve (7).

III. BATCH AND RECURSIVE ALGORITHMS

A. Batch Algorithm

We use both the closed-form solutions in (6) for Φ̂ and
σ̂2, and a Newton-Raphson algorithm to solve (7) in order
to estimate the shape parameter ν. The computation of the
Newton-Raphson step requires the second derivative of (5)
w.r.t. ν, i.e.

∂2 l̃

∂ν2
=
N − p
ν2

−
N∑

t=p+1

ln(xt)
2 xνt

(1− xνt )2

+
(v− VΦ)>(y− YΦ)

σ2
+
‖ u− UΦ ‖22

σ2
,

(8)

where v = ∂u
∂ν with vt = ut ln(xt)

xt
ν

1−xtν , V = ∂U
∂ν with

columns Bv, B2v, ..., Bpv.
The full algorithm is described in Algorithm 1 and has

showed very fast convergence on numerous simulations of
samples distributed according to the generalized logit-normal
distribution with different values of Φ, σ2 and ν.

Algorithm 1 Batch MLE with diagonalization
Set i← 1 and let ν1 = 1, ε = 0.001.
repeat

1. Update. Φi = (Y>Y)−1Y>y; σ2
i = (y−YΦi)

>(y−YΦi)
N−p .

2. Compute the Newton step and decrement for ν.
∆νnt = −∇ν l̃∇2

ν l̃
; λ2 = (∇ν l̃)2

∇2
ν l̃

.
3. Stopping criterion. quit if λ2/2 ≤ ε.
4. Line search. Choose step size t by backtracking line
search.
5. Update. νi+1 = νi + t∆νnt.

until termination test satisfied.



B. Recursive Algorithm

The batch algorithm is well suited if the data are known to
be stationary to second order, that is assuming the parameters
of the distribution (2) do not change over the curse of time.
But if, as we suspect in the case of wind power data, the time
series is not stationary and the parameters are not constant,
then the batch algorithm is not appropriate and alternative
solutions are required. Recursive estimation allows for such a
parametric time-variability and provides information not only
on the existence of non-stationarity but also on the possible
nature of the parametric variations (see e.g. [10]).

As the inference relies on the likelihood function, it is
straightforward to derive a recursive algorithm which only
requires the first derivatives of (5) w.r.t. to the parameters. Let
introduce Θ̂t = (Φ̂t, σ̂

2
t , ν̂t) the estimate of the parameters at

time t. The recursive estimation procedure relies on a Newton-
Raphson step for obtaining the estimate Θ̂t as a function of the
previous estimate Θ̂t−1, see e.g. [11] and [12]. Let introduce
the time-dependent negative log-likelihood objective function
to be minimized at time t

St(Θ) = − 1

nα

t∑

j=p+1

αt−j ln(fj(Θ)), (9)

where fj(Θ) = f(xj |xj−1, ..., xj−p; Θ), α is a forgetting
factor, α ∈ (0, 1), allowing for exponential forgetting of
past observations, nα = 1

1−α is the effective number of
observations used for normalizing the weighted negative log-
likelihood function. Applying one Newton-Raphson step we
have

Θ̂t = Θ̂t−1 −
∇ΘSt(Θ̂t−1)

∇2
ΘSt(Θ̂t−1)

. (10)

As

∇ΘSt(Θ̂t−1) = α∇ΘSt−1(Θ̂t−1)

− (1− α)∇Θ ln(ft(Θ̂t−1)),
(11)

assuming that Θ̂t−1 minimizes St−1(Θ), we get

∇ΘSt(Θ̂t−1) = −(1− α)∇Θ ln(ft(Θ̂t−1)). (12)

From (11) we also get

∇2
ΘSt(Θ̂t−1) = α∇2

ΘSt−1(Θ̂t−1)

− (1− α)∇2
Θ ln(ft(Θ̂t−1)).

(13)

As

∇2
Θ ln(ft(Θ̂t−1)) =

∇2
Θft(Θ̂t−1)

ft(Θ̂t−1)

− ∇Θft(Θ̂t−1)(∇Θft(Θ̂t−1))T

ft(Θ̂t−1)2
,

(14)

assuming ft is (almost) linear in Θ in the neighborhood
of Θ̂t−1, the first term in (14) vanishes and we obtain the
following approximation

∇2
Θ ln(ft(Θ̂t−1)) = −hth

>
t , (15)

where ht = ∇Θft(Θ̂t−1)

ft(Θ̂t−1)
= ∇Θ ln(ft(Θ̂t−1)).

Let R̂t = ∇2
ΘSt(Θ̂t) and assume that the objective criterion

S is smooth in the vicinity of Θ̂t, and the adaptation step small
enough so that

R̂t = ∇2
ΘSt(Θ̂t) ' ∇2

ΘSt(Θ̂t−1). (16)

This is a classic assumption for deriving recursive estimation
methods for stochastic systems (see [13]). The two-step recur-
sive scheme at time t is then

R̂t = αR̂t−1 + (1− α)hth
>
t , (17)

Θ̂t = Θ̂t−1 + (1− α)R̂
−1

t ht. (18)

Equation (17) derives from (13) and (15). Equation (18) de-
rives from (10), (12) and (16). The final algorithm is available
in Algorithm 2.

Algorithm 2 Recursive MLE
Let Φ0 = 0, σ2

0 = 1, ν0 = 1,h0 = 0, R0 = 0(p+2,p+2).
repeat

1. Update. R̂i = αR̂i−1 + (1− α)hih
>
i .

2. Update. Θ̂i = Θ̂i−1 + (1− α)R̂
−1

i hi if i > 100 + p.
until t the forecasting time.

IV. VERY-SHORT-TERM WIND POWER FORECASTING
APPLICATION

We apply the proposed models to a real dataset consisting
of wind power generation from a large wind farm, Anholt in
Denmark, from July 1, 2013 to August 31, 2014. Emphasis is
placed on the maximum likelihood framework and its online
learning derivation. For a comparison of the generalized logit-
normal distribution to other distributions (e.g., Beta) for the
purpose of wind power forecasting, see [5].

A. Data Description

Active power is available for 110 wind turbines at a
temporal resolution of every 10 minute. The time series are
scaled individually according to the nominal power of the wind
turbines. The average generation over the wind farm is then
computed depending on the number of wind turbines being
available at each time step, in order to handle missing values.
The resulting random variable is then Xt ∈ [0, 1], the average
active power generated in the wind farm at time t.

We are interested in forecasting Xt+1 (point forecasting)
and its distribution (probabilistic forecasting) knowing the
realization of Xt; the lead time is therefore 10-minute-ahead.
We split our data into two datasets:
• a training/cross-validation dataset from July 1, 2013 to

March 31, 2014, resulting in 39,450 observations,
• a test dataset from April 1 to August 31, 2014, resulting

in 22,029 observations.
The training set is used to fit all models, the cross-validation
set to select hyper-parameters if needed and the test set to
compare the proposed methodology to the benchmarks. It is



worth noting the training set is long enough for the Algorithm
2 to be recursive yet on the training period, after a short warm-
up of 100 iterations.

B. Point Forecasting

In order to evaluate and compare the performance of the
proposed methods for point forecasting we use the Root
Mean Square Error (RMSE). When a model requires hyper-
parameters to be selected before estimating the parameters, we
use the following procedure:
• The candidate models are fitted over a grid of hyper-

parameters’ values from July 1 to October 31, 2013;
• they are then retrained in a time-series cross-validation

scheme, from November 1, 2013 to March 31, 2014, for
which the size of the training window increases as we
evolve through the validation set (consistent with a leave-
one-out setup);

• the hyper-parameters leading to the smallest RMSE on
the cross-validation set are selected;

• finally the final model is fitted over the whole
training/cross-validation set and used for forecasting on
the test set.
a) Benchmarks: We compare our methods to three

benchmarks: the persistence, a normal auto-regressive (NAR)
model and its recursive version. The persistence consists
in taking x̂t+1 = xt. The normal AR model assumes
Xt|Xt−1, ..., Xt−p ∼ N (µt, σ

2) where µt =
∑p
k=1 φkXt−k.

In this Gaussian setup the forecasts are unbounded and happen
to be greater than 1 or lower than 0. Thus we need to truncate
a posteriori the out-of-range predictions so they lie in the
interval [0, 1]. We test AR models up to lag p = 5 and observe
that no significant improvement is provided beyond lag 2 for
both batch and recursive approaches. We thus select p = 2. For
the recursive AR model we also need to select the forgetting
factor α, which exponentially weights data in the past. In a
similar way, it is selected such as α = 0.995.

b) Forecasting using generalized logit-normal distribu-
tions: Let δ > 0 such as each value being lower than δ
(resp. greater than 1 − δ) is set to δ (resp. 1 − δ) and
consider those ”corrected” observations as the realizations
of X ∈ (0, 1). In a symmetric way, forecasts being lower
than δ (resp. greater than 1 − δ) will be set to 0 (resp. 1).
δ is selected over cross-validation along with p. Algorithm
1 converges in 11 iterations towards the estimated values
ν̂ = 1.39, Φ̂ = (1.363,−0.370)> and σ̂2 = 0.11 for the
selected combination of hyper-parameters δ = 0.005 and
p = 2. For Algorithm 2, we choose δ = 0.005, p = 2 and
α = 0.9994 upon cross-validation. See in Fig. 1 the estimated
parameters of the generalized logit-normal distributions over
the test period.

c) Results: The point forecasting performance over the
test set of the benchmarks and the (GLNAR) proposed algo-
rithms are available in Table I. It is worth noting that the test
set consists in 22,023 observations, which is a volume of data
large enough to claim for significant results. The best point
forecasts are obtained by the model using adaptive generalized

Fig. 1. Parameters of the generalized logit-normal distribution for p = 2 and
α = 0.9994: Φ̂ (top), σ̂2 (bottom left) and ν̂ (bottom right).

logit-normal distributions. One can note that the model which
uses a constant generalized logit-normal distribution gets
poorer performance than the recursive AR model. Therefore
the assumption that seems to matter the most here is the
time-varying parameters assumption. Moreover, the estimated
value of the scale parameter is significantly larger in the batch
setup than in the recursive one, while the shape parameter is
significantly lower. It may confirm that the recursive setup is
more appropriate to the characteristics of the time series and
thus allows for a better discrimination between the scale and
the shape parameters of the distribution.

TABLE I
10-MINUTE-AHEAD RMSE OVER THE TEST PERIOD, AND RESPECTIVE

IMPROVEMENTS OVER PERSISTENCE

Model RMSE Imp. over persist.
persistence 3.27% -
batch NAR 2.79% 14.68%

recursive NAR 2.72% 16.82%
batch GLNAR 2.74% 16.21%

recursive GLNAR 2.70% 17.43%
*Best forecast bolded.

C. Probabilistic Forecasting

Let Ft a predictive cumulative distribution function at time
t. The Continuous Ranking Probabilistic Score (CRPS) is
defined by

CRPS =
1

T

T∑

t=1

crps(Ft, xt) =

∫ ∞

−∞
BS(y)dy, (19)

where

crps(Ft, xt) =

∫ ∞

−∞
{Ft(y)− 1(y ≥ xt)}2dy, (20)

and BS is the Brier score

BS(y) =
1

T

T∑

t=1

{Ft(y)− 1(xt ≤ y)}2. (21)

See for example [14] and [15]. To evaluate the performance of
the proposed models for probabilistic forecasting we use the



CRPS instead of the RMSE, following the scheme described
at the beginning of section IV-B.

a) Benchmarks: We compare our method to four bench-
marks: climatology, probabilistic persistence, and probabilistic
versions of the batch and recursive AR models. Climatology
consists in computing empirical quantiles on the training set.
We test different grids and choose upon cross-validation to es-
timate the predictive cumulative distribution from the quantiles
{0, 0.01, ..., 0.99, 1}. On the test set the quantiles are updated
whenever a new observation is recorded. Probabilistic persis-
tence consists in dressing the point persistence prediction with
the most recent observed values of the persistence error. We
choose the number of observed values upon cross-validation
to be 20. For probabilistic AR forecasts, the least squares
estimator of the variance of the residuals is used in both batch
and recursive modes, and we assume those residuals to follow
a Gaussian distribution N (0, σ̂2). The forecast distribution of
xt is then a Gaussian distribution N (x̂t, σ̂

2) where x̂t is the
point forecast from the AR model. The hyper-parameters p and
α for the recursive model are selected upon cross-validation
with CRPS, which leads to p = 2 as for point forecasting, but
to a different α which is now equal to 0.983 instead of 0.995.

b) Forecasting using generalized logit-normal distribu-
tions: The lag p selected upon cross-validation with CRPS
remains equal to 2 in both batch and recursive algorithms,
while δ and α change. For Algorithm 1, now δ = 0.006
which leads to slightly different estimated parameters of the
distribution: ν̂ = 1.37 and Φ̂ = (1.358,−0.365)>, while
the variance σ̂2 = 0.11 remains the same. For Algorithm
2, now δ = 0.004 and α decreases from 0.9994 for point
forecasting to 0.9986 for probabilistic forecasting. See in Fig.
2 the estimated parameters of the generalized logit-normal
distributions over the test period, which show higher time-
variability because of the lower value of the forgetting factor.

Fig. 2. Temporal evolution of the parameters of the generalized logit-normal
distributions for p = 2 and α = 0.9994: Φ̂ (top), σ̂2 (bottom left) and ν̂
(bottom right).

c) Results: The CRPS computed over the test set for all
the benchmarks and the proposed models are available in Table

II. The climatology’s predictive cumulative distribution func-
tion Ft+1 remains unchanged whatever the value of xt, which
explains the very poor global performance of this method.
The performance of the predictive cumulative distributions
assuming a Gaussian setup and that of the approach using a
constant generalized logit-normal distribution are close as for
point forecasting. However, for probabilistic forecasting, the
approach using adaptive generalized logit-normal distributions
outperforms the other methods. The Brier scores are plotted
in Fig. 3. As expected the methods using the generalized
logit transformation perform better close to the bounds of the
interval [0, 1].

TABLE II
10-MINUTE-AHEAD CRPS OVER THE TEST PERIOD, AND RESPECTIVE

IMPROVEMENTS OVER CLIMATOLOGY AND PERSISTENCE

Model CRPS Imp. over clim. Imp. over persist.
climatology 22.04% - -

prob. persistence 1.36% 93.85% -
batch NAR 1.28% 94.17% 5.28%

recursive NAR 1.23% 94.34% 9.40%
batch GLNAR 1.21% 94.52% 10.90%

recursive GLNAR 1.06% 95.17% 21.57%
*Best forecast bolded.

Fig. 3. Brier score computed over the test set for all methods but climatology,
as a function of the chosen threshold.

The CRPS and the Brier score give indications about the
sharpness of the distributions. In order to check the calibration
we show the results of two tools: the reliability diagram in
Fig. 4 and a marginal calibration plot which is the difference
between the average predictive F̄ on the test set and the
empirical cumulative distribution function in Fig. 5. For the
reliability diagram, the closer to the diagonal, the better the
calibration, the empirical probabilities getting closer to the
nominal ones. See [16] and [15] for more details about those
calibration tools. One can see that for both indicators the
approach using adaptive generalized logit-normal distributions
outperforms the other probabilistic forecasting methods. In
Fig. 5 the climatology difference is not presented for being
far bigger than zero.

Example probabilistic forecasts obtained from the adaptive
generalized logit-normal approach over a 36 hour period of
time are depicted in Fig. 6 by using prediction intervals with
nominal coverage rates of 95 and 75%.



Fig. 4. Reliability diagram over the test set.

Fig. 5. Marginal calibration plot over the test set.

Fig. 6. Probabilistic forecasts from the recursive approach (Algorithm 2),
based on prediction interval with nominal coverage rates of 95 and 75%,
along with the power measurements (solid black line).

V. CONCLUSIONS

A generalized logit-normal distribution was considered for
very short-term wind power forecasting, in order to adequately
handle the double-bounded nature of the time series. All the
parameters of the distribution were estimated from the data in
a maximum likelihood framework, for both batch and online
setups. The adaptive version of the distribution provides only
a slight improvement in the accuracy of the point forecasts
compared to approaches within a Gaussian framework, though

it substantially outperforms the other benchmarks when focus-
ing on probabilistic forecasting (intervals and full predictive
densities). This confirms that such a choice of distribution may
be most appropriate. While it achieves better calibration and
sharpness, there is still room for improvement. In particular,
we have emphasized the importance of the double-bounded
nature of the process, but in practice the upper bound may
also change in time. Indeed, wind power generation is not
always bounded by the nominal capacity of the wind farm,
e.g. in case of curtailment. It should then be taken into
account within the modelling and forecasting framework, by
additionally adaptively estimating this upper bound from data.

Furthermore, the proposed framework could be applied for
multi-step ahead forecasting, and makes it easy to assume
other models for the conditional expectation of the transformed
variable. In particular it is straightforward to add exogenous
variables to the auto-regressive model, or to generalize it with
a non-linear one. This may be a way to account for the
individual productions of the wind turbines in order to improve
the prediction of power generation for the whole wind farm.
Finally, the δ hyper-parameter which handles the coarsened
version of the distribution was selected upon cross-validation.
It could instead enter a Bayesian or a likelihood inference as
a parameter to be properly estimated.
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1 Introduction

Many statistical applications involve response variables which are both continuous and

bounded. This is especially the case when one has to deal with rates, percentages or

proportions, for example when interested in the spread of an epidemic (Guolo and Varin,

2014), the unemployment rates in a given country (Wallis, 1987) or the proportion of time

spent by animals in a certain activity (Cotgreave and Clayton, 1994). Indeed, proportional

data are widely encountered within ecology-related statistical problems, see Warton and

Hui (2011) among others. Similarly, when forecasting wind power generation, the response

variable is also such a continuous bounded variable. Wind power generation is a stochastic

process with continuous state space which is bounded from below by zero when there

is no wind, and from above by the nominal capacity of the turbine (or wind farm) for

high-enough wind speeds. More generally, renewable energy generation from both wind

and solar energy are bounded stochastic processes, with the same lower bound (i.e., zero

energy production) and different characteristics of their upper bound (since solar energy

generation has a time-varying maximum depending on the time of day and time of year),

see for example Pinson (2012) and Bacher et al. (2009).

These continuous bounded random variables call for probability distributions with a

bounded support such as the beta distribution, truncated distributions or distributions

of transformed normal variables as discussed for example in Johnson (1949). Very often

the response variable is first assumed to lie in the unit interval (0, 1) and is then rescaled

to any interval (a, b) through the transformation X = (b − a)X̃ + a, where X̃ ∈ (0, 1)

and X ∈ (a, b). For applications involving such response variables, these bounds (a, b) are

2



always assumed to be fixed to the same values over the sample or throughout the time series.

While this assumption surely makes sense in some cases, we argue it can be misleading and

negatively impacts inference when the bounds (a, b) actually vary over time or depending on

exogenous variables whilst not being observed. In particular it is highly relevant for energy

applications, such as wind power probabilistic forecasting, as in practice the upper bound

b may change over time, while being unknown, for example in case of curtailment actions

for which information is not available or not reliable. Another application could be the

inventory problem of the retailer, see Laderman and Littauer (1953). Let Xt be the demand

for a certain item at time t. Like wind power generation, Xt is double-bounded, from below

by zero and from above by the stock available at time t, that is by a time-varying upper

bound bt. To prepare for demand Xt+1, the retailer needs to find the quantity they should

order in the light of the knowledge they have of the past stocks and demands. Similarly

to the problem of forecasting wind power generation, the inventory problem might then

involve a double-bounded random variable, the demand for a certain item, which can be

regarded as a continuous variable for large quantities being involved, and upper bounded

by a bound which may vary over time whilst not being observed, for example in case of

supply chain issues, information mismanagement, or just for very large retailers that could

not track the evolution of the stocks for each item or could so but would rather benefit

from an automatic data-driven tracking.

In both those applications, if the random variable happens to get very close to the

upper bound, it might be the case that a higher upper bound would have resulted in a

higher wind power generation or item demand. Therefore we do not observe the ”true”
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power generation nor item demand. In that sense one could arguably think of it as being

related to censoring and truncation. However we make here a different assumption. While

truncation assumes the value of the response variable to be never seen (or recorded) if above

the upper bound, and censoring assumes one does not know the exact value but does know

it lies above the upper bound, we assume here that an upper bound lower than the ”true”

response results in squeezing the observed value of the variable, and thus in reshaping the

probability distribution of the variable.

There are at least two ways of looking at varying bounds which cannot be observed.

One can think of them as latent random variables the distribution of the response variable

is conditional on. The main advantage of this approach is its generality and flexibility,

with the latent bounds A and B being distributed according to a well-specified probability

distribution, which might depend on exogenous variables. Suppose we assume a parametric

model with parameter vector θ for both the bounds and the response variable X. Because

we do not have access to the realizations a and b of the bounds, the maximization of the

likelihood function of the realizations x of X might involve complicated high-dimensional

integration, possibly computationally infeasible, and would therefore call for algorithms of

the Expectation-Maximization kind (Dempster et al., 1977). Moreover, with such a method

and for forecasting applications, one needs to first compute (good enough) forecasts of the

bounds in order to be able to forecast the response variable.

An alternative way of thinking of varying bounds which cannot be observed in the

more specific context of time series is to consider them as scaling parameters a and b

of the parametric distribution of the bounded response variable, to include them in the
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parameter vector θ, and to assume the time series to be non-stationary, at least regarding

a and b. This involves the use of online learning algorithms so that the parameter vector

can evolve over time. We will focus in this paper on this setup with an upper varying bound

b. It would be straightforward to carry the same analysis with a lower varying bound a.

From now on we will refer to X as Xt, as our response variable is now indexed by time

t. As for the bounded distribution of Xt, we use the generalized logit-normal distribution

introduced by Mead (1965). The practical use of any family of distributions depends on the

possible variation in its shape, and on the ease with which the distribution can be fitted.

The generalized logit-normal distribution is very flexible thanks to three parameters: its

location µ, its scale σ2 and its shape ν. It relies on a generalization of the logit transform

and comes down to the logit-normal distribution when ν = 1. Because the transformed

variable is normally distributed, nice properties can be derived for the original random

variable Xt. In particular, the probability density function (pdf) of Xt can be expressed as

a function of the standard normal density.

We aim to estimate the full parameter θ of the pdf of Xt which now includes the upper

bound b through Maximum Likelihood Estimation (MLE). The first challenge we need to

tackle when dealing with the bound as a parameter in a non-stationary setup is how to

handle past observations which are out of the support (0, b) of the bounded distribution of

Xt and make the log-likelihood to be infinite. We introduce into the log-likelihood a new

term which relies on the sigmoid function to take into account those observations in a ”soft”

finite way. We choose to call this new log-likelihood the extended log-likelihood. The second

challenge we need to tackle is that when considering the bound as a parameter, we cannot
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be in a classical convex optimization setup anymore as the negative log-likelihood appears

not to be convex with respect to (w.r.t.) the bound parameter. Therefore we propose to

move to the more general quasiconvex optimization setup and use recent results about local

quasiconvexity and (Stochastic) Normalized Gradient Descent (Hazan et al., 2015) to design

a batch algorithm out of Normalized Gradient Descent (NGD) and an online algorithm out

of Stochastic Normalized Gradient Descent (SNGD). In addition to these novel quasiconvex

algorithms we propose a more classical online convex algorithm which relies on a positive

definite approximation of the Hessian. We present the statistical parametric model for the

time series framework with a varying upper bound b in Section 2 and the corresponding

MLE in Section 3. In Section 4 we perform simulations of synthetic data to run the

three algorithms we introduced in Section 3. First we look at their performances when

tracking the parameter vector θ over time, then at their performances when forecasting the

probability distribution of the bounded variable. In Section 5 we apply these algorithms

to real data in order to provide 10-min-ahead probabilistic forecasts of the wind power

generation at Anholt offshore wind farm (Denmark). Finally we discuss the results, the

limitations and some prospects of the methodology in Section 6.

2 Statistical model

2.1 Parametric distribution with upper bound b as a parameter

Let X̃t be a continuous bounded random variable, X̃t ∈ (0, 1), and Xt be the corresponding

variable rescaled to (0, b) by applying the transformation Xt = (b− a)X̃t + a = bX̃t where
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a = 0. The generalized logit transform Yt ∈ R of Xt ∈ (0, b) is given by

Yt = γ(Xt/b; ν) = log
(Xt/b)

ν

1− (Xt/b)ν
, ν > 0,

where ν is the shape parameter. When Yt is distributed according to a Gaussian distribution

N (µ, σ2), the original variable Xt/b is then distributed according to a generalized logit-

normal distribution Lν(µ, σ
2), see for example Frederic and Lad (2008) and Pinson (2012).

By time series we also mean series of dependent observations, therefore we assume the

expectation of the normal transform Yt to be an auto-regressive process of order p, that is

µt =
∑p

k=1 λkγ(xt−k/b; ν). The pdf of Xt conditional on the previous information set Ft−1

(the σ-algebra generated by X1, . . . , Xt−1), with parameter vector θ = (λ1, . . . , λp, σ
2, ν, b),

is then

pθ(xt|Ft−1) =





1√
2πσ2

ν
xt(1−(xt/b)ν)

exp

[
−1

2

(
γ(xt/b;ν)−µt

σ

)2]
if 0 < xt−k < b,

0 otherwise.

(1)

where k = 0, . . . , p.

2.2 Time-dependent log-likelihood function

We wish to estimate the parameter vector θ of the pdf pθ(xt|Ft−1) in (1) through MLE.

In the case of a stationary time series and constant parameter θ, this comes to minimizing

the negative log-likelihood objective function

−l(θ) = −
T∑

t=p+1

log pθ(xt|Ft−1) (2)

w.r.t. θ, the data sample x1, . . . , xT being fixed, assuming the random variables Xt are i.i.d

conditionally on Ft−1.
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In a non-stationary setup, estimating the parameter vector θ comes to estimating a

parameter vector θt which varies over time, that is to minimizing a time-dependent neg-

ative log-likelihood. For ease of notation and because the negative log-likelihood is to be

minimized w.r.t. θ, let pθ(xj|Fj−1) = pj(θ). The time-dependent negative log-likelihood to

be minimized at time t is then

−lt(θ) = −
1

t− j0 + 1

t∑

j=j0

log pj(θ). (3)

We choose to normalize the time-dependent log-likelihood by the number of observations

t− j0 + 1. This does not change the optimal value obtained when minimizing w.r.t. θ and

leads to more consistent values of the objectives when the number of observations varies.

The time-dependent negative log-likelihood in (3) is said to be computed over a moving

rectangular window, as all t− j0 + 1 observations are equally weighted. If we wish to give

more weight to the most recent observations we can use instead an exponential forgetting

factor α ∈ (0, 1). The time-dependent negative log-likelihood is now said to be computed

over a moving exponential window and is

−lt(θ) = −
1

nα

t∑

j=j0

αt−j log pj(θ), (4)

where we use nα = 1
1−α for normalizing the weighted negative log-likelihood.

From (1) we can see that the negative log-likelihood in (2) we wish to minimize takes the

value +∞ as soon as an observation xt is greater or equal to b. This is an implicit constraint

on b when estimating θ̂. However moving from the stationary setup to the non-stationary

one we do not want b to be greater than all the observations xt as b should be able to

vary over time. Let Ut = {j0, j0 + 1, . . . , t}, Ct(θ) = {j ∈ Ut | xj−k < b, k = 0, . . . , p} and
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Ct(θ) = {j ∈ Ut | j /∈ Ct(θ)} the complement of Ct(θ) in Ut. The log-likelihood takes finite

values only for observations xj such that j ∈ Ct(θ). Therefore we can - informally - rewrite
t∑

j=j0

αt−j log pj(θ) as
∑

j∈Ct(θ)

αt−j log pj|b(θ) +
∑

j∈Ct(θ)

αt−j log 0, where pj|b(θ) is the pdf pj(θ)

restricted to its support (0, b), α = 1 in the case of a rectangular window. When estimating

the parameter vector θt over time, we need to take into account all the observations in the

past, i.e. even the observations for which the log-likelihood does not take a finite value,

that is the observations xj such that j does not belong to Ct(θ). We then propose to replace

the value 0 in log 0, which originally corresponds to the value of the pdf pj(θ) outside of its

support, with a sigmoid function of b− xj

sj(b) =
1

1 + exp(−b+ xj)
. (5)

The function sj is illustrated in Figure 1. It can be seen as the probability of xj to be

0

1

b = xj

b < xj b > xj

sj(b)

Figure 1: Sigmoid function sj(b) on the real line.
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lower or equal than b: we have sj(b) → 0+ when b << xj and sj(b) → 1− when b >> xj.

Moreover − log sj(b) is convex and differentiable in b. Therefore the ”extended” time-

dependent negative log-likelihood we propose for a moving rectangular window is

−l∞t (θ) = − 1

t− j0 + 1


 ∑

j∈Ct(θ)

log pj(θ) +
∑

j∈Ct(θ)

log sj(b)


 , (6)

or equivalently for a moving exponential window

−l∞t (θ) = − 1

nα


 ∑

j∈Ct(θ)

αt−j log pj(θ) +
∑

j∈Ct(θ)

αt−j log sj(b)


 . (7)

One can note that j ∈ Ct(θ) does not necessarily mean xj ≥ b as it can happen because a

lagged observation xj−k is such that xj−k ≥ b. In such a case, that is j ∈ Ct(θ) and xj < b,

the observation xj will still increase the value of the total log-likelihood compared to the

event {xj ≥ b}, which is also a nice feature of choosing this function sj.

2.3 (Local-)Quasiconvexity

The first term of the extended time-dependent negative log-likelihoods −l∞t in (6) and (7)

might not be convex in θ, in particular in b. However −l∞t can still have nice properties

for it to be globally minimized w.r.t θ. In this section we want to recall a broader class

of functions which include convex functions as a subclass: quasiconvex functions. For

simplicity let assume functions are differentiable. We use ∥.∥ to denote the Euclidean

norm. From Boyd and Vandenberghe (2010), a definition of quasiconvexity is

Definition 2.1 (Quasiconvexity) A function f : Rd → R is called quasiconvex (or uni-

modal) if its domain and all its sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α},
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for α ∈ R, are convex.

As an illustrative example, Figure 2 shows the negative probability density function of a

normal variable which is a quasiconvex function but not a convex function.

−4 −2 0 2 4

−
0
.4

−
0
.3

−
0
.2

−
0
.1

0
.0

x

f(
x
)

Figure 2: A quasiconvex differentiable function on R, the negative density of a normal

variable, with plateau areas when going away from the global minimum.

Quasiconvexity is a considerable generalization of convexity. Still, many of the prop-

erties of convex functions hold or have analogs for quasiconvex functions. Following is

another definition of quasiconvexity which is equivalent to definition 2.1 and an analog to

the first-order conditions which hold for convex functions:

Definition 2.2 (Quasiconvexity) We say that f : Rd → R is quasiconvex if and only if

dom f is convex and for all x,y ∈ dom f

f(y) ≤ f(x) =⇒ ∇f(x)⊤(y − x) ≤ 0.
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We further say that f is strictly-quasiconvex, if it is quasiconvex and its gradients vanish

only at the global minima, i.e. ∀ y : f(y) > min
x∈Rd

f(x) =⇒ ∥∇f(y)∥ > 0.

However, quasiconvexity broadens but does not fully capture the notion of unimodality

in several dimensions. This is the argument of Hazan et al. (2015) who introduce local-

quasiconvexity, a property that extends quasiconvexity and captures unimodal functions

which are not quasiconvex. Let Bd(x, r) denote the d dimensional Euclidean ball of radius r

centered around x, and Bd := Bd(0, 1). The definition of local-quasiconvexity as introduced

by Hazan et al. (2015) is the following:

Definition 2.3 (Local-quasiconvexity) Let x, z ∈ Rd, κ, ϵ > 0.

We say that f : Rd 7→ R is (ϵ, κ, z)-Strictly-Locally-QuasiConvex (SLQC) in x, if at least

one of the following applies:

1. f(x)− f(z) ≤ ϵ.

2. ∥∇f(x)∥ > 0, and for every y ∈ Bd(z, ϵ/κ) it holds that ∇f(x)⊤(y − x) ≤ 0.

When considering the Generalized Linear Models (GLM) regression as a fitting problem in

which we want to minimize the error function

êrrm(w) =
1

m

m∑

i=1

(yi − ϕ⟨w,xi⟩)2, (8)

where (xi, yi)i=1,...,m ∈ Bd × [0, 1] and ϕ : R 7→ R is an activation function, Hazan et al.

(2015) show that if ϕ is the sigmoid function and if we are guaranteed to have w∗ ∈ Rd

such that yi = ϕ⟨w∗,xi⟩, ∀i = 1, . . . ,m, then the error function in (8) is not generally

quasiconvex but is indeed SLQC. This setup is said to be the idealized GLM setup. In
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the more common noisy GLM setup (McCullagh and Nelder, 1989), where we assume now

(xi, yi)i=1,...,m are i.i.d. samples from an unknown distributionD and there exists a predictor

w∗ such that E[y|x] = ϕ⟨w∗,x⟩, w∗ can be shown to be a global minima of the expected

error

E(w) = E(y − ϕ⟨w,x⟩)2. (9)

Given m samples from D, their empirical error êrrm(w) is defined as in (8) and Hazan et al.

(2015) show that it is also SLQC, with high probability.

Simulations of −l∞t in (6) and (7) show our extended negative log-likelihood not to

be convex but rather be, with high probability, a quasiconvex function with plateau areas

when b is away from the optimal value b∗ and steep concave cliffs in the neighborhood

of b∗. Therefore it seems reasonable to assume −l∞t to be quasiconvex in θ, or at least

locally-quasiconvex.

3 Time-dependent maximum likelihood estimation

3.1 Normalized Gradient Descent

Let f be the quasiconvex objective function we wish to minimize w.r.t parameter x ∈ Rd. It

is well known that quasiconvex problems can be solved through a series of convex feasibility

problems (Boyd and Vandenberghe, 2010). However solving such feasibility problems can

be very costly and involves finding a family of convex functions ϕt : Rd → R, t ∈ R, that

satisfy

f(x) ≤ t ⇐⇒ ϕt(x) ≤ 0,
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and ϕs(x) ≤ ϕt(x) whenever s ≥ t, which is far from straightforward in our case, i.e.

with f(x) := −l∞t (θ). In the batch setup, a pioneering paper by Nesterov (1984) was the

first to propose an efficient algorithm, the Normalized Gradient Descent (NGD), and to

prove that this algorithm converges to an ϵ-optimal solution within O(1/ϵ2) iterations given

a differentiable quasiconvex objective function. Gradient descent with fixed step sizes is

known to perform poorly when the gradients are too small in a plateau area of the function

or explode in cliff areas. Among the deep learning community, there have been several

attempts to tackle plateaus and cliffs. However those works do not provide a theoretical

analysis showing better convergence guarantees than NGD.

NGD is presented in Algorithm 1. It is similar to Gradient Descent, except one nor-

Algorithm 1 Normalized Gradient Descent (NGD)

Input: #Iterations I,x1 ∈ Rd, learning rate η

for i = 1, . . . , I do

Update: xi+1 = xi − ηĝi where gi = ∇f(xi), ĝi = gi
∥gi∥

end for

Return: xI = arg min
x1,...,xI

f(xi)

malizes the gradient. It is intuitively clear that to achieve robustness to plateaus (with

vanishing gradients) and cliffs (with exploding gradients), one must ignore the size of the

gradient. It is more surprising that the information in the direction of the gradient is

enough to guarantee convergence. Having introduced SLQC functions, Hazan et al. (2015)

prove that NGD also finds an ϵ-optimal minimum for such functions in O(1/ϵ2) iterations.

They even show faster convergence rates for quasiconvex objective functions which are
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locally-smooth.

The adaptation of Algorithm 1 to our setup is straightforward taking f(x) := −l∞t (θ)

and I := t. However one can note that when minimizing −l∞t w.r.t θ = (Λ, σ2, ν, b) we

shall recover positive estimates of the scale parameter σ2 and the shape parameter ν. This

is constrained optimization which can be easily overcome by a change of variable such as

replacing σ2 with ω = log σ2 and ν with τ = log ν.

3.2 Recursive maximum likelihood estimation

In the above, we presented the NGD algorithm in order to find a global minimum to

−l∞t w.r.t θ in a batch setting. This implies to run NGD every time we want to update

the parameters θ to account for new observations which is computationally prohibitive.

In order to move from the batch setting of the NGD algorithm to the online learning

setting we first consider a (classic) recursive MLE procedure to recover time-dependent

estimates θ̂t through the time-dependent negative log-likelihood −l∞t . It is worth noting

that this recursive procedure relies on a Newton step whereas our function −l∞t is with high

probability not convex. However it is more a quasi-Newton approach as it approximates

the Hessian with a positive definite matrix thanks to first-order information, i.e. gradients.

Because we are in the online learning setting we can hope for this approximate to be a

good enough very local approximation. Before introducing the recursive MLE procedure

let finally note that the algorithm we derive from the latter is related to a quasi-Newton

algorithm from online convex optimization (OCO), namely Online Newton Step (ONS),

see for example Hazan (2022).
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Consider the extended time-dependent log-likelihood with a moving exponential window

in (7) and recall that nα = 1
1−α . We can rewrite (7) as

−l∞t (θ) =





−αl∞t−1(θ)− (1− α) log pt(θ) if t ∈ Ct(θ),

−αl∞t−1(θ)− (1− α) log st(b) if t ∈ Ct(θ).

(10)

Let now θ̂t be the estimate of the parameter vector at time t. The recursive MLE procedure

relies on a Newton step for obtaining the estimate θ̂t as a function of the previous estimate

θ̂t−1, see for example Madsen (2007) and Pinson and Madsen (2012). Applying one Newton

step at time t we have

θ̂t = θ̂t−1 −
∇θl

∞
t (θ̂t−1)

∇2
θl

∞
t (θ̂t−1)

. (11)

Let ht = ∇θ log pt(θ̂t−1) if t ∈ Ct(θ̂t−1), ht = ∇θ log st(b̂t−1) if t ∈ Ct(θ̂t−1) and R̂t =

−∇2
θl

∞
t (θ̂t). The recursive estimation relies on a few additional assumptions which are

classic in the online learning framework. First assuming θ̂t−1 minimizes −l∞t−1(θ), from (10)

we get

∇θl
∞
t (θ̂t−1) = (1− α)ht. (12)

Then assuming pt and st are (almost) linear in Γ in the neighborhood of Γ̂t−1, we get the

approximation ∇2
θ log pt(θ̂t−1) = −hth⊤

t if t ∈ Ct(θ̂t−1) or ∇2
θ log st(b̂t−1) = −hth⊤

t if t ∈

Ct(θ̂t−1). These approximations, which can be made because log pt and log st are logarithms,

are the key for ensuring that the approximate R̂t of the Hessian matrix is always positive

definite. Finally we assume that the objective criterion −l∞t is smooth in the vicinity of θ̂t,

and the adaptation step small enough so that R̂t = −∇2
θl

∞
t (θ̂t) ≃ −∇2

θl
∞
t (θ̂t−1). This is a

classic assumption for deriving recursive estimation methods for stochastic systems (Ljung
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and Södeström, 1983). Our two-step recursive scheme at time t is then

R̂t = αR̂t−1 + (1− α)hth
⊤
t ,

θ̂t = θ̂t−1 + (1− α)R̂−1
t ht.

An algorithm based upon such a recursive scheme might face computational issues as

it requires inverting a matrix, the information matrix R̂t, at each iteration. This can be

prevented by working directly with the matrix inverse, the covariance matrix P̂t, which can

be computed by using the matrix inversion rule. The detailed computations are available

in the supplementary material and the resulting algorithm is described in Algorithm 2.

Algorithm 2 Recursive Maximum Likelihood Estimation (rMLE)

Input: T, θp ∈ Rp+3, forgetting factor α ∈ (0, 1), P̂p = 106Ip+3

for t = p+ 1, . . . , T do

Set ht = ∇θ log pt(θ̂t−1) if t ∈ Ct(θ̂t−1) or set ht = ∇θ log st(θ̂t−1) if t ∈ Ct(θ̂t−1).

Update:

P̂t =
1

α

[
Ip+3 −

P̂t−1hth
⊤
t

α
1−α + h⊤

t P̂t−1ht

]
P̂t−1

θ̂t = θ̂t−1 + (1− α)P̂tht

end for

3.3 Online Normalized Gradient Descent

The recursive MLE algorithm described in the former section is an OCO algorithm. While

it can be used for solving our quasiconvex optimization problem in an online learning setting
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it is likely that it would do it in a suboptimal way. Therefore we propose to alternatively

use Online Normalized Gradient Descent (ONGD) as an Online QuasiConvex Optimization

(OQCO) algorithm. From the observation that online learning and stochastic optimization

are closely related and interchangeable (see for example Cesa-Bianchi et al. (2004) and

Duchi et al. (2011)), we use the Stochastic Normalized Gradient Descent (SNGD) intro-

duced by Hazan et al. (2015) to deriving the corresponding Online Normalized Gradient

Descent for online learning.

Recall the definition 2.3 of local-quasiconvexity in section 2.3. Taking advantage of

the SLQC assumption, Hazan et al. (2015) present SNGD, which is similar to Stochastic

Gradient Descent (SGD) except they normalize the gradients, and prove the convergence

of SNGD within O(1/ϵ2) iterations to an ϵ-optimal minimum. This positive result requires

that at each iteration of SNGD the gradient should be estimated using a minibatch of

minimal size m. Indeed the authors provide a negative result showing that if the minibatch

size is too small then the algorithm might diverge. This is where SNGD differs again from

SGD as in the latter and for the case of convex functions even a minibatch of size 1 is

enough for guaranteed convergence. The general ONGD derived from SNGD is presented

in Algorithm 3. To the best of our knowledge, this is the first time SNGD is used in an

online learning fashion for OQCO.

Following the framework introduced by Cesa-Bianchi and Lugosi (2006), ONGD is

defined in terms of a repeated game played between the online player and the ”environment”

generating the outcome sequence. At each iteration t, we play a parameter vector xt. After

we have committed to this choice, a (SLQC) cost function ft is revealed and the cost we
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Algorithm 3 Online Normalized Gradient Descent (ONGD)

Input: convex set K, T,xm ∈ K, step size η, minibatch size m

for t = m, . . . , T do

Play xt and observe cost ft(xt) =
1

m

t∑

j=t−m+1

fj(xt).

Update and project:

yt+1 = xt − ηĝt where gt = ∇ft(xt), ĝt =
gt
∥gt∥

xt+1 = ΠK(yt+1)

end for

incur is therefore ft(xt), the value of the cost function for the choice xt. Similarly to

Online Gradient Descent (OGD), which is based on standard gradient descent from offline

optimization and was introduced in its online form by Zinkevich (2003), we have included

in ONGD a projection step ΠK(.). Indeed in each iteration, the algorithm takes a step

from the previous point in the direction of the normalized gradient of the previous cost.

This step may result in a point outside of the underlying convex set K. In such cases the

algorithm therefore projects the point back to the convex set K, i.e. finds its closest point

in K.

The adaptation of Algorithm 3 to our setup is straightforward taking

fj(xt) :=





− log pj(θ̂t) if j ∈ Ct(θ̂t),

− log sj(b̂t) if j ∈ Ct(θ̂t).

Note that working with θ = (Λ, ω, τ, b), θ ∈ Rp+3, as in sections 3.1 and 3.2, we do not

need the projection step in our setup. Finally we want to emphasize that moving from
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Algorithms 1 and 2 to Algorithm 3 we do not need a moving window anymore. Instead we

use a constant step size η, analog to the learning rate in NGD and SNGD, and a minibatch

size m. The technical derivations required for all the algorithms of section 3 are available

in the supplementary material.

4 Simulation study

4.1 Tracking the parameter vector

In order to test the convergence of the algorithms proposed in section 3 we perform an

empirical study on synthetic data which fit our setup. We run 100 Monte Carlo (MC)

simulations with T = 12000, λ = 0.9, σ2 = 1, ν = 1.5 and b varying in a sinusoidal way.

For all algorithms and simulations the lag p = 1 of the auto-regressive process is assumed

to be known and the initial values of the parameter vector θ = (λ, σ2, ν, b) are always set

to (0, 1, 1, 1). For NGD each batch algorithm is run every 500 data points after a burn-in

period of 1,000 points. A new estimate of the parameter vector is therefore available every

500 time steps. For rMLE in order to fulfill the necessary condition to (12) in section

3.2, the recursive algorithm is run after a warm-up period of 1,000 data points: first a

batch algorithm, i.e. NGD, is run on the first 1,000 data points with θ0 = (0, 1, 1, 1); then

the resulting estimates are used as initial values for rMLE. From the 1,000th time step

on, a new estimate of the parameter vector is then available every time step. For ONGD

the algorithm starts as soon as there are enough data points for a minibatch of size m.

Afterwards a new estimate of the parameter vector is available every time step. The values
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of the hyperparameters for each algorithm are summarized in Table 1. They were decided

upon looking to the first MC simulation.

Table 1: Hyperparameter values for each algorithm: forgetting factor α, number of itera-

tions I, learning rate/step size η and minibatch size m.

α I η m

NGD (Algorithm 1) 0.990 10000 0.003 -

rMLE (Algorithm 2) 0.975 - - -

ONGD (Algorithm 3) - - 0.001 100

The tracking of the parameters depending on the algorithm is presented in Figure 3.

First note that while all three algorithms succeed in tracking the parameter vector, there

are clear differences in their performances. ONGD is the algorithm which manages to

closer track the parameters with the less variance. However for some parameters it needs

a few time steps before converging to the true value at the time: about 1,000 for the auto-

regressive parameter λ, 2,000 for the shape parameter ν and 500 for the upper bound b.

The scale parameter σ2 is already at its true value when the algorithms get started but

serves as a reference that there is no divergence from the optimal value. As a matter of fact

and as stated by Hazan et al. (2015) we have observed the parameter σ2 to diverge when

the minibatch size m was too small: for m = 1 the algorithm was surely diverging while

it was converging for m ≥ 10. NGD converges from the first update already, that is with

1,000 data points. This was to be expected as α was set to 0.99, which means most of the

weight was placed on the last 100 points of each batch. However NGD shows more variance
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than ONGD and is a bit slower in following a decreasing b. The latter drawback would

likely be improved by increasing the frequence in the updates. Finally rMLE performs well

in tracking a decreasing b, but fails to properly track an increasing bound. Moreover this

comes with a cost in variance which is very high.
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Figure 3: Confidence intervals of the tracked parameters for NGD (left), rMLE (center)

and ONGD (right) with coverage probabilities 0.9 and 0.5, along with the average estimates

(solid lines) and the true parameters (dotted lines).
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4.2 Forecasting the distribution

Because many applications which might benefit from this framework involve forecasting,

we are now interested in the performance of the algorithms when forecasting at time t the

distribution of the bounded variable Xt+1. To be able to track the bound parameter over

time, we have introduced in section 2 the extended time-dependent negative log-likelihood

−l∞t and allowed bt to vary on R, which makes sense from an inference point of view.

Because we are working with series of dependent observations, when moving to forecasting

the distribution of Xt+1 we need the current value bt to be greater than all the p former

observed values of Xt, . . . , Xt−p+1 for the expected value of Xt+1 to exist. Therefore we

introduce a projection step as described in section 3 for ONGD: we project θ̂t on the

convex set K = Rp+2 × (max(xt, . . . , xt−p+1),+∞) and we get the projected parameter

θ̃t = ΠK(θ̂t) = (Λ̂t, ω̂t, τ̂t, b̃t) where b̃t = max(xt, . . . , xt−p+1) + δ if max(xt, . . . , xt−p+1) > b̂t,

b̃t = b̂t if max(xt, . . . , xt−p+1) < b̂t. Note that we need to introduce a small δ > 0 as we

project b̂t on an open convex set. When looking at the observation xt as a coarsened version

of Xt, δ can be seen as a coarsening parameter. This coarsened data framework has been

formalized by Heitjan and Rubin (1991) and Heitjan (1993). We use δ = 0.001.

The predictive probability distributions obtained from Algorithms 1, 2, 3 are evaluated

and compared to classic benchmarks such as climatology and probabilistic persistence.

The climatology is based on all past data available at the time of forecasting and the

probabilistic persistence is the most recent observed value at the time of forecasting which

we dress with the most recent observed values of the persistence error. We also provide

the predictive distributions obtained from the alike algorithm to Algorithm 2 when the
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bound is assumed to be fixed and equal to 1 (Pierrot and Pinson, 2021). From now on

we will refer to this algorithm as rMLE.1 and to Algorithm 2 as rMLE.b. We evaluate

the predictive distributions through calibration and proper scoring rules, as probabilistic

predictions should be calibrated and as informative/sharp as possible, see for example

Gneiting et al. (2007), Gneiting and Raftery (2007) and Gneiting and Katzfuss (2014). To

empirically check on probabilistic, respectively marginal calibration, we provide Probability

Integral Transform (PIT) histograms, respectively marginal calibration plots. Scoring rules

are attractive measures of predictive performance as they evaluate calibration and sharpness

simultaneously. We use the Continuous Ranked Probability Score (CRPS) which is a proper

scoring rule relative to the class P of the Borel probability measures on R and a strictly

proper scoring rule relative to the subclass P1 of the Borel probability measures that have

finite first moment (Gneiting and Raftery, 2007). Proper scoring rules are often used in

negative orientation, e.g. the lower the better. As we work with predictive densities, one

could think of using the logarithmic score which is strictly proper relative to all measures

that are absolutely continuous, at least to compare the predictive densities provided by

Algorithms 1, 2, 3 and the rMLE.1 benchmark algorithm. However in our framework it

can always happen that xt+1 falls out of the support of the predictive density p̂t+1 we have

produced at time t, when the current estimate of the upper bound is too low. In such a case

the logarithmic score is equal to − log p̂t+1(xt+1) = − log 0 = +∞, which is not suitable.

In contrast the CRPS is defined on R as

CRPS(F, x) =

∫ ∞

−∞
(F (y)− 1y≥x)2 dy, (13)

where F is the cumulative distribution function (cdf) of the probabilistic forecast and y is
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the evaluation point. In our setup F := F̂t+1 and x := xt+1. If xt+1 happens to be greater

than the upper bound bt we get

CRPS(F̂t+1, xt+1) =

∫ bt

−∞

(
F̂t+1(y)− 1y≥xt+1

)2
dy +

∫ ∞

bt

(
1− 1y≥xt+1

)2
dy,

=

∫ bt

−∞
F̂t+1(y)

2dy +

∫ xt+1

bt

1 dy +

∫ ∞

xt+1

0 dy,

=

∫ bt

−∞
F̂t+1(y)

2dy + xt+1 − bt.

Therefore the CRPS is increased by an observation falling out of the support of the pre-

dictive distribution but to a higher finite value contrary to the logarithmic score which

becomes infinite. Moreover the CRPS allows us to compare discrete and continuous distri-

butions, that is to compare our density-based algorithms to climatology and probabilistic

persistence, as if the predictive distribution takes the form of a sample of size N , then the

right side of (13) can be evaluated in O(N logN) operations (Hersbach, 2000).

We start computing predictive distributions after having seen 2,000 observations. Recall

that the hyperparameters were chosen in section 4.1 upon looking at only the first MC

simulation for each algorithm, but the whole simulated time series, that is looking at the

data we are now computing probabilistic forecasts for. This may be optimistic, even if we

only looked at the data from the first MC simulation. In order for our algorithms to not be

more optimistic than the benchmarks, we then use the hyperparameters for probabilistic

persistence and rMLE.1 that gave the best CRPS on the first MC simulation. We also

provide the results for the ideal forecaster, which is the true distribution of the synthetic

data, that is the GLN distribution with the true constant values Λ, σ2 and ν and the

true values of the upper bound bt+1, . . . , bt−p+1. The CRPS.s are available in Table 2, PIT
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histograms with 20 bins in Figure 4, and the marginal calibration plot in Figure 5. Note

that they are all averages on the MC sample.

Table 2: 1-step-ahead CRPS and respective improvement over climatology and persistence.

The CRPS is averaged over the MC sample, and the standard deviation is also provided.

mean (sd) Imp./clim. Imp./persist.

ideal forecaster 5.78% (0.10) - -

climatology 15.26% (0.24) - -

probabilistic persistence 6.28% (0.10) 58.85% -

rMLE.1 6.04% (0.09) 60.40% 3.77%

NGD (Algorithm 1) 5.87% (0.09) 61.53% 6.52%

rMLE.b (Algorithm 2) 6.04% (0.12) 60.42% 3.82%

ONGD (Algorithm 3) 5.81% (0.10) 61.94% 7.52%

The average CRPS obtained by the ideal forecaster over all simulations is 5.78%. Prob-

abilistic calibration is reflected through a uniform histogram and marginal calibration

through the proximity between the predictive and the empirical cdf.s. As expected the

forecasts issued by the ideal forecaster are perfectly calibrated in terms of both probabilis-

tic and marginal calibration. On the other hand climatology appears to be significantly not

calibrated for all kinds of calibration. Probabilistic persistence performs very well on our

synthetic dataset with a CRPS which is already much closer to the CRPS of the ideal fore-

caster. As one can see in Figure 4, forecasts from probabilistic persistence also essentially

achieve probabilistic calibration. However marginal calibration is not quite satisfactory.
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Figure 4: PIT histograms for all benchmarks (left) and Algorithms 1, 2, 3 (right): (a) ideal

forecaster, (b) climatology, (c) probabilistic persistence, (d) rMLE.1, (e) NGD, (f) rMLE.b,

(g) ONGD.

The last benchmark, that is the rMLE.1 algorithm, performs much better than climatology

and better than probabilistic persistence when looking at the CRPS, even with a wrong

assumption on the upper bound. However the rMLE.1 forecasts show more departures

from probabilistic calibration than probabilistic persistence.

As for the proposed algorithms 1, 2 and 3, all of them show lower average CRPS.s

than probabilistic persistence, the best performance being achieved by NGD and ONGD.

Note that ONGD shows a CRPS which is very close to the CRPS of the ideal forecaster,
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Figure 5: Marginal calibration plot for all benchmarks and Algorithms 1, 2, 3.

while rMLE.b achieves similar results as rMLE.1 in terms of CRPS. As for probabilistic

calibration, ONGD is the algorithm whose histogram is the closest to uniformity, rMLE.b’s

being clearly not uniform. Only for marginal calibration do all the proposed algorithms

show on average better calibration than probabilistic persistence and rMLE.1, especially

NGD and ONGD. Overall ONGD is the algorithm which achieves the best results in terms

of both sharpness and calibration. In particular it achieves better sharpness and marginal

calibration when compared to the already very efficient probabilistic persistence.
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5 Application to wind power forecasting

Accurately forecasting wind power generation is highly important for the integration of

wind energy into power systems. We are interested here in very short-term forecasting,

that is in lead times of a few minutes, which are not only crucial for transmission system

operators to keep the system in balance but also very difficult to improve the forecasts for,

especially compared to the simple but very efficient persistence.

5.1 Data description

We have historical data from a large offshore wind farm, Anholt in Denmark, from July

1, 2013 to August 31, 2014. The active power is available for 110 wind turbines at a

temporal resolution of every 10 minute. We scale each time series individually according to

the nominal power of the wind turbine and compute the average generation over the wind

farm depending on the number of wind turbines which are available at each time step in

order to handle missing values. The response random variable we wish to forecast at time

t is Xt+1 ∈ (0, 1), the average active power generated by the wind farm at time t + 1. As

stated in section 4.2 we choose to look at the observation xt as a coarsened version of Xt

with δ = 0.001. Therefore an observation xt is set to δ if xt < δ and to 1− δ if xt > 1− δ

and xt ∈ [δ, 1− δ] whereas Xt ∈ (0, 1).

5.2 Validation setup

We split our dataset into two datasets that we keep separate: a training/cross-validation

dataset from July 1, 2013 to March 31, 2014, resulting in 39,450 observations; a test
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dataset from April 1 to August 31, 2014, resulting in 22,029 observations. As in section

4.2 we compare Algorithms 1, 2, 3 to climatology, probabilistic persistence and to the

rMLE.1 algorithm. We use the training set to run the online algorithms, that is the

rMLE.1 algorithm and Algorithms 2 and 3, and to train NGD, i.e. Algorithm 1. For

methods involving hyperparameters, that is all of them but climatology, we choose the

hyperparameters upon cross-validation: we use part of the training set, from November

1, 2013 to March 31, 2014 and for each method select the hyperparameters which give

the lowest CRPS on the cross-validation subset. The hyperparameter values selected for

each algorithm are available in Table 3. Note that for Algorithm 1 the maximum number

Table 3: Hyperparameter values for each algorithm: order p of the AR process, forgetting

factor α, number of iterations I, learning rate/step size η and minibatch size m.

p α η m

NGD (Algorithm 1) 3 0.9975 0.1 -

rMLE.b (Algorithm 2) 5 0.9982 - -

ONGD (Algorithm 3) 4 - 0.03 1

of iterations I does not appear in Table 3 as it is not selected upon cross-validation but

set to 5,000, which seems to be enough for the objective function to not be significantly

decreasing anymore. The frequency in estimating a new model should also be considered

as a hyperparameter, as it has an influence on the overall performance of the algorithm.

However a serious drawback of Algorithm 1 is the associated computing time which is

prohibitive. Even if the algorithm runs in a few seconds when I = 5000, to estimate a new
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model every 500 data points as in Section 4 means to estimate 44 models on the cross-

validation dataset for one set of hyperparameters. To increase the frequency of the updates

for example to an update every 100 data points would mean five times more models for one

set of hyperparameters. Therefore we tested only a few update frequencies (100, 250, 500,

750, 1000) and will present the results for 500, which was the frequency that performed the

best on the cross-validation set according to this limited grid. This does not mean that a

better set of hyperparameters were not to be found if we had infinite computing resources.

5.3 Assessment of the probabilistic forecasts

The algorithms are run on the test set with the hyperparameters we have selected and we

evaluate the predictive distributions through calibration and the CRPS as a proper scoring

rule, as we did in section 4.2. The CRPS are presented in Table 4 and the calibration plots

in Figures 6 and 7. On those real data probabilistic persistence improves the CRPS of

climatology by a very large percentage already. Nevertheless all algorithms but Algorithm

1 perform better than probabilistic persistence in terms of CRPS. One can note that both

rMLE algorithms perform quite similarly and improve the persistence by roughly 20%,

while ONGD is the one which achieves the most significant improvement compared to

both the persistence and the rMLE algorithms. When looking at the calibration plots,

it appears that no method is as well calibrated as in the simulation study, no matter

which kind of calibration. Regarding probablistic calibration, all PIT histograms suggest

departures from uniformity, in a similar way for probabilistic persistence and ONGD, and

for rMLE.1 and rMLE.b. The PIT histograms of both persistence and ONGD show a
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Table 4: 10-minute-ahead CRPS and respective improvements over climatology, persistence

and the rMLE.1 algorithm.

CRPS Imp./clim. Imp./persist. Imp./rMLE.1

climatology 22.03% - - -

probabilistic persistence 1.35% 93.87% - -

rMLE.1 1.08% 95.09% 19.89% -

NGD (Algorithm 1) 1.43% 93.52% -5.74% -31.99%

rMLE.b (Algorithm 2) 1.06% 95.21% 21.83% 2.43%

ONGD (Algorithm 3) 0.89% 95.97% 34.22% 17.89%

*Best forecast bolded.

too large number of very low (close to 0) and very high (close to 1) PIT values, which

suggests the predictive distributions are underdispersed with too narrow prediction intervals

in general. On the contrary the PIT histogram for NGD is hump shaped which indicates

the predictive distributions are overdispersed with too large prediction intervals in general.

The PIT histograms for the rMLE algorithms somehow show both patterns. Regarding

marginal calibration rMLE.1 and rMLE.b are very close to one another. Overall the online

algorithms, that is rMLE.1, rMLE.b and ONGD, show better marginal calibration than the

other methods. Note that we even removed climatology from Figure 7 as the corresponding

predictive cdf is way too far on average from the empirical one to be plotted on the same

graph as the other methods.

The parameter vector estimates for the rMLE.1 benchmark and Algorithms 1, 2, 3 are
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Figure 6: PIT histograms for all benchmarks (left) and Algorithms 1, 2, 3 (right): (a)

climatology, (b) probabilistic persistence, (c) rMLE.1, (d) NGD, (e) rMLE.b, (f) ONGD.

plotted for some sub-sample of the test set in Figure 8. Regarding the bound parameter

b we plot the projection b̃t of b̂t, see section 4.2, to display the bound which is actually

used for prediction. One can first note that the estimates of the parameter vector Λ are

consistent from one method to another, while being more noisy for Algorithms 1, 2, 3

which include a varying upper bound, especially for NGD and ONGD. The estimates from

rMLE.1 and rMLE.b are in general very close to one another and show similar patterns

with more noise for rMLE.b. Moreover in the latter the estimated upper bound does not

vary significantly away from 1. Therefore it is hard to see what rMLE.b brings compared
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Figure 7: Marginal calibration plot for probabilistic persistence, rMLE.1 and Algorithms

1, 2, 3.

to rMLE.1 on this real dataset. As for Algorithm 1, the CRPS achieved by NGD on the

test set was quite high, especially compared to the rMLE.1 benchmark. When looking

at its parameter estimates, let first recall that one set of parameters is estimated by one

batch model, independently of the other batch models. There is clearly instability from one

batch to another, which can be a sign that the maximum number I = 5000 of iterations we

used was not enough for Algorithm 1 to converge. Moreover the values estimated for the

bound parameter are mostly above 1, which is not satisfactory. Nevertheless the associated

computational time would make it very difficult to run the algorithm through even more
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Figure 8: Estimates of Λ, σ2, ν and projected estimate of b on a sub-sample of the test set

for rMLE.1 (left), NGD (center left), rMLE.b (center right) and ONGD (right).

iterations, as already mentioned in Section 5.3. Finally ONGD is the only algorithm which

captures some variations of the bound parameter below 1 and achieves a very significant

improvement over probabilistic persistence (about 32% reduction of the CRPS) and a

significant improvement over rMLE.1 (about 18% reduction of the CRPS). Although while

choosing the hyperparameters for ONGD, we saw a significant improvement in the CRPS

on the cross-validation set for a minibatch size m = 1 only (the values tested for m being
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m ∈ {1, 5, 10, 20, 50, 100, 150}). By looking at the parameter estimates, we noticed that

for m = 5 the bound estimate was also significantly varying below 1, but more slowly and

closer to 1, and led to CRPS.s in the range of the other online algorithms. When looking at

the power generation itself, the bound tracked by ONGD for m = 1 did make sense. Those

results are confirmed by the test set, as the CRPS we get for it is very close to the one

we got on the cross-validation set, confirming the generalization performance of the model.

Therefore it seems the data call for a very aggressive choice of m so that the algorithm can

track the bound. In return some noise is introduced in the other parameters, especially in

the expectation parameter vector Λ.

We provide probabilistic forecasts over two different 36-hour periods of time on the

test set for rMLE.1 and Algorithms 1, 2, 3. As for NGD (second from top) we observe

the prediction intervals to be extremely wide on the first period of time (left). This shall

correspond to a moment, that is to a batch model, when the scale and/or shape parame-

ters were very large, confirming how problematic the instability from one batch model to

another is. As for ONGD (bottom), the plots confirm how tight the prediction intervals

are. However when the observation falls out of the prediction interval, which happens quite

often as showed by the PIT histogram for ONGD in Figure 6, it does not fall far away,

which explains the very good CRPS achieved by ONGD overall.

6 Discussion

We have introduced a new framework where we aim to track varying bounds for bounded

time series as well as an extended negative log-likelihood to deal with this new framework.
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Figure 9: Probabilistic forecasts from rMLE.1 and Algorithms 1, 2, 3 (from top to bottom),

on two different periods (left and right), based on prediction intervals with nominal coverage

rates of 95 and 75%, along with the power measurements (solid black line).

As the objective functions now at hand are not convex anymore, we have proposed to make

use of the broader quasiconvexity assumption through two algorithms, a batch algorithm

and an online algorithm, which both rely on NGD. We have also proposed a more usual

online algorithm out of quasi-Newton methods. On both a synthetic and a real dataset,

we have run those algorithms for tracking the parameters of a time series distribution over
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time, including the upper bound of the support of the distribution. Then we have presented

how to use those tracked parameters for forecasting.

The first algorithm, which relies on a time-dependent negative log-likelihood, exponen-

tially weighted through a forgetting factor, and on NGD for its optimization, is a batch

algorithm which needs to be updated when new observations come in. It performed well on

our (smooth) synthetic dataset but did not scale when moving to our application, that is to

wind power forecasting. Extra work could be performed in order to improve it, for example

by trying different kinds of initialization for the parameters when starting the optimiza-

tion of a new batch model. Indeed one could take advantage of the past optimizations by

initializing the algorithm with the estimates from the previous batch algorithm.

The second algorithm is an online algorithm which relies on the same time-dependent,

exponentially weighted, negative log-likelihood, but makes use of classical online, local

assumptions to recursively update the parameter estimates. It does not perform as well as

the first algorithm on our simulated example as it struggles to track an increasing bound and

comes with a high price in variance while doing so. It performed well though when tracking

a decreasing bound. When moving to wind power forecasting, this second algorithm did

not show a significant improvement when compared to its equivalent with a fixed bound. It

could be improved by working on adaptive multiple forgetting factors, to adjust to different

variation speeds in time and depending on the parameter. This could also benefit to the

first algorithm, which performed very well when tracking an increasing bound but was a

bit late in following a decreasing one, with some visible impact on both the scale and the

shape parameters of the distribution.
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The third algorithm is an online algorithm which is directly derived from SNGD and

so, similarly to ”ordinary” OGD, only relies on the negative log-likelihood we observe at

time t for our current set of parameters. It does not longer require any kind of forgetting

action and only asks for the usual step size when updating the parameter vector through

the gradient at time t. A new hyperparameter which is related to a specificity of SNGD

is the size m of the minibatch as SNGD is not guaranteed to converge for m = 1, unlike

SGD. This third algorithm performed extremely well on our simulated examples, with

performances in forecasting very close to the ideal forecaster. When moving to wind power

forecasting, it improved the CRPS of probabilistic persistence by more than 30% on the

test set. However the predictive distributions do not achieve probabilistic calibration, as

the prediction intervals appear to be too narrow in general.

It is worth noting that ONGD required to set the minibatch size m to 1 on the wind

power generation dataset in order to be able to track the bound. This is quite aggressive

and suggests that this kind of data might call for methods which can handle big jumps in

the bound values. Overall none of the proposed methods nor the benchmarks managed to

achieve probabilistic calibration on those data, but looking at the CRPS and at marginal

calibration it is quite clear wind power generation forecasting calls for online methods. This

is also why we chose not to further investigate NGD on this use case.

SUPPLEMENTARY MATERIAL

Calculation details: Technical derivations required for Algorithms 1, 2, 3 and detailed

computation of the matrix P̂t in Algorithm 2. (.pdf file)
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R project: R project with the R scripts for the simulation study in section 4, along

with the corresponding synthetic data. All outputs necessary for the study can be

reproduced with the corresponding scripts and are also provided. The structure and

content of the R project is described in a README file. (.zip file)
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Calculation details

1 Algorithm 1: NGD

In this section,
θ = (Λ, ω, τ, b) = (Λ, log σ2, log ν, b) ∈ Rp+3,
y = (yj) ∈ R|Ct(θ)|, where yj = γ(xj/b; ν) and j ∈ Ct(θ),
Y is a matrix with columns By, B2y, . . . , Bpy ∈ R|Ct(θ)|×p, where B is the backshift operator,
L = diag

(
αt−j

)
∈ R|Ct(θ)|×|Ct(θ)| with j ∈ Ct(θ),

C is a constant which does not depend on θ.

1.1 Objective function

−l∞t (θ) = − 1

nα


 ∑

j∈Ct(θ)

αt−j log pj(θ) +
∑

j∈Ct(θ)

αt−j log sj(b)


 ,

= (1− α)
(ω
2
− τ
) ∑

j∈Ct(θ)

αt−j − (1− α)
∑

j∈Ct(θ)

αt−j log (1− (xj/b)
exp τ )

+
1− α
2 expω

(y −YΛ)⊤L(y −YΛ) + (1− α)
∑

j∈Ct(θ)

αt−j log(1 + exp(−b+ xj))

+ C.

1.2 Gradient

First derivative w.r.t. Λ

−∂l∞t
∂Λ

= −1− α
expω

Y⊤L(y −YΛ).

First derivative w.r.t. ω

−∂l∞t
∂ω

=
1− α
2

∑

j∈Ct(θ)

αt−j − 1− α
2 expω

(y −YΛ)⊤L(y −YΛ).

First derivative w.r.t. τ

−∂l∞t
∂τ

= −(1− α)
∑

j∈Ct(θ)

αt−j − (1− α) exp τ
∑

j∈Ct(θ)

αt−j exp yj log(xj/b)

+
1− α
expω

(u−UΛ)⊤L(y −YΛ),

where u =
∂y

∂τ
, uj = exp τ

log(xj/b)

1− (xj/b)exp τ
.
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First derivative w.r.t. b

−∂l∞t
∂b

= (1− α)exp τ
b

∑

j∈Ct(θ)

αt−j exp yj +
1− α
expω

(z− ZΛ)⊤L(y −YΛ)

− (1− α)
∑

j∈Ct(θ)

αt−j exp(−b+ xj)

1− exp(−b+ xj)
,

where z =
∂y

∂b
, zj = −

exp τ

b (1− (xj/b)exp τ )
.

2 Algorithm 2: rMLE.b

In this section,
θ = (Λ, ω, τ, b) = (Λ, log σ2, log ν, b) ∈ Rp+3,
y = (yt−1, . . . , yt−p) ∈ Rp, yj = γ(xj/b; ν).

2.1 Gradient

ht =

{
∇θ log pt(θ̂t−1) if t ∈ Ct(θ),

∇θ log st(b̂t−1) if t ∈ Ct(θ).

First derivatives w.r.t. Λ

∂ log pt
∂Λ

=
1

expω
(yt − Λ⊤y)y,

∂ log st
∂Λ

= 0.

First derivatives w.r.t. ω

∂ log pt
∂ω

= −1

2
+

1

2 expω
(yt − Λ⊤y)2,

∂ log st
∂ω

= 0.

First derivatives w.r.t. τ

∂ log pt
∂τ

= 1 + exp τ exp yt log(xt/b)−
1

expω
(ut − Λ⊤u)(yt − Λ⊤y),

∂ log st
∂τ

= 0,

where u =
∂y

∂τ
, ut = exp τ

log(xt/b)

1− (xt/b)exp τ
.

First derivatives w.r.t. b

∂ log pt
∂b

= −exp τ

b
exp yt +

1

expω
(zt − Λ⊤z)(yt − Λ⊤y),

∂ log st
∂b

=
exp(−b+ xt)

1 + exp(−b+ xt)
,

where z =
∂y

∂b
, zt =

exp τ

b (1− (xj/b)exp τ )
.

2



2.2 Detailed computation of the matrix P̂t

We use the matrix inversion rule

[A+BCD]
−1

= A−1 −A−1B
[
DA−1B+C−1

]−1
DA−1,

with A = αR̂t−1, B = D⊤ = ht, C = (1− α)I and we get

P̂t = R̂−1
t ,

=
[
αR̂t−1 + (1− α)hth

⊤
t

]−1

,

=
(
αR̂t−1

)−1

−
(
αR̂t−1

)−1

ht

[
h⊤
t

(
αR̂t−1

)−1

ht + ((1− α)I)−1

]−1

h⊤
t

(
αR̂t−1

)−1

,

=
1

α
P̂t−1 −

1

α2
P̂t−1ht

[
1

α
h⊤
t P̂t−1ht +

1

1− α

]−1

h⊤
t P̂t−1,

=
1

α
P̂t−1 −

P̂t−1hth
⊤
t P̂t−1

α2
[
1
αh

⊤
t P̂t−1ht +

1
1−α

] ,

=
1

α

[
I− P̂t−1hth

⊤
t

α
1−α + h⊤

t P̂t−1ht

]
P̂t−1.

3 Algorithm 3: ONGD

In this section,
θ = (Λ, ω, τ, b) = (Λ, log σ2, log ν, b) ∈ Rp+3,
Um
t = {t−m+ 1, . . . , t},

Cm
t (θ) = {j ∈ Um

t | xj−k < b, k = 0, . . . , p}, Cm
t (θ) = {j ∈ Um

t |j /∈ Cm
t (θ)},

y = (yj) ∈ R|Cm
t (θ)|, where yj = γ(xj/b; ν) and j ∈ Cm

t (θ),
Y is a matrix with columns By, B2y, . . . , Bpy ∈ R|Cm

t (θ)|×p, where B is the backshift operator,
C is a constant which does not depend on θ.

3.1 Objective function

ft(θ) =
1

m


 ∑

j∈Cm
t (θ)

log pj(θ) +
∑

j∈Cm
t (θ)

log sj(b)


 ,

=
1

m

(ω
2
− τ
)
|Cm

t (θ)| − 1

m

∑

j∈Cm
t (θ)

log (1− (xj/b)
exp τ )

+
1

m

1

2 expω
(y −YΛ)⊤(y −YΛ) +

1

m

∑

j∈Cm
t (θ)

log(1 + exp(−b+ xj))

+ C.

3.2 Gradient

First derivative w.r.t. Λ

∂ft
∂Λ

= − 1

m expω
Y⊤(y −YΛ).
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First derivative w.r.t. ω

∂ft
∂ω

=
1

2m
|Cm

t (θ)| − 1

2m expω
(y −YΛ)⊤(y−YΛ).

First derivative w.r.t. τ

∂ft
∂τ

= − 1

m
|Cm

t (θ)| − exp τ

m

∑

j∈Cm
t (θ)

exp yj log(xj/b) +
1

m expω
(u−UΛ)⊤(y −YΛ),

where u =
∂y

∂τ
, uj = exp τ

log(xj/b)

1− (xj/b)exp τ
.

First derivative w.r.t. b

∂ft
∂b

=
1

m

exp τ

b

∑

j∈Cm
t (θ)

exp yj +
1

m expω
(z− ZΛ)⊤(y −YΛ)− 1

m

∑

j∈Cm
t (θ)

exp(−b+ xj)

1− exp(−b+ xj)
,

where z =
∂y

∂b
, zj = −

exp τ

b (1− (xj/b)exp τ )
.
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We propose a new framework where the upper bound of a continuous
bounded response variable is a discrete latent variable which can take a finite
number of values over the unit interval. This is equivalent to modelling the
marginal distribution of the bounded variable as a finite mixture of bounded
distributions with different bounds. We focus on the generalized logit-normal
distribution for the bounded variable, because of its flexibility and the ease
with which it can be fitted. We propose batch EM-based algorithms for two
frameworks: first, when the response variables are independent and identi-
cally distributed; second, when the response variables are a stochastic process
with an auto-regressive dependency structure. We also suggest online EM-
based algorithms which rely on online gradient descent. The performance
of the proposed algorithms is evaluated through a simulation study for both
frameworks. We address convergence in stationary settings and tracking in
changing environments. For stochastic processes, we also consider the per-
formance of the online algorithms for probabilistic forecasting. The batch
algorithms and the online EM algorithm for the independent case show good
performances. However, the online algorithm dealing with past dependent
observations converges to biased estimates, which needs to be addressed in
further work.

1. Introduction. When interested in response variables which are both continuous and
bounded, the support of the variable distribution is usually assumed to be fixed to the unit
interval. However, in many statistical applications the bounds of the support are by nature
varying, and in particular the upper bound, for instance during the spread of an epidemic, see,
e.g., Guolo and Varin (2014), for unemployment rates, see Wallis (1987), or any item of an
inventory problem, see Laderman and Littauer (1953). For applications to renewable energy,
both wind and solar power generation are impacted by an upper varying bound. Indeed, wind
power generation is a random variable which is usually scaled by the nominal power of the
turbine, but curtailment actions happen, for which information is not available or not reliable.
As for solar power generation, it is also often expressed as a percentage of the nominal power
of the power plant, which can shift over time for no documented reason, see, e.g., Zamo et al.
(2014a,b). Even if the nominal power remains constant, some phenomena may occur that
limit the effective capacity, such as dust in desert areas.

Bounds which vary while not being observed or documented may negatively impact sta-
tistical inference of the distribution of the bounded response variable. When the bounded
variable is a stochastic process, a missing bound can be thought of as a an additional, scaling
parameter of a parametric bounded distribution, and estimated along with the other parame-
ters while assuming non-stationarity, see Pierrot and Pinson (2023). In a more general, still
parametric framework, and to account for the inherent uncertainty of the value taken by the
bound, we propose to address a missing bound as a latent random variable with its own

Keywords and phrases: EM algorithms, Monte Carlo EM algorithms, Stochastic/online EM algorithms, Gen-
eralized logit-normal distribution.
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probability distribution. This calls for methods of the expectation-maximization (EM) kind,
see Dempster, Laird and Rubin (1977), in particular if one is interested in forecasting the
bounded response variable, for the bound will have to be forecast first.

Probability distributions for a continuous bounded variable include the beta distribution,
truncated distributions or distributions of transformed normal variables, see, e.g., Johnson
(1949). We choose to work with a distribution that belongs to the latter family, the generalized
logit-normal (GLN) distribution introduced by Mead (1965), because of all the variations in
its shape which are enabled by three - location, scale and shape - parameters, and the ease with
which it can be fitted. The choice of a probability distribution for the bound is rather open but
crucial to the difficulty of the subsequent EM algorithm. Hence, and from the intuition that a
grid of plausible values over the unit interval may matter more to inference than the accuracy
of each value, we propose to assume the bound to be a discrete variable which can take K
values over (0,1]. The marginal pdf of the bounded variable then becomes a finite mixture of
K scaled GLN distributions which is similar to a kernel density with scaled GLN kernels.

To allow for a broad range of applications, we address two assumptions for the bounded
random variables: first, the case when they are independent and identically (iid) distributed,
and second, the case when they are a stochastic process with an auto-regressive (AR) de-
pendency structure. For both cases we propose batch and online EM algorithms. We fo-
cus on an upper bound, as most applications which come to mind involve such a varying
bound. Nonetheless, it would be straightforward to apply the method to a lower bound. In
the independent case, we propose a generalized EM algorithm, the expectation-conditional
maximization algorithm, see Meng and Rubin (1993), and an online version which relies on
gradient descent at the M-step. In the case of stochastic processes with serial correlations, we
propose a Monte Carlo EM algorithm (MCEM), see Wei and Tanner (1990). We also suggest
two online versions: both apply gradient descent at the M-step, as in the independent case;
at the E-step, in order to deal with the past missing values of the bound, the first online ver-
sion uses filtering while the second version uses a stochastic E-step. Although they can be of
practical interest for stationary frameworks, in particular in the case of stochastic processes
as the MCEM algorithm can be computationally heavy, our call for online EM algorithms
lies mostly in their tracking abilities, so that the distribution of the bound, which is rather
simple, can at least adapt to changing environments.

In Section 2, we develop the statistical models and introduce the corresponding maximum
likelihood inference to be performed through EM-based algorithms. Then, algorithms are
proposed in Section 3 for the independent case and in Section 4 for stochastic processes with
AR dependency. The convergence and tracking performance of these algorithms is illustrated
in Section 5 through a simulation study for both frameworks. In addition, the forecasting per-
formance of online EM algorithms is evaluated on the synthetic stochastic processes. Finally,
we give some conclusions and perspectives for future work according to the results we obtain
during the simulation study.

We use capital letters to denote random variables, e.g., random variable X . We use bold
capital letters to denote matrices, e.g., matrix Y. We use small bold letters to denote vectors,
e.g., vector w. We use parentheses to construct column vectors from comma separated lists.
For instance, if a, b, c ∈ R, (a, b, c) is the column vector of elements a, b and c. We use
square brackets to refer to the i-th element w[i] of a vector w. We use parentheses to denote
a sample, which can also be seen as a vector of observations, e.g., a sample/vector x =
(x1, . . . , xn) = (xi)i=1,...,n.

2. A mixture of scaled generalized logit-normal distributions. Let X be a contin-
uous bounded random variable which lies in the unit interval, X ∈ (0,1). We argue that
while thinking we observe the realizations x of X , we in fact only have access to the value
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x/b ∈ (0,1) and implicitly assume b = 1. The value b is the value we assume for the upper
bound of the bounded support (0, b) of the distribution of X . To account for the possibility
it might not always take the value 1, while not being observed, and acknowledge its ran-
domness, we propose to consider b as the realization of a latent random variable B, i.e., the
variable X is upper bounded by a latent variable B. We focus on parametric distributions.
The general framework where B is a latent variable makes it possible to specify any kind of
parametric probability distribution for B. However, because B is missing, and because we
are also interested in forecasting applications, we need to use methods based on the EM algo-
rithm in order to estimate the parametric distributions of both the bounded variable X and its
bound B, see Dempster, Laird and Rubin (1977). How simple or complicated the inference
through the EM algorithm will be depends on this specification. A simple model for B eases
the inference but will likely not perform well when moving to forecasting. We propose to
assume B to be a discrete random variable which takes a finite number of values over (0,1].
For real application purposes, our idea stands from choosing K values for B in such a way
that the unit interval is covered by a fine grid of plausible values. This grid can be decided
upon a priori knowledge on the real data, or refined over the course of the modelling and
learning procedure. In Section 2.1, we introduce the corresponding statistical model under
the assumption that the bounded variables X are iid conditional on B. In Section 2.2, we
extend the model to discrete-time stochastic processes (Xt)t∈T , assuming a simple Markov
dependency structure through an AR model.

2.1. Statistical model under the independence assumption. Let B take K values b[k] ∈
(0,1] with probabilities w = (w[1], . . . ,w[K]), where k ∈ K = {1, . . . ,K} is an unobserved
state associated with b[k]. We choose this notation in order to emphasize the bijection be-
tween a value of b and a state k. Given B = b[k], we assume X to be distributed according to
a GLN distribution scaled to (0, b[k]) with pdf

(1) p(x | b[k];θ) = 1√
2πσ2

ν

x (1− (x/b[k])ν)
exp

[
−1

2

(
γ(x/b[k];ν)− µ

σ

)2
]

if 0 < x < b[k], p(x | b[k];θ) = 0 otherwise, with θ = (µ,σ2, ν) and γ(x/b[k];ν) =

log (x/b[k])ν

1−(x/b[k])ν , ν > 0. We get the following joint probability distribution of (X,B)

(2) p(x | b[k];θ)w[k],
and the marginal pdf of X

(3)
K∑

k=1

p(x | b[k];θ)w[k],

which is indeed a K-component mixture of scaled GLN densities. Let x = (xi)i=1,...,n be an
iid sample from (1), Ki = {k ∈K | b[k]> xi}. The complete-data log-likelihood associated
with our model is

(4)
n∑

i=1

∑

k∈Ki

1{Bi=b[k]} (log p(xi | b[k];θ) + logw[k]) .

In order to estimate the full parameter ψ through maximum likelihood inference, we wish to
apply an EM-based algorithm to (4). The Q function computed at the E-step of iteration j is

Q(ψ|ψ(j)) = E

[
n∑

i=1

∑

k∈Ki

1{Bi=b[k]} (log p(xi | b[k];θ) + logw[k])

∣∣∣∣ x;ψ(j)

]
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=

n∑

i=1

∑

k∈Ki

ŵi[k] (log p(xi | b[k];θ) + logw[k]) ,(5)

where, using Bayes formula,

(6) ŵi[k] =
p(xi | b[k];θ(j)) w(j)[k]

∑K
l=1 p(xi | b[k];θ(j)) w(j)[l]

.

Then, the M-step of iteration j aims to maximize Q(ψ|ψ(j)) with respect to ψ, subject to∑K
k=1w[k] = 1. In fact, the M-step does not need to be a maximization for sufficiently in-

creasing Q(ψ|ψ(j)) at iteration j is enough to give an ascent algorithm, which is usually
termed as a generalized EM algorithm, see Dempster, Laird and Rubin (1977). For simplic-
ity, we have assumed a common θ over the different states k ∈K. It would be straightforward
to make θ depend on k. Also, note that the location parameter µ corresponds to the expec-
tation of the normally distributed transform Y = γ(X/b[k];ν). Other assumptions could be
made for the expectation of Y , e.g., it could be conditional upon exogenous variables through
a linear regression.

In Section 3, we design EM-based algorithms to iteratively increase (5). In particular,
we design an ECM algorithm, see Meng and Rubin (1993). We also propose an online EM
algorithm to increase (5) until convergence in stationary frameworks or to track the parameter
vector ψ in changing environments.

2.2. Statistical model for stochastic processes with serial correlations. We adapt the for-
mer statistical model to serial correlations when (Xt) is a stochastic process. We denote by
Yt the generalized logit transform, Yt = γ(Xt/b[k];ν). We model the expectation of Yt as an
AR model of order p, i.e, E(Yt) = µt =

∑p
r=1 λryt−r . Let x= (xt)t=1,...,T , b= (bt)t=1,...,T ,

xt:(t−p) = (xt, . . . , xt−p), bt:(t−p) = (bt, . . . , bt−p) = (b[kt], . . . , b[kt−p]), where kt is the un-
observed state at time t. Finally, let Ft−1 be the previous information set for Xt, i.e., the
σ-algebra generated by X1, . . . ,Xt−1. The conditional pdf of Xt is

(7) p(xt | Ft−1,bt:(t−p);θ) =
1√
2πσ2

ν

xt (1− (xt/bt)ν)
exp

[
−1

2

(
γ(xt/bt;ν)− µt

σ

)2
]

if 0 ≺ xt:(t−p) ≺ bt:(t−p), p(xt | Ft−1,bt:(t−p);θ) = 0 otherwise. Note that for stochastic
processes, only a common θ over the different unobserved states k ∈K is possible. The log-
likelihood of a sample (x,b) is

(8)
T∑

t=p+1

(log p(xt | Ft−1,bt:(t−p);θ) + logw[kt]),

as we do not take into account the distribution of the first p observed values xp:1 and consider
instead the likelihood conditional on them. The associated Q function is

(9) Q(ψ|ψ(j)) = E




T∑

t=p+1

(log p(xt | Ft−1,bt:(t−p);θ) + logw[kt])

∣∣∣∣ x;ψ(j)


 .

Because Xt needs to be considered given the former (missing) values of Bt, it is not straight-
forward anymore to compute Q, as it was in (5). Therefore, we propose to approximate it
through Monte Carlo integration by

(10) Q̂M (ψ|ψ(j)) =
1

M

M∑

m=1

T∑

t=p+1

(log p(xt | Ft−1,b
m
t:(t−p), ;θ) + logw[kmt ]),
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where M is the number of Monte Carlo samples and bm = (b[km1 ], . . . , b[kmT ]) is distributed
according to the posterior distribution p(b | x;ψ(j)). This leads to the EM algorithm being
replaced with an MCEM algorithm, see Wei and Tanner (1990). This kind of algorithm comes
with its own challenges, in particular regarding the appropriate number of samples M , as it is
not efficient to start with a large value of M when the maximum likelihood estimate (MLE)
might be far from the true value of ψ.

To iteratively increase (10), we design an MCECM algorithm which combines Markov
chain Monte Carlo (MCMC) in the E-step, see Metropolis et al. (1953); Hastings (1970),
and conditional maximization in the M-step, see Meng and Rubin (1993). This algorithm is
presented in Section 4, along with two suggestions of online algorithms.

3. EM-based algorithms for inference under the independence assumption.

3.1. A batch ECM algorithm. The E-step of the EM algorithm is straightforward and
consists of computing the posterior probabilities in (6) for all i= 1, . . . , n and k = 1, . . . ,K .
Regarding the M-step, because of the shape parameter ν > 0 of the GLN distribution, the
direct application of EM to our problem would require applying a (K + 3)-dimensional
Newton-Raphson algorithm, which is typically less stable than one-dimensional Newton-
Raphson, as there is no closed-form solution when maximizing the Q function in (5) with
respect to ν. Moreover, our maximization problem is a constrained optimization problem, as
the probabilities of the values taken by the bound, i.e., of the states k = 1, . . . ,K , need to be
non-negative and sum up to 1. Finally, note that conditional on the other parameters, w, µ and
σ2 all have closed-form solutions. Therefore, following Meng and Rubin (1993), we recom-
mend to replace the M-step of the EM algorithm with several simpler conditional maximiza-
tion (CM) steps, taking advantage of the closed-form solutions available for all parameters
but ν. This is the ECM algorithm, which shares all the appealing convergence properties of
EM, such as always increasing the log-likelihood. In the absence of missing data, ECM is a
special case of cyclic coordinate ascent methods, see, e.g., Zangwill (1969); Jensen, Johansen
and Lauritzen (1991). As argued by Meng and Rubin, when used at the M-step of EM, simple
and stable linear converging methods are often more suitable than super-linear converging,
but less stable algorithms, such as Newton’s method. Indeed, the super-linear convergence
does not directly transfer to EM-based algorithms, for the latter converge linearly regard-
less of the maximization method employed within the M-step. Therefore, stability is to be
preferred since the maximization method is used repeatedly in all iterations. The ECM algo-
rithm we propose is given in Algorithm 1. In each iteration, first, three CM-steps compute
the closed-form solutions of w, µ and σ2 given the current value of the other parameters. The
fourth CM-step is a one-dimensional Newton-Raphson step which then updates the current
value of ν. Let us define the set of functions G= {gs, s= 1, . . . , S}, with S = 4, g1(ψ) =w,
g2(ψ) = µ, g3(ψ) = σ2 and g4(ψ) = ν. The condition for the ECM to share the convergence
properties with EM is that G is space filling so that we are guaranteed the resulting maximum
is an unconstrained maximum of the likelihood (over the whole space of the parameters). This
is verified if

J(ψ) = ∩Ss=1Js(ψ) = {0},
where Js(ψ) = ∂

∂ψgs(ψ), which can be easily checked in our case (and in many applica-
tions). Note that the last CM-step that applies Newton’s method is not exactly a maximiza-
tion step, as we perform backtracking line search, not exact line search, see, e.g., Boyd and
Vandenberghe (2004). Performing backtracking line search is simpler and faster, and enough
to ensure

(14) Q(ψ(j+1)|ψ(j))≥Q(ψ(j+S−1

S
)|ψ(j)),
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Algorithm 1 ECM algorithm (independence assumption)
Input: #Iterations J , initial guess ψ0, ϵ > 0

for j = 0, . . . , J do
1. E-Step
Compute:

ŵi[k] =
p(xi | b[k];θ(j)) w(j)[k]

∑K
l=1 p(xi | b[l];θ(j)) w(j)[l]

∀ i= 1, . . . , n, k = 1, . . . ,K.

2. CM-Steps
Update:

w(j+1)[k] =
1

n

n∑

i=1

ŵi[k] ∀ k = 1, . . . ,K,(11)

µ(j+1) =
1

n

n∑

i=1

∑

k∈Ki

ŵi[k]γ(xi/b[k];ν
(j)),(12)

σ2
(j+1)

=
1

n

n∑

i=1

∑

k∈Ki

ŵi[k](γ(xi/b[k];ν
(j))− µ(j+1))2(13)

Compute: Newton step ∆νnt and decrement λ2.
if λ2/2≤ ϵ then ν(j+1) = ν(j)

else Choose step size η by backtracking line search and Update: ν(j+1) = ν(j) + η∆νnt.
end if

end for

where the right-hand side of (14) is the value of the Q function before updating ν in iteration
j; the left-hand side of (14) is the value of Q after updating ν in iteration j, i.e., at the end of
iteration j.

3.2. Online EM algorithm for inference under the independence assumption. Online ver-
sions of the EM algorithm have been mostly designed for distributions which belong to
curved exponential families, see, e.g. Cappé and Moulines (2009); Cappé (2011); Corff and
Fort (2013). A notable exception is Titterington’s algorithm, which does not make any dis-
tribution assumption, but requires the computation of the complete-data Fisher information.
Because GLN distributions do not belong to curved exponential families, and there are no
available analytical expression for their first moments, those algorithms cannot be applied
to a mixture of GLN distributions. Even if closed-form solutions are available for µ and σ2,
which are the usual closed-form solutions for a normal distribution, we cannot make use of
the corresponding, convenient recursive equations for updating them, because of the transfor-
mation γ which involves the shape parameter ν. Therefore, looking into the class of online
learning algorithms, see, e.g., Cesa-Bianchi and Lugosi (2006), and in particular at online
gradient descent (OGD), see, e.g., Bottou (1999), we propose to consider each EM iteration
as a round in a repeated game, where we take the best position we can given our past choices,
without looking backwards: at each iteration i, we look at an instance of −Q which only de-
pends on the new observation xi and the current value of the parameter vector ψi, and update
the latter through a descent step using the gradient of this instance of −Q. Note that because
we place ourselves in the online setting, the former superscripts (j) are replaced with the
subscripts i of the observations, as one iteration corresponds to one observation. We treat the
observations sequentially, so that the algorithm can be transposed to tracking the parameter
vector in a changing environment. However, they could also be picked randomly, as in both
cases what eventually matters is that they are independent observations. The corresponding
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Algorithm 2 Online gradient-based EM (independence assumption)
Input: convex set K,ψ1 ∈K, step size η

for i= 1, . . . , n do
Observe −Qi(ψ|ψi) =−

∑

k∈Ki

ŵi[k] (log p(xi | b[k];θ) + logw[k]),

where ŵi[k]∝ p(xi | b[k];θi) wi[k].

Update and project:

ξi+1 = ψi + η∇ψQi(ψ|ψi),(15)

ψi+1 = ΠK(ξi+1).(16)

end for

algorithm is described in Algorithm 2. Note that the gradient descent step at iteration i in
(15) is followed by a projection step back to the convex set K in (16), as it might result in
values ξi+1 outside of K. In our case, this projection step is necessary for the parameter w,
which is constrained to belong to the probability simplex P= {w ∈RK+ |

∑K
k=1w[k] = 1}.

The algorithm for projecting the updated w back to the simplex is given in Appendix A.
Online learning and stochastic optimization are closely related, see, e.g., Bottou (1999);

Cesa-Bianchi, Conconi and Gentile (2004). The online EM version we propose borrows ideas
from stochastic optimization by using noisy estimates of the objective’s gradient. Stochastic-
ity in EM algorithms can come in different forms, see, e.g, Celeux, Chauveau and Diebolt
(1996); Cappé and Moulines (2009). Here, stochasticity comes from the observation xi which
is picked randomly, or sequentially, out of the batch sample x, and addressed at iteration i.
Then, the gradient which is used at the M-step is the gradient of −Qi only, instead of the gra-
dient of−Q. First, note that minimizing −Q(ψ|ψi) is equivalent to minimizing− 1

nQ(ψ|ψi).
Our update term at iteration i, −∇ψQi(ψ|ψi), fulfills the condition

(17) EX [−∇ψQi(ψ|ψi)] =−
1

n
∇ψQ(ψ|ψi),

i.e, the gradient of−Qi(ψ|ψi) is a noisy but unbiased estimate of the gradient of− 1
nQ(ψ|ψi),

since the xi are independent realizations of X . Because the gradient estimate is unbiased, we
can hope that using only one observation at each iteration will not compromise the average
behaviour of the EM algorithm, i.e., we will recover Q(ψi+1|ψi) > Q(ψi|ψi) on average.
The convergence of Algorithm 2 to stationary points could be further analyzed using general
results from Bottou (1999).

A way to understand how OGD works is to think that we update ψ using the minimizer
of a linear approximation of −Qi(ψ|ψi), the minimization being constrained in a neighbor-
hood of ψi, where we have good reason to believe the approximation is more precise, see
Orabona (2022). Going back to the objective function we wish to minimize at iteration i, i.e,
− log p(xi;ψ), and using Jensen’s inequality, we have

(18) − log p(xi;ψ) =− log

K∑

k=1

qk
p(xi | b[k];θ) w[k]

qk
≤−

K∑

k=1

qk log
p(xi | b[k];θ) w[k]

qk
,

see, e.g., Neal and Hinton (1998). In Algorithm 2, observing −Qi(ψ|ψi) with qk = ŵi[k]
comes down to replacing the expectation step with a stochastic approximation step that makes
the upper bound in (18) tight by minimizing it w.r.t. the distribution q = (q1, . . . , qK). The
gradient descent step then minimizes a linear approximation of this local upper bound w.r.t.
ψ in the neighborhood of ψi. This gives an intuition about the behaviour of Algorithm 2
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as a tracking algorithm in changing environments, by going back to looking at EM as a
maximization-maximization algorithm from an online, local, perspective.

The online EM algorithm we propose has connections with Titterington’s method, which
consists of using a stochastic approximation algorithm, where the parameters are updated
after each new observation by using the gradient of the incomplete-data likelihood weighted
by the complete-data Fisher information matrix. However, in our specific mixture case, we
remain closer to the spirit of EM by having still an E-step through the computation of
ŵi[1], . . . , ŵi[K] in −Qi(ψ|ψi), and an M-step through the descent step in the direction of
the negative gradient of −Qi(ψ|ψi). Moreover, we do not need to compute and inverse the
complete-data Fisher information matrix, which would be prohibitive in our case.

4. EM-based algorithms for inference with serial correlations.

4.1. A batch MCECM algorithm. The challenging part of EM when moving to stochas-
tic processes with serial correlations is the E-step which requires to properly simulate M
samples bm according to p(b | x;ψ(j)), see Section 2.2. In order to perform the Monte Carlo
integration required in (10), and to deal with the dependencies introduced into our observa-
tions by the new hypothesis on the expectation of Xt, we consider Markov chain algorithms.
There are many ways of constructing Markov chains to eventually approximate the desired
expectation, see, e.g., Gilks, Richardson and Spiegelhalter (1995); Robert and Casella (2004),
but all of them are special cases of the general framework of Metropolis et al. (1953) and
Hastings (1970). We use a single-component Metropolis-Hastings (MH) algorithm with an
independence sampler. Let bmt denote the value of bt at the end of iteration m. For step t
of iteration m+ 1, bt is updated using MH. The candidate B∗

t is generated from a proposal
distribution qt(B∗

t |bmt ,bm−t), where bm−t denote the value of b−t after completing step t− 1
of iteration m+ 1,

(19) bm−t = {bm+1
1 , . . . , bm+1

t−1 , b
m
t+1, . . . , b

m
T },

and components 1, . . . , t − 1 have already been updated. This is the updating scheme of
the single-component MH algorithm, which is in fact the framework originally proposed by
Metropolis et al. (1953). To use an independence sampler means to use a proposal distribution
qt(B

∗
t |bm−t) instead of qt(B∗

t |bmt ,bm−t). In general, the independence sampler can work very
well or very badly. For it to work well, qt(.) should be a good approximation to the target
distribution. It is rather easy to fulfill this condition here, as qt(B∗

t |bm−t) = qt(B
∗
t ), since

the random variables Bt are iid and we can choose qt(.) to be the marginal distribution of
bt truncated according to the observed value xt. The candidate B∗

t is then accepted with
probability

(20) ρ(bm−t, b
m
t ,B

∗
t ) =min

(
1,
p(B∗

t | bm−t,x;ψ(j)) qt(b
m
t ;ψ

(j))

p(bmt | bm−t,x;ψ(j)) qt(B∗
t ;ψ

(j))

)
,

and straightforward calculation gives

(21)
p(B∗

t | bm−t,x;ψ(j)) qt(b
m
t ;ψ

(j))

p(bmt | bm−t,x;ψ(j)) qt(B∗
t ;ψ

(j))
=
p(x | B∗

t ,b
m
−t;θ

(j)) w(j)[k∗t ] qt(b
m
t ;w

(j))

p(x | bmt ,bm−t;θ(j)) w(j)[kmt ] qt(B∗
t ;w

(j))
,

where k∗t and kmt are the states associated with B∗
t and bmt , respectively. Note that we use

(22) qt(bt;w
(j)) =

{
c−1
t w(j) if bt > xt,

0 if bt ≤ xt,



MIXTURES OF BOUNDED DISTRIBUTIONS WITH DIFFERENT BOUNDS 9

where ct is the normalization constant, and therefore (21) simplifies to

(23)
∏t+p
l=t p(xl | Fl−1,B

∗
t ,b

m
−t;θ

(j))
∏t+p
l=t p(xl | Fl−1, b

m
t ,b

m
−t;θ(j))

.

The algorithm to get M samples bm distributed according to p(b|x;ψ(j)) is given in Ap-
pendix A. It includes m0 burn-in iterations, which give samples that are discarded so that the
chain has time to forget its initial state b0 = (1, . . . ,1) before we start to keep samples. As
suggested by Geyer (1992), we set m0 to between 1% and 2% of M .

To the best of our knowledge, there are no theoretical results for MCEM outside of expo-
nential families, moreover when replacing the M-step by CM-steps. Nevertheless, we point
out that the condition for the ECM to share convergence properties with EM is again fulfilled,
replacing µ with Λ= (λ1, . . . , λp). We do not propose innovative methods in automating the
algorithm, see, e.g., Booth and Hobert (1999); McCulloch (1994, 1997); Caffo, Jank and
Jones (2005), regarding the number M of samples and the design of stopping rules, as we
choose to rather focus on an online version of the algorithm. Therefore, the MCECM al-
gorithm we propose uses a fixed size M and a predetermined number of iterations J . Let
ym = (ymt )t=p+1,...,(T−p) where ymt = γ(xt/b

m
t ;ν) and Ym be the matrix of stacked vectors

[Bym, . . . ,Bpym], whereB is the backshift operator. The corresponding MCECM algorithm
is described in Algorithm 3.

Algorithm 3 MCECM algorithm (stochastic processes with AR dependency)
Input: #Iterations J , Monte Carlo size M , initial guess ψ0, ϵ > 0

for j = 0, . . . , J do
1. MCE-Step
Sample: b1, . . . ,bM ∼ p(b | x;ψ(j)) using Algorithm 7.

2. CM-Steps
Update:

w(j+1)[k] =
1

M(T − 2p)

M∑

m=1

T−p∑

t=p+1

1{kmt =k} ∀ k = 1, . . . ,K,(24)

Λ(j+1) =




M∑

m=1

(Ym)⊤Ym



⊤


M∑

m=1

(Ym)⊤ym

 ,(25)

σ2
(j+1)

=
1

M(T − 2p)

M∑

m=1

(
ym −YmΛ(j+1)

)⊤ (
ym −YmΛ(j+1)

)
.(26)

Compute: Newton step ∆νnt and decrement λ2.
if λ2/2≤ ϵ then ν(j+1) = ν(j)

else Choose step size η by backtracking line search and Update: ν(j+1) = ν(j) + η∆νnt.
end if

end for

4.2. Online EM algorithm for inference on stochastic processes with serial correlations.
An MCEM algorithm is computationally expensive as a rather large M might be required
to get unbiased MLE. Moreover, when applying the method to stochastic processes we are
especially interested in non-stationary frameworks, and would therefore wish to be able to
update the parameters of the distribution without needing to rerun a heavy batch algorithm.
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As in Section 3, we expect to update the current value of the parameter vector ψt, where
the subscript now refers to time, or iteration t, by accounting for the information brought
by time t only. In particular, we wish to forget the past missing values of Bt. Let Kt =
{k ∈K | b[k]> xt}. In terms of the function Q, this translates to observing at time t

(27) −Qt(ψ|ψt) =−
∑

k∈Kt

ŵt[k](log p(xt | Ft−1, b[k];θ) + logw[k]),

where the posterior probabilities are

(28) ŵt[k] =
p(xt |Ft−1, b[k];θt) wt[k]∑K
l=1 p(xt |Ft−1, b[l];θt) wt[l]

.

The key here lies in p(xt | Ft−1, b[k];θt), for we do not want the probability of observing xt
to still be impacted by the missing values b(t−1):(t−p).

For the computation of the posterior probabilities, integration over possible values of
b(t−1):(t−p) is easy and limited to K(t−1):(t−p) = Kt−1 × · · · × Kt−p, since the conditional
pdf of xt is equal to zero for values of b(t−1):(t−p) outside of K(t−1):(t−p). Let kt−r be the
state corresponding to the value of Bt−r in combinations b(t−1):(t−p), and ŵt−r[kt−r] be the
corresponding posterior probability computed at time t− r according to (28). We approxi-
mate p(xt |Ft−1, b[kt];θt) in (28) with

(29)
∑

b(t−1):(t−p)∈K(t−1):(t−p)

p(xt | Ft−1, b[k],b(t−1):(t−p);θt) ŵt−1[kt−1] . . . ŵt−p[kt−p].

The approximation lies in using P (b(t−1):(t−p) | Ft−1;θt) ≈ ŵt−1[kt−1] . . . ŵt−p[kt−p].
Therefore, we consider the successive posterior probabilities of bt−r given xt−r only, rather
than given the whole filtration Ft−r . Moreover, we assume ψt ≈ ψt−1 ≈ · · · ≈ ψt−p.

Integration cannot be considered in (27) because of the logarithm. We propose two ways
of dealing with the past missing values of Bt. Let ŵt = (ŵt[1], . . . , ŵt[K]). As a first option,
we replace the past missing values b(t−1):(t−p) with filtered values b̂(t−1):(t−p), such as

(30) b̂t−r =
K∑

k=1

ŵt−r[k] b[k], r = 1, . . . , p,

i.e., each missing value bt−r is replaced with its conditional expectation on the observation
xt−r and the current parameter ψt−r . The corresponding online EM algorithm is described
in Algorithm 4.

As a second option, we instead simulate a single value of b(t−1):(t−p) according to the pos-
terior probabilities ŵ(t−1):(t−p). This is closer in spirit to historical stochastic EM algorithms,
see, e.g., Celeux, Chauveau and Diebolt (1996); Marschner (2001). The corresponding online
EM algorithm is described in Algorithm 5.

The same ideas as in Section 3.2 apply for intuitively explaining the convergence and
tracking properties of both versions of the online algorithm for stochastic processes. How-
ever, because we only approximate or simulate past missing values of Bt, the online EM
algorithm can only rely on partial information from the past in the context of stochastic pro-
cesses with AR dependency.

5. Simulation study.

5.1. Convergence. In order to illustrate the performance of batch and online algorithms
on stationary data, we run 100 experiments with K = 3, b[1] = 0.5, b[2] = 0.75 and b[3] = 1.
The parameters are set to w = (0.2,0.3,0.5), µ = 1 under the independence assumption,
Λ= 0.9 for stochastic processes, σ2 = 2 and ν = 1.5. Each synthetic dataset is of size 15,000.
The values b[1], . . . , b[K] and the lag p of the AR dependency for stochastic processes are
assumed to be known.
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Algorithm 4 Online EM for stochastic processes with AR dependency (filtering)
Input: convex set K,ψ1 ∈K, mini-batch size m≥ 1, step size η

for t= 1, . . . , p do
Compute ŵt = qt(bt;wt);
Compute b̂t = (b[1], . . . , b[K])ŵt;
ψt+1 = ψt.

end for
for t= p+ 1, . . . , T do

Compute ŵt[k]∝ p(xt | Ft−1, b[k];θt) wt[k];
For next iteration, compute b̂t = (b[1], . . . , b[K])ŵt;
Observe

(31) −Qt(ψ|ψt) =−
∑

k∈Kt

ŵt[k](log p(xt | Ft−1, b[k], b̂(t−1):(t−p);θ) + logw[k])

Update and project:

ξt+1 = ψt + η∇ψQt(ψ|ψt),(32)

ψt+1 = ΠK(ξt+1).(33)

end for

Algorithm 5 Online EM for stochastic processes with AR dependency (sampling)
Input: convex set K,ψ1 ∈K, mini-batch size m≥ 1, step size η

for t= 1, . . . , p do
Compute ŵt = qt(bt;wt);
Compute b̂t = (b[1], . . . , b[K])ŵt;
ψt+1 = ψt.

end for
for t= p+ 1, . . . , T do

Compute ŵt[k]∝ p(xt | Ft−1, b[k];θt) wt[k];
Sample b(t−1):(t−p) ∼ ŵ(t−1):(t−p);
Observe

(34) −Qt(ψ|ψt) =−
∑

k∈Kt

ŵt[k](log p(xt | Ft−1, b[k],b(t−1):(t−p);θ) + logw[k]).

Update and project:

ξt+1 = ψt + η∇ψQt(ψ|ψt),(35)

ψt+1 = ΠK(ξt+1).(36)

end for

5.1.1. Under the independence assumption. Algorithm 1, i.e., ECM for independent
data, is run with a stopping rule on the variation of the parameters: convergence is claimed
when the relative change in the parameter values from successive iterations is small. The
initial values are set to ψ0 = (1/3,1/3,1/3,0,1,1). Boxplots of the MLE we obtain for the
parameter vector ψ are available in Figure 1. On average, the algorithm required about 150
iterations.

Online Algorithm 2 requires to tune the hyper-parameter η, i.e., the step size of the gradi-
ent descent step in (15). We set it to 0.01 by looking at the first simulation only. The initial
values of the parameters are the same ones as for ECM. Boxplots of the MLE we obtain
for the parameter vector ψ are available in Figure 2. The estimates reported are the last esti-
mated values over the sample, i.e., the estimates after seeing the last observation. The online
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FIG 1. Maximum likelihood estimates of w, µ, σ2 and ν , from left to right, for Algorithm 1.
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FIG 2. Maximum likelihood estimates of w, µ, σ2 and ν , from left to right, for Algorithm 2 with η = 0.01.
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FIG 3. Maximum likelihood estimates of w, µ, σ2 and ν , from left to right, for Algorithm 2 initialized with ECM
estimates and η = 0.01.

algorithm converges to slightly biased values on average, in particular for the parameters of
the GLN distribution. Confidence intervals of the tracked parameters along with the average
estimates are available in Figure 11 of Appendix B. For convergence purposes, the step size
of an online algorithm is often set to decrease. Because our primary interest lies in track-
ing, we do not focus here on improving convergence, but Algorithm 2 could benefit from
methods which aim to better tune the step size. This might involve Polyak-Ruppert averaging
technique as a post-processing step, see, e.g., Ruppert (1988); Polyak and Juditsky (1992);
Cappé and Moulines (2009); Bach and Moulines (2011). The bias can also be reduced by
first applying Algorithm 1 on a small batch of data, say 500 observations, and then running
the online algorithm 2 starting from the ECM estimates, as shown in Figure 3.

5.1.2. For stochastic processes. Algorithm 3, i.e., MCECM for stochastic processes with
AR dependency, is run for a maximum number of 20 iterations. The size of the Monte Carlo
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sample M is set to 100 for the first 10 iterations and 200 for the next 10 iterations, upon
looking at the convergence behaviour of the algorithm on the first simulation of the study
only. The initial values are set to ψ0 = (1/3,1/3,1/3,0,1,1). Boxplots of the MLE we obtain
for the parameter vector ψ are available in Figure 4. The estimates of the scale and shape
parameters of the GLN distribution are slightly biased and can be improved by increasing
M , although it might be computationally expensive.

The step size of both online versions of the EM algorithm are set to 0.003 by looking at the
first simulation again. The initial values of the parameters are the same ones as for MCECM.
Boxplots of the MLE we obtain for the parameter vector ψ are available in Figure 5 for the
filtering version, and in Figure 6 for the stochastic version. Both online algorithms converge
to biased estimates of the GLN parameters. On these synthetic data, no version seems to
outperform the other. Confidence intervals of the tracked parameters along with the average
estimates are available in Figures 12 and 13 of Appendix B. The filtering version converges to
a slightly less biased estimate of σ2, but a slightly more biased estimate of ν. We believe the
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FIG 4. Maximum likelihood estimates of w, Λ, σ2 and ν , from left to right, for Algorithm 3.
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FIG 7. Maximum likelihood estimates of w, Λ, σ2 and ν , from left to right, for an online EM algorithm with
access to the past and η = 0.003.

bias mostly comes from approximating the past values of Bt through filtering or simulation.
For comparison purposes, we provide boxplots of an equivalent online algorithm which can
access the past values of Bt in Figure 7.

5.2. Tracking. We apply the online algorithms to non-stationary data, in particular when
the distribution of the bound slowly or suddenly changes, to illustrate their tracking abilities.
In the independent case, ECM, i.e. Algorithm 1, is first run on the first 500 observations.
Then, Algorithm 2 is run with η = 0.01 for both smooth and sharp simulations, starting from
the estimates obtained by Algorithm 1. Confidence intervals of the tracked parameters are
available in Figure 8 for w and in Figure 14 of Appendix B for the GLN distribution.

In the case of stochastic processes, both Algorithms 4 and 5 are run with η = 0.003. Confi-
dence intervals of the tracked parameters are available in Figures 9 and 10 for w. Confidence
intervals for the GLN parameters are not shown as very similar to Figures 12 and 13 of
Appendix B.

All online algorithms perform well in tracking the changing distribution of the bound. As
in Section 5.1, the decisions about the hyper-parameters were made upon looking at the first
simulation of each setting. Choosing an appropriate step size for tracking is also difficult: if
η is too large, the statistical fluctuations around ψt may be important, while the algorithm
will lose its tracking ability for too small values of η. This is a typical bias-variance trade-off,
a tracking/accuracy compromise in the context of adaptive algorithms, see, e.g., Benveniste,
Métivier and Priouret (1990).

5.3. Forecasting. As a first look into forecasting, we issue probabilistic forecasts from
the parameters tracked with Algorithms 4 and 5, in the case of stochastic processes with a
sharp change in the distribution of the bound. To obtain the forecasts at each time t for time
t+1, we first sample the past missing value of the bound according to the posterior distribu-
tion ŵt. Then, samples are drawn from the normal distributionN (µt+1, σ

2
t ) and transformed

back to the interval (0,1) using the inverse transformation γ−1 with νt. Finally, the next
value of the bound is sampled according to the marginal distribution wt. The first step of the
forecasting procedure prevents us from issuing predictive densities and we issue probabilistic
forecasts for Xt+1 in terms of a sample.

We evaluate these probabilistic forecasts on the last 10,000 observations by computing the
continuous ranked probability score (CRPS), which is a strictly proper scoring rule relative
to the class of the Borel probability measures that have finite first moment, see Gneiting
and Raftery (2007). As a comparison, we consider the probabilistic forecasts issued by the
following forecasters:
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FIG 8. Confidence intervals of the tracked parameter w for Algorithm 2 (independent data), in the case of a
smooth change (left) and a sharp change (right), with coverage probabilities 0.9 and 0.5, along with the average
estimates (solid lines) and the true parameters (dotted lines).

• Oracle: the oracle observes the true realizations b1, . . . , bt and knows the future bt+1 at
each forecasting time t; they also know the true parameter θt at each time t.

• Omniscient: the omniscient forecaster observes the true realizations b1, . . . , bt but does not
know the future bt+1; however, they know the true parameter ψt at each time t.

• Climatology: at each forecasting time t, climatology forecasts the empirical distribution of
the observations until time t.

• Probabilistic persistence: at each forecasting time t, probabilistic persistence forecasts xt
dressed with the past observed errors.

• GLN: at each forecasting time t, the GLN forecaster issues a GLN predictive density as in
Equation (7), where b1 = · · ·= bt = 1, and whose parameter vector θ has been estimated
on the first 5,000 observations.

The average CRPS over the 100 synthetic datasets are presented in Table 1 for each forecaster,
along with the standard deviations and three quantiles. The omniscient forecaster is the one
which predicts the true mixture distribution at each time t. It is far from the oracle and shows
the impact of having to forecast the bound on the overall forecasting performance. The CRPS
achieved when using the parameters tracked with Algorithms 4 and 5 are relatively close
to the CRPS of the omniscient forecaster, in particular compared to the gap between the
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FIG 9. Confidence intervals of the tracked parameter w for Algorithm 4 (stochastic processes), in the case of a
smooth change (left) and a sharp change (right), with coverage probabilities 0.9 and 0.5, along with the average
estimates (solid lines) and the true parameters (dotted lines).

TABLE 1
CRPS for each forecaster

Quantile (%)
Forecaster Mean (%) Std. dev. 2.5% 50% 97.5%
Oracle 6.37 0.12 6.16 6.36 6.66
Omniscient 9.84 0.15 9.54 9.84 10.07
Climatology 17.43 0.15 17.11 17.43 17.72
Probabilistic persistence 12.24 0.18 11.87 12.24 12.59
GLN 11.73 0.18 11.36 11.74 12.04
Algorithm 4 10.26 0.15 9.95 10.26 10.50
Algorithm 5 10.30 0.15 10.00 10.31 10.54

performance of the oracle and the performance of the omniscient forecaster. Hence, it seems
we do not loose too much when moving to forecasting by not observing the past values of the
bound. Note that on these synthetic processes, the online algorithm which uses past expected
values of the bound performs slightly better than the one which relies on the simulation of
a single value. As for other forecasters, to use a fixed single GLN distribution still provides



MIXTURES OF BOUNDED DISTRIBUTIONS WITH DIFFERENT BOUNDS 17

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000
0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000
0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000
Observation

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000
Observation

FIG 10. Confidence intervals of the tracked parameter w for Algorithm 5 (stochastic processes), in the case of a
smooth change (left) and a sharp change (right), with coverage probabilities 0.9 and 0.5, along with the average
estimates (solid lines) and the true parameters (dotted lines).

improvement compared to probabilistic persistence, while climatology shows a much larger
CRPS on average.

Lastly, note that we have chosen this framework where K = 3 and all w[k] are relatively
far from 1 and 0 to illustrate the performance of the method and the designed algorithms
above all, and because simulating more complicated synthetic data is rather challenging. This
implies the results achieved here in terms of forecasting are mostly sanity check results. Our
wish is that for real datasets, more differentiated weights will be put on more likely values
of Bt, for a finer grid b[1], . . . , b[K], while these probabilities will change over time, making
the method especially interesting for forecasting purposes.

6. Conclusion. We have introduced a new framework where the upper bound of a con-
tinuous response variable is a discrete latent variable. The corresponding statistical model is
derived in the case of independent and identically distributed bounded variables, and in the
case of bounded stochastic processes with AR dependency. We propose to perform maximum
likelihood inference using EM-based algorithms: an expectation-conditional maximization
(ECM) algorithm for independent data; a Monte Carlo expectation-conditional maximiza-
tion (MCECM) algorithm for stochastic processes with AR dependency. We ran a simulation
study which demonstrated the convergence of both batch algorithms. However, the MCECM
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algorithm would benefit from automating the choice of an appropriate size for the Monte
Carlo sample.

We wish to design online algorithms which enable the tracking of the model parameters in
changing environments, partly because of the simplicity of the distribution we have assumed
for the bound. While all online algorithms show good tracking abilities, the online EM algo-
rithms for stochastic processes failed to recover unbiased estimates of the GLN distribution
parameters. We believe this largely has to do with the approximation that is performed at
the E-step to replace the missing past values of the bound. Additional simulation studies are
required to evaluate the impact on the bias of an increase in both the number of components
in the mixture and the lag of the AR dependency. Alternative or complementary approaches
need to be considered to reduce this bias. Lastly, the assumptions made when computing the
posterior probabilities of the bound at each time t should be further investigated as well. Nev-
ertheless, the performance achieved by the online algorithms when moving to forecasting are
not so far from the ideal forecaster and rather encouraging.

APPENDIX A: ADDITIONAL ALGORITHMS

Algorithm 6 Projection on the probability simplex P

Input: w̃ ∈RK
if w̃ ∈P then w= w̃
else

Sort w̃(1) ≥ w̃(2) ≥ · · · ≥ w̃(K)

Find K0 =max

{
1≤ i≤K; w̃(i) −

∑i
j=1 w̃(j)−1

i > 0

}

Define λ∗ =

∑K0
j=1 w̃(j) − 1

K0
and Set w[k] = max(0, w̃[k]− λ∗)

end if
Return: w ∈P

Algorithm 7 Single-component Metropolis-Hastings with independence sampler
Input: #Monte Carlo samples M , burn-in parameter m0, b0 = (1, . . . ,1)

for m= 1, . . . ,M +m0 do
Set bm← bm−1

for t= p+ 1, . . . , T − p do
Sample B∗

t ∼ qt(b;w(j));
Sample a uniform random variable U ∼ U(0,1);

if U <min

(
1,

∏t+p
l=t p(xl | Fl−1,B

∗
t ,b

m
−t;θ

(j))
∏t+p

l=t p(xl | Fl−1,b
m
t ,b

m
−t;θ

(j))

)
then bmt ←B∗

t

else bmt remains unchanged
end if

end for
end for

Return: (bm0+1, . . . ,bm0+M )

APPENDIX B: ADDITIONAL FIGURES OF THE SIMULATION STUDY
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FIG 11. Confidence intervals of the tracked parameters with coverage probabilities 0.9 and 0.5, along with the
average estimates (solid lines) and the true parameters (dotted lines), for Algorithm 2 with η = 0.01.
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Abstract
The risk of missing data and subsequent incomplete data records at wind farms increases with the number of
turbines and sensors. We propose here an imputation method that blends data-driven concepts with expert
knowledge, by using the geometry of the wind farm in order to provide better estimates when performing
nearest neighbors imputation. Our method relies on learning Laplacian eigenmaps out of the graph of the
wind farm through spectral graph theory. These learned representations can be based on the wind farm layout
only, or additionally account for information provided by collected data. The related weighted graph is
allowed to change with time and can be tracked in an online fashion. Application to the Westermost Rough
offshore wind farm shows significant improvement over approaches that do not account for the wind farm
layout information.

K E Y W O R D S

missing data, time series, Laplacian eigenmaps, Nadaraya-Watson estimators, wind power forecasting

1 INTRODUCTION

According to the International Energy Agency, overall wind power generation increased by a record 17% in 2021. Of the total
830 GW installed 93% were still onshore systems, as onshore wind is a developed technology while offshore wind is still at the
early stage of expansion. However offshore reach is expected to increase in the coming years as more countries are developing
or planning to develop their first offshore wind farms. From the world’s first offshore wind farm, Vindeby in Denmark, which
totalled 11 turbines in 1991, the size of offshore wind farms has increased up to more than a hundred wind turbines nowadays,
e.g., Hornsea 1 in the United Kingdom which totals 174 wind turbines. While data recorded by wind turbines are of great
value for wind farm and system operators, they are subject to information loss from, e.g., power and communication failures,
instrumentation issues or human error. Missing data in wind farm time series can impact revenue1, wind energy resource
assessment2, wind farm control3 or the estimation of power curves4. In particular they negatively impact forecasting models
which for short-term lead times (from a few minutes to a few hours ahead) are better be statistical models trained on historical
data and/or online learning methods which require the most recent observed data5. For offshore wind power forecasting, short-
term fluctuations in power generation are most significant, calling for very-short-term forecasting models and methods. Because
of the increasing number of turbines in offshore wind farms, the issue of missing data gets even more critical. Let T be the total
number of records over a wind farm, measured at successive time steps t = 1, . . . , T (usually spaced at uniform intervals). Now
assume a data point is missing for a wind turbine at time t with probability 0.01, independently from other wind turbines. With a
number of wind turbines N = 11, this would result in about 90% of the T records being complete, i.e., data points are available
for all N wind turbines. With N = 174 wind turbines, the proportion of complete records drops to 17% and the workaround
which consists in assuming data completeness and deleting records with missing entries is not sensible anymore6.

Alternatives remain for dealing with increasing missing data. One is to develop methods where the assumption of data
completeness is not needed anymore. In the context of time series, works exist that make assumptions about the missing data

Abbreviations: NN, nearest neighbors; AR, autoregressive; EM, expectation-maximization; MCAR, missing completely at random; MAR, missing at random; MNAR,
missing not at random; OGD, online gradient descent; RMSE, root mean square error.
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2 PIERROT and PINSON

patterns7, or need not even make any assumptions8, and estimate AR models. Other works develop models which are robust
to missing data9. Another alternative is to provide imputations for missing values, i.e., to replace the data points which are
missing with plausible values. Classical statistical imputation methods use maximum likelihood estimators which correspond to
a specific underlying model. A very popular approach for dealing with missing data in time series is the EM algorithm10 which
relies on two steps: at the E-step missing values are filled in with their conditional expectation given the observed data and the
current estimate of the model parameter vector, and at the M-step a new estimate of the parameter vector is computed from the
current version of the completed data. This procedure requires assumptions on the distributions of both observed and missing
data. A widely used11, yet controversial12, nomenclature for missing value mechanisms distinguishes between three cases:
MCAR, MAR and MNAR. In MCAR the probability of a data point being missing is completely independent of any variables
in the dataset while in MAR the probability of being missing depends only on observed values. These first two mechanisms
are considered the simple ones in the sense that they do not make it necessary to model explicitly the distribution of the values
which are missing when maximizing the likelihood of the observations. The third mechanism is the harder yet prevalent one, as
the probability of a point being missing is dependent on the value it would have taken. This leads to important biases in the
remaining data whose distribution is not the true distribution anymore.

Missing value imputation is appealing as it makes it possible to first get a completed dataset and then to apply any statistical
learning algorithm which relies on the completeness assumption. However it covers a wide range of situations where it might be
more or less legitimate to handle the problem of missing values that way. This has to do with the missing value mechanism,
which one can hardly be sure of, but also with the task to be performed on the completed dataset. For supervised learning tasks
such as forecasting, theoretical and empirical results outline simple practical recommendations13. In particular, that to train
and test on data with missing values, the same imputation model should be used. Empirically, that good imputation methods
reduce the number of samples required to reach good prediction. Also, that when missingness is related to the prediction target,
imputation is not sufficient and it is useful to add indicator variables of missing entries as features. Last but not least it is
shown that a predictor suited for complete observations can predict optimally on incomplete data through multiple imputation,
which consists in generating multiple plausible values for each missing value. When the supervised learning algorithm is of the
regression kind, with a regression function which can be nonlinear, almost all imputations lead asymptotically to the optimal
prediction with a powerful learner, no matter the missing value mechanism. This result gives theoretical grounding to all impute-
then-regress procedures. However a good choice of imputation can reduce the complexity of the regression function to be learned
and therefore it is suggested that learning imputation and regression jointly is easier14,15.

In the context of offshore wind farms, we deal with multivariate time series, as we record N data points, one for each wind
turbine, at each time step t. This opens a new range of methods for missing data imputation, as one can exploit information from
another (potentially correlated) sensor, in our case another wind turbine, when one is missing. Recently, several deep learning
approaches have been proposed for multivariate time series imputation16,17,18. When interested in the average production of
a wind farm, it is quite intuitive to work with the average of the individual production values from the wind turbines which
are available at time t. By doing so one implicitly performs k-NN imputation. The k-Nearest Neighbors algorithm is a seminal
nonparametric method in machine learning19,20. In a nutshell, it uses the k points which are the closest to a point of interest to
make a decision about it. In k-NN imputation, we consider the k nearest neighbours of a missing point to provide an estimate of
its value21. The assumptions associated with this imputation method are very weak: we do not assume any model generating the
data, observed or missing, and only assume similar groups of observations. Moreover the method applies for all missing data
mechanisms. In section 2 we explicit how working with a quantity of interest averaged over nt available records at each time t
comes down to (unweighted) nt-NN imputation. We propose to improve this implicit imputation by moving from unweighted
to weighted nt-NN imputation through Nadaraya-Waston estimators. Each neighbor will now enter the k-NN algorithm with
a different weight, hopefully the closer the higher. A higher weight for a closer neighbor means we are able to measure how
close with an appropriate distance. We show how to use graph spectral theory to compute Laplacian eigenmaps, i.e., new
representations of the wind farm as a graph which take into account local and global geometries. We consider the case when
we only use the structure of the wind farm for learning its representation and the case when we also use values of the quantity
we wish to perform imputation for. The method is illustrated on the Westermost Rough offshore wind farm and results for the
imputation of power generation missing values are presented in section 3. Finally we provide some conclusions and perspectives
in section 4.
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2 IMPUTATION USING NEAREST NEIGHBORS AND GRAPHS

2.1 Weighted nearest neighbors imputation

Let Xt be an average quantity of interest over a wind farm at time t. We have

Xt =
1
N

N∑

i=1

Xi
t , (1)

where Xi
t is the quantity of interest for the i-th wind turbine at time t, N is the total number of wind turbines in the wind farm.

When some Xi
ts are missing, assume instead we work with

X̂t =
1
nt

nt∑

j=1

X(j)
t , (2)

where X(j)
t is the quantity of interest for the (j)-th available wind turbine record, nt being the number of available wind turbine

records, at time t. Imputation with k-NN consists in filling in a missing value using the values from its k-nearest neighbors.
Unweighted k-NN give the same weight to each neighbor, when weighted k-NN assign a higher weight to a closer neighbor.
Replace each missing value X(l)

t with its unweighted nt-NN estimate X̂(l)
t = 1

nt

∑nt
j=1 X(j)

t , where X(j)
t are the nt values available at

time t. We have

X̂t =
1
N

(
X(1)

t + · · · + X(nt)
t + X̂(nt+1)

t + · · · + X̂(N)
t

)
, (3a)

=
1
N

nt∑

j=1

X(j)
t +

1
N

N∑

l=nt+1

X̂(l)
t , (3b)

=
1
N

nt∑

j=1

X(j)
t +

1
N

N∑

l=nt+1

1
nt

nt∑

j=1

X(j)
t , (3c)

=
1
nt

nt∑

j=1

X(j)
t . (3d)

We see that to work with X̂t in (2) is equivalent to filling in the missing values (X(l)
t )l=nt+1,...,N using unweighted nt-NN estimates,

i.e., where each neighbor is assigned the same weight. However a quantity of interest at a wind turbine level is likely to be more
similar to the same quantity from the actual neighbors of this wind turbine, i.e., the wind turbines which are located nearby in
the wind farm. Staying in the k-NN framework, we can improve our estimates through the number of neighbors k, the weights
put on neighbors, or both. Theoretical results about k-NN mostly concern the asymptotic mode, when nt tends to infinity, which
cannot be assumed here as we are limited by the number of wind turbines in the wind farm. It is rather critical to choose k in a
finite regime, and it is usually advised to perform cross-validation. This would be cumbersome here as cross-validation would
need to be run for each combination of available data points, for each missing data point, and would require quite an amount of
complete data. Therefore we suggest to keep k = nt at each time t and rather improve the weights of the nt-NN imputation.

Learning the distance metric for k-NN has been extensively studied and it was found that metric learning may significantly
affect the performance of the method in many applications. Because we perform imputation at each time step t considering
values from similar sensors at the same time step t, the Euclidean distance seems a fair enough metric in our framework. Instead
we focus on a common shortcoming in current nonparametric methods, which is to only consider the distances between the
decision point and its neighbors and ignore the geometrical relation between those neighbors. Indeed, before we even get any
records from its sensors, a wind farm is a graph with its own geometry which provides a priori information not only on the
distance between a wind turbine and its neighbors, but also between these neighbors.

Moving to weighted nt-NN imputation we wish to provide each wind turbine (l) which misses a record with a better estimate
by weighting the available records (j) according to their proximity to the wind turbine, while acknowledging the whole structure
of the wind farm. In order to do so we need to be able to assign weights depending on the distance between the wind turbine for
which a record is missing and the wind turbines with available records. We choose to use Nadaraya-Watson estimators22,23,
which assign weights that are proportional to some given similarity kernel K. More optimal methods could be used24, which we
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will discuss later. Let K be a given nonnegative measurable function on R (the kernel), h be a positive number (the bandwith)
depending upon nt only and ∥z(j) – z(l)∥ be the Euclidean distance between the representations of two wind turbines (j) and (l). In
case (l) is missing and (j) is available at time t, the weight we give to X(j)

t when computing a weighted estimate X̂(l)
t =

∑nt
j=1 w(jl)X(j)

t

of X(l)
t is

w(jl) =
K
(

∥z(j)–z(l)∥
h

)

∑nt
i=1 K

(
∥z(i)–z(l)∥

h

) . (4)

Let us sort the neighbors of a wind turbine (l) by increasing distance, ∥z(1) – z(l)∥ ≤ ∥z(2) – z(l)∥ ≤ · · · ≤ ∥z(nt) – z(l)∥. We choose
an adaptive bandwith ht = ∥z(nt) – z(l)∥, so that the weights adjust depending on nt, i.e., depending on the availability of other
records at time t. Note that if all distances at play at time t are very similar, the estimator will be very close to the unweighted
one, which seems legit. Consider the so-called naive kernel K(u) = 1{∥u∥≤1}. With such a choice for ht, to use a naive kernel is
to use our former estimate 1

nt

∑nt
j=1 X(j)

t . Therefore from now on we will refer to this estimate as the Nadaraya-Watson estimator
with a naive kernel. For a more general kernel the weight w(jl)

t depends on the distance ∥z(j) – z(l)∥ through the kernel shape. We
will consider the following ones:

• Gaussian kernel K(u) = e–∥u∥2
,

• Epanechnikov kernel K(u) = (1 – ∥u∥2)1{∥u∥≤1},
• triangular kernel K(u) = (1 – ∥u∥)1{∥u∥≤1},
• quartic kernel K(u) = (1 – ∥u∥2)2 1{∥u∥≤1},
• triweight kernel K(u) = (1 – ∥u∥2)3 1{∥u∥≤1},
• tricube kernel K(u) = (1 – ∥u∥3)3 1{∥u∥≤1}.

Note that only the Gaussian kernel gives a positive weight to the furthest neighbor (or neighbors) (nt) of (l), while all other
kernels put a zero weight.

2.2 Wind farms as unweighted graphs

2.2.1 Graphs

A graph G is defined by a set of nodes - or vertices - V = v1, . . . , vN and a set of edges E between nodes. It is said to be undirected
if there is no direction implied by an edge. Often when a vertex vi represents a data point xi, two vertices vi and vj are connected
if xi and xj are close. Let the wind farm be a graph G = (V , E) where the set of nodes V are the wind turbines, |V | = N, and the set
of edges E connecting two nodes are to be decided upon. We base our graph on the layout of the wind farm, without considering
any data points xi.

We start with an unweighted graph, i.e., each edge between two nodes is unweighted. Let A = (aij)i,j=1,...,N be the adjacency
matrix of the graph G. Unweighted edges (or simple-minded weights) means that aij = 1 if vertices vi and vj are connected by an
edge, aij = 0 otherwise. Therefore all the edges are assumed to have the same strength. Note that the diagonal of A is equal to
zero, i.e. aii = 0, as we do not consider self-connections. Through the adjacency matrix A each wind turbine is represented by
the vector of size N of its connections to the other wind turbines in the wind farm. Out of this representation we wish to learn a
low-dimensional embedding for each wind turbine that preserves the structure of the wind farm.

2.2.2 Laplacian eigenmaps

We are interested in spectral graph embeddings, and in particular in Laplacian eigenmaps, which optimally preserve local
neighborhood information and produce coordinate maps that are smooth functions over the original graph25. By trying to preserve
local information in the embedding, the algorithm implicitly emphasizes the natural clusters in the data. Close connections to
spectral clustering then become very clear26. We hope for the Laplacian eigenmaps to provide a smooth clustering of the wind
turbines over the wind farm. Let D be the diagonal matrix associated with the graph G whose entries are the degree of each
node, i.e., dii =

∑
j aji. The matrix L = D – A is called the Laplacian matrix of the graph and one gets eigenmaps by computing



Data is missing again – Reconstruction of power generation data using k-Nearest Neighbors and spectral graph theory 5

eigenvalues and eigenvectors for the generalized eigenvector problem

Lf = λDf. (5)

Let f0, . . . , fN–1 be the solutions of Equation (5), ordered according to their eigenvalues

Lf0 = λ0Df0 (6a)

Lf1 = λ1Df1 (6b)

... (6c)

LfN–1 = λN–1DfN–1 (6d)

0 = λ0 ≤λ1 ≤ · · · ≤ λN–1. (6e)

We leave out the constant eigenvector f0 corresponding to eigenvalue 0 and use the next r eigenvectors for embedding each
wind turbine vi in a r-dimensional Euclidean space:

zi = (f1(vi), . . . , fr(vi)). (7)

The embedding zi is a new representation of the wind turbine vi. Distances ∥zi – zj∥ for every pair of wind turbines (vi, vj) can
now be computed once and for all but the number of components we keep in zi needs to be decided upon. For each missing data
point the kernel function will then adjust the weights at each time t depending on the set of nt available data points from other
wind turbines.

2.3 Wind farms as weighted graphs

2.3.1 Weighting of the original graph

The representations we get out of the unweighted graph embed the structure of the wind farm only and can be used without
having any other data but the map of the wind farm. The unweighted graph can be seen as a stationary a priori part of the
relationships between the wind turbines, which comes from the location of the wind turbines inside the wind farm and could be
completed with an online part coming from the time series we are interested in. Therefore we propose to keep the structure of
the unweighted graph G and move from unweighted to weighted edges. Say we are interested in Xi

t the power generation of
wind turbine vi at time t normalized by the nominal capacity of the wind turbine. Therefore we have Xi

t ∈ [0, 1] for t = 1, . . . , T ,
i = 1, . . . , N. An edge between two wind turbines shall be weighted according to the similarity of these wind turbines. Working
with power generation this translates to the similarity between the power generations of these wind turbines at time t, as we are
interested in an online similarity. Let xi

t, resp. xj
t, be the observed power generation of wind turbine vi, resp. vj, at time t. A simple

and intuitive choice for the similarity between xi
t and xj

t is st(i, j) = 1 – ∥xi
t – xj

t∥, st(i, j) ∈ [0, 1]. Note that if it happens at time t
that two wind turbines which are not connected in graph G have very similar power generation values, they remain unconnected.
By doing so we enforce an a priori on the relationship between the wind turbines upon the structure of the wind farm, but we
also keep a sparse adjacency matrix A. Indeed the adjacency matrix A now depends on t and we have At = (at,ij)i,j=1,...,N where
at,ij = st(i, j) if vertices vi and vj are connected by an edge, at,ij = 0 otherwise. This implies to solve the generalized eigenproblem
(5) at each time step t, which can be done rather easily when dealing with sparse matrices At.

2.3.2 Online, changing graphs

Because of the way G is now weighted, it can happen that two wind turbines which are a priori connected get disconnected
because st(i, j) = 0 for some time t. In such a case we can get a graph which is not connected anymore, i.e., we cannot travel
through the whole graph from any point in the graph. To compute eigenmaps the generalized eigenproblem (5) must be solved
for a connected graph, which ensures rank(D) = N and there are N eigenvalues, or λ(L, D) may be finite, empty or infinite27.
Therefore when a graph has several components the algorithm for computing eigenmaps consists in solving the generalized
eigenproblem (5) for each connected component, which we will do for components with at least three wind turbines. When a
wind turbine splits from the graph on its own, it is straightforward to derive its production value from its neighbors as typically
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a wind turbine vi gets disconnected at time t because xi
t = 0 and xj

t = 1 for all its neighbors vj. When two wind turbines get
disconnected together, the similarity between the two is usually high enough to replace the record which is missing with the one
which is available.

Since we are online and in high dimension, we need to be able to automatically detect when the graph is not connected
anymore, and what are the components. Let Lrw = D–1L = I – D–1A be the so-called normalized graph Laplacian, which is the
graph Laplacian we use to compute eigenmaps. We recall a basic yet very useful property of this graph Laplacian26, that makes
it easy to derive the connected components of G at time t if the multiplicity of the eigenvalue 0 of Lrw,t becomes higher than
1. Let G be an undirected graph with non-negative weights. The multiplicity d of the eigenvalue 0 of the graph Laplacian Lrw

equals to the number of connected components A1, . . . , Ad in the graph and the eigenspace of 0 is spanned by the indicator
vectors 1Ai of those components.

Last but not least, so far we have assumed the similarities st(i, j) to be known. Because our application is the imputation of
missing values, the true distances are actually known at time t among the wind turbines for which data points are available, but
they are not for the edges involving wind turbines for which the record is missing and we need to replace them with estimates. To
avoid having to specify a model for the similarities between all individual time series, we place ourselves in the online learning
framework. The goal in this learning paradigm is to guess a sequence of numbers as precisely as possible, when the data are
chosen by an adversary rather than generated stochastically28,29. In our framework this translates as the following repeated game:
in each round t = 1, . . . , T , for each similarity between two connected wind turbines st(i, j), an adversary chooses a real number
in [0, 1] and keeps it secret; we try to guess the real number, choosing ŝt(i, j); the adversary number is revealed and we pay the
squared difference (st(i, j) – ŝt(i, j))2. Online learning is appealing from both a theoretical and practical point of view because a
lot of problems can be described as such a repeated game, which does not require strong assumptions to offer nice theoretical
guarantees. One shall note that the last step of the repeated game when the adversary number is revealed does not happen if
some of the data are missing. Therefore to account for the possibility of missing data the game is slightly modified and we pay
(st(i, j) – ŝt(i, j))2 only if st(i, j) is revealed8. Using the notation 1{st(i,j)} as the indicator of the event {st(i, j) is revealed}, we pay
now (st(i, j) – ŝt(i, j))21{st(i,j)}. In such a missing data, convex, framework, an online strategy with good theoretical guarantees is
the lazy version of OGD30 which is applied to our problem in Algorithm 1, where Π[0,1] is the projection back to [0, 1]. We
also consider the best constant strategy, i.e, the strategy that minimizes

∑T
t=1(st(i, j) – ŝt(i, j))21{st(i,j)}, which is just constantly

choosing ŝt(i, j) to be the average similarity
∑T

t=1 st(i, j)1{st(i,j)}
/∑T

t=1 1{st(i,j)} at each round.

Algorithm 1
Input: learning rate η

Set ŝ1(i, j) = y1 = 1.
for t = 1, . . . , T do

Play ŝt(i, j) and occur cost ft (̂st) = (st(i, j) – ŝt(i, j))21{st(i,j)}.
Update and project:

yt+1 = yt – η∇ft (̂st)

ŝt+1(i, j) = Π[0,1](yt+1)

end for

3 APPLICATION AND CASE-STUDY: WESTERMOST ROUGH

We apply the method presented in section 2 to a real use case, the Westermost Rough offshore wind farm. Westermost Rough
is located close to the Eastern coast of the United Kingdom and totals 35 wind turbines which are placed according to a grid
pattern. A representation of the wind farm through the position and name of its wind turbines is available in Figure 1. The pattern
is rather usual and the number of wind turbines high enough to support our method, but not too high for us to deliver a detailed
and visual analysis. Through this example we wish to deliver good practices and to emphasize challenges which generalize to
bigger and/or more complicated wind farms. Along with the exact position of the wind turbines, we have data records over two
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F I G U R E 1 Position and name of the 35 wind turbines in Westermost Rough offshore wind farm (UK).

years, from January 1, 2016 to December 31, 2017, at a temporal resolution of every 10 minute. We will focus on the graph
representations in section 3.1 and apply the method to power generation imputation in section 3.2.

3.1 The Westermost Rough graph representations

When constructing a graph one’s objective is to model the local neighborhood relationships and we choose to connect wind
turbines that are actual neighbors, i.e., there is no other wind turbine nor empty space between them. The corresponding graph is
presented in Figure 2. This is an important step for which there is no absolutely right choice and one should keep in mind that
choosing an appropriate a priori graph matters to the results. In the case of Westermost Rough, one could choose not to connect
wind turbines that are neighbors through a diagonal. How did we choose this graph? When looking at the exact locations, it
appears the grid pattern is not exact and in reality two wind turbines on what looks like a diagonal might be closer than two wind
turbines on an horizontal line. Also the direction of the wind might matter more than the real distances, and last but not least we
feel that for a wind turbine the more neighbors the better.

Now that we have decided upon our reference graph G = (V , E), we start with an unweighted version of G, i.e., the edges E
have 0/1 weights only. We compute the corresponding Laplacian matrix L = D – A and solve the generalized eigenvector problem
in (5). We leave out the (first) constant eigenvector and get an embedding zi for every wind turbine vi. These embeddings are of
maximal size 34, i.e., N minus the first constant eigenvector f0. In Figure 3 we show the corresponding representations of the
wind turbines according to eigenvectors f1 and f2 (left) and eigenvectors f2 and f3 (right). On these eigenmaps the wind turbines
are smoothly clustered together over the wind farm according to their position, where both the local neighborhoods and the
whole structure of the wind farm are accounted for. These plots provide nice insight about the representations learned from
running the eigenmap algorithm over the unweighted graph, and how they embed the local and global geometry of the wind
farm layout in a lower dimension.

We focus here on imputing missing data for wind power generation. Therefore we can weight the edges E of G using the
methodology and the similarity described in section 2.3, where st(i, j) = 1 – ∥xi

t – xj
t∥ is the similarity at time t between the power



8 PIERROT and PINSON

A07 B07 C07 D07 E07 F07

A06 B06 C06 E06 F06

A05 B05 E05 F05

A04 B04 E04 F04

A03 B03 C03 E03 F03

A02 B02 C02 E02 F02

A01 B01 C01 D01 E01 F01

F I G U R E 2 Graph of the Westermost Rough offshore wind farm with color code.

generations xi
t and xj

t of two connected wind turbines vi and vj. Working with weighted graphs whose weights vary over time, the
eigenmap algorithm needs to be run, and we get different embeddings, at every time t. As mentioned in section 2.3.2, the graph
itself can change, if an edge’s weight becomes 0 at time t. As for the representations learned by the eigenmap algorithm, the
clusters are still dependent upon the original graph G, i.e. upon the geography of the wind farm, but the distances between the
embeddings may now change depending on an edge’s weight st(i, j).

3.2 Imputation of power generation values

3.2.1 Evaluation setup

In the methodology we propose, we do not estimate any parameters and have tried to minimize the number of choices that need
to be made. Nonetheless when moving to imputation we need to decide on a few hyperparameters, which are:

• the number of dimensions r we keep for the embeddings zi we get out of the unweighted graph or the embeddings zi
t we get

out of the weighted graphs,
• the kernel function which turns the distances between these embeddings into weights for the weighted k-NN imputation,
• the learning rate η in Algorithm 1 if we use weighted graphs and lazy OGD.

Recall that we have two years of data records over the Westermost Rough wind farm, 2016 and 2017. We split this dataset into
two sets: a validation set, the first year of data, 2016, for deciding upon the hyperparameters; a test set, the second year, 2017,
for evaluating our method compared to the naive Nadaraya-Watson estimator which is our current reference. Another simple
benchmark is to consider the geographical locations of the wind turbines and just test Nadaraya-Watson estimators out of the
actual distances between the wind turbines. We will refer to this benchmark as the "location" Nadaraya-Watson estimator. We
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F I G U R E 3 Representation of the wind turbines according to dimensions 1 and 2 (left) and dimensions 2 and 3 (right).

evaluate the different estimators through the RMSE
√√√√√ 1

Ti

Ti∑

t=1


xi

t –
nt∑

j=1

w(ji)
t x(j)

t




2

, (8)

which we will compute for each wind turbine vi, where Ti is the number of records for which xi
t is available. We compute the

RMSE in equation (8) for two different setups:

• a setup we call incomplete, for which we compute (8) for all data records which include xi
t, no matter which other data

records are available at time t;
• a setup we call complete, for which we compute (8) on complete data records only, i.e., such that we have xt for all N wind

turbines.

The validation set consists in 52,669 records, 23,499 records being complete records. The test set consists in 52,549 records,
29,560 records being complete records. The incomplete setup enables us to evaluate the quality of the estimates for each wind
turbine taking into account the reality of the availability of other records, while the complete setup measures an ideal quality of
the estimate, in the sense that we assume all the other records to be available. Note that to simulate our own missing values is not
really an option on this dataset, as we only have nearly half of the records which are complete records, and they are unlikely to
be successive records, breaking down the dynamics of the time series.

3.2.2 Hyperparameter selection

The estimators we are evaluating are

• the naive estimator: Nadaraya-Watson estimator with a naive kernel, which comes down to equal weights for all available
data records;

• the location estimator: Nadaraya-Watson estimator which assigns weights depending on the real geographical distances
between the wind turbines;
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• the unweighted-graph estimator: Nadaraya-Watson estimator which assigns weights depending on the distances between
embeddings obtained from the unweighted graph G;

• the weighted-graph estimator: Nadaraya-Watson estimator which assigns weights depending on the distances between
embeddings obtained from online weighted graphs Gt.

On the validation set, the location estimator gives best results with a triweight kernel. The unweighted-graph estimator is
always better using a dimension r = 2 for the embeddings. In the complete setup, the triweight kernel is by far the best one. It is
still the first one in the incomplete setup but much closer to the second best one, which is the quartic kernel. This is the best
kernel overall, but let us note that on the validation set the power generation of wind turbines C03 and E04 would be (slightly)
better approximated using this estimator with a Gaussian kernel.

For the weighted-graph estimator, we need to use estimated similarities on the edges between the wind turbine we are testing
and its neighbors in the complete setup, and on all edges involving missing data records in the incomplete setup. We can choose
which estimated similarity to use without running the eigenmap algorithm by looking at the loss we pay on the validation set:

Tval∑

t=1

lt(i, j) =
Tval∑

t=1

(st(i, j) – ŝt(i, j))21{st(i,j)}. (9)

In the online learning paradigm, the loss in (9) is a reference when computed for the best constant strategy

ŝ(i, j) =
Tval∑

t=1

st(i, j)1{st(i,j)}

/ Tval∑

t=1

1{st(i,j)}. (10)

The difference between the loss of any other strategy and the loss of the best constant strategy is known as the regret (of not
sticking to the best choice in hindsight) and is what theoretical results for online learning mostly focus on, i.e., ensuring the
regret is (nicely) bounded when using a specific strategy. When computing the regret of lazy OGD on the validation set for
different values of the learning rate η, it becomes very clear that lazy OGD provides far better results than the best constant
strategy. This is a confirmation that the similarities between wind power time series are nonstationary. An optimal learning rate
can be computed from theoretical results on lazy OGD. Let D be the diameter of the support K of the loss function lt we pay at
each round t, G an upper bound to the norm of the gradients of lt and T the number of rounds. The regret of lazy OGD is best
bounded by taking η = D(G

√
T)–1 30. We have K = [0, 1], D =

√
max

st ,̂st∈K
(st(i, j) – ŝt(i, j)) = 1 and G = 2 as

∥∇lt(i, j)∥ = ∥–2(st(i, j) – ŝt(i, j))1{st(i,j)}∥ ≤ 2. (11)

Since we deal with missing data, we get η =
(

2
√∑Tval

t=1 1{st(i,j)}

)–1
8. The learning rate is set to decrease over time when one is

interested in converging to an optimal solution. And, as we want to track a time-varying quantity a standard approach is to rather
choose the learning rate to be constant. Therefore we shall take η = 0.5. This is empirically verified on our validation set as
better regrets are obtained for constant learning rates in [0.3, 0.5]. In the case where η = 0.5, lazy OGD comes down to what is
known as persistence in time series forecasting without missing values, which is simply to use the last observed value. For the
weighted-graph estimator, using lazy OGD with η = 0.5, the best kernel is again the triweight kernel in the complete setup but
the best results are now obtained using a dimension r = 4 for the embeddings. Let us note that the wind power generation of C03
is way better approximated by this estimator, with an improvement of about 11%. In the incomplete setup, the best estimator is
also the one with a triweight kernel and a dimension r = 4 for the embeddings. However the improvement we get on C03 is now
of about 4% only.

3.2.3 Results on the test set

From the results on the validation set, we compute all the estimators over the test set using a triweight kernel. For the unweighted-
graph estimator, we use embeddings of dimension 2. For the weighted-graph estimator, we use embeddings of dimension 4 and
lazy OGD with η = 0.5. The results on the test set in the complete, resp. incomplete, setup are given in Table 1, resp. in Table 2.
They are averaged over the wind turbines. The improvement over the naive estimator is plotted by wind turbine in Figure 4, resp.
in Figure 5, for each estimator. Accounting for the geographical distance between a wind turbine and its neighbors already
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improves the estimates for every wind turbine compared to a naive estimator which assigns the same weight to all neighbors.
With additional information about the distances between the neighbors themselves, through the structure of the wind farm, the
estimators perform better on average over the wind farm, but there is more variability depending on the wind turbine. Especially
the power generation of wind turbine C03 is better approximated by a naive estimator. Wind turbine C03 has a very central
position which supports the choice of an estimator with equal weights. It might also be that C03’s closer neighbors show a
rather different behaviour and do not help much in estimating its power generation. This degradation is limited by including
information about the power generations through a weighted graph.

The improvement we get from using the weighted-graph estimator is significant overall, for both complete and incomplete
setups, and more stable over wind turbines. In particular the weighted-graph estimator performs better imputation for wind
turbines which are on the outer parts of the wind farm, up to more that 20% for some of them. As a reference, if we use the real
similarities for the edges in the complete setup instead of the estimates from lazy OGD, the overall improvement over the naive
estimator is 11.21%, compared to 10.34% with the estimates. There is still room for improving the estimated similarities, for
example by taking into account exogenous information such as the wind direction or speed, but the lazy OGD already performs
pretty well.

Finally, let us note that on the test set 43.76% of the records are not complete. Most of these incomplete records miss wind
power generation data for one (69.57%), two (23.22%) or three wind turbines (6.79%). The case when only one record is missing
is well described by our complete setup, where we remove the record of only one wind turbine and look into how well the
missing data point is imputed by the estimator, depending on which turbine it has been removed for.

3.3 Discussion

First, let us acknowledge that when working at an aggregated level, over large wind farms, if in most cases only one record is
missing at time t out of N, averaging over the remaining N – 1 records seems fair enough, at least for Westermost Rough. This
might not be the case though for wind farms with less conventional layouts. Accounting for the geographical distances when
computing the weights of a weighted average can already lead to significant improvements. The additional information of the
structure of the wind farm gave better estimators on average, but at the cost of more instability, by degrading the imputation for
some wind turbines - thinking of wind turbine C03. Note that we have restrained ourselves to the choice of a common kernel

T A B L E 1 Results on the test set in the complete setup.

Estimator avg RMSE (sd) avg impr./naive best impr./naive (vi) worst impr./naive (vi)

naive 12.32% (2.86) - - -
location 11.55% (3.02) 6.83% 17.69% (F06) 0.65% (C06)
unweighted-graph 11.50% (3.06) 7.25% 21.36% (F06) -4.10% (C03)
weighted-graph 11.11% (2.95) 10.34% 20.50% (C07) -2.11% (C03)
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F I G U R E 4 Improvements over the naive estimator by wind turbine in the complete setup.
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T A B L E 2 Results on the test set in the incomplete setup.

Estimator avg RMSE (sd) avg impr./naive best impr./naive (vi) worst impr./naive (vi)

naive 12.14% (2.35) - - -
location 11.39% (2.44) 6.49% 14.45% (F06) 0.94% (C06)
unweighted-graph 11.34% (2.47) 6.93% 17.31% (F06) -4.01% (C03)
weighted-graph 10.92% (2.42) 10.35% 23.20% (D01) -2.59% (C03)
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F I G U R E 5 Improvements over the naive estimator by wind turbine in the incomplete setup.

over the wind farm. If choosing a different dimension r for the embeddings would not make much sense, to choose a different
kernel for different wind turbines seems rather appropriate depending on the position of the wind turbine in the wind farm.
However, moving into that direction, we would rather opt for replacing the Nadaraya-Watson estimators with an algorithm which
can compute optimal weights efficiently and adaptively for each data point we wish to estimate, out of the distances between the
wind turbines24 - actual distances between locations or distances between embeddings.

If one is interested in individual signals, the methodology we propose can make much more difference, as for some wind
turbines the graph-based estimators improve the power generation estimates by more than 20%. We have focused here on what
is known as single imputation as we have tried to impute missing entries as accurately as possible, which gives us only one
completed dataset. Multiple imputation on the other hand consists in predicting M different values for each missing data point
and provides M imputed datasets. Multiple imputation is usually preferred, especially for inference tasks, as it ensures the
variance is properly accounted for. We want to emphasize here that k-NN nicely enable to move to a probabilistic framework,
when one is interested in the distributions of the time series, as a weight w(jl) can be seen as the probability of the missing data
point x(l) to take the value of the available data point x(j). Let δx(j) (x) denote the Dirac delta mass located at x(j). Instead of using a
weighted average as a point estimate of x(l), we can assume x(l) to be distributed according to the empirical measure

π̂(x) =
n∑

j=1

w(jl)δx(j) (x), (12)

and simply sample from (12), that is select x(j) with probability w(jl).
The location and unweighted-graph estimators can be very useful early on in the life of a wind farm, as they do not require any

data points. The weighted-graph estimator does use data points, but can start as soon as there are data points for all wind turbines,
as it does not require any model assumption nor estimation. The a priori we base our method on, by building the graph upon the
structure of the wind farm, can be seen both as a pro and a con of the method, as it enforces proximity between wind turbines
depending on their position inside the wind farm. This can bring robustness if it is appropriate, or instability when it is not, as
we have seen with wind turbine C03. We have already mentioned this could be mitigated by moving from Nadaraya-Watson
estimators to optimal weights thanks to an efficient algorithm24. When using data points, that is weighted graphs, an alternative
would be to remove this assumption and start from what is known as a complete graph, in which every pair of wind turbines are
connected by an edge. Then the complete graph would evolve online depending on the similarity on the edges as in section 2.3.2.
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Nonetheless this would require to monitor N(N – 1)/2 similarities and to perform eigendecomposition on matrices which might
not be sparse anymore.

4 CONCLUSION AND FUTURE DIRECTIONS

From the intuitive practice of averaging over a wind farm in order to deal with missing data points, we have focused on weighted
k-NN imputation and dealt not only with distances between a wind turbine and its neighbors but also with distances between the
neighbors themselves by learning graph representations. Weighting the graph edges with the similarity at time t between two
data points from two time series and using spectral graph theory enabled us to compute online representations which could adapt
to changes in the relationship between a wind turbine and its neighbors, typically when a wind turbine is not producing.

When using Nadaraya-Watson estimators, we chose and applied the kernel which gave the best results on average over the
wind farm, and over the data records. We believe our method could benefit from replacing these estimators with an algorithm
that would rather compute optimal weights efficiently and adaptively for each data point when performing the weighted k-NN
imputation. By each data point we mean by wind turbine, and at each time step t in the case of online weighted graphs. The
unweighted-graph imputation might be more robust, as the method would adapt to any wind turbine without having to make any
kernel assumption. The same applies to weighted-graph imputation, although some of the uncertainty is already handled through
the addition of data information. Of course the price to pay would be more computational effort.

A better imputation of missing values makes it easier to learn better forecasters but imputation methods often require
assumptions on distributions and some might be difficult to apply to any sort of predictor. Nearest neighbors imputation can be
used with any predictor and do not ask for any other assumption than similar neighbors. In a highly nonstationary setup, such as
offshore wind energy, the data point from the neighboring time series might just be one of the best estimates we can get for the
data point we are missing.
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APPENDIX

Nomenclature

η Learning rate of lazy OGD
λ Eigenvalue
A Adjacency matrix
D Degree matrix
f Eigenvector
L Laplacian matrix
zi Embedding of wind turbine i
E Set of edges
G Graph
K Kernel
lt(i, j) Loss function we pay at time t when guessing the similarity between records of wind turbine i and wind turbine j
N Total number of wind turbines
nt Number of records available at time t
r Dimension of the embeddings
st(i, j) Similarity between records of wind turbine i and wind turbine j at time t
T Total number of records
t Time step
V Set of nodes (or vertices)
vi Node i
w(ji) Weight of the j-th available record when imputing the i-th missing record with k-NN
x(i) x (e.g. power generation) of the i-th wind turbine among a varying set
xi x of wind turbine i among the total set i = 1, . . . , N
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xi
t x of wind turbine i at time t
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