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Abstract
Emission of the greenhouse gas carbon dioxide (CO2) has increased rapidly with the

development of industrialization in the past decades. The electrochemical CO2 reduc-
tion reaction (CO2RR) is considered as a promising strategy to convert CO2 into valuable
chemicals. Palladium (Pd)-based hydride catalysts hold promise for producing syngas
via both CO2RR to CO and hydrogen evolution reaction (HER) to H2, which can be effec-
tively synthesized into valuable chemicals. In this thesis, Pd-based hydride catalysts are
systematically studied to improve the CO2RR performance of pure Pd hydride (PdH) by
doping and alloying methods with various theoretical approaches.

First, density functional theory (DFT) is used to systematically screen for stability, ac-
tivity, and selectivity of transition metal dopants in PdH(111). Sc, Ti, V, Cr, Mn, Fe, Co,
Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd, Hf, Ta, W, and Re are doped into PdH surface
with six different doping configurations: single, dimer, triangle, parallelogram, island, and
overlayer. We find that several dopants, such as Ti and Nb, have excellent predicted
catalytic activity and selectivity towards CO2RR compared to the pure PdH.

Second, using DFT calculations in combination with active learning cluster expansion
(ALCE) and Monte Carlo simulated annealing (MCSA), we identify 12 stable PdHx(111)
configurations on the DFT convex hull and investigate the binding energies of intermedi-
ates during the CO2RR and the competing HER. Through analysis of intermediate binding
energies and a microkinetic model, we identify the atomic structures of the PdHx phase
most likely to produce syngas. The high activity of the PdH0.6 surface can be attributed to
the fact that the H segregation in the PdHx(111) surface breaks the linear relation between
HOCO* and CO* adsorbates.

Third, an ALCE surrogate model equipped with MCSA, CO* filter and the kinetic model
are used to screen out excellent PdxTi1– xHy and PdxNb1– xHy catalysts with both high
stablity and superior activity. Since the calculations of the convex hull are finally verified
by DFT and all binding energy calculations of the limited candidates are also calculated
by DFT, the calculations of all enregies are more reliable compared to those only us-
ing the surrogate model with uncertainty. Finally, the stable and active 24 candidates of
PdxTi1– xHy and 6 active candidates of PdxNb1– xHy are found according to our approach.

Finally, a deep learning-assisted multitasking genetic algorithm is used to screen
PdxTi1– xHy surfaces containing multiple adsorbates for CO2RR under different reac-
tion conditions. The ensemble deep learning model can greatly speed up the struc-
ture relaxations and keep a high accuracy as well as low uncertainty of energies and
forces. The multitasking genetic algorithm is used to simultaneously globally find sta-
ble surface structures at each reaction condition. Finally, 23 stable structures are
screened out under different reaction conditions. Among them, Pd0.56Ti0.44H1.06+25%CO,
Pd0.31Ti0.69H1.25+50%CO, Pd0.31Ti0.69H1.25+25%CO, and Pd0.88Ti0.12H1.06+25%CO are
found to be very active for CO2RR and suitable to generate syngas.
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Resumé
Emission af drivhusgassen kuldioxid (CO2) er steget hurtigt med udviklingen af in-

dustrialisering i de seneste årtier. Den elektrokemiske CO2-reduktionsreaktion (CO2RR)
betragtes som en lovende strategi til at omdanne CO2 til værdifulde kemikalier. Palla-
dium (Pd)-baserede hydridkatalysatorer virker lovende for at producere syngas via både
CO2RR til CO og hydrogenudviklingsreaktionen (HER) til H2, som effektivt kan synte-
tiseres til værdifulde kemikalier. I denne afhandling undersøges Pd-baserede hydrid-
katalysatorer systematisk for at forbedre CO2RR-ydelsen af ren Pd-hydrid (PdH) ved
hjælp af doping og legering, hvilket undersøges med diverse teoretiske metoder.

Først og fremmest bruges ”density functional theory” (DFT) til systematisk at screene
for stabilitet, aktivitet og selektivitet af overgangsmetalsdoping i PdH(111). Sc, Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd, Hf, Ta, W og Re dopes ind i PdH-
overfladen med seks forskellige konfigurationer: enkel, dimer, trekant, parallelogram, ø
og overlag. Vi finder flere dopanter, såsom Ti og Nb, der viser fremragende katalytisk
aktivitet og selektivitet mot CO2RR sammenlignet med ren PdH.

Samtidig, ved at bruge DFT-beregninger i kombination med ”Active Learning Clus-
ter Expansion” (ALCE) og Monte Carlo ”Simulated Annealing” (MCSA) identificerer vi 12
stabile PdHx(111) konfigurationer på den konvekse kurve fra DFT og undersøger bind-
ingsenergierne af intermediater for CO2RR samt den konkurrerende HER. Ved analyse
af intermediære bindingsenergier, kombineret med en mikrokinetisk model, identificerer
vi de atomare strukturer af PdHx-fasen, der har højest sandsynlighed for at producere
syngas. Den høje aktivitet af overfladen på PdH0.6 kan tilskrives, at hydrogensegregation
på PdHx(111) overfladen bryder den lineære relation mellem HOCO* og CO* adsorbater.

Derudover bruges en ALCE surrogatmodel udstyret med MCSA, CO*-filter og den
kinetiske model til at identificere fremragende PdxTi1– xHy og PdxNb1– xHy katalysatorer,
der både viser høj stabilitet og overlegen aktivitet. Da beregningerne af den konvekse
kurve verificeres med DFT, og alle bindingsenergiberegninger for de indsnævrede kandi-
dater også udføres med DFT, er beregningerne af alle energier mere pålidelige i forhold
til kun at bruge surrogatmodellen med dens usikkerhed. Ved brug af vores tilgang finder
vi 24 stabile og aktive PdxTi1– xHy kandidater og 6 PdxNb1– xHy .

Endelig bruges en deep learning-assisteret multitaskende genetisk algoritme til at
screene for PdxTi1– xHy overflader, med flere adsorbater for CO2RR under forskellige
reaktionsbetingelser. Ensemble deep learning-modellen kan accelerere strukturrelak-
tionerne og opretholde høj nøjagtighed og lav usikkerhed for både energier og kræfter.
Den multitaskende genetiske algoritme bruges til simultant at lede globalt efter stabile
overfladestrukturer ved hver eneste reaktionstilstand. Til sidst identificeres 23 stabile
strukturer ved forskellige reaktionsbetingelser. Blandt dem er: Pd0.56Ti0.44H1.06+25%CO,
Pd0.31Ti0.69H1.25+50%CO, Pd0.31Ti0.69H1.25+25%CO og Pd0.88Ti0.12H1.06+25%CO. Disse
har vist sig at være meget aktive for CO2RR og er derfor egnede til at generere syngas.
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Chapter 1
Introduction

Greenhouse gas CO2 emissions are the primary driver of global climate change with
the development of industrialization in the past decades.[1, 2] It is widely recognized that
it is urgent to reduce CO2 emissions as parties to the Paris Agreement agreed “the in-
crease in the global average temperature to well below 2 °C above pre-industrial levels
and to pursue efforts to limit the temperature increase to below 1.5 °C above pre-industrial
levels.”[3, 4] The utilization of renewable energy sources such as wind and solar energies
is gradually increasing to generate electricity, and the utilization cost is decreasing. How-
ever, there are still significant challenges in storing the generated electrical energy.[5, 6] In
order to overcome this challenge, the three strategies including decarbonization, carbon
sequestration, and carbon recycling will play crucial roles in mitigating net CO2 emis-
sions.[7] The CO2 utilization technology of the electrochemical CO2RR is considered as
a promising strategy to convert CO2 into valuable chemicals as it is not only beneficial to
carbon recycling but also conducive to increasing chemical energy storage.[8–11]

1.1 Electrochemical CO2 reduction

Figure 1.1: Schematic diagrams of three different CO2RR electrolyzers: (a) H-cell, (b)
flow-cell, and (c) MEA-cell.[12]

Three typical electrochemical CO2RR electrolyzers are shown in Figure 1.1. The
CO2RR process in the H-cell electrolyzer can be seen in Figure 1.1a. The anode (left)
and the cathode (right) compartments are separated by an ion exchange membrane to
avoid the re-oxidation of generated products over the anode. The electrode with loaded
catalysts acts as the cathode or working electrode (WE), where the protons across the
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membrane from the anode and CO2 adsorbed on the electrode can generate chemical
products under a given potential. This process is actually the electrochemical CO2RR.
A reference electrode (RE) close to WE is used as the potential reference to control the
applied potential to WE, and a saturated calomel electrode is usually utilized. The cor-
responding oxygen evolution reaction (OER) happens at the anode or counter electrode
(CE), where a Pt mesh or carbon electrode is usually used. Gas products can be an-
alyzed by a gas chromatograph (GC).[13] Due to low upper current density in aqueous
electrolytes and the huge Ohmic resistance caused by the large distance between anode
and cathode in the H-cell, the flow-cell and membrane electrode assembly cell (MEA-
cell) are proposed to overcome these issues as shown in Figure 1.1b-c. Both cells use
continuous gas and liquid feeds and the gas diffusion electrode (GDE), which makes the
electrochemical CO2RR directly happen in gas-liquid-solid interfaces. Compared to the
flow cell, the MEA-cell does not have the liquid electrolyte layer between the cathode and
membrane, and instead, it directly utilizes the thin membrane as a solid electrolyte. This
can greatly reduce the low Ohmic resistance and thus improve energy efficiency for the
MEA-cell. In short, the H-cell is suitable for fundamental CO2RR studies, while the MEA-
cell has the potential to realize the industrialization of the electrochemical CO2RR.[12, 14,
15]

1.2 Electrocatalysts for CO2 reduction
Significant efforts have been made to reduce CO2 to C1 –C3 products including

formic acid (HCOOH, 2-electron product)[16, 17], carbon monoxide (CO, 2-electron
product)[18–20], methane (CH4, 8-electron product)[21–24], acetaldehyde (CH3CHO,
10-electron product)[25], ethylene (C2H4, 12-electron product)[26, 27], methylglyoxal
(C3H4O2, 12-electron product)[28], and ethanol (C2H5OH, 12-electron product)[29–31],
propanol (C3H7OH, 18-electron product)[32]. In general, the pathways of the higher num-
ber of electron products are long, and their conversion efficiencies are usually very low.
This is because a long reaction pathway makes the process complex and arduous to
manipulate.[23] The conversion efficiency of CO2RR for synthesizing multiple-electron
products (C2 and C3), in particular, is far from the level viable for practical productions
due to the consumption of a lot of electrons and protons in long pathways.[23, 33] In con-
trast, the Faradaic efficiencies of 2-electron products (CO or HCOO– ) are usually higher
than other products due to the short reaction pathways. Compared to liquid HCOO– , CO
is a gas that is easier to separate, and thus, reducing CO2 to CO appears to be more
achievable. However, high overpotential is generally required due to the high stability of
CO2. Under the high overpotential, the competitive HER will also likely produce H2. Many
efforts have been made to suppress the HER, such as designing various electrocatalysts
and electrodes, thus promoting high selectivity for the CO2RR.[34] Because gas products
(CO and H2) are difficult to be separated, an alternative to finding highly selective cata-
lysts is to tune the CO/H2 ratio. This is because CO and H2, as the main components of
syngas, can be used as downstream reactants to synthesize many basic organic chem-
icals and intermediates through the Fischer–Tropsch processes.[35, 36] Therefore, it is
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crucial to find efficient electrocatalysts to produce syngas with a suitable CO/H2 ratio.
Stability, activity, and selectivity of the catalysts during the electrochemical process are

usually considered.[37] Numerous previous works have been done to study metal cata-
lysts for the CO2RR.[22, 38] Pure transition metal catalysts are usually stable and active
for CO2RR at room temperature, but their selectivities are quite different. Pure metal cata-
lysts can be grouped into four categories based on the selectivity: (I) Cu is classified as its
own category because it is the only metal that can simultaneously reduce CO2 to multiple
hydrocarbons and multi-carbon products such as CH4, C2H4 and C3H7OH.[11, 22, 39–43]
(II) Pb, Hg, Tl, and In are most likely to produce formate (HCOO– ) and the Faradaic effi-
ciency of the products are over 90%.[4] (III) Ni, Fe, Pt, and Ti produce H2 without produc-
ing or producing only a minor amount of hydrocarbons (the Faradaic efficiency of H2 over
90%) via HER.[4] (IV) Au, Ag, Zn and Pd mainly reduce CO2 to CO.[44–50] For example,
Au nanoparticles formed from thick Au oxide films were reported to have high selectivity
for CO2RR to CO at 140 mV overpotential and they kept their activity for no more than
8 hours.[51] Ag nanoparticles supported on carbon have been reported to show good
Faradaic efficiency of CO and low overpotential.[50] In addition, metal-nitrogen-carbon
(M-N-C) electrocatalysts with high faradaic efficiencies for CO generation are also pop-
ular in the field of CO2RR.[52–54] Among them, Fe-N-C electrocatalyst shows high se-
lectivity and activity towards CO at low overpotentials (0.3∼0.5 V). Ni-N-C electrocatalyst
exhibits good selectivity and activity at higher overpotentials because it is more favorable
towards HER. Co-N-C electrocatalyst has a lower selectivity for CO throughout the entire
potential range.[55, 56] It is worth pointing out that palladium (Pd) was reported to be a
potential candidate for CO2RR to CO.[41, 57] Moreover, Chen et al. thought the Pd cat-
alyst was more suitable to produce syngas (CO and H2) compared to other metals. They
found that the reason why Pd showed good activity and selectivity during CO2RR was
that the Pd metal catalyst was transformed into palladium hydride (PdH). [58] The for-
mation of PdH would significantly improve the Faradaic efficiencies of syngas products.
Furthermore, the PdH(111) surface experimentally exhibited higher current density and
Faradaic efficiency compared with other crystal surfaces.[58] Subsequently, in order to
further improve the performance of PdH, several approaches, such as applying transition
metal nitrides as promising supports and using bimetallic catalysts, have been explored
in recent years.[59]

Our works are dedicated to improving CO2RR performance of Pd hydride through
doping transition metal element, tuning H concentration in PdHx, and constructing Pd-
based alloy hydrides using computational methods. They will be introduced explicitly in
the following chapters.

1.3 Outline of thesis
This thesis comprises seven chapters and is structured as follows:

• Chapter 1 - Introduction
The electrochemical CO2RR technique and the experimental process are intro-
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duced. Common catalysts, such as transition metals, metal-nitrogen-carbon, and
Pd-based hydrides for CO2RR are discussed in this chapter.

• Chapter 2 - Theory and Methods
The computational theory and methods used in this thesis are introduced in this
chapter, including density functional theory, cluster expansion, machine learning po-
tential, local optimization, global optimization, microkinetic model, and high through-
put screening workflow.

• Chapter 3 - Metal-doped PdH(111)
In this chapter, doped PdH(111) is investigated by DFT for improving CO2RR per-
formance of pure PdH(111). Transition metal elements Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd, Hf, Ta, W and Re are doped into the PdH(111)
surface in different doping configurations to explore their catalytic stability, activity,
and selectivity towards CO2RR and HER.

• Chapter 4 - PdHx(111)
The effect of hydrogen concentration in PdHx(111) on the CO2RR is presented in
this chapter. An active learning cluster expansion (ALCE) method combined with
Monte Carlo simulated annealing (MCSA) is used to shed light on H concentrations
of PdHx relationship between atomic scale structure, stability, kinetic activity, and
selectivity.

• Chapter 5 - PdMH(111)
Based on the suggestion of doped elements in Chapter 3, the alloy hydrides of
PdxTi1– xHy and PdxNb1– xHy for CO2RR are studied by the ALCE+MCSA method
in this chapter. The promising candidates with different concentrations of Ti, Nb,
and H are identified.

• Chapter 6 - PdTiH(111) with Adsorbates
PdxTi1– xHy surfaces with multiple adsorbates for CO2RR at various reaction con-
ditions are explored by a graph neural learning-assisted multi-tasking genetic algo-
rithm. All candidates at each reaction condition are screened out after the global
optimization.

• Chapter 7 - Conclusions and Outlook
The main conclusions in this thesis and outlook on the further improvement of our
works are given in this chapter.
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Chapter 2
Theory and Methods

This chapter gives introductions to various computational theory andmethods. Density
functional theory, cluster expansion method, machine learning potential, local optimiza-
tion, global optimization, microkinetic model, and high-throughput screening workflow are
introduced in detail.

2.1 Density functional theory
Matter is actually a collection of atoms. The description of the physical and chemi-

cal properties of matter is a crucial issue that plenty of scientists have been exploring.
Based on quantum mechanics, density functional theory (DFT) is a remarkable approach
to finding the solution that establishes a link between the properties of matter and atomic
structures. Some excellent books are referenced in this section, for example, the book
on electronic structures gives the basic theory and practical methods by Martin[60] and
the book on electronic structure calculations for solids and molecules gives the theory and
computational methods by Kohanoff.[61] The detailed introduction of DFT can be found in
the books of a practical introduction of density functional theory by Sholl and Steckel[62],
and a chemist‘s guide to density functional theory by Koch and Holthausen.[63] Here, the
fundamental concepts in DFT are briefly introduced.

2.1.1 Schrödinger equation
In principle, all properties of matter can be derived by solving the time-independent,

non-relativistic Schrödinger equation. The ultimate goal of most quantum chemistry meth-
ods is to solve the approximate Schrödinger equation:[63]

ĤΨi(
#»

X1,
#»

X2, ...,
#»

XN,
#»

R1,
#»

R2, ...,
#»

RN) = EiΨi(
#»

X1,
#»

X2, ...,
#»

XN,
#»

R1,
#»

R2, ...,
#»

RN) (2.1)

where Ĥ is the Hamilton operator for a system with N electrons and M nuclei. Ψi repre-
sents the wave function of the ith state of the system, which depends on #»

X1,
#»

X2, ...,
#»

XN

and #»

R1,
#»

R2, ...,
#»

RN that are the coordinates of the N electrons and M nuclei, respectively.
The wave function Ψi contains all information in the quantum system. Ei represents the
numerical value of the energy of the ith state Ψi. Among them, Ĥ operator can be ex-
pressed as the total energy:

Ĥ = T̂e + T̂n + V̂en + V̂ee + V̂nn

= −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA
∇2

A −
N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB

RAB

(2.2)

where i and j run over the N electrons while A and B run over the M nuclei. The first two
terms in equation 2.2 are the kinetic energies of the electrons and nuclei, respectively.
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The remaining three terms are the potential of the Hamiltonian, the electrostatic attraction
interaction between the electrons and the nuclei, and the Coulomb repulsion interaction
between the electrons and the electrons as well as between the nuclei and the nuclei in
the system, respectively. riA, rij and RAB are the corresponding distances and ∇2 is the
Laplacian operator. ZA and ZB are the nuclear charges and MA is the mass of A.

2.1.2 Born-Oppenheimer approximation
Considering the significant difference between the mass of electrons and nuclei, the

Schrödinger equation can be further simplified. The electrons move much faster than
the nuclei. Taking the extreme point of view, we can think nuclei are not moving and the
electrons are moving in the field of fixed nuclei, which is the famous Born-Oppenheimer
approximation.[64] Under the approximation that the positions of the nuclei are fixed in
space, the kinetic energy of the nuclei is zero and the potential energy is a constant since
the nucleus-nucleus repulsion does not change. Therefore, the complete Hamiltonian in
Equation 2.2 can be simplified to the so-called electronic Hamiltonian1:

Ĥe = T̂e + V̂en + V̂ee

= −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij

(2.3)

The wave function Ψ of the system in Equation 2.1 can be splited into the electronic wave
function Ψe and the nuclei wave function Ψn:

Ψ(
#»

X1,
#»

X2, ...,
#»

XN,
#»

R1,
#»

R2, ...,
#»

RN) = Ψe(
#»

X1,
#»

X2, ...,
#»

XN)Ψn(
#»

R1,
#»

R2, ...,
#»

RN) (2.4)

The Schrödinger equation for the electrons can be expressed as:

ĤeΨe = EeΨe (2.5)

The solution of Schrödinger equation for Ĥe includes the electronic wave function Ψe and
electronic energy Ee. The electronic wave function Ψe is only dependent on the electron
coordinates, while the nuclei coordinates do not appear in Ψe and only parametrically
enter. Besides, the total energy Etot of the system is the sum of electronic energy Ee and
nucleus-nucleus repulsion potential energy V̂nn or En:

Etot = Ee + En (2.6)

2.1.3 Hohenberg-Kohn theorems
It should be mentioned that the wave function Ψ is not observable2 and it can be

represented as the form of the electron density ρ( #»r ), which is a multiple integral over all

1V̂en in the Hamiltonian is also termed as the external potential Vext in density functional theory.
2From now on, only the electronic Schrödinger equation is discussed and thus the subscript ’e’ will be

dropped.



Chapter 2. Theory and Methods 7

spin coordinates of the electrons but one of the spatial variables:

ρ( #»r ) = N

∫
· · ·
∫
|Ψ(

#»

X1,
#»

X2, ...,
#»

XN)|2ds1d #»
X1
· · · d #»

XN
(2.7)

The density functional theory from wave function to electron density was introduced
in 1964 when two fundamental mathematical theorems were proved by Kohn and
Hohenberg.[65]

Theorem 1: For any system of interacting particles, the external potential V̂ext, and
hence the ground-state energy from Schrödinger equation is a unique functional of the
electron density ρ( #»r ).
Based on reductio ad absurdum, the first Hohenberg-Kohn theorem proves that it is im-
possible that two different V̂ext yield the same ground-state electron density. The complete
ground state energy can be expressed as a functional of the ground state electron density:

E0[ρ0] = T [ρ0] + Een[ρ0] + Eee[ρ0]

=

∫
ρ0(

#»r )Vend
#»r︸ ︷︷ ︸

system dependent

+T [ρ0] + Eee[ρ0]︸ ︷︷ ︸
universally valid

(2.8)

where the first term is the potential energy of nuclei-electron attraction and it depends on
the actual system. T [ρ0] and Eee[ρ0] are universal3 by construction and independent on
the system. They can be combined into the Hohenberg-Kohn functional FHF[ρ0] and the
Equation 2.8 can be rewritten as:

E0[ρ0] =

∫
ρ0(

#»r )Vend
#»r + FHF[ρ0] (2.9)

Theorem 2: The total system energy gives its minimum value if the input density is
the ground state density.
In other words, the total energy is the lowest energy of the system, namely ground state
energy E0[ρ0] if the electronic density is the ground state density ρ0, and thus the varia-
tional principle can be expressed as the following:

E0[ρ0] = ⟨Ψ0|Ĥ|Ψ0⟩ ≤ E[ρ̃] = T [ρ̃] +

∫
ρ̃( #»r )Vend

#»r + Eee[ρ̃] = ⟨Ψ̃|Ĥ|Ψ̃⟩ (2.10)

where the quantities with tilde mean any trial quantities, while the quantities with subscript
zero mean the ground state.

2.1.4 Kohn-Sham equations
The Kohn–Sham approach is to replace the difficult problem of interacting many-body

electrons with a set of noninteracting electrons that can be solved more easily.[66]
A rigorous many-body theory can be built by the Hohenberg-Kohn theorems using

3“universal” means the same for all electron systems, which is independent of the external potential Vext(r).
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electron density as the fundamental quantity. The ground state energy can be shown as:

E0 = min
ρ→N

(
F [ρ] +

∫
ρ( #»r )Vend

#»r

)
(2.11)

where F [ρ] is the universal functional, which includes the kinetic energy, the classical
Coulomb interaction, and the non-classical part consisting of self-interaction correction,
exchange, and electron correlation effects as follows:

F [ρ( #»r )] = T [ρ( #»r )] + Eee[ρ(
#»r )]

= T [ρ( #»r )] + J [ρ( #»r )] + Enonc[ρ(
#»r )]

(2.12)

The idea of Kohn and Sham is to introduce the following separation for the kinetic energy:

F [ρ( #»r )] = T [ρ( #»r )] + Eee[ρ(
#»r )]

= TS[ρ(
#»r )] + J [ρ( #»r )] + EXC[ρ(

#»r )]
(2.13)

where T [ρ( #»r )] is split into TS[ρ(
#»r )] the non-interacting kinetic energy and the residual

part. As Equation 2.12 does, Eee[ρ(
#»r )] is also split into two parts: J [ρ( #»r )] the classical

Coulomb interaction or Hartree energy and the residual part. EXC[ρ(
#»r )] is exchange-

correlation energy and defined as the following:

EXC[ρ] = (T [ρ]− TS[ρ]) + (Eee[ρ]− J [ρ]) = TC[ρ] + Enonc (2.14)

where TC[ρ] andEnonc are the residual part of the true kinetic energy and the true electron-
electron interaction, respectively. In other words, exchange-correlation energy EXC[ρ(

#»r )]

contains everything unknown, which means we do not know how to calculate it exactly.
We finally arrive at the following equation:

Eρ( #»r ) = TS[ρ] + J [ρ] + EXC[ρ] + Een[ρ]

= TS[ρ] +
1

2

∫∫
ρ( #»r1)ρ(

#»r2)

r12
d #»r1d

#»r2 + EXC[ρ] +

∫
ρ( #»r )Vend

#»r

= −1

2

N∑
i

⟨φi|∇2|φi⟩+
1

2

N∑
i

N∑
j

∫∫
|φi(

#»r1)|2
1

r12
|φj(

#»r2)|2d #»r1d
#»r2

+ EXC[ρ(
#»r )]−

N∑
i

∫ M∑
A

ZA

r1A
|φi(

#»r1)|2d #»r1

(2.15)

where the only unknown term without explicit form is EXC in this equation. Similarly to
the Hartree-Fock approximation[67], the variational principle is applied and the famous
Kohn-Sham equation (KS equation) can be derived as follows (a detailed derivation can
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be seen in the book of Parr and Yang [67]):(
−1

2
∇2 +

[∫
ρ( #»r2)

r12
d #»r2 + VXC(

#»r1)−
M∑
A

ZA

r1A

])
φi

=

(
−1

2
∇2 + Veff(

#»r )

)
φi = εiφi

(2.16)

where the terms in the square bracket can be represented as effective potential Veff. The
first term of the effective potential is the classical Hartree potential. The last term is ex-
ternal potential due to nuclei. VXC defines the exchange and correlation contributions to
the single electron KS equations. It can be expressed as a functional derivative of the
exchange-correlation energy:

VXC(
#»r ) =

δEXC(
#»r )

δρ( #»r )
(2.17)

Non-interacting electrons are described by orbitals in the KS scheme. φi(
#»r ) corresponds

to the ith one-electron Kohn-Sham orbital of energy εi. The election density ρ( #»r ) can be
given by:

ρ( #»r ) =

N∑
i

|φi(
#»r )|2 (2.18)

2.1.5 Exchange-correlation functionals
All unknown parts are collected into the exchange-correlation functional EXC(

#»r ) in the
KS equation. The quality of the density functional method highly depends on the accuracy
of the chosen exchange-correlation functional. If EXC(

#»r ) is exact, the KS equation would
yield exact ground state energy and electron density. In fact, approximations are needed
for the calculation of EXC(

#»r ). The two most common functionals are the local density
approximation (LDA)[68] and the generalized gradient approximation (GGA)[69, 70].

The local density approximation (LDA)
The LDA is the simplest approximation proposed by Kohn and Sham in 1965. In the

LDA, the key to the idea is a hypothetical uniform electron gas (UEG).[71] In this case,
the electron density is considered constant at all points in space. In this system, valence
electrons move on positive cores that arrive at a uniform positive background charge
distribution. To do this, we assume the exchange-correlation energy is known at each
observed position and from the UEG, and the energy is weighted by the probability ρ( #»r ).
This approach is defined as the local density approximation (LDA). The total exchange-
correlation energy ELDA

XC (ρ) can be given by a very simple form:

ELDA
XC [ρ] =

∫
ρ( #»r )εUEGXC (ρ( #»r ))d #»r (2.19)

where εUEGXC (ρ( #»r )) is the exchange-correlation energy per particle of a UEG of density
ρ( #»r ). The εUEGXC (ρ( #»r )) term can be further separated into the exchange part and the
correlation part:

εUEGXC (ρ( #»r )) = εX(ρ(
#»r )) + εC(ρ(

#»r )) (2.20)
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where εX(ρ(
#»r )) can be calculated from the Hartree-Fock exchange by Slater [67] and it

is given by:

εX(ρ(
#»r )) = −3

4

3

√
3ρ( #»r )

π
(2.21)

Correlation part εC(ρ( #»r )) cannot be given by an explicit expression. However, the most
accurate correlation calculations are based on the quantum Monte-Carlo simulations of
the UEG In fact, the UEG model is a very good approximation for simple metals such as
sodium, but it is worse for any realistic system such as complex atoms and molecules.

The generalized gradient approximation (GGA)
The LDA was the only EXC approximation available for many years in the field of

solid-state physics but not computational chemistry. This situation improved significantly
until the development of the generalized gradient approximation (GGA). The functional
includes not only the information about the electron density ρ( #»r ) at a specific point #»r but
also the information about the gradient ∇ρ( #»r ) of the density. It can be given by:

EGGA
XC [ρ] =

∫
εGGAXC (ρ( #»r ),∇ρ( #»r )) d #»r (2.22)

Contrary to the LDA, the GGA is not uniquely defined and there are several popular GGA
functionals including Perdew-Wang (PW91)[69, 72], Perdew-Burke-Enzerhof (PBE)[70],
revPBE[73], RPBE[74], and Bayesian error estimation functional with van der Waals cor-
relation (BEFF-vdW)[75]. Among them, the BEFF-vdW ensemble performs quite well for
chemisorption processes.[75] Compared to the LDA, the GGA usually improves accuracy
in terms of binding energy, atomic energy, bond lengths, bond angles, and so on.

Going beyond the GGA by considering second-order gradients and the non-interacting
kinetic energy density, a new functional family appears, which is termed meta-generalized
gradient approximation (meta-GGA)[76]. Mixing with exact exchange functional in the
Hartree–Fock method leads to new hybrid functionals, such as Becke-3-parameter-Lee-
Yang-Parr (B3LYP)[77] and Heyd-Scuseria-Ernzerhof (HSE06)[78].

2.1.6 Solving the Kohn–Sham equations
The Kohn-Sham equation in 2.16 is usually solved by a self-consistent field (SCF) loop

as shown in Figure 2.1. More details can be seen in the chapter ”Solving the Kohn–Sham
equations” in the book by Martin.[60] First of all, an initial guess of electron density as
the input is given and it can be used to calculate the effective potential Veff given in the
square bracket part in Equation 2.16. Then, the KS equation can be solved according to
Equation 2.16. The new electron density as output can be generated as Equation 2.18.
The self-consistency calculation would be converged if the old and new electron densities
are identical under a given threshold. Otherwise, the generated electron density would
enter the next cycle as the new input of the electron density until it converges.

In practice, in order to transform the partial differential equations into algebraic equa-
tions suitable for efficient implementation on a computer, solving the KS equation in Equa-
tion 2.16 typically requires the discretization of the KS orbital, which expands the KS orbital
or wave function into a set of basis functions or basis sets. Common basis functions have
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Figure 2.1: Flow chart of the self-consistent loop (SCF) for solving Kohn-Sham equations.

plane-wave expansion[79], LCAO (linear combination of atomic orbitals) approximations
[80, 81], real-space approaches[82, 83] and so on. Among them, plane-wave is one of the
most popular basis functions. A finite number of discrete grid points and symmetry can be
used to reduce computational costs. Many quantities, such as total energy and density,
can be obtained by integration over the grid points in the Brillouin zone. The core electrons
of an atom almost have no contribution to chemical binding in solids and molecules and
instead, it is mainly dominated by the valence electrons. Besides, the localized core elec-
trons are quite computationally expensive. Hence, it is possible to approximately replace
the core electrons’ potentials with a pseudopotential. There are two typical pseudopo-
tentials: norm-conserving pseudopotentials (NCPP)[84] and ultrasoft pseudopotentials
(USPP)[85]. A USPP-related technique projected augmented wave (PAW) method[86]
is widely used due to its high accuracy and efficiency for large systems. Common DFT
softwares are the Vienna Ab initio simulation package (VASP)[87, 88], GPAW[83, 89],
CASTEP[90] and Quantum ESPRESSO[91] and so on.

All calculations in this thesis are carried out with spin-polarized density functional the-
ory simulations using the VASP (version 5.4)[79, 92] and the Atomic Simulation Environ-
ment (ASE, version 3.2)[93, 94]. The effects of exchange and correlation are approxi-
mated by using the Bayesian error estimation functional with van der Waals correlation
(BEEF-vdW)[75]. The ionic cores are treated using the projector augmented wave (PAW)
method[86] and the wave functions are expanded in a plane waves basis set. A cutoff
energy is set as 400 eV and a Gaussian smearing of 0.05 eV is used for the electronic
states. In order to remove the electrostatic dipole-dipole interaction between periodically
repeated surface slabs, the dipole correction is used in the direction perpendicular to the
slab for all the calculations.
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2.2 Cluster expansion

DFT calculation is a phenomenally successful approach to calculate the ground state
energy of a material, but it is still very expensive. It is impossible to search for the com-
position and concentration of material with multiple elements using only DFT due to the
huge search space. In order to avoid toomany expensive DFT calculations, the cluster ex-
pansion (CE) method is widely used.[95–99] CE can greatly decrease the computational
cost by mapping the first principles results onto a Hamiltonian that is fast to evaluate.
The main idea of the CE is to express the scalar physical quantity q(σ) of crystal struc-
ture, which here is the electronic energy, as a function of its configuration σ that is an
N-dimensional vector consisting of site variables. The configuration is decomposed into
a series of clusters as shown in Figure 2.2. Each cluster (Φ) can be expressed by the
associated single-site basic functions:

Φn(s) =
∏
i

Θni(si) (2.23)

where Θni(si) is the nth basic function (e.g. polynomial, trigonometric, and binary linear)
for the ith site. Vector n and s are the order of the basis function and the site variables
in the cluster, respectively. si is any values from ±m ,(±m−1), ..., ±1 for different atomic
species M = 2m and varable i is the ith element in vector s. All symmetrically equivalent
clusters are collected as the same cluster α, the average value of which is correlation
function ϕα.

Figure 2.2: A cluster expansion configuration illustration of the decomposition of a body-
centered cubic lattice.[96]

The scalar physical quantity q(σ) can be expressed as a linear expansion of cluster
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functions:[95, 96]

q(σ) = J0 +
∑
α

mαJαϕα

=
∑
α

J̃αϕα

(2.24)

Where Jα denotes the effective cluster interaction (ECI) per occurrence, which must be
fitted in CE. J0 is the ECI of an empty cluster. mα denotes the multiplicity factor illustrating
the number of cluster α per atom. mα and Jα are combined into the new ECI term J̃α.
In fact, ϕ can be calculated from the crystal structure. The equation can be simplified as
follows:

q = Xω (2.25)

where q denotes a column vector of energies here and ω is a column vector of ECI values.
X is the correlation functions matrix where each element in row i and column α is given
by:

Xiα = ϕα(σi) (2.26)

ω can be fitted by the ordinary least squares method with regularization.[100] The
ordinary least squares are used to minimize the residual sum of squared errors, which
can be illustrated as:

ω̂ = argmin
ω
∥Xω − q∥22 (2.27)

where ω̂ is a unique solution. For regularization, l1 and l2 are the two most common
schemes. Regularization can be utilized to avoid overfitting by adding a regularization
term. We take the following l1 regularization as an example:

argmin
ω
∥Xω − q∥22 + λ∥ω∥1 (2.28)

where λ is the regularization constant and ∥ω∥1 is the l1-norm of the column vector ω. Fur-
thermore, cross-validation is used to evaluate the prediction performance of the model in
order to improve the model’s reliability. Common CE software are the Cluster Expansion
Atomic Simulation Environment package (CLEASE)[96], the alloy theoretic automated
toolkit (ATAT)[101], the integrated cluster expansion toolkit (ICET)[102], the UNiversal
CLuster Expansion (UNCLE)[103] and so on. All CE calculations in this thesis are per-
formed with the CE in the CLEASE developed by Chang et. al.[96]

2.3 Machine learning potentials
The CE method has been successfully applied to predict the scalar physical quantity

like energy for bulk, bare slab, or slab with one type of adsorbate system. However, the
CE is very difficult to deal with the slab with multiple adsorbates due to the fixed atomic
positions. Besides, it is almost impossible for the CE to predict the vector’s physical quan-
tity such as forces. In recent years, machine learning (ML) has been particularly popular
to be used to construct force fields in the fields of computational material science and
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computational chemistry.[104–106] It not only can tackle the more complicated structures
but also can learn the vector physical quantity like forces. There are a large number of
ML-based force fields that have been developed over the past decades. However, only
the three most typical ML approaches are introduced here.[107, 108]

2.3.1 Kernel methods

Simple and common linear regression, such as the ordinary least squares method,
has been widely used to build scaling relations as above cluster expansion model. A
non-linear kernel can be utilized to augment linear regression with non-linear regression.
We first simply introduce a kernel ridge regression (KRG) based on kernel methods.[109]
Kernel regression can be considered as a kind of linear combination of kernel functions.
Combined with the regularization, it is called the KRG and can be given by:

f(x) =

n∑
i=1

k(x, xi)ai

= k(x)Ta

= k(x)TC−1y

= k(x)T (K + λI)−1y

(2.29)

where k(x, xi) is the kernel function that we can define as a Gaussian function. xi

is the value from the train data points (xi, yi), i = 1, 2, ..., n, while x is a variable. ai is
the parameter. The sum can be expressed as a product of vector kernel function k(x) =

(k(x, x1), k(x, x2), ..., k(x, xn)) and vector parameter a. If ignoring noise, a will reproduce
all the known data points (xi, yi) using the model. In this case, y = Ka by introducing the
n×n matrixK byKij = k(xi, xj), i = 1, 2, ..., n; j = 1, 2, ..., n and the solution a = K−1y.
Considering the regularization, the solution would be a = C−1y and y is a vecter by yi

from the training data points (xi, yi). C represents the regularized matrix K + λI, where
λ is the regularization and I is the identity matrix.

The results of the KRG in equation 2.29 can be actually reproduced by a Gaussian
process regression (GPR) in a more general way. The GPR is a collection of all stochas-
tic function variables f(x) indexed by a domain like space, where the variables have a
Gaussian distribution and its center is the predicted average value. In the framework of
the Bayesian probability theory, the GPR includes full probability distributions and thus
not only can predict a property but also its uncertainties.[110] We start from Bayes’ theo-
rem and the posterior probability P(f |y;x), the output probability given the train set (x,y)
consisted of (xi, yi), can be expressed as:

P(f |y;x) ∝ P (y|f ;x)P(f) (2.30)

where P (y|f) is the Bayesian likelihood. The prior probability P (f) is defined as a Gaus-
sian distribution:

P (f(x)) = N (m(x), k(x, x′)) (2.31)
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where the mean function is m(x). The covariance function k(x, x′) is the kernel. It can
be proven that the likelihood and posterior are also the Gaussian distributions. Through
maximizing the posterior distribution, it can be derived the mean predicted function[111]:

f(x) = m(x) + k(x)TC−1(y −m(x)) (2.32)

where matrix C = K + σ2
0I and σ0 is the noise value. The element of matrix K is

Kij = k(xi, xj). The variance σ2(x) is given by:

σ2(x) = k(x, x)− k(x)TC−1k(x) (2.33)

The Bayesian approach in the GPR provides an effective approach to optimize a number
of hyperparameters θ, which include noise σ0, length scale l and prefactor k0 in k(x, x′) =

k0e
−(x−x′)2

2l2 . It can be done by maximizing the marginal likelihood as follows:

logP(y|θ;x) = −1

2
(y −m(x))TC−1(y −m(x))− 1

2
log(det(C))− n

2
log(2π) (2.34)

Considering the computational time and space complexity, the KRG and GPR are not
suitable for too large train sets. The computation cost is usually O(n3) due to the need to
invert the C matrix. The memory cost usually takes O(n2) for storing the matrix. It would
be too time-consuming and expensive to calculate using the kernel methods if the train
set is huge.

2.3.2 Feed-foward neural network

The biology-inspired artificial neural network has become a promising approach to
constructing neural network potential due to its fast calculation speed and high accuracy.
High-dimensional neural network potentials (HDNNP) were first reported by Behler and
Parrinello in 2007.[112] Similar to empirical potentials construction, the total energy E of
a system with N atoms can be split into a sum of atomic energy contribution Ei as:

E =

N∑
i

Ei (2.35)

The Cartesian coordinates α of atom i are represented by Rα
i , which can be transformed

into a series of fingerprints. They use symmetry function values Gµ
i as fingerprints to

describe each atomic energy contribution, which can be illustrated by the energetically
relevant local environment. Then the symmetry function values for atom i are used as
input of a neural network and the output of the neural network is the predicted energy
contribution of atom i. All predicted energy contributions of each atom can finally be
combined as the final predicted energy E.

The architecture of the network in HDNNP is a fully connected feed-forward neural
network (FFNN)[107], which consists of an input layer, hidden layers, and an output layer,
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and the layers are fully connected. The equations can be given by:

h1 = σ(W 1x+ b1),

h2 = σ(W 2h1 + b2),

...

hL = σ(W LhL−1 + bL),

y = σ(W L+1hL + bL+1),

(2.36)

Where vector x is the input of the neural network (NNs), which is usually fingerprints of
the Cartesian coordinates and it is the atom-centered symmetry functions (ACSF)[113]
values in HDNNP. W L and bL are the weigh matrix and the bais vector in layer L. The
function σ is a non-linear activation function and common activation functions have linear,
sigmoid, hyperbolic, softmax, rectifier linear unit (ReLU), scaled exponential linear unit
(SeLU), and sigmoid linear Unit (SiLU).[114, 115] hL is units or nodes vector in layer L.
The final result y is the output of the neural network and here is Ei. All Ei are added to
obtain the total predicted energy. It should be noted that the architectures and parameters
of the atomic NNs are the same for each chemical element. The process above is ac-
tually the forward propagation in FFNN. During the training, the forward propagation can
yield a scalar loss through a loss function between the predicted energy and true DFT
energy. In order to minimize the loss, the back-propagation algorithm[116] propagates
backward the loss through the network in order to compute the gradient and adjust the
model parameters (W , b). Besides, the forces can be calculated by the negative gra-
dients of the total energy with respect to the atomic positions. Common softwares are
RuNNer[117], atomistic machine-Learning package (AMP)[118], neural network potential
package (n2p2)[119], PROPerty Prophet (PROPhet)[120] and so on.

The ACSF gives a series of information of radial and angular in HDNNP, which is the
first fingerprint or descriptor of the neural network potentials (NNPs). Its introduction in-
spires lots of descriptor-base NNPs, where the descriptors are usually used as input of the
FFNN. Actually, there are many other descriptors like the Coulombmatrix, Ewald summa-
trix, sine matrix, many-body tensor representation (MBTR), and smooth overlap of atomic
positions (SOAP).[121–125] The common feature for those environment descriptors is
that they need to be predetermined and manually designed.

2.3.3 Message-passing neural networks
The above-mentioned ACSF in HDNNP needs to be chosen by an expert and the

accuracy of the model is greatly dependent on the choice of the symmetry functions.
Besides, it is very computationally expensive when input dimensions quickly increase.
In contrast, end-to-end deep learning NNs are really popular, which directly take atomic
numbers and positions as inputs to learn physical properties like energy and forces from
the DFT train set.[126, 127] The graph neural network (GNN)[128] has inspired many end-
to-end NNPs.[126, 127, 129–131] A structure can be decomposed into atoms and bonds,
where atoms can be regarded as nodes and bonds are represented by edges in GNN. It
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is worth pointing out that the global variable like the applied potential can also be added
into the GNN. Through exchanging the information of nodes, edges, and global variables
(optical), complex chemical properties can be learned by the ML model. This process is
actually message-passing and such network is called message-passing neural networks
(MPNNs)[132]. TheDeep Tensor Neural Network (DTNN)[133] is a typical example, which
has been refined to create SchNet[126] and PhysNet[134] and so on. There are also other
well-known examples such as Nequip[135], MACE[136], and PaiNN[137].

Based on rotationally equivariant representations, PaiNN, the polarizable atom inter-
action neural network, is quite outstanding.[137] Scalar and vectorial representations are
used in PaiNN and the vector is constrained to be equivariant to rotation by the following
equation:

R
#»

f ( #»x) =
#»

f (R #»x) (2.37)

whereR is any rotation matrix. The product of the matrix-vector is applied over the spatial
dimension, which is essentially a linearity constraint for directional information given by

#»r ij

∥ #»r ij∥ . The edge
#»r ij is the relative position of node i and j.

Figure 2.3: The total architecture (a) of the PaiNNmodel and the corresponding message
block (b) and update block (c).[137]

The total architecture of the PaiNN model is shown in Figure 2.3a. The inputs are the
nuclear chargesZi and positions ri for each atom i. The nuclear charges use embeddings
to generate a simple lookup table of element types and each element has a constant
features dimension F . The invariant atom scalar representations si are initialized by the
embeddings (s0i ). The equivariant vector representations

#»v i are initialized by
#»0 ∈ RF×3

( #»v 0
i ). A residual structure of the interchanging message and update blocks in Figure 2.3b-

c is designed. For the message block, the residuals of the scalar message function and
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vector message function can be given by:

∆smi = (ϕs(s) ∗Ws)i =
∑
j

ϕs(sj) ◦Ws(∥ #»r ij∥),

∆ #»vm
i =

∑
j

#»v j ◦ ϕs(sj) ◦Wvv(∥ #»r ij∥) +
∑
j

ϕvs(sj) ◦W ′
vs(∥ #»r ij∥) ◦

#»r ij

∥ #»r ij∥
,

(2.38)

where sj and #»v j are scalar and vector from the information of the neighbors of atom i,
respectively. Their initial values are from s0i and

#»v 0
i , respectively. ϕs andWs are obtained

according to Figure 2.3b. Ws is the rotationally-invariant filters, which are linear combina-
tions of radial basis functions (RBF)

sin( nπ
rcut

∥ #»r ij∥)
∥ #»r ij∥ , 1 ≤ n ≤ 20 and a cosine cutoff function

is applied to this filters. The features of (ϕ ◦W) are split into three parts.

For the update block, the residuals of the scalar update function and vector update
function can be given by:

∆sui = ass(si, ∥V #»v i∥) + asv(si, ∥V #»v i∥)⟨U #»v i,V #»v i⟩,

∆ #»v u
i = avv(si, ∥V #»v i∥)U #»v i,

(2.39)

where a shared network a(si, ∥V #»v i∥) as nonlinearity is splitted into three parts avv, asv
and ass as shown in Figure 2.3c. ∥V #»v i∥ is the norm of a linear combination of equivariant
features and U #»v i is also a linear combination of equivariant features #»v i. In order to
predict scalar properties like atomic energy, the atomwise readout layers are applied to
the rotationally invariant representations si. The total energy can be obtained by a sum
of all atomic energies same as Equation 2.35. The calculation of the forces is negative
gradients of the total energy with respect to the atomic positions as HDNNP does. The
force component Fi,α acting on atom i with respect to coordinate Ri,α, α = (x, y, z) can
be illustrated as follows:

Fi,α = − ∂E

∂Ri,α
= −

N∑
j=1

∂Ej

∂Ri,α
(2.40)

where N represents the number of atoms. The term ∂Ej

∂Ri,α
can be given by the architecture

of the NNs using the chain rule.

After propagating backward a loss function to calculate the gradient of the parameters,
the NNs parameters are optimized by an optimizer according to the gradients. The loss
function L is a combination of energy and forces loss function as follows:

L =
1− λ

N

N∑
i=1

(
Êi − Ei

)2
+

λ

NM

N∑
i=1

M∑
j=1

3∑
k=1

(
F̂ jk
i − F jk

i

)2
(2.41)

where λ is an empirical parameter to control the balance between energy and forces loss
function. N is the number of images and M is the number of atoms in a image. Êi and
Ei are the NNs and DFT energy of image i, respectively. F̂ jk

i and F jk
i are the NNs and

DFT forces of atom j in the k direction. Root mean squared error (RMSE) of energy and
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force between DFT and NNs predictions are calculated by:

ERMSE =

√√√√ 1

N

N∑
i=1

(
Êi − Ei

)2

FRMSE =

√√√√ 1

3NM

N∑
i=1

M∑
j=1

3∑
k=1

(
F̂ jk
i − F jk

i

)2 (2.42)

2.4 Local optimization

For atomic-scale DFT simulations, relaxation of atomic structure is needed to get the
ground state structure. Each energy calculation may take several cpu-days and thus it is
very important to have an efficient and fast optimization algorithm. Besides, parameter
optimization in cluster expansion and machine learning is another key application. We
already mentioned the ordinary least squares optimization in CE, but the ordinary least
squares method is only suitable to solve simple optimization situations and is not scalable.
Local optimizer is usually more efficient and thus used during these processes. This
section mainly introduces common local optimization methods.

Local optimization is to find the local minimum, which can be expressed as f(x∗) ≤
f(x) for all x ∈ Ω close to x∗, Ω ⊂ Rn. Based on the curvature information, local optimiza-
tion methods are divided into two major categories: first-order optimization algorithms and
second-order optimization algorithms.[138–140]

First-order optimization algorithms are only dependent on gradient or subgradient in-
formation.[141] A common example is the gradient descent method as follows:

xi+1 = xi − γ∇f(xi) (2.43)

where γ is the step size or learning rate. ∇f(xi) is the gradient at point xi. However,
the gradient descent could be slow or even vanish when the step size is too small. It
could skip the true local minimum and fail to converge or even explode the gradient when
the step size is too large. Hence, there are lots of other first-order optimization algorithms
proposed, such as steepest descent, stochastic gradient descent (SGD), Adam, AdaGrad,
Proximal gradient descent and so on.[142–144] SGD and its variants like accelerated
SGD, variance reduction SGD and stochastic coordinate descent methods are widely
used to optimize the NNs parameters in machine learning. Adam and its variants are also
particularly popular in machine learning because it combines the adaptive and momentum
methods and is relatively stable for large data sets and high dimensional space.

Second-order optimization algorithms utilize the information from both the first-order
derivative (gradient) and second-order derivative (Hessian matrix that includes the cur-
vature information) to find the minimum.[145, 146] Compared to first-order optimization
algorithms, second-order algorithms usually have much better convergence properties.
Second-order algorithms usually apply a preconditioning matrix to the gradient in each
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step. A typical example is Newton’s method given by:

xi+1 = xi − γH−1
i ∇f(xi)

= xi − γ[∇2f(xi)]
−1∇f(xi)

(2.44)

where H i is the Hessian matrix, which is the second-order derivative of the objective
function. However, it is impractical to calculate the Hessian matrix and its inverse be-
cause its size is Rn×n and n could be a huge number due to the huge parameters. In
order to overcome this issue, many approximations to the Hessian matrix have been
made, such as quasi-Newton, Hessian-free, stochastic quasi-Newton, Gauss-Newton,
and natural gradient descent methods.[147–150] Quasi-Newton methods use low-rank
approximations or subsampling methods to estimate the Hessian or its inverse. Broyden-
Fletcher-Goldfarb-Shanno (BFGS) is the most popular algorithm in this family, which is
widely used in DFT ionic relaxation. Hessian-free methods directly avoid calculating the
Hessian and its inverse and instead utilize a linear solver like conjugate gradient (CG)
algorithm to get Hessian-vector products. Sometimes, CG is also considered as being
between first-order and second-order algorithms, which is usually recommended to use
for difficult relaxation problems in DFT calculation. In stochastic quasi-Newton methods,
the limited memory version of the BFGS algorithm (LBFGS) updates the inverse of Hes-
sianmatrixes rather than the Hessian itself and is quite suitable for dealing with large-scale
variables.

2.5 Global optimization
High-throughput screening of materials needs to do global optimization to search for

a set of the optimal structures in a huge structure configuration space or search space.
Thus, excellent global optimization algorithms are crucial in this process.

Global optimization is to find the global minimum, which can be expressed as f(x∗) ≤
f(x) for all x ∈ Ω, Ω ⊂ Rn. Unlike local optimization with respect to local space, global
optimization is to search for the global minimum in the entire space. Such methods are
usually not based on first or second-order derivatives to determine the step direction and
step width, but instead use stochastic methods, heuristics methods, and so on.[151] The
typical global optimization methods have random search, Bayesian optimization, basin
hopping, minima hopping, simulated annealing, and genetic algorithm (evolutionary algo-
rithm).[152–156] Only simulated annealing and genetic algorithms are used in our works
and thus introduced in detail.

2.5.1 Monte Carlo simulated annealing
Based on statistical mechanics in thermodynamics, Monte Carlo simulated annealing

is a general and effective probabilistic technique for global optimization, which is analo-
gous to the simulation of the annealing of solids.[157, 158] It has been widely applied in
various fields due to its easy implementation and effectiveness. It does not require spe-
cialist knowledge about how to solve a particular issue and can be used in a variety of
optimization problems without changing the basic framework.
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Figure 2.4: The flow chart of Monte Carlo simulated annealing.

A typical flow chart of simulated annealing in the process of structure screening can be
seen in Figure 2.4. First of all, an initial structure is randomly generated at a high temper-
ature (initial temperature) and its energy (Eold) is calculated. We generate a new structure
and the calculated energy is Enew. Then the energy difference between the old and new
structures ∆E is computed. If the energy difference is less than zero, the new structure
will be accepted and the old structure will be substituted by the new one. Otherwise, we
accept the new structure according to the Metropolis criterion. It continuously goes to
the next iteration until the number of iterations reaches. If a convergence condition is not
met, the temperature gradually decreases and the number of iterations is reset. The final
global minimum is found if the condition is met. In the process of lowering the annealing
temperature, the result tends to be stable, but it may be a local minimum. However, there
is still a probability of jumping out of the local minimum in simulated annealing and then
finding the structure with the global minimum energy.[159] The key is how to determine
the probability and the Metropolis criterion[160] based on Boltzmann distribution is usually
used as follows:

Pacc =

1 if Enew < Eold

exp
(
−(Enew−Eold)

kBT

)
if Enew ≥ Eold

(2.45)

wherePacc is the acceptance probability of changing from the old structure to the new one.
Even though Enew is larger than Eold, there still exists the probability of becoming the new
structure. The smaller the energy difference is, the larger the acceptance probability is.
This keeps it from getting stuck in a local minimum and then can go to the global minimum.

Due to a great number of function evaluations etc., simulated annealing is really time-
consuming for larger configuration systems. A trade-off between the quality of the result
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and the time taken usually needs to be considered. Thus, many variants of simulated
annealing have been proposed, like adaptive simulated annealing (ASA)[161], fast an-
nealing, and very fast simulated reannealing (VFSR)[162].

2.5.2 Genetic algorithm
Genetic algorithm (GA) is a well-known metaheuristic global optimization algorithm

inspired by the basic principles of biological evolution and natural selection.[163] GA is
considered as a kind of more efficient method due to its dynamic operators and paral-
lelization in huge configuration space.

Figure 2.5: The flow chart of a typical genetic algorithm.

A typical GA framework can be found in Figure 2.5. The basic elements of GA are ini-
tialization (population and fitness definition etc.), fitness calculation and evaluation, parent
selection, and operators. For initialization, a bunch of parameters are set. Among them,
the number of populations is a key parameter that determines the number of candidates
(structures). The initial population can be random individuals or the best individuals we
already know. Besides, we need to define the fitness function, such as mixing energy or
surface free energy, which actually is a score for each individual and the score determines
how good an individual is. Then, fitness calculation, evaluation, and update are done for
the first generation. GA will go to the next generation if it does not reach convergence
criteria. Otherwise, GA is terminated and gives final candidates. The selection stage de-
cides how to select the individuals or how to choose parents. A typical method is roulette
wheel selection, where every parent is represented in the wheel with a percentage based
on their fitness score. The individual has a larger chance to enter the next generation if
the score of an individual is higher. Operators are used to generate new individuals with
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different methods. Mutation, permutation, and crossover are three common operators.
Taking geometry structure as an example, the mutation operator is to substitute one atom
with another atom with a new element type, while the permutation operator is to swap the
positions of two atoms in the structure. The Crossover operator combines one part of the
first parent and another part of the second parent together to generate a new offspring
structure. The operators can be randomly used multiple times. Then, the fitness functions
of all offspring are calculated. The offspring are subsequently evaluated and the popu-
lation is updated to go back to the convergence criteria stage. This process is repeated
until it converges.

The above GA ranks the fitness functions according to their corresponding absolute
value, which causes the GA to finally converge to a single global minimum. However, only
an absolute global minimum value sometimes is not what we want. For example, a convex
hull construction for an alloy system not only needs the global minimum composition.
Instead, we have to obtain the minimum at each element concentration. In order to keep
the diversity, a niche-based GA is proposed. The niche-based GA is to split the population
into different unique niches, such as unique concentrations of one element in the alloy
system. This method can finally generate a series of optimal values rather than only one
value.

2.6 Microkinetic model
Common chemical reactions usually consist of multiple elementary reactions. In order

to describe the total reaction rate, the equilibrium between elementary reactions needs
to be considered. Microkinetic modeling is a great methodology to analyze the reaction
mechanism. Especially, it can be used to identify critical reaction intermediates and rate-
determining elementary reactions. Microkinetic modeling has been widely utilized in all
kinds of common electrochemical reactions, such as CO2RR, HER, oxygen reduction
reaction (ORR), OER, and nitrogen reduction reaction (NRR).[164–166]

The reaction mechanism for CO2 reduction to CO in this thesis is considered as fol-
lows:[167]

CO2(g) + ∗+ H+ + e− ←−→ HOCO∗ (2.46)

HOCO∗+ H+ + e− ←−→ CO∗+ H2O(l) (2.47)

CO∗ ←−→ CO(g) + ∗ (2.48)

The free energies are calculated by the computational hydrogen electrode (CHE)
model[168], which provides an elegant method to avoid calculations of solvated protons.
In this model, 0 V is defined based on the reversible hydrogen electrode (RHE). The re-
action is defined as equilibrium at 0 V, at standard pressure:

H+ + e− ←−→ 1
2
H2 (2.49)

Therefore, the sum of the chemical potential of H+ and e– in equilibrium is equal to half
of that of gaseous hydrogen. The free energies dependent on the applied potentials are
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calculated as follows:

ΔG1 = GHOCO∗ − G∗ − μCO2(g) −
1
2
μHΘ

2
+ eU (2.50)

ΔG2 = GCO∗ + μH2O(l) − GHOCO∗ −
1
2
μHΘ

2
+ eU (2.51)

ΔG3 = G∗+ μCO(g) − GCO∗ (2.52)

where the applied potentials are relative to the RHE. ΔG1, ΔG2 and ΔG3 are the free
energy difference of the three-step reactions for CO2RR. GHOCO∗, GCO∗ and G∗ are the
free energies of species HOCO*, CO* and surface, respectively. μCO2(g), μCO(g), μH2O(l)

and μHΘ
2
represent the chemical potentials of gaseous CO2, gaseous CO, liquid H2O and

gaseous H2, respectively. Moreover, experimental vapor pressures are utilized for them
in this thesis. The partial pressures of H2O and CO are 3534 Pa and 5562 Pa, respec-
tively.[40] The partial pressure of CO2 and H2 are both under standard pressure 101325
Pa.[22, 40] We ignore electric field effects on adsorption energies in this thesis.

A kinetic model is utilized to study the activity for CO2RR to CO. The net reaction rates
of CO2RR are described as[169]

r1 = k1θ∗pCO2 −
k1
K1

θHOCO∗ (2.53)

r2 = k2θHOCO∗ −
k2
K2

θCO∗ (2.54)

r3 = k3θCO∗ −
k3
K3

θ∗pCO (2.55)

where k1, k2, k3 represent forward rate constants for the three steps of CO2RR. K1,
K2, K3 are the corresponding equilibrium constants and backward rate constants can be
calculated by forward rate constant over the corresponding equilibrium constants. For
example, the backward rate constant is equal to k1/K1. p and θ represent the partial
pressure and surface coverage, respectively. For the electrochemical step 1 and step 2
with coupled electron-proton transfer, the forward rate constants are denoted as

ki=1,2 = A′ exp
(
−βe(U − U0

i )

kBT

)
(2.56)

where the pre-exponential factor A′ is a material independent constant. A value of A′ =
3.6 × 104 s–1 is used as in previous work.[169] kB is the Boltzmann constant and β is a
symmetry factor which is set as 0.5 here. U0

i is the reversible potential of reaction step i

U0
i = −∆Gi

e
(2.57)

where ∆Gi is the reaction free energy difference at zero voltage (vs. RHE) calculated by
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DFT using the CHE model. The corresponding equilibrium constants are given by

Ki = exp
(
−e(U − U0

i )

kBT

)
(2.58)

For the chemical step 3 with no electron or proton transfer, the rate constant is ap-
proximated as

k3 = ν exp
(
−ECO∗

kBT

)
(2.59)

where ECO∗ represents the binding energy of intermediate CO*. A typical pre-exponential
factor ν is 10 13 s–1.

2.7 High-throughput screening workflow

Figure 2.6: The flow chart of a typical high-throughput screening workflow with active
learning.

It is very important to have an automatic workflow in the process of high-throughput
screening. On the one hand, the automatic workflow can greatly improve computational
efficiency and minimize manual interference. All tasks can run sequentially and automat-
ically according to the pre-set. In other words, subsequent tasks automatically start until
previous tasks are finished and subsequent tasks can use data from previous tasks. On
the other hand, it is obviously beneficial to generate reproducible results. A typical high-
throughput screening workflow with active learning can be seen in Figure 2.6. First of
all, an initial database is used to train a model that can be the cluster expansion model or
machine learning (ensemble) model. Then themodel can be utilized to do global optimiza-



26 2.7. High-throughput screening workflow

tion which can be Monte Carlo simulated annealing or genetic algorithm. The generated
optimal structures are calculated by DFT calculation and the DFT data can be fed to the
model to do active learning until it is converged. There are several common tools used to
build workflows, such as AiiDa[170], Fireworks[171], and MyQueue[172].
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Chapter 3
Metal-doped PdH(111)

This chapter is based on paper I and the corresponding supporting information can be
seen in Appendix A.

3.1 Introduction
Numerous previous studies have been done to study metal catalysts for the CO2RR.

Gold (Au)[45, 46], silver (Ag),[49, 50] and copper (Cu)[39] are most widely studied for the
electrochemical CO2RR and show good performance for CO production. Au nanoparti-
cles formed from thick Au oxide films were reported to have high selectivity for CO2RR to
CO at 140 mV overpotential, keeping their activity for no more than 8 hours.[51] Kim et al.
reported Ag nanoparticles supported on carbon have good Faradaic efficiency and low
overpotential.[50] Raciti et al. reported that Cu nanowires produced by electrochemical
reduction are highly active and selective for the CO2RR to CO at an overpotential of 0.3
V.[39] However, Au, Ag, and Cu can not tune the desired CO/H2 ratio with high CO2RR
catalytic activity.[58, 167] In addition, M-N-C electrocatalysts with high faradaic efficien-
cies for CO generation are also popular in the field of CO2RR. Among them, Fe-N-C
electrocatalyst shows high selectivity and CO formation activity at low overpotentials (0.3
to 0.5 V). Ni-N-C electrocatalyst exhibits good selectivity and activity at higher overpoten-
tials because it is more favorable toward the HER. Co-N-C electrocatalyst has a lower
selectivity for CO throughout the entire potential range.[55]

Pd was reported to be a potential candidate catalyst for CO2RR to CO by Gao et al.
in 2015.[57] Moreover, Chen et al. thought the Pd catalyst was more suitable to produce
syngas (CO and H2) compared to other metals, and that the reason why Pd showed
good activity and selectivity during electrochemical CO2RRwas the Pd metal catalyst was
transformed into palladium hydride. [58] The formation of PdH would significantly improve
Faradaic efficiencies of production of CO and H2. Furthermore, the PdH(111) surface
experimentally exhibited higher current density and Faradaic efficiency compared with
other crystal surfaces.[58] Subsequently, in order to further improve the performance of
PdH, several approaches, such as applying transitionmetal nitrides as promising supports
and using bimetallic catalysts, have been explored in recent years.[59]

In this chapter, DFT simulations are performed to study transition metal-doped PdH
catalysts. Due to the difficult formation of HOCO* on pure PdH(111), we explore the pos-
sibility of lowering the HOCO* formation energy through doping transition metal elements
(Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd, Hf, Ta, W, and Re)
into the PdH(111) surface in different configurations to systematically study their proper-
ties. First, the doping formation energies are calculated to illustrate the stability of different
doped surfaces. Then, the scaling relations between reaction intermediates, free energy
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diagrams, and kinetic model are carried out to explore the CO2RR catalytic activities af-
ter doping. Finally, selectivity toward CO2RR and HER is also studied to describe the
competition between CO and H2.

3.2 Simulation details
Bulk PdH is in the rock salt (NaCl) crystal structure and the (111) surface, which is

energetically the most stable, is considered in this chapter. A 3× 3 supercell model of the
PdH(111) with six bilayers is built and each bilayer consists of one Pd atomic layer and
one H atomic layer, where the bottom three bilayers are fixed in their bulk positions during
optimization. A 3× 3× 1 Monkhorst-pack grid[173] of k-points is applied to sample the
first Brillouin zone of the PdH(111) slab. The convergence threshold of Hellman-Feynman
force is set to 0.01 eV Å−1, and the energy convergence criteria on each atom was set to
10−6 eV atom–1. A vacuum layer of about 15 Å is adopted in the z direction to separate
periodic slab images and avoid interactions between them. In order to further improve
accuracy it CO2RR free energy diagram, a +0.15 eV correction per C=O is applied for
systematic overbinding corrections with the BEEF-vdW functional, +0.15 eV for HOCO*
and +0.1 eV for H2.[174, 175] For solvent stabilization correction at the water-catalyst
interface, -0.25 eV for HOCO* and -0.1 eV for CO* are used in all calculations, respec-
tively.[40] The effects of the electric field at the electrochemical interface of catalysis on
the free energy of the adsorbates are ignored in this treatment. All calculation processes,
data collection, and analysis are performed in a custom-built workflow and a computa-
tional database is freely available in the DTU Data Repository.[176]

The formation energies Eform of PdH doped with transition metals are calculated ac-
cording to the following definition:

Eform = EnM−doped − Epure − nµM + nµPd (3.1)

where EnM−doped denotes the energy of doping the PdH(111) slab with n metal atoms,
while Epure is the energy of the pure undoped PdH(111) slab. µM and µPd represent the
chemical potential of the doped metal atom and Pd, respectively.

The binding energies Eb of different intermediates in this chapter are given by the
following equation:

Eb = E∗+intermediate − E∗ − Eintermediate (3.2)

where E∗+intermediate is the total DFT energy of slab and intermediate. E∗ and Eintermediate

are the energies of clean slab and intermediate with respect to gas phase molecules,
respectively.

The calculations of Gibbs free energy (G) are obtained from

G = EDFT + EZPE +

∫
CpdT − TS (3.3)

where EDFT represents the DFT energy with overbinding correction and solvent stabiliza-
tion correction. EZPE represents the zero-point energy of the species. Cp and S are the
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heat capacity and entropy, respectively, and T is temperature. EZPE, Cp and entropy of
slabs are obtained from statistical mechanics using the harmonic approximation through-
out calculations of vibrational frequencies. We assume that variations in these terms are
small compared with that of binding energies and thus the energies of these terms for
pure PdH(111) are applied to other surfaces as listed in Table A.9. Gas-phase species
are obtained by ideal gas methods and the corresponding free energies are listed in Table
A.10.

3.3 Results and discussions

Figure 3.1: The top views of doping PdH(111) surface in different doping configurations:
(a) single, (b) dimer, (c) triangle, (d) parallelogram, (e) island and (f) overlayer. The blue
spheres are Pd atoms, the small white spheres represent H atoms and the grey spheres
represent dopant atoms.

Before investigating transition metal element dopants, the pure PdH(111) surface is
first studied by DFT with the BEEF-vdW functional. The crystal constants of optimized
bulk PdH are a=b=c=4.138 Å, which is well consistent with the experimental results 4.090
Å.[177] Figure A.1 shows the top and side view of pure PdH(111) structures. The PdH(111)
slab is built by optimized bulk PdH and its lattice constants are a=b=8.778 Å and c=27.140
Å. The top and side views of pure PdH(111) with adsorbates HOCO*, CO*, H*, and OH*
are shown in Figure A.2. We notice that HOCO*, CO*, and OH* tend to adsorb on the top
site of PdH, while H* prefers to adsorb on the hollow site according to their binding ener-
gies in Table A.1. Figure A.3 demonstrates the CO2RR free energy diagram of PdH(111)
at 0 V (vs. RHE), at room temperature. The free energies of the HOCO*, CO*, and CO
intermediates in this diagram are 0.820, 0.216, and 0.123 eV, respectively. Because the
HOCO* formation step has the highest free energy, this reaction step is the potential-
limiting step on pure PdH(111). This is consistent with the DFT results of 0.67 eV for the
HOCO* step found by Sheng et al. using the PW91 functional.[58] At the same time, the
HER free energy diagram of PdH(111) at 0 V (vs. RHE) is also shown in Figure A.4 and
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the free energy of the Volmer step is 0.501 eV, which is lower than 0.820 eV for CO2RR.
Therefore, the CO2RR steps are thermodynamically more difficult than the HER steps
for pure PdH. Experiments by Sheng et al. found that the CO/H2 ratio is always lower
than 1 at different potentials and thus shows CO has a lower proportion, which has good
agreement with computational results.[58]

Figure 3.2: The formation energies of doping PdH(111) with different elements in different
doping configurations.

In order to improve the CO2RR performance of PdH, the impact of doping transition
metal elements into the PdH(111) surface is explored below. As displayed in Figure 3.1,
we try to dope different elements Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo,
Ru, Rh, Ag, Cd, Hf, Ta, W and Re into PdH(111) surface in different doping configurations
which we demote as: single, dimer, triangle, parallelogram, island and overlayer, respec-
tively. Their formation energies per dopant atom in the different doping configurations are
first calculated and shown in Table A.2 and in Figure 3.2. We find, in most cases, that
overlayer doping is the most unstable, while single doping is the most stable when an ele-
ment is doped in different configurations. Moreover, the doping formation energies of Sc,
Ti, Zn, Y, Zr, Nb, Hf, and Ta in all doping configurations are negative except for overlayer
doping of Zn. This demonstrates that Sc, Ti, Zn, Y, Zr, Nb, Hf, and Ta are easier to be
doped into PdH compared to other elements. We note that for the largest dopants: Sc,
Zn, Y, Zr, Ag, Cd, and Hf significant destabilization of the overlayer structure compared to
single dopant by more than 1 eV can be observed. This is likely caused by the increased
strain with the full overlayer.

The CO2RR free energy diagrams of doping PdH(111) with different elements in differ-
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Figure 3.3: The free energy diagrams of doped PdH(111) with doping elements in different
configurations.

ent configurations are calculated to explore the possibility of lowering the potential-limiting
HOCO* step as displayed in Figure 3.3. The free energies are calculated using the most
stable adsorption sites according to the binding energies in Table A.3-A.8 and the corre-
sponding specific free energies are listed in Table A.11-A.16 in the Appendix A. For single
atom doping of PdH(111), Fe, Zr, Nb, and Ru doping effectively decrease the free energy
of the HOCO* step by -0.003, -0.06, -0.07, and -0.15 eV, respectively, compared to the
pure PdH. However, the doping formation energies of Fe and Ru are positive and thus
unstable. Therefore, the candidates for lowering the HOCO* step are Nb and Zr-doped
PdH for doping with a single atom. For dimer doping of PdH(111), the free energies of
HOCO* step of Sc, Ti, V, Cr, Mn, Fe, Y, Zr, Nb, Mo, Ru, Hf, Ta, W and Re are downhill
relative to undoped PdH. Their free energy differences with respect to PdH are -0.39,
-0.04, -0.01, -0.63, -0.30, -0.143, -0.88, -0.63, -0.04, -0.16, -0.19, -0.18, -0.10, -0.03, -
0.01 eV, respectively. Among them, Sc, Ti, Zr, Nb, Hf, and Ta are stable according to
their doping formation energies, and thus they are possible candidates for CO2RR for
this case. Doping with Y dimers is neglected due to structural distortion upon optimiza-
tion. Still, for the triangle doping, Sc, Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ru, Hf, Ta, W and
Re doping leads to a free energy reduction of the potential-limiting step, and the free en-
ergy differences compared to pure PdH(111) are -0.30, -0.17, -0.34, -0.57, -0.32, -0.30,
-0.50, -0.24, -0.23, -0.21, -0.42, -0.41, -0.06, and -0.27 eV, respectively. (Y doping is
removed due to large structure distortion.) The ones that could be stable are still Sc, Ti,
Zr, Nb, Hf, and Ta-doped PdH. Similarly, there are more doping elements that can lower
the potential-limiting step: Sc, Ti, V, Cr, Mn, Fe, Co, Zr, Nb, Mo, Ru, Hf, Ta, W, and Re
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in the parallelogram configuration. Their free energy differences with respect to PdH are
-1.02, -0.31, -0.29, -0.41, -0.32, -0.46, -0.39, -0.42, -0.28, -0.49, -0.37, -0.57, -0.25, -0.66,
and -0.66 eV, respectively. In the parallelogram configuration Zn, Y, and Cd doping are
discarded due to large structural distortion. Again the most promising stable candidates
are Sc, Ti, Zr, Nb, Hf, and Ta dopants. It is worth noticing that Sc doping in this case
greatly decreases the HOCO* step and the line connecting HOCO* to CO* in the free
energy diagram intersects with lines from other dopants. This illustrates that Sc doping
clearly breaks the scaling relation between HOCO* and CO*. For the case of island dop-
ing, the free energies of Sc, Ti, V, Cr, Mn, Fe, Co, Nb, Mo, Ru, Rh, Ta, W and Re are
downhill compared with that of the undoped PdH(111), and the free energy differences
are -1.002, -0.423, -0.325, -0.293, -0.747, -0.565, -0.160, -0.592, -0.864, -0.333, -0.032,
-0.817, -0.466, and -0.424 eV, respectively. Y, Zn, Zr, Cd, and Hf doping are discarded
due to large structure distortion in the island configuration. However, the stable dopants
are Sc, Ti, Nb, and Ta in light of their negative formation energies. In the last configuration
of overlayer doping, several structures are not stable after binding the reaction intermedi-
ates including Sc, Y, Zn, Zr, Cd, and Hf overlayer surfaces. This may again be related to
the large size of these dopants and the corresponding lattice mismatch that can be seen
in Table A.17, and thus they are removed in this case. Ti, V, Cr, Mn, Fe, Co, Ni, Nb,
Mo, Ru, Rh, Ta, W and Re doping can effectively reduce the free energy of HOCO* step
and the free energy differences are -0.232, -0.222, -0.423, -0.884, -1.971, -1.234, -0.844,
-0.196, -0.329, -0.554, -0.093, -0.577, -0.611, and -0.939 eV, respectively, but only Ti,
Nb, Ta and V doping are the stable ones. The candidates of different configurations for
CO2RR are finally summarized in Table 3.1. Overall, we find that Ti, Sc, Nb, Zr, Hf and
Ta doping of PdH(111) are promising dopant candidates in most configurations.

Figure 3.4: Structures of intermediates (a) HOCO* (one bond), (b) CO*, (c) H* and (d)
OH* on the top sites of a doped PdH(111) surface. (e) HOCO* forms two bonds with
PdH(111). The blue spheres are Pd atoms, the small white spheres represent H atoms,
the big grey spheres represent dopant atoms, the red spheres are O atoms, and the
small grey spheres are C atoms. (f) Charge density difference figure for HOCO* with
two bonds. The blue region represents charge depletion while the yellow region means
charge accumulation.
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Table 3.1: Possible candidates for different PdH(111) doping configurations according to
free energy diagrams.

Doping configurations Possible candidates

Single Nb, Zr

Dimer Sc, Ti, Nb, Zr, Hf, Ta

Triangle Sc, Ti, Nb, Zr, Hf, Ta

Parallelogram Sc, Ti, Nb, Zr, Hf, Ta

Island Sc, Ti, Nb, Ta

Overlayer Ti, Nb, Ta, V

Figure 3.5: The scaling relation of intermediates on doped PdH(111) with different ele-
ments between HOCO* and CO* in different dopant configurations. The red line is fitted
to Fe, Co, Ni, Cu, Ru, Rh, and Ag-doped PdH(111) where HOCO* forms one bond to the
surface. The blue line is fitted to all doped PdH(111).

The scaling relations of intermediates on doped PdH(111) with different elements in
different doping configurations are further studied to understand catalytic performance.
Taking the top site adsorption as an example, the structures of the surface with HOCO*,
CO*, H*, and OH* are displayed in Figure 3.4a-d. The binding energies in the most stable
sites are, however, applied in the following analysis with the corresponding data listed in
Table A.3-A.8. Figure 3.5 shows the scaling relation between HOCO* and CO* in the six
dopant configurations. We use R2, a statistical measure that represents the proportion of
the variance between two variables, to describe how well a linear scaling relation is fitted,
and a good fit has R2 close to 1. In Figure 3.5a-f, Fe, Co, Ni, Cu, Ru, Rh, and Ag doping
are marked in red dots and the corresponding fitted lines are also shown in red. They
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display clear linear scaling relations in all configurations with R2 values 0.84, 0.88, 0.89,
0.96, 0.97 and 0.86, respectively. This is because they all form only a C-metal bond on the
top of one dopant in all doping configurations according to optimized HOCO* structures
as shown in Figure 3.4a. The fitted lines of the six doping cases using all doping elements
are displayed by the blue lines. They showmuch lower R2 values of 0.42, 0.36, 0.51, 0.48,
0.41, and 0.80, respectively. This is because the surfaces doped with Sc, Ti, Nb, Zr, Zn, V,
Mn, Mo, Cr, Hf, Cd, W, Ta, and Re mostly tend to form two bonds to the surface consisting
of a C-metal (C-M) and an O-metal (O-M) on two different metal atoms for HOCO* on the
surface as displayed in Figure 3.4e. A small part of them, however, forms two bonds to the
same metal atom as shown in Figure A.11. All structures are summarized in the database
in the Appendix A and the corresponding formation of two bonds can be found in the
database. The C-M and O-M bond lengths of HOCO* on the doped surfaces in different
configurations are listed in Table A.18 and A.19, and O-M bond lengths are summarized
in Figure A.15. We have chosen a surface-oxygen distance of 2.7 Å to determine whether
a bond is formed between the O in HOCO and the surface because few surfaces have
O-M bond lengths between 2.4 and 2.8 Å. A more detailed discussion is given in the
Appendix A. For example, Figure 3.4f shows the charge density difference for HOCO* on
the Ti parallelogram doped surface, which clearly demonstrates that two bonds form on
the surface. The bond length of C-Ti is 2.259 Å and the bond length of O-Ti is 2.032 Å. We
therefore conclude the formation of two bonds breaks the previous single C-metal scaling
relations and thus reduces the R2. Furthermore, the dopant structures resulting in the
formation of two bonds show stronger HOCO* binding with the surface compared to their
CO* binding energy, which may be the reason the free energies of the HOCO* step with
the two bonds are relatively low in Figure 3.3. Figure A.12 shows the scaling relations of
adsorbates HOCO* vs. OH* in different doping configurations. Similarly, for the surfaces
doped with Fe, Co, Ni, Cu, Ru, Rh, and Ag, their HOCO* binding energies can be well
linear with the OH* energies, and the R2 values are 0.81, 0.82, 0.81, 0.63, 0.77 and
0.83 in different doping configurations, respectively. However, their scaling relations of
total metal element doped surfaces have worse R2 values of 0.03, 0.46, 0.62, 0.60, 0.80,
and 0.50, respectively. This could also be attributed to the formation of the two bonds of
HOCO* on the surfaces as we described before. The scaling relations between CO* and
H* intermediates on doped PdH(111) surfaces in different doping configurations are also
shown in Figure A.13. The CO* and H* intermediates display good scaling relations with
R2 values of 0.68, 0.80, 0.74, 0.66, 0.78, and 0.49. This can be attributed to the fact that
only one atom in CO* and H* interacts with the surfaces.

In order to further study the kinetic activity of doped PdH(111), a kinetic model is uti-
lized. In Figure 3.6, the activity volcano of doped PdH(111) for CO2RR in different doping
configurations is given. It is seen that the kinetic activities depend on the binding energies
of both HOCO* and CO*. The partial pressure of CO2 and CO are 101325 Pa and 5562
Pa, respectively, and the overpotential (the difference between the applied potential and
the equilibrium potential calculated with the BEEF-vdw functional) is set to 0.3 V. It can be
noted that Ti, Sc, Nb and Zr demonstrate excellent catalytic activities in different doping
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Figure 3.6: Activity volcano plots of doped PdH(111) with different elements for CO2RR
at 0.3 V overpotential in different dopant configurations.

configurations. Among them, Sc doping with dimer, triangle, and island configurations, Zr
doping with dimer, triangle, and parallelogram configurations and Hf doping with dimer,
triangle, and parallelogram configuration are close to the center of the volcano and thus
show good activities. However, according to binding energy in Figure A.12, OH* bind-
ing of Sc, Zr, and Hf are so strong on the PdH surface, which will cause OH* poisoning.
Besides, we notice that Ti doping with parallelogram and overlayer configuration and Nb
doping with overlayer configuration are also closer to the center of the volcano compared
to PdH. Furthermore, the free energies of OH* are smaller than 0.3 eV and thus will not be
poisoned at 0.3 V overpotential. Therefore, they are expected to have better kinetic ac-
tivities than pure surface. However, we can find that the CO* binding of Ti and Nb doping
is stronger than pure PdH, which limits their kinetic activities at room temperature due to
slow CO desorption. In order to further improve CO* activities of noneletrochemical step,
one could increase the temperature. As shown in Figure A.14, we take Ti doping in the
parallelogram configuration as an example. With the temperature increasing, the partial
current density of CO* would increase and 7.72 mA/cm2 can be achieved at 350K. In ad-
dition, we calculate surface stability and the corresponding Pourbaix diagram[178, 179] of
HOCO*, CO*, H*, OH*, metal ion dissolution, for PdH(111) surfaces including Ti doping in
parallelogram and overlayer configurations, Nb doping with overlayer configurations, and
pure PdH(111) as displayed in Figure A.20-A.25. The detailed methods are given in the
Appendix A. It is noticed that ion dissolution is unfavorable when the potential is less than
or equal to -0.304, -0.290, -0.224, and 1.017 V at pH = 0 for these four configurations, and
the dissolution potential will be more negative as pH increases. This means that these
three doped surfaces are stable under negative bias typically required for CO2 reduction,
but that stability might be an issue above the working potential.

Figure 3.7 illustrates the selectivity for CO2RR and HER of doped PdH(111) in dif-
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Figure 3.7: The selectivity plot for CO2RR and HER of doped PdH(111) with elements in
different dopant configurations.

ferent doping configurations with the corresponding data listed in Tables A.3-A.8. We
apply ΔGHOCO∗−ΔGH∗ as a descriptor to demonstrate the trend of producing CO and H2.
When the value of ΔGHOCO∗-ΔGH∗ is more negative, it indicates that there would be higher
selectivity toward CO2RR. Otherwise, the more positive value of ΔGHOCO∗−ΔGH∗ repre-
sents the higher selectivity toward HER. We find that a majority of elements doped PdH
in different doping configurations will generate more H2 than CO according to Figure 3.7.
However, some overlayer dopings such as Sc, Mn, Fe, Co, Ni, and Zr prefer to generate
more CO. It is worth noting that the values for Ti and Nb doping are more negative than
for pure PdH(111) in most doping configurations and thus tend to produce more CO.

3.4 Conclusions
In this chapter, we utilize density functional theory calculations to study the CO2RR

and the competing HER on PdH(111). 22 transition metal elements Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd, Hf, Ta, W, and Re are doped into
the PdH(111) surface with different doping configurations to explore their catalytic perfor-
mance. Doping formation energies show Sc, Ti, Zn, Y, Zr, Nb, Hf, and Ta dopants are
easier to dope into the surface. Free energy diagrams identify Ti, Sc, Nb, Zr, Hf, and Ta as
possible doping candidates that lower the HOCO* limiting step for the CO2RR. The scal-
ing relations of HOCO* vs. CO* binding energies in different doping configurations display
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well-defined scaling relations for Fe, Co, Ni, Cu, Ru, Rh, and Ag doping, because HOCO*
and CO* intermediates all form a single C-metal on the surfaces. However, the forma-
tion of the two bonds consisting of one C-metal and one O-metal bond breaks the scaling
relation for other dopants, which is the reason why these dopants have strong HOCO*
binding compared to the CO* binding. According to kinetic volcano plots, Ti doping with
parallelogram and overlayer configuration and Nb doping with overlayer configuration are
further found to have better kinetic activities than pure PdH(111) at a low overpotential
of 0.3 V. At the same time, Ti and Nb are also possible to generate more CO compared
with pure surface based on their selectivity toward the CO2RR and HER. This chapter
provides good guidance for studying Pd-base alloy hydrides.
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Chapter 4
PdHx(111)

This chapter is based on paper II and the corresponding supporting information can
be seen in Appendix B.

4.1 Introduction
Metallic Pd electrocatalyst has received attention for reducing CO2 to CO; it not only

exhibits good selectivity and activity but also can split CO and H2 simultaneously to syn-
thesize gas with an adjustable H2 to CO ratios.[167] Pd is usually considered as a fa-
vorable HER catalyst, but it can also produce CO at a very similar ratio to H2.[58] Chen
et al. revealed that carbon-supported palladium (Pd/C) nanoparticles can generate CO
and H2 simultaneously in an aqueous electrolyte with a tunable CO/H2 ratio from 0.5 to 1,
which is a favorable ratio range to perform Fischer–Tropsch reaction that already exists
in the industrial processes.[58] Chen et al. continued to explore the influence of differ-
ent facets of Pd with cubic and octahedral particles dominated by Pd(100) and Pd(111)
surfaces, respectively.[167] Their results show that the octahedral Pd particles have bet-
ter activity and selectivity than cubic Pd particles, and both can produce suitable CO/H2

ratios between 1 and 2, which are desirable ratios for the Fischer–Tropsch process. It
is worth noting that experiments show that a key factor of the high performance is that
Pd particles are transformed into Pd hydrides.[167, 180] In fact, there could be different
concentrations of H in Pd hydrides (PdHx) controlled by the applied potential, which has
an important influence on the CO2RR performance. [180, 181] Experiments only give the
relation between the applied potential and CO2RR performance, and corresponding DFT
calculations have only compared the performance of pure Pd and stoichiometric PdH.
However, the best concentration of H of PdHx surface for CO2RR to CO is not given, and
it is unclear whether there is a saturation concentration of H.

Some previous theoretical efforts have been done to study CO2RR or HER properties
of PdHx. Chen et al. reported the free energy diagram of Pd(111) and PdH(111). They
concluded that the CO* desorption from the metal Pd(111) surface could be the rate-
limiting step due to strong CO* binding compared to PdH(111).[58, 167] Chorkendorff and
co-workers reported hydrogen adsorption on palladium and palladium hydride at 1 bar.
They showed the relation between the adsorption energy of H and surface H coverage
on Pd(111) and Pd hydride slabs, and that the H binding energies became weaker as H
coverage increased. They thought the adsorption and desorption of H2 are faster on β-
Pd hydride than α-Pd hydride at 1 bar.[182] Erhart et al. constructed the phase diagrams
of bulk Pd hydride and Pd-Au hydride using a cluster expansion and studied their ther-
modynamic properties. [183]. However, these theoretical efforts have not systematically
investigated the effect of H concentration on CO2RR.
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This chapter uses an active learning cluster expansion (ALCE) model equipped with
Monte Carlo simulated annealing to search for the stable composition of PdHx(111) sur-
faces. Energies calculated by DFT are used to train the ALCE model and find the ground
state CE structures of each H concentration of PdHx from the CE convex hull. Further-
more, we perform DFT relaxation to verify the CE convex hull and finally get the DFT
convex hull to identify the ground state DFT candidates. Once the stable candidates are
found, the CO2RR activity and selectivity are further studied. As a result, PdH, PdH0.97,
and PdH0.60 are finally screened out to be the most active candidates and able to generate
CO/H2 with suitable ratios.

4.2 Simulation details
All spin-polarized DFT calculations are carried out to train the cluster expansion model

and calculate adsorption energies using the ASE [93, 94] and the VASP with the PAW
method.[86–88] The BEEF-vdW ensemble is used for exchange and correlation func-
tional, which performs quite well for chemisorption processes. [75] The first Brillouin zone
is sampled by a 3× 3× 1 Monkhorst-pack grid[173]. 400 eV is set for cutoff energy. The
dipole correction is utilized in the z direction to remove the electrostatic dipole-dipole in-
teraction due to periodically repeated surface slabs in all calculations. The structures are
relaxed until all Hellman-Feynman forces are less than 0.01 eV/Å and the energy con-
vergence criterion is within 10−6 eV. More DFT calculation details can be found in the
Appendix B.

Monte Carlo simulated annealing at each H concentration of PdHx is performed in
order to search for the ground state structure of each concentration, which is carried out
in CLEASE. The standard Metropolis Monte Carlo at each temperature during simulated
annealing is used and has the acceptance probability Pacc as follows:[96]

Pacc = min
{
1, exp

(
−(Enew − Eold)

kBT

)}
(4.1)

Where Enew and Eold are the energies of new and old structures, respectively. kB is
the Boltzmann constant and T denotes temperature. The temperatures are set as 1010,
10000, 6000, 4000, 2000, 1500, 1000, 800, 700, 600, 500, 400, 350, 300, 250, 200, 150,
100, 75, 50, 25, 2 and 1 K. For each temperature, 1000 Monte Carlo sweeps are applied
(1 sweep includes N steps, where N is the number of atoms.)

4.3 Results and discussions
To illustrate the structures of the PdHx(111) surface, we take an H concentration of

50% as an example here and display the side and top views in Figure 4.1. The structure
has four bilayers, including 16 Pd atoms and up to 16 H atoms. It can be seen that PdHx

has a Pd atom (blue spheres) framework, with the smaller H atoms (white spheres) filling
octahedral sites between the larger Pd atoms. Red virtual atoms show H vacancies. The
PdHx(111) slab is cut from the optimized bulk PdH with the crystal constants a = b = c =

4.138 Å and the slab size is 4× 4× 4 with a = b = 11.704 and c = 28.362 Å. Here, we
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Figure 4.1: (a) The side view and (b) the top view of PdHx(111) surface that take H
concentration of 50% as an example. The blue spheres are Pd atoms, the white spheres
represent H atoms, and the red spheres are H vacancies.

ignore the crystal constants variation when the H concentrations change because they
vary only in a small range, approximately 0.2 Å from 0 to 1 for H concentration, which is
less than 5% of the lattice constants of PdH.[184] Besides, previous work reported the
strain of PdH only has a small impact on the performance of CO2RR and HER.[185]

There can be up to 64 H atoms in the PdHx(111) surface as shown in Figure 4.1. It
is impossible to run DFT calculations for all the possible structures (2 64 neglecting sym-
metry). Instead, we utilize an ALCE surrogate method. The workflow of the ALCE for
PdHx(111) is shown in Figure B.1. After defining the CE settings, we generate 50 random
H concentration structures of PdHx to form the initial database pool and then relax the
structures to get their DFT energies, which can be used to train the CE model and get
the initial ECI values. If the RMSE between DFT energies and CE energies is less than
5 meV/atom, we consider the CE model converged. Otherwise, more random structures
will be generated and run by DFT, which are finally added to the database pool to verify
if the CE model is converged. Once we have the converged the CE model, Monte Carlo
simulated annealing (MCSA) with the CE calculator is performed to search for ground
state structures for each H concentration of PdHx, which gives 63 MCSA in total because
the numbers of H range from 0 to 64 (concentration from 0 to 1) except pure slabs Pd(111)
and PdH(111). The CE convex hull can be calculated according to all ground state struc-
tures at each concentration of H of PdHx. Theoretically, the stable structures could be
found from the vertices of the CE convex hull at this point. However, considering the un-
certainty of the processes, the obtained ground state structures should be verified by DFT
calculations. Therefore, the possible stable candidates of the CE convex hull are further
collected, relaxed by DFT calculations, and finally added to the database pool to continue
the next new round. At the same time, the DFT convex hull is also carried out until its
convergence. The criterion of convergence is defined that the shape of the DFT convex
hull will not change for three rounds. After that, the final stable candidates can be found
according to converged DFT convex hull, and their CO2RR activity and selectivity toward
CO and H2 are further studied.
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Figure 4.2: (a) The linear fitting plot of CE energy and DFT energy for 50 random struc-
tures. (b) The ECI distribution was obtained from cluster expansion fitting. (c) The DFT
convex hull curve of mixing energy as a function of H concentration in round 9. (d) The H
concentration of each layer as a function of the total concentration of H for the structures
of the DFT lowest energies in each concentration.

To study stable compositions of PdHx(111), CE calculations are performed using the
CLEASE package. Figure 4.2a shows the linear fitting between CE energies (ECE) and
DFT energies (EDFT) when we have 50 random structures in round 1. It can be seen
that both 10-fold cross-validation error and RMSE are really small, 1.043 meV/atom and
0.450 meV/atom, respectively, which illustrates that the CE model is really good for the
PdHx(111) surface. The ECI value distribution as a function of cluster diameter (1st, 2nd,
3rd, or 4th nearest neighbor) is displayed in Figure 4.2b. It can be noticed that the ECIs of
0, 1, and 2-bodies are larger, while there are more 3-body and 4-body ECI values closer to
0. To avoid overfitting, we choose to use up to 4-body interactions and neglect high terms.
To get accurate stable compositions, ALCE is carried out to deal with the uncertainty of
the CE. After 9 rounds, the vertices of the DFT convex hull are unchanged in the last three
rounds, which means the convex hull is converged. In addition, the fitting RMSEs remain
small during the 9 rounds as displayed in Figure B.4 and Figure B.5, meaning that the
CE models remain good. For each round, simulated annealing at each H concentration is
calculated to find ground state structures as the example round 1 in Figure B.3. As shown
in Figure 4.2c, 12 stable candidates can be finally obtained and are marked by black
crosses. They are Pd64, Pd64H2, Pd64H4, Pd64H8, Pd64H10, Pd64H13, Pd64H31, Pd64H39,
Pd64H53, Pd64H62, Pd64H63 and Pd64H64 and the corresponding H concentrations are 0,
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0.0313, 0.0625, 0.1250, 0.1563, 0.2031, 0.4844, 0.6094, 0.8281, 0.9688, 0.9844 and 1,
respectively. The side and the top view of optimized example structures among them
can be found in Figure B.10. Figure 4.2d shows the H distributions of each layer as a
function of total concentrations of H in the slabs for the slabs of the DFT lowest energies
in each concentration. The first layer is first filled up with H, then the fourth and third
layers are filled up, respectively. Finally, the sublayer (second layer) will be finally filled at
last. Possible artifacts due to the finite thickness of the model slab should be considered.
To further confirm our conclusion, the PdHx(111) structures with more atomic layers with
one missing layer are explored as displayed in Figure B.11 and B.12 in the Appendix B.
It can still be found that removing the sublayer H has the lowest energy and thus will
be filled at last, independent of the slab thickness. In addition, semi-grand canonical
Monte Carlo calculations are implemented to study H chemical potential, temperature,
and pressure influence on H concentration as shown in Figure B.14, B.15 and B.16 and
the corresponding analysis can be found in the Appendix B. Besides, all bare candidate
surfaces are used to study the Pourbaix diagram and the phase transformation process
from Pd to PdH under the applied potential in Figure 4.5c-d assuming the surface to be in
equilibrium with protons and electrons at all potentials. The corresponding computational
details can be found in the Appendix B. Figure 4.5c shows the relative free energy of
surface structure as a function of potential at pH 7.3, where the H concentration increases
when the larger potentials are applied. The corresponding H concentration as a function
of applied potential is shown in Figure 4.5d. This displays metal Pd can be completely
transformed to Pd hydride at a potential of about -0.6 V vs. RHE assuming the surface is
in equilibrium with protons and electrons. However, the characterization of Pd aerogels
by Schmidt and co-workers suggests H concentration is saturated around 60% already
at -0.1 V,[181] which suggests the surface can be in equilibrium with H2 gas rather than
protons and electrons. In that case, the Pd64H39 surface is likely the active surface for
CO production.

After identifying stable candidates on the DFT convex hull, their CO2RR and HER
performances are further studied. Figure 4.3a shows the different adsorption sites of a
random structure, which are displayed in small green spheres. They are automatically
found according to local similarity, which compares the similarity of local structure as dis-
played in Figure 4.3c. The similarity is defined by comparing the neighbor list information
of each adsorbate within a 2.8 Å cutoff sphere, including numbers of neighbor atoms,
neighbor element types, and distance lists between adsorbate and neighbor atoms. We
consider them to be the same adsorption site if the similarity is 1; otherwise, they are
different sites. Here only the top site, fcc site, and hcp site are considered, and the fcc
sites very close to H atoms (less than 1 Å) are not considered because adsorbates lo-
cated in these sites can easily react with the neighboring H. We do not consider bridge
sites because they are unstable. All information on surface structures with adsorbates
on all unique sites can be found in our database.[186] Binding energies of adsorbates of
HOCO*, CO*, OH* and H* on the most stable sites of all PdHx candidates are shown in
Figure 4.3b and the corresponding data can be found in Table B.1. It can be seen that
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Figure 4.3: (a) Adsorption sites schematic diagram on PdHx(111) surface. (b) Bind-
ing energies of HOCO*, CO*, OH*, and H* as a function of H concentration. (c) Cutoff
sphere schematic diagram of adsorbate on PdHx(111) surface. (d) Free energy diagram
of CO2RR of candidates. The insets show HOCO* and CO* adsorption surface struc-
tures. The blue spheres are Pd atoms, the small white spheres represent H atoms, the
grey spheres are C atoms, the red spheres are O atoms and the small green spheres
denote adsorption sites.

the binding energies of all adsorbates gradually increase as the concentration of H goes
up from 0 to 1, especially for the adsorbate CO*. The CO2RR free energy diagram of
all candidates with adsorbates on the most stable sites is displayed in Figure 4.3d, and
the corresponding data can be found in Table B.2. We notice that most surfaces have
very negative binding energies and thus have strong CO* binding, which results in CO*
poisoning, especially for candidates with low H concentration. For example, the free en-
ergies of Pd64, Pd64H2, Pd64H4, Pd64H8 and Pd64H10 at CO* step are -1.259, -1.196,
-1.189, -1.017 and -0.938 eV, respectively. They have so strong CO* binding that CO* is
very hard to release from the surface, which is the reason why CO* poisoning happens.
This can also be found in Figure B.13e. On the other hand, for candidates with high H
concentration, their free energies at HOCO* are very high. For example, the free energy
of Pd64H62 at the HOCO* step is 1.121 eV, which is too weak to bind HOCO* at low over-
potential. Therefore, the ideal CO2RR candidate should have strong HOCO* binding and
weak CO* binding. It is worth noting the PdH surface with full H occupation does not have
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too high HOCO* free energy step (0.79 eV), and weak CO* free energy (0.22 eV) and
thus no CO* poisoning. Besides, Pd64H63 has very weak CO* binding, 0.392 eV of CO*
free energy, and acceptable HOCO* free energy. Pd64H39 has weak HOCO* binding free
energy (0.686 eV) and acceptable CO* adsorption. Thus, Pd64H64, Pd64H63 and Pd64H39

are possible candidates of CO2RR, which is consistent with the activity volcano in Figure
4.5a.

Figure 4.4: Scaling relations for adsorbates on PdHx(111) configurations on the convex
hull.

To further understand the catalytic performance of PdHx(111) surfaces, the scaling
relations between different adsorbates are shown in Figure 4.4 and the binding energy
relations with error ellipsoids can be found in Figure B.13. The relationsECO∗ vs. EHOCO∗,
EOH∗ vs. EHOCO∗, EH∗ vs. EHOCO∗, EOH∗ vs. ECO∗, EH∗ vs. ECO∗ and EH∗ vs. EOH∗

are displayed in 4.4a-f, respectively, and their R2 values are given, which is a statistical
measure to illustrate how well the linear scaling relations are fitted. For the ideal scaling
relation, the R2 value is close to 1. Otherwise, it is worse if the R2 value is close to 0.
We can see that their R2 values are 0.72, 0.65, 0.68, 0.87, 0.77, and 0.60, respectively,
which demonstrates that they have good scaling relations. However, it can also be noticed
that there are some obvious outliers. For example, Pd64H39 in Figure 4.4f is far from the
best-fit line. This might be attributed to H segregation, which breaks the scaling relation.
The H concentration distribution plots of clean surfaces and surfaces with adsorbates are
displayed in Figure B.8 and Figure B.9 in the Appendix B. It can be noticed that there are
fewer H atoms in the 1st layer and more H atoms in the 2nd layer for OH*, while more H
is in the 1st layer and less H is in the 2nd layer compared to that of the clean surface for
Pd64H39.

A kinetic model explores the CO2RR activity for the PdHx(111) surfaces. Figure 4.5a
shows the activity volcano at -0.5 V overpotential at room temperature. The current den-
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Figure 4.5: (a) Activity volcano plot of PdHx(111) candidates for CO2RR at -0.5 V over-
potential. (b) Selectivity plot toward CO and H2. (c) Stability of ground state structures at
pH 7.3. (d) The concentration of H as a function of potentials. The dashed line shows the
saturation of H if the surface is in equilibrium with H2 at 1 bar.

sity depends on both EHOCO∗ and ECO∗, which is more accurate than a single descriptor.
We notice that PdHx with low H concentration is far away from the apex of the volcano
due to the strong CO binding, which means they have poor kinetic activity. The com-
pletely H-filled Pd64H64 is the closest to the apex, illustrating that it has the best activity.
In addition, Pd64H39 and Pd64H63 also exhibit good kinetic activity for higher H concen-
tration. Besides, according to Figure 4.4b, we can see that the OH* binding energies on
Pd64H64, Pd64H39 and Pd64H63 are weak, so OH* will not poison them. Figure 4.5b shows
the selectivity of all candidates toward CO and H2. We compare the binding energies of
the first step of the CO2RR and the HER. If the binding energy of H* is lower than that
of HOCO*, it means HER is thermodynamically preferred over CO2RR and the catalyst
tends to produce more H2. We notice that all of the candidates tend to generate more H2

as shown in Figure 4.5b. Besides, Pd64H64 is very close to the black dashed line and can
produce more CO, and thus its CO/H2 ratio is closer to components of syngas compared
to other candidates.

The statistical distribution of all candidates is calculated to reveal the effect of H and
Pd on binding energies. Here, the statistical data of binding energies includes all possible
adsorption sites on all the candidate surfaces. Figure 4.6a-d display the frequencies of H,
Pd, and the total atoms within a sphere with a 2.8 Å radius centered on the adsorbate as
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Figure 4.6: Distribution of atom Pd and H of all candidates within the cutoff sphere as
a function of HOCO*, CO*, OH*, and H* binding energies. The yellow curves are fitted
Gaussian distribution of H.

a function of the binding energies of HOCO*, CO*, H* and OH*, respectively. In addition,
Figure 4.6a-b indicate the most favorable binding energy for HOCO* and CO* marked in
blue, respectively. We see the tendency that the binding energies for all adsorbates are
weaker when there are H atoms within the cutoff sphere of adsorbates. The fitted Gaus-
sian distributions of H are also shown in the yellow curves in Figure 4.6. Their positions at
the center of the peak are 0.60, -0.15, 0.44, and 1.52 eV, respectively, which are relatively
weak in their corresponding binding energy distributions. Therefore, it can be concluded
that H atoms weaken the binding energies of all adsorbates on PdHx surface. To further
verify the conclusion, the partial density of states (PDOS) of the d-band is calculated. Fig-
ure B.17 shows the PDOS of the bare surfaces of all candidates, and the corresponding
d-band centers are given. It can be seen that d-band centers gradually decrease as H
concentrations increase. The linear fit between d-band centers and H concentrations is
also shown in Figure B.18. The R-squared value is used to describe the degree of their
linear relation. The linear relation will be stronger if the R-squared value is closer to 1.
The R-squared value is 0.87 in Figure B.18 and thus they have a strong linear relation.
The lower d-band center means weaker binding energy.[187] We further calculate d-band
centers for surfaces with HOCO* and CO* to support this. Figure B.19 and Figure B.22
show the PDOS and d-band center for all candidate surfaces with HOCO* and CO*, re-
spectively. Their corresponding linear fits between H concentrations and d-band centers
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and between adsorbate binding energies and d-band centers for all surfaces with adsor-
bates are shown in Figure B.20 and Figure B.22, respectively. It can be noticed that there
are still very good scaling relations between H concentration and d-band centers for sur-
faces with adsorbates. Their binding energies have a good linear relation with d-band
centers. This can be further concluded that increased H concentration can weaken the
binding energy.

4.4 Conclusions
In this chapter, the impact of H concentration on PdHx(111) surfaces on the CO2RR

and the HER has been studied using theoretical methods. Active learning cluster expan-
sion equipped with Monte Carlo simulated annealing has been implemented to find stable
PdHx(111) surface candidates. We have obtained 12 stable candidates from converged
DFT convex hull, which are Pd64, Pd64H2, Pd64H4, Pd64H8, Pd64H10, Pd64H13, Pd64H31,
Pd64H39, Pd64H53, Pd64H62, Pd64H63 and Pd64H64. We have carried out a method to find
adsorption sites and then calculate the binding energies automatically. Their free ener-
gies are further calculated, illustrating the PdHx(111) surfaces with low H concentration
have CO* poisoning. The scaling relations between different adsorbates show there are
still good linear relations, but the segregation of H may have an influence on their scaling
relations. According to the activity volcano, Pd64H64, Pd64H63 and Pd64H39 correspond-
ing H concentrations of 1, 0.97, and 0.60 respectively, show high current densities at an
overpotential of 0.5 V. The Pd64H39 surface is stable when the surface is in equilibrium
with H2 gas, and the H concentration matches well with the experimentally determined
60% H concentration of Pd hydride.[181] Due to the existence of the competitive reac-
tions between CO2RR and HER, the selectivity plot toward CO and H2 is calculated and
illustrates these three candidates have better CO production compared to others, espe-
cially for Pd64H64. The statistical distribution of Pd and H atoms in all candidates reveals
that H atoms can weaken the binding energies of all adsorbates, which may provide good
guidance to tune the binding energy.
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Chapter 5
PdMH(111)

This chapter is based on paper III and the corresponding supporting information can
be seen in Appendix C.

5.1 Introduction
Although the Faradaic efficiency for CO formation on Pd is lower than that on Au, Ag,

and Zn, Pd can simultaneously generate H2 at a similar Faradaic efficiency due to the com-
petitive HER. The generated CO and H2 are the main components of syngas, which can
be directly used to synthesize valuable chemical products via the Fischer–Tropsch pro-
cesses.[4] Several works report that Pd-based catalysts can also produce syngas through
electrochemical CO2RR. Sheng et al. report that carbon-supported Pd/C can simultane-
ously generate syngas with a CO to H2 ratio between 0.5 and 1.[58] The current density
can reach 0.6mAcm−2 at −0.7V overpotential vs. reversible hydrogen electrode (RHE).
In this electrochemical process, metal Pd nanoparticles are transformed into Pd hydride
as observed by in-situ X-ray absorption spectroscopy and in-situ X-ray diffraction. Density
functional theory (DFT) calculations showed that PdH weakens the binding energies of
both CO* and H*.[58] Zhu et al.[167] illustrated that different facets of Pd nanoparticles
have an influence on their performance in CO2RR to syngas; for example, Pd(111) sur-
face has a higher activity of CO2RR and better CO selectivity than the Pd(100) surface.
The CO partial current density of PdH(111) in their work can reach 17mAcm−2 at −0.7V
overpotential vs. RHE, while that of PdH(100) is around 3mAcm−2, which is greater than
that of commercial Pd catalysts. DFT calculations explain that forming PdH(111) makes
CO* desorption no longer difficult and thus improves the activity of CO2RR.[167]

Liu et al.[188] reported that Pd-modified niobium nitride (Pd/NbN) can produce a
much higher partial current density of syngas and larger CO Faradaic efficiency than
Pd-modified vanadium nitride (Pd/VN) catalyst and commercial Pd/C catalyst. Among
them, the CO partial current density of Pd/NbH is the highest at around 0.7mAcm−2 at
−0.7V vs. RHE. In-situ X-ray diffraction illustrated the formation of PdH in Pd/NbN, which
weakens *CO desorption and enhances the CO2 conversion to syngas.[188] Lee et al.[59]
reported the use of Pd-based bimetallic hydrides for producing syngas using the electro-
chemical CO2RR approach. The second metal, such as Co, Ni, Cu, Ag, and Pt, was
chosen to form alloys with precious metal Pd nanoparticles, and concentrations of the
second metals were fixed at 25% in their work. After applying potentials, the CoPd, NiPd,
CuPd, AgPd, and PtPd alloys were transformed to (CoPd)H, (NiPd)H, (CuPd)H, (AgPd)H,
and (PtPd)H, respectively, and their potentials of alloy hydrides formation were −0.322,
−0.352,−0.434,−0.544 and−0.544V vs. RHE, respectively. (AgPd)H, (CuPd)H, (NiPd)H,
and (CoPd)H show higher CO partial current density than that of PdH. According to their
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CO/H2 ratio, (CuPd)H and (NiPd)H are more suitable to produce syngas with the ratio
range between 1 and 2.[59] Our previous study[189] using DFT suggested that among
the transition metals Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd,
Hf, Ta, W, and Re doped into PdH(111) at different doping configurations, Ti and Nb dop-
ing yielded a higher performance of CO2RR than undoped PdH(111). Furthermore, their
generated CO and H2 are suitable for generating syngas.[189] This gives clear guidance
to further study of Ti- and Nb-Pd alloy hydrides.

In this chapter, Pd-based alloy hydrides PdxM1– xHy (PdMH)1 are studied to explore
higher performance catalysts. Our previous work on doped-PdH showed that doping
Ti and Nb into PdH can improve the CO2RR activity, suggesting that the Pd alloy hy-
drides with better performance are likely to be found in the PdxTi1– xHy and PdxNb1– xHy

phase space. However, the complex nature of the compositional and structural phase
space that includes different compositions of alloy hydrides, different concentrations of
the metal element and H of alloy hydrides, different adsorption sites, and different adsor-
bates, makes it intractable to screen out the stable and active PdxM1– xHy catalysts DFT
calculations. Herein, an ALCE surrogate model equipped with MCSA, a CO* filter, and a
kinetic model are used to identify promising PdxTi1– xHy and PdxNb1– xHy catalysts with
high stability and superior activity. Finally, 24 stable and active candidates of PdxTi1– xHy

and 6 active candidates of PdxNb1– xHy are found via our approach. Among them, the
Pd0.23Ti0.77H, Pd0.19Ti0.81H0.94 and Pd0.17Nb0.83H0.25 display superior current densities of
approximately 5.1, 5.1 and 4.6µAcm−2 at −0.5V overpotential, respectively, which are
significantly higher than that of PdH at 3.7µAcm−2. The free energy diagram shows that
their HOCO* binding is not too weak, while their CO* binding is not too strong, result-
ing in enhanced activities. The statistical analysis shows that the binding energies are
mainly contributed by the elements Ti/Nb and H. Hence, three candidates, Pd0.23Ti0.77H,
Pd0.19Ti0.81H0.94, and Pd0.17Nb0.83H0.25, are recommended in this chapter.

5.2 Simulation details
All DFT calculations are performed using the ASE [93, 94] with the VASP with the

PAW method.[86, 87, 92] The exchange and correlation functional used in this chapter
is the BEEF-vdW ensemble.[75] The cutoff energy is set to 400eV and the electronic
smearing width is 0.05eV. A Monkhorst-Pack grid of 3× 3× 1 is used to sample the first
Brillouin zone.[173] The electronic relaxation is set to stop when the energy difference
between two steps is smaller than 10−6 eV. The ionic relaxation will converge when all
the forces’ norms are less than 0.01eVÅ−1. The PdxM1– xHy (111) surface is utilized
because the PdH(111) surface is the most stable in experiments (M is the metal element
Ti or Nb).[167] To remove the electrostatic dipole-dipole interaction in the z direction due
to periodic boundary conditions, a vacuum layer of approximately 15Å is added, and the
dipole correction is applied along the z direction. A 4× 4 surface supercell cell of the
PdxM1– xHy (111) is utilized. Four atomic bilayers are used, each consisting of one Pd or

1For simplicity, it is sometimes abbreviated as PdMH, where M means metal elements (only Ti and Nb in
this chapter).
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M atomic layer (M is Ti or Nb element) and one H or X atomic layer (X denotes H vacancy).
We fix the bottom two bilayers in their bulk positions when relaxing the slab.

The Cluster Expansion in the Atomic Simulation Environment software package,
namely CLEASE,[96] is used to implement CE calculations of the surface. The initial
slabs and corresponding relaxed energies are used to train the CE model, which can
quickly predict the energies of the given new structures and thus greatly reduce the com-
putational cost. Up to 4-body clusters are included in this chapter, with the cutoff radii of
6.0, 5.0, 4.0Å for 2-body, 3-body, and 4-body clusters, respectively. MCSA is carried out
to find the ground-state structure at each concentration. 65×65MCSAs are implemented
in parallel for each active learning iteration (65 H concentrations and 65 metal (Ti or Nb)
concentrations in this chapter). Each MCSA uses standard Metropolis Monte Carlo at
decreasing temperatures of 1010, 10000, 6000, 4000, 2000, 1500, 1000, 800, 700, 600,
500, 400, 350, 300, 250, 200, 150, 100, 75, 50, 25, 2, and 1 K. 1000 Monte Carlo sweeps
are set at each temperature and each sweep has N attempted swaps (N is the number of
atoms in the cell).

The binding energies, Eb, of adsorbates are calculated as:

Eb = E∗+ads − E∗ − Eads, (5.1)

where E∗+ads is the DFT energy of the surface with an adsorbate. E∗ is the DFT energy
of the clean surface, and Eads is the DFT energy of the adsorbate. The adsorbates in-
clude HOCO*, CO*, OH*, and H*. The binding energy calculations of HOCO*, OH*, and
H* are referenced to CO2, H2, and H2O gas molecules, respectively, while that of CO* is
referenced to CO gas molecule. The stabilization energy and zero point energy are con-
sidered when the OH* binding energy is calculated. The stabilization calculation details
can be seen in Figure C.19 and the corresponding description in Appendix C.

The mixing energy, EMixing, is calculated to obtain the convex hull of PdxM1– xHy ac-
cording to:

EMixing = EPdxM1−xHy − xµPd(bulk) − (1− x)µM(bulk) − y
1

2
µH2(g) (5.2)

where EPdxM1−xHy is the DFT energy of PdxM1– xHy , where x is the concentration of ele-
ment Pd and y is the concentration of element H. µPd(bulk) and µM(bulk) denote the chemical
potentials of bulk Pd and bulk metal M, respectively. µH2(g) is the chemical potential of H2

gas at 1bar.
The Gibbs free energy (G) is calculated from:

G = EDFT + EZPE +

∫
CpdT − TS (5.3)

whereEDFT, EZPE, Cp, and S are the DFT energy, the zero point energy, the heat capacity,
and entropy, respectively. The free energy calculations of gas-phase species utilize the
ideal gas approximation. The harmonic approximation is used to calculate the free energy
of the slabs with adsorbate. The free energy calculations of HOCO*, CO*, OH*, and H* are
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references to CO2 gas, H2 gas, and liquid H2O. A +0.15eV correction per C=O, +0.15eV
correction for HOCO* and +0.1eV correction for H2 are used for systematic overbinding
corrections with the BEEF-vdw functional in all calculations.[174, 189] The free energy
calculations of the molecules and various adsorbates can be found in Table A.9 and Table
A.10, which are the same as in our previous work.[189] To avoid calculations of solvated
protons, the computational hydrogen electrode (CHE) model is used in this chapter.[168]

5.3 Results and discussions

Figure 5.1: The workflow of the processes of the screening stable and active candidates
of PdxM1– xHy for CO2RR. The top and side views of an example structure are given for
the first 4 stages. The top views of HOCO* and CO* of an example candidate for the last
stage. The blue spheres are Pd atoms, and the big grey spheres are metal M atoms (e.g.,
Ti). The white spheres are H atoms. The small grey spheres in adsorbates are C atoms,
and the red spheres are O atoms.

The workflow for the screening of stable and active candidates of PdxM1– xHy for the
CO2RR can be divided into the following five stages. The first stage shows the search
space of the slabs of each PdxM1– xHy . For the 4 × 4 × 4 bare slabs, there are 64 metal
sites, which can be occupied by either Pd or the metal M, and 64 hydrogen sites which can
be occupied by H or be vacant. Thus, the search space (including symmetrically identical
slabs) is 264× 264 ≈ 3.4× 1038, which is intractable to run DFT calculation for all slabs. To
handle the huge search space, the ALCEmodel equipped with MCSA in parallel is utilized
to obtain the ground-state slabs at each concentration. The specific implementation of the
ALCE+MCSA can be seen in Figure C.1. The ALCE can obtain the accurate surrogate
model to speed up the CE energy prediction of the new given slabs, while MCSA is used
to obtain the ground-state structures at each concentration quickly. During this stage (the
second stage), 100∼200 stable bare slabs are found according to the DFT convex hull,
which is a huge reduction of search space from the original 3.4 × 1038 possible configu-
rations. Since there are several unique adsorption sites for each stable bare surface, a
local similarity comparison method is implemented to find unique sites.[190] After finding
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the unique adsorption sites, CO* adsorbate is added to the bare slabs, and its binding
energies are calculated using DFT. During this stage (the third stage), 600∼900 unique
slabs with CO* are found. The kinetic model in the fourth stage can be built to find the
active range of CO* binding energies, reducing the number of possibly active slabs down
to 200∼300. Because the number of slabs is limited at this point, the binding energies of
HOCO*, OH*, and H* adsorbates can now be calculated via DFT. In the last stage, the
final candidates can be found through the kinetic model dependent on the binding ener-
gies of CO* and HOCO* at the most stable adsorption sites. Finally, less than 30 stable
and active candidates of PdxM1– xHy are found. All structures for the final candidates with
adsorbates can be found in our database.[191]

Figure 5.2: The 10-fold CV or RMSE as a function of ALCE iterations for PdxTi1– xHy
(a) and PdxNb1– xHy (b). The linear fitting plots of CE energy and DFT energy of ALCE
iteration 12 for (c) PdxTi1– xHy and (d) PdxNb1– xHy .

To quickly and accurately obtain the energies of slabs, a good surrogate model is
very important. Here, The ALCE method is carried out to train the CE model. The CE
candidates are extracted from the CE convex hull and calculated by DFT and then added
to the train set of the CE. We re-train the CE model with the new train set and then get
new CE candidates from the new CE convex hull. During this process, we focus on the
DFT convex hull of each iteration rather than the CE convex hull, which means the CE
convex hull will be confirmed by DFT, and thus, the DFT convex hull is more reliable. This
differs from other approaches that directly use the convex hull predicted from the surrogate
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model. As are shown in Figure 5.2a and Figure 5.2b, both PdxTi1– xHy and PdxNb1– xHy

have 12 ALCE iterations. The green curves are 10-fold cross-validation (CV) errors that
we mainly focus on. The initial 10-fold CV error of PdxTi1– xHy is 10.276meV/atom as
shown in Figure C.2, which is a large error because only 50 random structures are in the
initial train set. During the process of ALCE, the new structures of 50, 50, 200, 406, 500,
528, 382, 339, 320, 312, and 279 are added into the train set from iteration 2 to iteration 12,
respectively. Their fitting plots can be found in Figure C.3, Figure C.4 and Figure C.5. The
10-fold CV is gradually decreased and finally maintains stable at around 2.0meV/atom
as seen in Figure 5.2c. A similar case is observed for PdxNb1– xHy in Figure 5.2b. Its
initial 10-fold CV error is as large as 10.276meV/atom as shown in Figure C.20. Then,
we add the new structures of 488, 499, 546, 575, 444, 437, 373, 272, 321, 342, and 352
into the train set from iteration 2 to iteration 12, respectively. The 10-fold CV error drops
rapidly since iteration 2 and then remains stable at about 3.2meV/atom, where the fitting
plots can be seen in Figure C.21, Figure C.22, Figure C.23, and Figure 5.2d. Besides, the
orange curves in Figure 5.2a and Figure 5.2b are the RMSEs of only train sets (without
test sets) for PdxTi1– xHy and PdxNb1– xHy . They are very small at first and then gradually
go up to stable values, and finally, the RMSEs are close to their 10-fold CV errors. This
could be because the overfitting is very large at first and gradually decreases as more
structures are added to the train set.

Figure 5.3: The CE convex hull plots of ALCE iteration 12 for (a) PdxTi1– xHy and (b)
PdxNb1– xHy . The DFT convex hull plots of ALCE iteration 12 for (c) PdxTi1– xHy and (d)
PdxNb1– xHy .

To identify stable compositions of PdxTi1– xHy and PdxNb1– xHy , their CE and DFT
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convex hull plots are calculated. Before obtaining the CE convex hull, the most stable
slabs at each unique H and Pd concentration are first calculated by MCSA. Since there
are 65 × 65 unique concentrations, MCSAs at each concentration are implemented to
get 65 × 65 stable slabs, which can be used to calculate CE convex hull. The points
on the vertices of the CE convex hull are likely to be stable compositions considering the
uncertainty of the CEmodel. The possible stable candidates from the CE convex hull need
to be verified by the DFT convex hull. To better understand the shape of the convex hull for
PdxTi1– xHy and PdxNb1– xHy , their 3D CE convex hulls in iteration 12 are displayed in the
Figure C.13 and Figure C.31. However, in order to clearly see the specific concentrations
of the convex hull, the 2D convex hulls are used in the following. Figure 5.3a and Figure
5.3b show the CE convex hull plots of the ALCE final iteration 12 for PdxTi1– xHy and
PdxNb1– xHy , respectively. The CE convex hull of iteration 1-11 of PdxTi1– xHy can be
found in Figure C.10, Figure C.11 and Figure C.12, while that of PdxNb1– xHy can be
found in Figure C.28, Figure C.29 and Figure C.30. We notice that the CE convex hull of
the last iteration is quite different from the initial one, but that of the last several iterations
are very similar. This is because the CE model in the beginning is not good enough, and
the overfitting is very large. However, the CE model is eventually improved and there is
almost no overfitting in the end. It is worth pointing out that this situation is more obvious
for the DFT convex hull. Figure 5.3c and Figure 5.3d display the DFT convex hull plots
of the ALCE in iteration 12 for PdxTi1– xHy and PdxNb1– xHy , respectively. The previous
iterations 1-11 of the DFT convex hull of PdxTi1– xHy are shown in Figure C.6, Figure C.7
and Figure C.8, while that of the DFT convex hull for PdxNb1– xHy are shown in Figure
C.24, Figure C.25 and C.26. Since there are very similar tendencies for PdxTi1– xHy and
PdxNb1– xHy , we only take PdxTi1– xHy as an example here. We can notice that the DFT
convex hull shapes greatly differ in the first 5 iterations. After that, their shapes become
quite similar. Especially, the DFT convex hulls for the last 3 iterations are almost identical
and thus we conclude that the DFT convex hull is converged. Furthermore, the volume of
the DFT convex hull is a more straightforward quantity to understand whether the convex
hull is converged. As shown in Figure C.9 andC.27, we can see that the volume of the DFT
convex hull is rapidly going up in the first 5 iterations and finally reaches a stable maximum
in the last several iterations, which further verify the converged DFT convex hull. However,
we should clarify that it is very difficult to ensure that all the global ground state structures
are located for any model at 65× 65 concentrations. Even though our ALCE method with
MCSA makes DFT convex hull converged, there still exists the rare probability that the
true global ground state structures are not found, but the number of them is so few that
we do not consider them. Finally, we find 125 stable slabs for PdxTi1– xHy and 116 stable
slabs for PdxNb1– xHy , which has greatly reduce the search space.

In order to further study the CO2RR activity of PdxTi1– xHy and PdxNb1– xHy , a kinetic
model is built as illustrated in Equation 2.53, Equation 2.54 and Equation 2.55. As shown
in Figure 5.4a and Figure 5.4c, the activity volcano plots of the PdxTi1– xHy(111) and the
PdxNb1– xHy(111) depend on the binding energies of CO* and HOCO* and the color bars
show the current density calculated by the kinetic model at−0.5V overpotential. The white
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Figure 5.4: Activity volcano plot of (a) the PdxTi1– xHy(111) candidates and (b) the corre-
sponding partial magnification of black dashed area for CO2RR at −0.5V overpotential.
Activity volcano plot of (c) the PdxNb1– xHy(111) candidates and (d) the corresponding
partial magnification of black dashed area for CO2RR at −0.5V overpotential.

dots in the Figures are all candidates after screening by the CO* filter in stage 4 in Figure
5.1, and PdxTi1– xHy(111) has 111 candidates and PdxNb1– xHy(111) has 76 candidates.
The red dot is the slab of Pd64H64, about 3.7µAcm−2, used for the comparison. It can be
noticed that there are lots of candidates with better CO2RR activity than that Pd64H64 for
the PdxTi1– xHy(111) in Figure 5.4a and they can be seen in the black dashed rectangle.
For the PdxTi1– xHy(111), 24 active candidates can be found in detail in the partial magnifi-
cation in Figure 5.4b, which can be divided into four categories. The dots marked by blue
have comparable current densities (3.7-4.2µAcm−2) compared to the pure Pd64H64; the
current densities of the dots marked by red, yellow, and black are sequentially better than
that of Pd64H64. Especially, the current densities of the Pd15Ti49H64 and Pd12Ti52H60 can
reach at about 5.1µAcm−2 that is significant greater than Pd64H64. There is no too strong
OH* binding on these active candidates as shown in Figure C.16 and thus no OH* poison-
ing. Besides, it can be noticed that the active candidates have a higher concentration of
Ti and H. For the PdxNb1– xHy(111), there are fewer active candidates, only 5 comparable
slabs, which are shown in the partial magnification Figure 5.4d. They are Pd8Nb56H27,
Pd12Nb52H56, Pd15Nb49H29, Pd36Nb28H33 and Pd11Nb53H16, which have high Nb con-
centraion. Especially, the Pd11Nb53H16 has the highest current density, 4.6µAcm−2. The
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OH* binding on these active candidates is not too strong and thus does not poison the
surfaces as shown in Figure C.34. Besides, it is worth mentioning that the candidates of
the Pd alloy hydride have much better CO2RR activity than the corresponding candidates
of the doped Pd hydride in our previous work.[189]

Figure 5.5: Free energy diagram of (a) CO2RR and (b) HER of active candidates for the
PdxTi1– xHy(111). Free energy diagram of (c) CO2RR and (d) HER of active candidates
for the PdxNb1– xHy(111).

In order to further understand the catalytic activities of active PdxTi1– xHy and
PdxNb1– xHy candidates, the free energy diagrams of the CO2RR and HER are shown in
Figure 5.5. The black curves in all Figures are the free energy diagram of pure Pd64H64,
which is used as a reference. The CO2RR free energy diagrams in Figure 5.5a and Fig-
ure 5.5c illustrate that the HOCO* step of Pd64H64 is the potential limiting step, which
means the free energy of the HOCO* is too high and thus the HOCO* binding is too weak
to form efficiently on the surface. We notice that all of the HOCO* steps of the active
candidates are lower than that of Pd64H64, which results in stronger HOCO* binding on
the surface and thus makes the reaction 2.46 easier. Besides, it can be noticed that the
majority of active candidates have a stronger binding of CO* than Pd64H64, but the bind-
ing energy should not be too strong to avoid CO* poisoning. The CO2RR free energy
diagrams of all candidates at stage 4 in Figure 5.1 are also displayed in Figure C.14 and
Figure C.32, most of them are inactive for both PdxTi1– xHy and PdxNb1– xHy . This is be-
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cause either their HOCO* step is so high (the binding is too weak) that it is too difficult to
produce HOCO*, or the CO* step is too low (the binding is too strong)causing CO* poi-
soning. For the Pd15Ti49H64, Pd12Ti52H60, and Pd11Nb53H16 with high current densities,
their HOCO* binding is not weak and the CO* binding is not strong, which is the reason
why they are very active. However, the HER free energy diagrams for both PdxTi1– xHy

and PdxNb1– xHy indicate that the candidates that are active for CO2RR also have better
HER performance than Pd64H64 as shown Figure 5.5b and Figure 5.5d. All of them have
lower free energy of the Volmer step compared to the Pd64H64, which can improve their
HER activity. The HER free energy diagrams of all candidates at stage 4 in Figure 5.1
are also given in Figure C.15 and Figure C.33. We notice that most candidates have a
stronger binding of H* than Pd64H64 and the bindings are not strong, which leads to their
high HER activity. However, the candidates with high concentrations of H and Pd have
weaker binding of H* than Pd64H64 and thus lower HER activity, which is consistent with
our previous work.[190] In addition, there are no obvious scaling relations between the
binding energies of different adsorbates for both PdxTi1– xHy and PdxNb1– xHy as shown
in Figure C.16 and Figure C.34, which may be attributed to the high complexity of the
composition of the surfaces and the different stable adsorption sites. Figure C.18 and
Figure C.36 describe the selectivity of all candidates toward CO and H2 for PdxTi1– xHy

and PdxNb1– xHy , where ∆GHOCO∗ − ∆GH∗ is used as a descriptor to illustrate the ten-
dency towards CO2RR and HER. The more positive value of ∆GHOCO∗ − ∆GH∗ tends
to generate more H2, while the more negative value will produce more CO2. It can be
seen that a majority of candidates can produce more H2 than CO2 and only a small part
of candidates can generate more CO2.

To further reveal the role of each element in affecting the binding energies, the statisti-
cal distributions of the binding energy of different adsorbates as a function of the frequency
of appearance of each element in a local environment are displayed in Figure 5.6. The
grey rectangle area is the active zone for HOCO* or CO* according to the kinetic model for
CO production. Figure 5.6a and Figure 5.6b are the distributions of the binding energies
of HOCO* and CO* for PdxTi1– xHy . Most of the HOCO* binding energies are not in the
active zone, and only a small part of elements Ti and H is distributed in this active zone.
However, the center of the CO* binding energies is nearly in the middle of the active zone.
The distributions of the OH* and H* binding energies for PdxTi1– xHy are also shown in
Figure C.17. It is worth pointing out that Pd is distributed in the weak binding zone of the
HOCO*, CO*, and OH*, which implies that Pd may weaken their binding. This is not the
case for H* distribution as the element Pd is mainly distributed in the center of the zone
of the H* binding energies. For the PdxNb1– xHy , the distributions of binding energies of
HOCO*, CO*, OH* and H* are displayed in Figure 5.6c-d and Figure C.35a-b, respec-
tively. Similar to the PdxTi1– xHy , most of the binding energies of the HOCO* are higher
than the active zone, and only a tiny part of Ti and H is in the HOCO* active zone. The
centers of the distributions for the element Pd, Nb, and H are roughly in the middle of the
CO* binding. Their OH* and H* distributions are displayed in Figure C.34. The metal ele-
ment Pd is obviously only in the weak binding zone of the OH* (1.0-2.0 eV), while element
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Figure 5.6: Distribution of atom Pd, Ti, and H of all candidates within the cutoff sphere as
a function of (a) the HOCO* and (b) the CO* binding energies. Distribution of atom Pd,
Nb, and H of all candidates within the cutoff sphere as a function of (c) HOCO* and (d)
CO* binding energies.

Nb is mainly in the strong binding zone of the OH*. This means element Pd may weaken
the OH* binding. Pd is mainly distributed in the strong binding zone of the H*. It is worth
noting that the frequency of occurrence of element Pd is very low within the local spheres
for both PdxTi1– xHy and PdxNb1– xHy , which is much lower than that of Ti/Nb and H. This
indicates that the adsorbates binding to elements Ti/Nb and H mainly contribute to the
binding energy of the candidates.

5.4 Conclusions
We have used a surrogate model ALCE+MCSA, a CO* filter, and a kinetic model to

screen high-performance catalysts of alloy hydrides of PdxTi1– xHy and PdxNb1– xHy for
CO2RR, which greatly reduces the massive search space. Due to the large complexity
that includes different compositions of alloy hydrides, different concentrations of metal
elements and H of alloy hydrides, different adsorption sites, and different adsorbates, it
is impossible to find the stable and active catalysts only using the density functional the-
ory calculation. We utilize the high precision and low overfitting ALCE model with RMSE
of about 2 or 3meV/atoms, and a large amount of MCSA to identify the ground state
Pd alloy hydride surfaces from the convex hull. Adsorption sites and binding energies
of adsorbates are also accurate as they are also calculated from DFT. Finally, 24 ac-
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tive candidates of PdxTi1– xHy and 5 active candidates of PdxNb1– xHy are screened out
according to the kinetic model. Especially, the Pd15Ti49H64 (Pd0.23Ti0.77H), Pd12Ti52H60

(Pd0.19Ti0.81H0.94) and Pd11Nb53H16 (Pd0.17Nb0.83H0.25) have good stability and excellent
current densities (approximate 5.1, 5.1 and 4.6µAcm−2, respectively), which are greatly
higher than that of Pd64H64 at 3.7µAcm−2. These are because their HOCO* binding
is not too weak, and CO* binding is not too strong. Consequently, three candidates
Pd0.23Ti0.77H, Pd0.19Ti0.81H0.94 and Pd0.17Nb0.83H0.25 are recommended for further ex-
perimental investigations.
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Chapter 6
PdTiH(111) with Adsorbates

This chapter is based on paper IV and the corresponding supporting information can
be seen in Appendix D.

6.1 Introduction
To search for the relevant surface structures while handling the complexity, three key

factors need to be considered. Firstly, a global optimization method, such as minima hop-
ping[192], simulated annealing [190, 193], or a GA[194–197], needs to be utilized to find
the global minimum of a property of interest. Secondly, surrogate models including clus-
ter expansion[96] or machine learning potentials[112, 137] can be used to speed up the
calculations. The cluster expansion model can predict the energy of a given structure with
reasonable accuracy, but it is very difficult to apply for complex systems, such as a surface
with multiple adsorbates potentially in contact with an explicit solvent. Recently, machine
learning interatomic potentials have gained significant attention due to their computational
efficiency and accuracy. They offer a promising alternative to the cluster expansion model
for complex chemical systems. Broadly, machine learning potentials can be classified into
three categories: kernel methods such as Gaussian approximation potentials[198, 199],
descriptor-based feed-forward neural networks (such as the Behler-Parrinello neural net-
work potential[112, 118, 119]), and deep neural networks[137, 200]. Among them, deep
neural networks, particularly rotationally equivariant message-passing neural networks,
have become highly popular owing to their rapid and precise predictions for directional
properties, like forces and dipole moments. Notable examples of these models include
Nequip[135], MACE[136], and PaiNN[137]. Last but not least, it is also crucial to deter-
mine what physical properties need to be optimized. Structural stability is usually the
property that we should consider optimizing first. There are two common types of sta-
bility: thermodynamical compound stability[201] and electrochemical stability[179]. The
compound stability is determined by the convex hull of formation energy or mixing en-
ergy. It means a structure is thermodynamically stable if it is in its lowest energy state,
or in chemical equilibrium with its components. During electrochemical reactions, elec-
trochemical stability is another key factor determining if the material is thermodynamically
stable in an aqueous electrochemical system. The most common method is to construct a
surface Pourbaix diagram, which plots surface free energy as a function of applied poten-
tial and pH value. Besides, the surface free energy can also depend on additional state
variables, such as chemical potentials, temperature, pressure, etc.

Significant efforts have been made in the Pd-based hydride system to establish rela-
tionships between the structures and the electrochemical performance.[18, 58] Our pre-
vious systematic doping study builds the relationship between transition metal doping
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and the CO2RR activity. 22 transition metal elements are doped into the PdH (111) sur-
face with different doping configurations, and Ti-doped Pd hydride shows high CO2RR
and HER activity.[189] Based on this information, the Ti-Pd alloy hydride system with a
higher complexity is also likely to accommodate very active candidates. Subsequently,
the chemical composition of the alloy hydride PdxTi1– xHy(111) surface is searched by
ALCE+MCSA according to the compound stability.[202] Some stable PdxTi1– xHy struc-
tures are finally found to be very active for the CO2RR and the HER. However, the ad-
sorbate coverage and mixtures of different adsorbate species under the electrochemical
reaction conditions are ignored during this structure searching process, which is crucial
in the electrochemical CO2RR and HER.[203, 204] It is very challenging to consider the
above because the search space increases drastically due to the huge complexities asso-
ciated with the structure and reaction conditions. Herein, this chapter focuses on dealing
with these complexities to identify relevant structures under diverse reaction conditions in
a fast and accurate way.

In this chapter, we apply a graph neural network-assisted multitasking genetic algo-
rithm to screen PdxTi1– xHy

1 surface with adsorbates under different CO2RR conditions.
The complex structural configurations result in a huge search space, where a deep learn-
ing model is used to speed up the atomic-scale calculations. Structures from DFT re-
laxations are used to train an ensemble of PaiNN models and the trained models are
utilized to optimize the new structures and calculate their energy uncertainty. The surface
free energy is used to evaluate the surface stability, which is dependent on tempera-
ture, CO partial pressure, applied potential, and the chemical potential difference of Pd
and Ti. Due to the complexity of the state variables above, a multitasking genetic al-
gorithm employing the maximum gain dynamic niching (MGDN) algorithm [205] is used
to search for stable PdxTi1– xHy surface structures simultaneously under all considered
reaction conditions. Finally, 23 stable surface structures with adsorbates were found to
be stable under different reaction conditions. Among them, Pd0.56Ti0.44H1.06+25%CO,
Pd0.31Ti0.69H1.25+50%CO, Pd0.31Ti0.69H1.25+25%CO, and Pd0.88Ti0.12H1.06+25%CO are
found to be active for the CO2RR.

6.2 Simulation details
All DFT calculations are performed by the VASP equipped with the PAW method.[87,

92] The ASE is used as the interface to all VASP calculations in this chapter.[93, 94] The
BEEF-vdW functional[75] is used. A 3× 3× 1Monkhorstpack grid of k-points is used, and
the energy cutoff is set to 400 eV.[173] The forces and the energy convergence criterion
for all structure relaxations are set as 0.01 eV/Å and 10−5 eV, respectively.

The surface free energy is used for constructing the fitness function Fi in the GA global
optimization. Fi can be calculated as follows:[206]

Fi = −(γ − κi ∗ σi) (6.1)

1For simplicity, it is sometimes abbreviated as PdTiH in this thesis.



Chapter 6. PdTiH(111) with Adsorbates 63

where κ is a factor that determines the relative weight of the predicted mean and uncer-
tainty, and 0 and 1 are used in our calculations. σ is the standard deviation of the ensemble
energies. The surface free energy γ of the PdxTi1– xHy(111) surfaces (with adsorbates) is
used to evaluate the surface stability in the solution as follows:

γPdH =
1

2A
(GPdH(slab) −N(slab)µPdH(bulk)) (6.2)
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are the free energies of structure 2 and structure

1, respectively. Structure 2 is an arbitrary surface with adsorbates and structure 1 is a
bare Pd16H16 without adsorbates. ∆µPd,∆µTi,∆µH, and µi(ads) are the chemical potential
difference of Pd, Ti, H and the chemical potential of adsorbate, respectively. U , pH, and
T are the applied potential, pH value, and temperature, respectively.

Figure 6.1: The phase diagram (a) and chemical potential diagram (b) of PdxTiyHz.

The possible Pd and Ti chemical potentials for the Pd-Ti-H system are identified from
the chemical potential diagram in Figure 6.1. More than 200 structures are collected from
the Materials Project[207] and the Open QuantumMaterials Database (OQMD)[208]. The
collected structures are then reoptimized with our chosen DFT parameters. The calcu-
lated energies are used to construct the Pd-Ti-H phase diagram and chemical potential
diagram using the Pymatgen package.[209] The bulk PdH, the H2 or proton, and the bulk
TiPd3 are assumed to be in equilibrium with PdxTi1– xHy surface because we are inter-
ested in high H and Pd concentrations but low Ti concentrations.

The adsorbates species CO*, H* and OH* are assumed to be in equilibrium with CO,
H2, H2O, protons and eletrons according to the reactions:

CO∗⇌ CO(g) + ∗ (6.4)
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H+ + e− + ∗⇌ H∗ (6.5)

H2O(l) + ∗⇌ OH∗+ H+ + e− (6.6)

A rotationally equivariant message-passing neural network, namely PaiNN[137, 210],
is applied to speed up the relaxation of the structures. The PdxTi1– xHy(111) surfaces with
adsorbates are first calculated by DFT, and we select one single-point structure for every
10 ionic steps, which are fed to the deep learning model. The cutoff radius is set to 5.0 Å.
We use ensemble PaiNN models with 8 different architectures (116, 120, 124, 128, 132,
136, 140, 144 node features) to obtain the mean energy and forces and their variances.
They are trained using the Adam optimizer and the learning rate is set to 0.0001. The
maximum train step is 2,000,000 and the batch size is set to 12. A mixed loss function of
energy and forces is used (see Equation D.4) and the balance parameter λ is set to 98%.
RMSE of energy and force are calculated by Equation D.5 in the Appendix D.

A multitasking genetic algorithm (MTGA) is carried out to search for the
PdxTi1– xHy(111) surfaces (with adsorbates) under various reaction conditions. The sur-
face structures with adsorbates can have different compositions and chemical orderings
of the surface with different coverages, types, and mixtures of the adsorbates. The struc-
tural diversity is mainly controlled by the operators, which is crucial to determining how to
generate new structures. We develop the operators including slab operators that manip-
ulate metal and hydrogen atoms in the slab, adsorbate operators that manipulate adsor-
bates on the surface, and crossover operator that combines the slab from one structure
and adsorbates from another structure. The details can be found in the Appendix D.
A set of comparators is used to identify duplicates, including the potential energy com-
parator, nearest neighbor matrix string comparator in ASE[93], and graph comparator in
ACAT[205]. The population size is set to 50. The MTGA converges when new candidates
cannot be found anymore in the last three consecutive generations. In the MTGA cal-
culations, the MGDN algorithm (implemented in ACAT)[205] is employed to find the best
candidate structures under all considered reaction conditions. After integrating the MTGA
and the PaiNN model, an automated active learning workflow based on MyQueue[172] is
used to find the global minima.

The search space of surface structures Nstruct and the number of tasks Ntask for
PdxTi1– xHy (111) with adsorbates are calculated by the following equation 6.7:

Nstruct = 2NPd/Ti(slab) · 2NH(slab) · (Nads + 1)Nsites (6.7)

Ntask = NT ·NPCO ·NU ·N∆µPd ·N∆µTi ·Nκ (6.8)

where NPd/Ti(slab) and NH(slab) are the numbers of Pd/Ti and H in the slab without
adsorbates, respectively. Nads is 3 including CO*, H*, and OH*. Nsites is the number
of the adsorption sites. NT , NPCO , NU , N∆µPd and N∆µTi are the number of considered
temperatures, CO partial pressures, applied potentials, chemical potential differences of
Pd and Ti, respectively.
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6.3 Results and discussions

Figure 6.2: The phase equlibrium between the PdxTi1– xHy with CO*, H* and OH* adsor-
bates and CO gas, H2 gas, liquid H2O, bulk PdH and bulk TiPd3.

In order to study the thermodynamic stability of compounds, the Pd-Ti-H ternary phase
diagram is calculated as shown in Figure 6.1a. The green circles on the phase diagram
show the stable compounds, including Pd, Ti, H2, TiPd8, TiPd5, TiPd3, TiPd2, TiPd, Ti2Pd,
TiH2 and PdH. The unstable phases within 1 eV above the convex hull are shown in the
phase diagram, marked by the red squared dots. We assume the Pd-Ti-H slab is in equi-
librium with the stable compound PdH, H2, and TiPd3 because we are interested in high
H and Pd concentration but low Ti concentration. Figure 6.1b shows the corresponding
chemical potential diagram. The total chemical potential of PdxTiyHz without adsorbates
is dependent on the chemical differences∆µPd,∆µTi and∆µH. The equilibrium chemical
potential of the three stable compounds PdH, H2 and TiPd3 is highlighted in the dashed
red circle, and their equilibrated chemical difference values of ∆µPd, ∆µTi and ∆µH are
-2.249, -7.285 and -3.614 eV, respectively. These terms are used to calculate the surface
free energy shown in Equation 6.3. Figure 6.2 is a more straightforward representation
of the equilibrium between the PdxTi1– xHy slab with adsorbates and the corresponding
stable compounds. The right part of the slab (the blue part) is equilibrated with the bulk
PdH, the protons, and the bulk TiPd3 as described above. The left part (the red part)
illustrates the adsorbates are equilibrated with the CO gas, the protons, and the liquid
H2O. In the process of the electrochemical CO2RR, the HOCO*, CO*, H*, and OH* are
all potential adsorbate species that can present on the catalyst surface. However, the
adsorption energy of the HOCO* is usually weaker than the other three adsorbates and
thus not stable on the surface. So we do not consider the HOCO* adsorption here. The
CO*, H*, and OH* are assumed to be in equilibrium with the CO gas, proton/electron pair,
and H2O, respectively (see Equation 6.4, Equation 6.5 and Equation 6.6).

Figure 6.3 shows the process of the global optimization for PdxTi1– xHy with adsorbates
CO*, H* and OH* in the active learning workflow, and the corresponding example struc-
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Figure 6.3: The process of the global optimization for PdxTi1– xHy with adsorbates CO*,
H* and OH* in the active learning workflow, and the corresponding complexity.

tures and complexity are given. We use a 2 × 2 × 4 slab with multiple adsorbates and fix
the bottom layer (12 metal atoms, 4 internal hydrogen atoms, 12 adsorption sites, 3 types
of adsorbate species). Hence, there exist 220 = 1, 048, 576 possible slab configurations
and 412 = 16, 777, 216 possible adlayer patterns, which constitute a total structural search
space of approximately 1.8 × 1013 structures if we ignore the symmetry. Besides, the to-
tal number of tasks is 11,250 calculated by Equation 6.8. The total search space is the
product of structural search space and the total number of tasks, which is approximately
2.0× 1017. The detailed active learning workflow can be found in Figure D.1. Initially, 100
random PdxTi1– xHy(111) surfaces with adsorbates are generated and relaxed by DFT.
The calculated end-point structures are collected and fed to the ensemble PaiNN model
with 8 different NN architectures. The trained ensemble PaiNN model can be used to op-
timize new structures generated by the GA operators. During the MTGA calculations, we
customize three types of operators that can generate new PdxTi1– xHy surface structures
with adsorbates, which is shown in Figure 6.3, namely the slab operators that control the
composition and permutation of the metals and internal hydrogen atoms, the adsorbate
operators that control the coverage and permutation of the adsorbates, and the crossover
operator that combine the adsorbates from one structure and the slab from another struc-
ture. The detailed operators can be seen in the GA operators part of the Appendix D.
After optimizing a newly generated structure using the PaiNN model, the energy of the
optimized structure is used to calculate the surface free energy and thereby the fitness
function. The surface free energy dependents chemical potential differences of ∆µPd,
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∆µTi, applied potential U , temperature T , and CO partial pressure PCO adn the used val-
ues can be found in Table 6.1. The MGDN algorithm [205] in MTGA is applied to find the
candidate structures at each reaction condition. Then the candidate structures and the
last generation are picked for DFT relaxation. In order to avoid repeated DFT calcula-
tions, the repeated structures are removed by comparing their similarity. The identified
unique structures are further optimized by DFT and collected to retrain the PaiNN model.
This procedure is repeated until the whole active learning process converges. The con-
vergence condition is that the number of new DFT candidates keeps decreasing until it
reaches zero, and new candidates cannot be found anymore in the last 3 iterations as
shown in Figure D.7. After convergence, the candidates at all considered reaction con-
ditions are obtained and then used to analyze the activity and selectivity for the CO2RR
and HER.

Table 6.1: The values of different state variables while calculating surface free energy.

State variable Values

Chem. pot. difference of Pd: ∆µPd (eV) -2.249, -2.499, -2.749, -2.999, -3.249

Chem. pot. difference of Ti: ∆µTi (eV) -7.285, -7.535, -7.785, -8.035, -8.285

Applied potential U (V) 0, -0.1, -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8

Temperature T (K) 283.15, 298.15, 313.15, 338.15, 353.15

CO partial pressure PCO (Pa) 0.101325, 10.1325, 1013.25, 5562, 101325

Figure 6.4: (a) The energy RMSE in the process of active learning. (b) The fitting curve
of the DFT energies and the corresponding neural network potential energies of the opti-
mized structures. The green error bars of each point are the uncertainties calculated by
ensemble energies.

To evaluate the performance of the active learning, the energy RMSE between the
DFT energies and the neural network energies in the process of the active learning is
shown in Figure 6.4a. The blue curve shows the energy RMSE rapidly declines in the
first several iterations, while it goes down very slowly in the last several iterations. The
yellow curve illustrates the energy RMSE without the first iteration in which the structures
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are generated randomly. We can find that the energy RMSE rapidly levels off. It can be
noticed that active learning mainly contributes to the decrease in the energy RMSE of
the GA candidates rather than all structures in the whole search space. This can explain
the slow RMSE decline in the last several iterations because the accuracy of the deep
learning model cannot improve too much for all structures even though it is already good
enough for the potential candidates. Figure 6.4b shows the parity plot between the DFT
energies and the neural network potentials for the last iteration. The corresponding error
bars of neural network energy variance are also displayed. The energy RMSE is as low
as 5.274 meV/atom and the energy variances are so small that the most error bars cannot
be seen. The learning curve of the energies in Figure D.4a further illustrates the small
energy RMSE and variance. As a comparison, the learning curve of the energies in the
first iteration can be seen in Figure D.6a. We can see that both the energy RMSE and
variance in the last iteration are greatly decreased compared to the first iteration. The
force RMSE is also crucial because it determines the precision of the structure relaxation.
Figure D.4b and Figure D.6b display the forces learning curves of the last and the first
iteration, respectively. It can be noticed that the same scenario happens as the energy
RMSE curves. Both the forces RMSE and variances are greatly decreased. Especially,
for the forces variances, they are so small that we almost cannot see them in Figure D.6b.
Besides, the energy and forces learning curves of the 8 NN architectures for the first and
the last iteration are also shown in Figure D.3 and Figure D.5, respectively, which further
illustrate that the precision of energy and forces of the deep learning model have been
greatly improved after the active learning.

Figure 6.5: The surface free energy as a function of the state variables between the
chemical potential differences of Pd and Ti, applied potentials, temperature, and partial
pressure of CO.

To study the effects of the different reaction conditions on the surface free energy, the
contour plots of the surface free energy as a function of the chemical potential differences
∆µPd and ∆µTi, applied potentials U , temperature T , and CO partial pressure PCO are
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shown in Figure 6.5. The corresponding heatmaps for candidate structures at the same
reaction conditions are shown in Figure D.12. To simplify, the unique number for each
structure (the index of the DFT database) is used and the corresponding top view can
be found in Figure D.13. When the potential, temperature, and CO partial pressure are
fixed at -0.5 V, 298.15 K, and 5562 Pa, respectively, the smaller∆µPd and larger∆µTi will
minimize the surface free energy as shown in Figure 6.5a. At this condition, the candidate
structure tends to have high Ti concentration and adsorbate CO* with 25% coverage on
the surface as the top view of structure 900 in Figure D.13. When the large ∆µTi or the
small ∆µPd are fixed at -7.285 eV, -3.249 eV, respectively, under 298.15 K and 5560
Pa as displayed in Figure 6.5b-c, the lower applied potential and smaller ∆µPd or larger
∆µTi will make the surface free energy lower. At both conditions, the candidate structure
has high Ti concentration and adsorbate H* with high coverage on the surface as the
structure 782 shown in Figure D.13. When the CO partial pressure and temperature are
fixed at 5562 Pa and 298.15 K, respectively, under the large∆µTi=-7.285 eV and the small
∆µPd=-3.249 eV, as displayed in Figure 6.5d-e, the lower applied potential will minimize
the surface free energy. Compared to the applied potential, the temperature and CO
partial pressure do not have too much influence on the surface free energy. Similarly, the
candidate structure at low potential and different temperatures and CO partial pressure
have high Ti concentration and adsorbate H* with high coverage on the surface. When
the condition is at large∆µTi=-7.285 eV, small∆µPd=-3.249 eV and potential=-0.5 V, high
CO partial pressure=1 bar and low temperature=0 °C can lower the surface free energy.
The candidate structure at this condition has high Ti concentration and adsorbate CO*
with 50% coverage arranged in a hexagonal pattern.

To reveal the relations between the stable structures and certain reaction conditions,
the surface free energy under several typical reaction conditions is displayed in Figure
6.6. The top views of the corresponding structures are shown at the bottom of each
plot. The free energy as a function of the applied potential at four different chemical
potential conditions (the vertices in Figure 6.5a) under the room temperature=298.15 K
and CO partial pressure=5560 Pa can be found in Figure 6.6a, 6.6b, D.8a, and 6.6d.
There are very high concentrations of Ti for all of the stable candidates and the top layers
are Ti overlayer pattern when the chemical potential difference is at large ∆µTi=-7.285
eV and small ∆µPd=-3.249 eV as shown in Figure 6.6a. Besides, there are 0.25% CO*
coverage and very high H* coverage on the surface when the potential is larger than
-0.66 V. Otherwise, there is only high H* coverage and no CO* on the surface. After
lowering only ∆µTi to -8.285 eV or increasing only ∆µPd to -2.249 eV, the same surface
free energy plot can be obtained as shown in Figure 6.6b, and Figure D.8a. When the
potential is larger than -0.31 V, there are very low Ti concentrations and no Ti on the
top layer, and there are only adsorbates CO* on the surface and the coverage is 50%.
When the potential is decreased below -0.31 V, the Ti concentration increases and the
top layer is in a Ti hexagonal pattern. Besides, CO* coverage is lowered to 25%, and
H* begins to appear on the surface. When the potential is further decreased below -0.65
V, there is no CO* anymore and only higher H* coverage on the surface. After lowering
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Figure 6.6: (a, b, d) The surface free energy as a function of applied potentials with
different chemical potential differences of Pd and Ti at temperature=298.15 K, and CO
partial pressure=5560 Pa. (c) The surface free energy as a function of CO partial pressure
at fixed∆µPd,∆µTi, potential=-0.5 V, and temperature=298.15 K. The correspondingmost
stable structures are shown at the bottom.

∆µTi to -8.285 eV and increasing ∆µPd to -2.249 eV as shown in Figure 6.6d, the surface
free energy is totally higher than that in Figure 6.6a, which is consistent with the result in
Figure 6.5a. When the potential is larger than -0.38 V, Ti concentration is very low and
no Ti element is on the top layer, and only adsorbates CO* is on the surface with 50%
coverage. When the potential is less than -0.38 V, the Ti concentration goes up and the top
layer is in a line pattern. The CO* coverage goes down to 25% and H* coverage goes up.
The surface free energy as a function of CO partial pressure at ∆µPd=-3.249 eV, ∆µTi=-
7.285 eV, potential=-0.5 V and temperature=209.15 K is displayed in Figure 6.6c. The Ti
concentrations for all candidates are very high and the top layer is overlayer. Furthermore,
the H* coverage for all candidates is very high. When the pressure is larger than around
104 Pa, the CO* coverage is 50% in a hexagonal pattern. After the pressure is lowered
below 104 Pa, the CO* coverage is 25%. After the pressure is further lowered below
around 5 Pa, the CO* disappears on the surface. The factor of temperature is also studied
at ∆µPd=-3.249 eV, ∆µTi=-7.285 eV, potential=-0.5 V and CO partial pressure=5562 Pa
as shown in Figure D.8b. There is only one candidate with high Ti concentration, high H*
coverage, and 25% CO* coverage on the surface. It can be noticed that the slope is very
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low for the surface free energy as a function of both CO partial pressure and temperature,
which can be attributed to their weaker impact on surface free energy compared to the
potential. Besides, the complete surface free energy plots versus potential, CO partial
pressure, and temperature are also given as a reference in Figure D.9, Figure D.10 and
Figure D.11 in the Appendix D.

Figure 6.7: (a-b) The CO2RR and HER free energy diagram of active candidates at room
temperature=298.15 K and CO partial pressure=5560 Pa. (c) The activity volcano plot of
all candidates at potential=-0.5 V and CO partial pressure=5560 Pa. (d) The selectivity
towards H2 and CO2 for all candidates.

To understand the CO2RR activity and the selectivity towards H2 and CO2, the binding
energies and free energies for the obtained candidates with CO* are further calculated
and analyzed. We only consider the most stable structures for each composition and
the most stable CO* adsorption sites. The details for calculating binding energies can
be found in the Appendix D. Figure D.14 shows the free energy diagram of CO2RR for
all candidates. It can be seen that most of the candidates have too strong or too weak
adsorption of HOCO* compared to pure PdH (111). It is worth noting that the free energies
of HOCO* of Pd9Ti7H17+1CO, Pd5Ti11H20+2CO, Pd5Ti11H20+1CO and Pd14Ti2H17+1CO
are 0.349, 0.497, 0.570 and 0.595 eV, respectively, which are not too strong or too week,
and weaker than 0.606 eV of pure PdH. Furthermore, their free energies of CO* are also
not too strong or too weak compared to -0.028 eV of pure PdH, which are -0.244, 0.149,
0.077, and -0.131 eV, respectively. The CO2RR free energy diagram for them is shown
in Figure 6.7a. Hence, they are likely to produce more CO2 compared to pure PdH. The
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HER free energy diagram for all candidates is shown in Figure D.15. The free energies
on H* step of Pd14Ti2H4+2CO, Pd12Ti4H4+3CO, Pd14Ti2H4+3CO, Pd14Ti2H7+1CO,
Pd14Ti2H5+3CO, Pd14Ti2H12+3CO and Pd9Ti7H17+1CO are 0.017, 0.033, 0.148, 0.188,
0.286, 0.325 and 0.368 eV, respectively, which are weaker than that of pure PdH (0.430
eV), but not too strong. Therefore, they are likely to produce more H2 compared to
pure PdH. The HER free energy diagram for them is shown in Figure 6.7b. Figure
6.7c shows the CO2RR activity volcano at -0.5 V of potential and 5560 Pa of CO partial
pressure. We can see that Pd9Ti7H17+1CO (Pd0.56Ti0.44H1.06+25%CO), Pd5Ti11H20+2CO
(Pd0.31Ti0.69H1.25+50%CO), Pd5Ti11H20+1CO (Pd0.31Ti0.69H1.25+25%CO), and
Pd14Ti2H17+1CO (Pd0.88Ti0.12H1.06+25%CO) are more active than pure PdH, which
is consistent with the result of Figure 6.7c. The selectivity towards H2 and CO2 for
all candidates is illustrated in Figure 6.7d. A descriptor ΔG(HOCO∗)−ΔG(H∗) is used
to describe the trend to generate CO and H2.[189] If we focus on the CO2RR active
candidates, all ΔG(HOCO∗)−ΔG(H∗) values for Pd5Ti11H20+2CO, Pd5Ti11H20+1CO and
Pd14Ti2H17+1CO and Pd9Ti7H17+1CO are negative and then tend to produce more CO2.
It should be noticed that their values are close to 0 eV and thus suitable to generate
syngas consisting of CO and H2. The detailed values can be found in Table D.1 in the
Appendix D. Besides, there is on OH* found on all candidate surfaces, which indicates
that there is no OH* poisoning.

6.4 Conclusions
In this chapter, a deep learning-assisted multitasking genetic algorithm is used to

screen for PdxTi1– xHy surfaces with multiple adsorbates for CO2RR under different re-
action conditions. The ensemble PaiNN model trained by DFT single-point structures
can not only greatly speed up the new structure relaxation but also keep a high accu-
racy of energy and forces. The model can successfully deal with the structural complex-
ity including compositions and chemical orderings of surfaces with different coverages,
types, and mixtures of the adsorbates. A genetic algorithm with maximum gain dynamic
niching algorithm is used for global optimization of the surface free energy at each re-
action condition, which can efficiently handle the complexity of state variables, such as
temperature, CO partial pressure, applied potential, and chemical potential differences
of Pd and Ti. In order to deal with the complexity of structures and the complexity of
state variables simultaneously, an automated active workflow integrated with the deep
learning-assisted multitasking genetic algorithm is built. 23 stable structures are finally
screened out under different reaction conditions. Among them, Pd0.56Ti0.44H1.06+25%CO,
Pd0.31Ti0.69H1.25+50%CO, Pd0.31Ti0.69H1.25+25%CO, and Pd0.88Ti0.12H1.06+25%CO are
found to be very active for CO2RR and suitable to generate syngas.
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Chapter 7
Conclusions and Outlook
7.1 Conclusions

In this thesis, Pd-based hydride catalysts for CO2RR are studied by various computa-
tional methods including density functional theory, cluster expansion model, and machine
learning potential. Several stable and active Pd-based hydride catalysts are screened out
for improving the CO2RR performance compared to pure PdH(111).

1. Transitionmetal elements Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh,
Ag, Cd, Hf, Ta, W, and Re are doped into the PdH(111) surface in different doping
configurations to explore their catalytic performance. Ti doping with parallelogram
and overlayer configuration and Nb doping with overlayer configuration are found to
have better kinetic activities than pure PdH(111). At the same time, Ti and Nb are
also possible to generate more CO rather than H2 compared with pure surface.

2. We found 12 stable candidates for PdHx, which are Pd64, Pd64H2, Pd64H4, Pd64H8,
Pd64H10, Pd64H13, Pd64H31, Pd64H39, Pd64H53, Pd64H62, Pd64H63, and Pd64H64.
We identify the atomic structures of the PdH0.6 phase most likely to produce syn-
gas. The high activity of the PdH0.6 surface can be attributed to the fact that H
segregation in the PdHx(111) surface breaks the linear relation between HOCO*
and CO* adsorbates. In addition, H atoms may weaken the binding energies of all
adsorbates.

3. For PdxM1– xHy system, 24 active candidates of PdxTi1– xHy and 6 active candi-
dates of PdxNb1– xHy are screened out. Especially, the Pd15Ti49H64 (Pd0.23Ti0.77),
Pd12Ti52H60 (Pd0.19Ti0.81H0.94) and Pd11Nb53H16 (Pd0.17Nb0.83H0.25) have good sta-
bility and excellent current densities.

4. For PdxTi1– xHy with adsorbates system, 23 stable structures with adsorbates
are finally screened out under different reaction conditions. Among them,
Pd0.56Ti0.44H1.06+25%CO, Pd0.31Ti0.69H1.25+50%CO, Pd0.31Ti0.69H1.25+25%CO,
and Pd0.88Ti0.12H1.06+25%CO are found to be very active for CO2RR and suitable
to generate syngas.

Furthermore, all data and codes in this thesis are openly available and can be found
in Appendix E.
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7.2 Outlook
Even though a bunch of stable Pd-based catalysts have been found to have higher

activity than pure PdH(111) surface, there are still several aspects that can be further
considered.

1. Explicit solvent and fixing potentials
Our DFT calculations were carried out under vacuum conditions with solvent cor-
rections in order to simplify structural models. However, the explicit solvent envi-
ronment is more precise and thus can be further considered. Besides, our DFT
calculations were implemented in the framework of canonical ensemble, where the
electrode‘s surface charges and thus the fermi level or work function could vary.
However, the real electrode potential or work function should be constant. Then,
DFT in the framework of a grand canonical ensemble, such as the solvated Jellium
method (SJM), can be further considered in the future.

2. Variable lattice constants
We assume that the lattice constants of Pd-base hydrides are unchanged because
the atomic radius differences between Pd and introduced metals are not very obvi-
ous. However, the strain due to atomic radius difference is likely to have an influence
on binding energy. Thus, variable lattice constants can be considered in the future
when relaxing structures.

3. Validation of experiments and calculations
The active candidates of Pd-based hydrides in this thesis can be hopefully verified
by experiments. Besides, Pd-Ag, Pd-Cu, and Pd-Ni alloy hydrides are reported to
be active for CO2RR in experiments. Our methods can be further extended to these
alloy hydrides in the future.
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Appendix A

Supplementary material for metal-doped PdH(111)

This appendix is the supplementary material of Chapter 3, which is
based on the supporting information of Paper I.
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Figure A.1: The top (a) and side views (b) of crystal structures for pure PdH(111) surface.
The blue spheres represent metal Pd atoms and the white spheres are H atoms.

Figure A.2: (a-d) The top and (e-h) side views of crystal structures for PdH(111) surface
with adsorbates HOCO*, CO*, H* and OH*, respectively are shown here. The red spheres
represent O atoms and the grey spheres are C atoms.

Table A.1: Binding energies (BE, unit is eV) of pure PdH(111) with intermediates HOCO*,
CO*, H* and OH* in different sites.

BE for PdH(111) Sites HOCO* CO* H* OH*

Pure top 0.430 -0.363 0.398 1.479
hollow 0.406 -0.222 0.343 1.248
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Figure A.3: The free energy diagram for CO2RR of pure PdH(111) surface.

Figure A.4: The free energy diagram for HER of pure PdH(111) surface.
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Table A.2: Formation energies per atom of different transition metal atoms doping on the
PdH(111) surface for the different configurations.

Formation energy
(eV/atom)

Single Dimer Triangle Parall. Island Overlayer

Sc -2.683 -2.315 -2.146 -1.978 -2.181 -1.062

Ti -1.300 -1.200 -1.107 -1.081 -1.131 -1.056

V 0.027 0.059 0.064 0.028 0.127 -0.172

Cr 1.009 0.882 0.903 0.841 1.080 0.804

Mn 1.053 0.986 1.049 0.946 1.210 1.090

Fe 0.963 0.986 1.060 1.013 1.208 1.275

Co 0.485 0.543 0.613 0.664 0.718 0.913

Ni 0.056 0.141 0.216 0.230 0.220 0.379

Cu -0.005 0.118 0.237 0.314 0.330 0.383

Zn -0.415 -0.193 -0.005 0.008 -0.016 0.535

Y -2.959 -2.372 -1.997 -2.132 -2.013 -0.066

Zr -2.010 -1.723 -1.531 -1.532 -1.571 -0.824

Nb -0.438 -0.346 -0.241 -0.255 -0.311 -0.364

Mo 0.705 0.584 0.658 0.590 0.788 0.482

Ru 0.567 0.643 0.708 0.717 0.800 0.856

Rh -0.195 -0.066 -0.009 0.020 0.064 0.182

Ag -0.048 0.091 0.215 0.291 0.253 0.569

Cd -0.601 -0.253 0.075 0.184 -0.021 0.991

Hf -1.955 -1.707 -1.558 -1.484 -1.529 -0.760

Ta -0.379 -0.275 -0.125 -0.166 -0.212 -0.168

W 0.996 0.912 0.932 0.907 0.939 0.942

Re 1.001 0.991 1.137 1.086 1.142 1.325



Appendix A 91

Figure A.5: Top1 (T1), top2 (T2) and hollow (H) adsorption sites for single doping con-
figuration.

Table A.3: Binding energies (eV) of HOCO*, CO*, H* and OH* on different adsorption
sites for single doping configuration.

BE for single Sites HOCO* CO* H* OH*

Sc
top1 0.658 -0.553 1.264 -0.616
top2 0.818 0.039 0.779 1.750
hollow 0.648 -0.551 0.524 -0.611

Ti
top1 0.503 -0.786 0.693 -0.324
top2 0.823 -0.025 0.723 1.716
hollow 0.523 -0.792 0.516 -0.416

V
top1 0.423 -1.022 0.312 -0.242
top2 0.748 -0.176 0.684 1.786
hollow 0.777 -1.020 0.498 -0.246

Cr
top1 0.435 -1.335 0.041 0.081
top2 0.655 -0.211 0.613 1.692
hollow 0.563 -1.333 0.423 0.080

Mn
top1 0.491 -1.608 -0.078 0.437
top2 0.608 -0.241 0.583 0.846
hollow 0.425 -1.607 -0.212 0.592

Fe
top1 0.420 -1.460 -0.123 0.810
top2 0.563 -1.330 0.548 0.833
hollow 0.403 -1.448 -0.194 0.793

Co
top1 0.605 -0.959 0.138 1.205
top2 0.548 -0.252 0.533 1.330
hollow 0.614 -0.952 0.282 0.442

Ni
top1 0.647 -0.423 0.625 1.310
top2 0.567 -0.252 0.531 1.603
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hollow 0.670 -0.478 0.498 1.059

Cu
top1 1.176 -0.191 1.355 1.482
top2 0.646 -0.134 0.575 1.664
hollow 0.643 -0.115 0.517 1.470

Zn
top1 1.191 -0.112 1.080 0.671
top2 0.691 -0.120 0.611 1.294
hollow 0.691 -0.157 0.507 0.692

Y
top1 0.473 -0.550 1.223 -0.800
top2 0.787 -0.183 0.780 -0.800
hollow 0.476 -0.548 0.359 -0.797

Zr
top1 0.350 -0.817 0.701 -0.836
top2 0.810 -0.022 0.789 -0.851
hollow 0.351 -0.814 0.496 -0.834

Nb
top1 0.341 -1.009 0.311 -0.414
top2 0.830 -0.221 -0.139 1.817
hollow 0.711 -1.011 0.515 -0.422

Mo
top1 0.435 -1.304 -0.013 0.069
top2 0.789 -0.196 0.732 1.437
hollow 0.549 -1.304 -0.012 0.069

Ru
top1 0.255 -1.420 -0.231 0.920
top2 0.632 -1.265 0.608 0.768
hollow 0.257 -1.401 -0.230 1.261

Rh
top1 0.574 -0.665 0.205 1.499
top2 0.659 -0.200 0.641 1.380
hollow 0.563 -0.699 0.509 1.488

Ag
top1 1.416 -0.105 1.622 1.970
top2 0.675 -0.092 0.603 1.676
hollow 0.676 -0.118 0.512 1.843

Cd
top1 1.426 -0.143 1.286 1.221
top2 0.747 -0.093 0.668 -0.523
hollow 0.750 -0.139 0.593 1.217

Hf
top1 0.434 -0.829 0.716 -0.862
top2 0.786 -0.019 0.764 1.760
hollow 0.434 -0.834 0.559 -0.864

Ta
top1 0.658 -1.009 0.297 -0.576
top2 0.835 -0.220 -0.180 1.548
hollow 0.743 -1.008 0.569 -0.576

W
top1 0.625 -1.184 -0.010 -0.053
top2 0.816 -0.213 0.727 1.379
hollow 0.601 -1.182 -0.010 -0.054

Re
top1 0.666 -0.770 0.046 0.663
top2 0.941 -0.147 0.827 1.392
hollow 0.604 -0.718 0.046 1.540
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Figure A.6: Top1 (T1), top2 (T2), hollow1 (H1) and hollow2 (H2) adsorption sites for dimer
doping configuration.

Table A.4: Binding energies (eV) of HOCO*, CO*, H* and OH* on different adsorption
sites for dimer doping configuration. (Some of them in the table are not stable, and form
other unexpected intermediates on the surfaces. They are thus directly removed and the
same is applied in the following other tables.)

BE for dimer Sites HOCO* CO* H* OH*

Sc

top1 0.309 -0.507 1.123 -0.796
top2 0.903 0.230 0.584 -0.774
hollow1 0.254 -0.472 0.234 -0.841
hollow2 0.017 -0.509 0.091 -0.797

Ti

top1 0.407 -0.751 0.716 -0.526
top2 1.013 0.164 0.866 -0.370
hollow1 0.368 -0.751 0.418 -0.378
hollow2 0.512 -0.757 0.384 -0.470

V

top1 0.397 -1.016 -0.087 -0.241
top2 0.940 0.194 0.864 0.115
hollow1 0.409 -1.037 0.324 0.180
hollow2 0.470 -1.037 0.494 -0.187

Cr

top1 0.265 -1.151 -0.078 -0.370
top2 0.748 -0.389 0.337 1.852
hollow1 -0.220 -1.136 0.310 0.430
hollow2 0.492 -1.152 0.493 -0.309

Mn

top1 0.194 -1.394 -0.114 0.388
top2 0.790 0.021 0.760 1.774
hollow1 0.106 -1.332 0.264 -0.117
hollow2 0.842 -1.394 0.324 0.614

Fe

top1 0.449 -1.358 -0.185 0.744
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top2 0.708 -0.024 0.721 1.792
hollow1 0.261 -0.688 0.258 0.600
hollow2 0.903 -1.361 0.195 0.748

Co

top1 0.627 -0.954 -0.001 1.020
top2 0.635 -0.109 0.667 1.734
hollow1 0.607 -0.334 0.430 1.070
hollow2 0.627 -0.849 0.352 1.089

Ni

top1 0.654 -0.491 - 1.288
top2 0.616 -0.238 0.592 1.626
hollow1 0.652 -0.534 0.546 -
hollow2 0.623 -0.118 0.430 1.071

Cu

top1 1.227 -0.180 - 1.155
top2 0.752 -0.050 0.669 1.748
hollow1 0.788 -0.111 0.842 1.265
hollow2 0.713 -0.115 0.562 -

Zn

top1 0.696 -0.121 0.705 0.463
top2 0.792 -0.139 0.800 0.286
hollow1 0.720 -0.121 0.853 -
hollow2 0.798 -0.125 0.604 0.449

Y

top1 -0.064 -0.389 0.514 -1.102
top2 0.682 0.187 0.452 -0.800
hollow1 -0.107 -0.386 -0.001 -1.077
hollow2 -0.472 -0.385 -0.253 -0.984

Zr

top1 0.249 -0.728 0.781 -1.001
top2 0.989 0.278 0.568 -0.472
hollow1 0.248 -0.749 0.306 -0.694
hollow2 -0.220 -0.748 0.127 -1.002

Nb

top1 0.363 -0.942 0.315 -0.477
top2 1.104 0.236 0.993 0.026
hollow1 0.363 -0.959 0.385 0.146
hollow2 0.515 -0.942 0.484 -0.412

Mo

top1 0.259 -1.128 0.128 0.052
top2 0.912 0.113 0.343 1.869
hollow1 0.243 -1.130 0.366 0.492
hollow2 0.717 -1.129 -0.013 0.077

Ru

top1 0.275 -1.339 -0.093 0.816
top2 0.717 0.055 0.201 1.775
hollow1 0.214 -0.701 0.245 1.027
hollow2 1.042 -1.339 -0.144 0.829

Rh

top1 0.572 -0.690 0.205 1.451
top2 0.710 -0.052 0.735 1.819
hollow1 0.582 -0.712 0.524 1.129
hollow2 0.707 -0.684 0.491 1.455

Ag

top1 1.497 -0.100 - 1.451
top2 0.884 0.101 0.768 1.887
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hollow1 0.849 -0.104 0.758 1.492
hollow2 0.779 -0.117 0.520 1.769

Cd

top1 0.933 -0.125 0.816 0.550
top2 0.970 -0.041 0.911 0.569
hollow1 0.934 -0.120 0.765 0.521
hollow2 0.871 -0.132 0.593 0.898

Hf

top1 0.276 -0.731 0.787 -1.001
top2 0.981 0.283 0.570 -0.701
hollow1 0.239 -0.752 0.453 -0.679
hollow2 0.229 -0.753 0.428 -1.002

Ta

top1 0.348 -0.942 0.247 -0.719
top2 1.173 0.350 0.994 -0.066
hollow1 0.330 -0.942 0.564 -0.119
hollow2 0.305 -0.896 0.581 -0.656

W

top1 0.380 -1.053 0.127 -0.085
top2 0.932 -0.013 0.358 1.827
hollow1 0.379 -1.050 0.366 0.632
hollow2 1.088 -1.062 0.099 -0.085

Re

top1 0.507 -1.090 -0.001 0.487
top2 0.846 -0.050 0.667 1.660
hollow1 0.401 -0.270 0.449 1.025
hollow2 0.830 -1.104 -0.006 0.436

Figure A.7: Top1 (T1), top2 (T2), hollow1 (H1) and hollow2 (H2) adsorption sites for
triangle doping configuration.

Table A.5: Binding energies (eV) of HOCO*, CO*, H* and OH* on different adsorption
sites for triangle doping configuration.
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BE for triangle Sites HOCO* CO* H* OH*

Sc

top1 0.108 -0.581 1.034 -0.910
top2 0.903 -0.335 0.867 -0.836
hollow1 0.172 0.345 0.155 -0.351
hollow2 0.106 -0.634 0.301 -0.919

Ti

top1 0.240 -0.775 0.643 -0.673
top2 0.704 0.019 0.736 -0.098
hollow1 0.238 -0.787 0.336 0.283
hollow2 0.345 -0.827 0.378 -0.734

V

top1 0.181 -1.069 -0.305 -0.485
top2 0.719 -0.864 0.726 -0.322
hollow1 0.155 -1.041 0.100 0.156
hollow2 0.066 -1.097 0.357 -0.491

Cr

top1 0.282 -1.271 - -0.629
top2 0.595 -0.363 0.683 1.785
hollow1 0.049 -1.341 0.313 0.556
hollow2 -0.162 -1.345 0.222 -0.629

Mn

top1 0.166 -1.523 -0.388 -0.193
top2 0.524 -0.290 0.499 1.730
hollow1 0.089 -1.546 0.303 0.692
hollow2 0.568 -1.555 0.082 -0.143

Fe

top1 0.207 -1.468 -0.343 0.667
top2 0.529 -0.065 0.657 1.458
hollow1 0.104 -1.140 0.284 1.084
hollow2 0.767 -1.463 0.030 0.603

Co

top1 0.605 -0.869 -0.121 1.111
top2 0.593 -0.222 0.637 1.712
hollow1 0.517 -0.844 0.430 1.736
hollow2 0.656 -1.112 0.133 -

Ni

top1 0.604 -0.531 - 1.342
top2 0.554 -0.283 0.547 1.584
hollow1 0.593 0.129 0.603 1.537
hollow2 0.517 -0.538 0.258 -

Cu

top1 1.263 -0.188 1.418 1.399
top2 0.835 -0.017 0.783 1.682
hollow1 1.267 -0.104 0.945 1.217
hollow2 0.837 -0.115 0.560 -

Zn

top1 0.506 -0.126 0.511 0.260
top2 0.642 -0.290 0.724 -0.047
hollow1 0.501 -0.119 1.276 0.315
hollow2 0.615 -0.148 0.546 0.264

Y

top1 -0.865 -0.553 0.071 -1.563
top2 -0.882 -0.452 0.917 -1.432
hollow1 -0.542 0.273 0.071 -0.803
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hollow2 -0.439 -0.550 -0.887 -1.642

Zr

top1 0.005 -0.694 0.497 -1.119
top2 0.327 0.207 0.696 -0.721
hollow1 0.161 -0.692 0.347 -0.153
hollow2 -0.097 -0.820 0.117 -1.185

Nb

top1 0.278 -0.917 0.382 -0.658
top2 0.809 0.141 0.825 -0.310
hollow1 0.254 -0.955 0.316 0.374
hollow2 0.167 -0.949 0.382 -0.657

Mo

top1 0.432 -1.285 0.066 -0.370
top2 0.802 0.201 0.798 1.865
hollow1 0.244 -1.235 0.455 0.759
hollow2 0.178 -1.234 0.107 -0.353

Ru

top1 0.194 -1.374 -0.164 0.717
top2 0.771 -0.045 0.745 1.860
hollow1 0.223 -0.408 0.437 0.794
hollow2 1.027 -1.372 -0.170 0.710

Rh

top1 0.457 -0.681 0.209 1.434
top2 0.734 -0.135 0.729 1.797
hollow1 0.561 -0.001 0.502 1.109
hollow2 0.622 -0.698 0.434 -

Ag

top1 1.549 -0.100 1.121 1.471
top2 0.929 0.100 0.823 1.905
hollow1 1.554 -0.094 1.123 1.516
hollow2 0.870 -0.111 0.671 -0.419

Cd

top1 0.802 -0.127 0.426 0.452
top2 0.853 -0.168 0.866 0.400
hollow1 0.638 -0.116 0.997 0.496
hollow2 0.748 -0.136 0.582 -

Hf

top1 0.049 -0.680 0.535 -1.047
top2 0.360 0.269 0.890 -0.668
hollow1 0.271 -0.683 0.491 -0.040
hollow2 -0.010 -0.758 0.336 -1.141

Ta

top1 0.159 -1.020 0.181 -0.921
top2 0.770 0.079 0.813 -0.067
hollow1 0.175 -1.023 0.579 0.407
hollow2 -0.003 -1.034 0.359 -0.885

W

top1 0.485 -1.150 0.081 -0.324
top2 0.888 0.173 0.596 1.838
hollow1 0.474 -1.110 0.577 1.263
hollow2 0.347 -1.149 0.071 -0.325

Re

top1 0.136 -1.324 -0.183 0.026
top2 0.793 0.025 0.743 1.762
hollow1 0.221 -1.346 0.772 1.041
hollow2 1.022 -1.336 -0.189 -0.048
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Figure A.8: Top1 (T1), top2 (T2), hollow1 (H1), hollow2 (H2) and hollow3 (H3) adsorption
sites for parallelogram doping configuration.

Table A.6: Binding energies (eV) of HOCO*, CO*, H* and OH* on different adsorption
sites for parallelogram doping configuration.

BE for parallel. Sites HOCO* CO* H* OH*

Sc

top1 -0.209 -0.548 0.282 -1.664
top2 0.628 -0.538 0.066 -1.316
hollow1 -0.076 -0.687 -0.115 -1.437
hollow2 -0.345 -0.817 -0.050 -1.226
hollow3 -0.618 -0.878 0.341 -1.666

Ti

top1 0.095 -0.724 0.646 -0.553
top2 0.925 0.133 0.829 1.817
hollow1 0.403 -0.744 0.308 -0.006
hollow2 0.095 -0.730 0.249 -0.454
hollow3 0.428 -0.721 0.646 -0.555

V

top1 0.179 -0.910 0.473 -0.121
top2 0.768 -0.083 0.746 -0.277
hollow1 0.230 -1.027 0.205 0.110
hollow2 0.117 -0.985 0.240 -0.264
hollow3 0.519 -0.883 0.560 -0.151

Cr

top1 0.007 -1.128 - -0.027
top2 0.639 -1.160 0.659 0.819
hollow1 0.094 -1.409 0.141 0.116
hollow2 -0.003 -1.042 0.137 -0.392
hollow3 0.511 -1.128 0.209 -0.509

Mn

top1 0.092 -1.201 0.165 0.529
top2 0.637 -0.289 0.789 1.199
hollow1 0.085 -1.380 0.324 0.109
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hollow2 0.092 -1.320 0.261 0.151
hollow3 0.795 -1.200 -0.016 0.243

Fe

top1 0.477 -1.239 0.303 0.662
top2 0.626 -0.228 0.730 1.685
hollow1 -0.050 -1.372 0.214 0.401
hollow2 0.098 -1.373 0.253 0.156
hollow3 0.780 -1.143 -0.202 0.768

Co

top1 0.214 -1.105 0.192 0.766
top2 0.335 -0.515 0.381 1.395
hollow1 0.020 -1.376 0.114 0.737
hollow2 0.201 -1.243 0.041 0.329
hollow3 0.336 -1.253 0.369 0.967

Ni

top1 0.633 -0.544 0.610 1.268
top2 0.449 -0.310 0.570 1.549
hollow1 0.657 -0.370 0.493 0.758
hollow2 0.617 -0.459 0.331 0.731
hollow3 0.433 -0.113 0.440 1.005

Cu

top1 1.203 -0.206 0.593 1.282
top2 0.790 -0.088 0.740 1.671
hollow1 1.241 -0.117 0.773 0.725
hollow2 0.825 -0.114 0.597 0.781
hollow3 0.789 -0.116 0.550 1.282

Zn

top1 0.439 -0.168 0.491 0.250
top2 0.669 -0.461 0.547 0.508
hollow1 0.390 -0.055 0.586 0.100
hollow2 0.723 -0.123 0.549 -0.043
hollow3 0.639 -0.165 0.565 0.233

Y

top1 -0.482 -0.575 0.863 -1.051
top2 -1.061 -1.382 -1.104 -1.221
hollow1 -0.776 -0.848 -0.398 -1.785
hollow2 0.020 -0.572 -1.086 -1.433
hollow3 -0.362 -0.579 -0.868 -1.052

Zr

top1 0.202 -0.698 0.636 -1.104
top2 0.515 -0.423 0.554 -0.554
hollow1 1.142 -0.482 0.550 -0.307
hollow2 0.048 -0.419 0.439 -0.690
hollow3 -0.018 -0.503 0.495 -1.115

Nb

top1 0.127 -0.778 0.451 -0.369
top2 0.970 0.041 0.927 -0.565
hollow1 0.400 -0.800 0.440 0.426
hollow2 0.150 -0.856 0.341 -0.227
hollow3 0.659 -0.779 0.729 -0.349

Mo

top1 -0.081 -1.064 0.207 0.203
top2 0.795 -0.154 0.807 -0.408
hollow1 0.214 -1.347 0.462 0.535
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hollow2 -0.083 -1.111 0.206 -0.106
hollow3 0.036 -1.042 0.498 0.204

Ru

top1 0.297 -1.340 -0.097 0.964
top2 0.751 -1.215 0.760 1.476
hollow1 0.193 -1.389 -0.215 0.505
hollow2 0.038 -1.394 0.144 0.445
hollow3 1.123 -1.340 -0.099 1.022

Rh

top1 0.494 -0.738 0.184 1.444
top2 0.742 -0.146 0.756 1.810
hollow1 0.544 -0.794 0.473 1.226
hollow2 0.611 -0.749 0.398 1.248
hollow3 0.795 -0.678 0.496 1.517

Ag

top1 1.561 -0.104 0.727 1.731
top2 0.947 0.039 0.853 -
hollow1 1.563 -0.105 1.109 1.057
hollow2 0.989 -0.114 0.905 1.423
hollow3 0.946 -0.126 0.668 1.624

Cd

top1 0.374 -0.453 0.316 0.297
top2 0.642 -0.542 0.613 -0.962
hollow1 -0.772 -0.442 1.167 0.086
hollow2 0.469 -0.265 0.610 -0.067
hollow3 0.582 -0.424 0.316 0.352

Hf

top1 -0.164 -0.816 0.512 -1.227
top2 0.694 -0.327 0.660 -0.343
hollow1 0.276 -0.058 0.568 -0.467
hollow2 -0.166 -0.531 0.324 -0.745
hollow3 -0.057 -0.624 0.232 -1.227

Ta

top1 0.194 -0.725 0.445 -0.404
top2 1.024 0.070 0.979 -0.693
hollow1 0.303 -0.780 0.624 -0.410
hollow2 0.157 -0.851 0.190 -0.289
hollow3 0.695 -0.725 0.446 -0.424

W

top1 -0.251 -1.066 0.120 0.020
top2 0.889 -0.602 -0.134 0.995
hollow1 0.248 -1.211 0.059 0.119
hollow2 -0.251 -1.157 -0.325 -0.461
hollow3 -0.015 -1.065 0.121 0.020

Re

top1 0.343 -1.208 -0.076 0.518
top2 0.705 -0.768 0.619 1.258
hollow1 0.456 -1.253 -0.089 0.781
hollow2 -0.251 -1.485 -0.295 -0.050
hollow3 0.833 -1.207 -0.081 0.471
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Figure A.9: Top1 (T1), top2 (T2), top3 (T3), hollow1 (H1) and hollow2 (H2) adsorption
sites for island doping configuration.

Table A.7: Binding energies (eV) of HOCO*, CO*, H* and OH* on different adsorption
sites for island doping configuration.

BE for island Sites HOCO* CO* H* OH*

Sc

top1 -0.388 -0.539 0.833 -1.166
top2 0.387 -0.451 0.862 -0.854
top3 1.032 -0.500 0.399 -1.291
hollow1 0.399 -0.449 0.692 -0.856
hollow2 -0.597 -0.537 0.443 -1.091

Ti

top1 0.107 -0.795 0.632 -0.751
top2 0.328 -0.739 0.592 -0.563
top3 0.850 -0.821 0.815 -0.754
hollow1 0.316 -0.731 0.584 -0.561
hollow2 -0.017 -0.741 0.064 -0.682

V

top1 0.081 -1.080 0.271 -0.203
top2 0.556 -1.131 0.163 -0.423
top3 0.816 -0.886 0.063 -0.209
hollow1 0.220 -1.132 0.064 -0.422
hollow2 0.221 -1.131 0.061 -0.380

Cr

top1 0.112 -0.972 0.294 -0.217
top2 0.128 -1.457 -0.322 -0.382
top3 0.520 -1.408 -0.416 -0.056
hollow1 0.185 -1.458 0.117 -0.352
hollow2 0.174 -1.464 -0.416 -0.494

Mn

top1 -0.289 -2.025 -0.099 -0.451
top2 -0.341 -2.141 -0.447 -0.075
top3 0.341 -1.213 -0.753 -0.253
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hollow1 0.240 -1.673 -0.018 -0.148
hollow2 -0.167 -1.823 -0.479 -0.687

Fe

top1 -0.160 -1.358 0.056 -0.028
top2 0.086 -1.718 -0.412 0.433
top3 0.407 -1.150 0.511 0.608
hollow1 -0.073 -1.719 -0.005 0.061
hollow2 0.140 -1.600 -0.304 -0.446

Co

top1 0.470 -0.900 0.254 0.852
top2 0.246 -1.205 -0.205 0.797
top3 0.538 -0.706 0.612 1.291
hollow1 0.255 -1.208 0.099 0.797
hollow2 0.299 -1.205 0.145 0.558

Ni

top1 0.675 -0.494 0.682 1.297
top2 0.725 -0.433 - 1.314
top3 0.597 -0.226 0.614 1.081
hollow1 0.615 -0.428 0.380 1.142
hollow2 0.706 -0.339 0.357 -

Cu

top1 1.221 -0.253 0.531 1.310
top2 1.177 -0.241 - 1.220
top3 0.731 -0.095 0.632 1.552
hollow1 0.725 -0.120 0.437 0.906
hollow2 1.196 -0.117 0.531 -

Zn

top1 0.541 -0.114 0.698 0.499
top2 0.756 -0.117 0.553 0.262
top3 0.847 -0.136 0.729 0.145
hollow1 0.768 -0.123 0.679 0.285
hollow2 0.530 -0.123 0.634 0.132

Y

top1 -2.768 -2.816 -1.381 -2.649
top2 -1.017 -1.704 -2.213 -2.171
top3 -2.765 -2.839 -0.183 -2.099
hollow1 -1.240 -1.321 - -2.172
hollow2 -2.118 -2.836 -2.213 -3.988

Zr

top1 -1.450 -1.274 -0.603 -2.611
top2 0.058 -0.666 0.746 -1.484
top3 0.467 -1.387 0.217 -2.610
hollow1 -0.061 -0.672 0.494 -1.040
hollow2 -1.399 -0.589 0.240 -1.403

Nb

top1 0.149 -0.945 0.332 -0.659
top2 0.225 -0.902 0.246 -0.408
top3 0.531 -0.939 0.193 -0.175
hollow1 0.217 -0.900 0.246 -0.405
hollow2 -0.186 -0.852 0.193 -0.432

Mo

top1 0.121 -0.761 0.325 -0.218
top2 0.246 -1.530 -0.215 -0.288
top3 -0.458 -1.094 -0.056 -0.276
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hollow1 -0.066 -1.530 -0.215 -0.271
hollow2 0.387 -1.607 -0.044 -0.607

Ru

top1 0.328 -1.208 -0.008 0.565
top2 0.345 -1.384 -0.098 0.950
top3 0.490 -0.600 -0.508 1.115
hollow1 0.075 -1.388 -0.283 0.637
hollow2 0.072 -1.404 -0.085 0.111

Rh

top1 0.535 -0.674 0.262 1.402
top2 0.374 -0.860 0.121 1.288
top3 0.721 -0.089 0.803 1.895
hollow1 0.377 -0.863 0.290 1.307
hollow2 0.461 -0.824 0.418 1.199

Ag

top1 1.570 -0.092 1.745 1.316
top2 1.497 -0.108 0.682 -
top3 1.027 0.139 0.901 -
hollow1 1.026 -0.123 0.731 -
hollow2 1.526 -0.114 0.682 -

Cd

top1 0.763 -0.119 0.675 0.729
top2 1.002 -0.150 0.706 0.480
top3 0.959 -0.132 0.624 -0.788
hollow1 1.000 -0.155 -0.562 0.712
hollow2 0.961 -0.139 0.623 0.481

Hf

top1 -1.136 -0.702 -0.300 -2.311
top2 -0.172 -0.696 0.724 -1.484
top3 0.328 -1.016 -0.093 -2.318
hollow1 -0.270 -0.683 0.674 -1.483
hollow2 -1.270 -1.021 0.166 -1.236

Ta

top1 -0.210 -1.171 0.028 -1.297
top2 0.077 -0.919 0.161 -0.751
top3 1.016 -0.114 0.254 -1.301
hollow1 0.068 -0.918 0.163 -0.751
hollow2 -0.411 -1.170 0.256 -0.540

W

top1 -0.061 -0.468 -1.052 -0.875
top2 0.039 -1.459 0.194 -0.101
top3 -0.026 -0.853 -0.586 1.411
hollow1 0.360 -1.158 -0.641 -0.095
hollow2 0.053 -1.135 -0.586 -0.434

Re

top1 -0.019 -0.592 0.320 0.174
top2 0.121 -1.414 -0.565 0.444
top3 0.608 -0.452 0.474 1.250
hollow1 0.327 -1.410 -0.552 0.380
hollow2 0.220 -1.336 -0.067 0.027
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Figure A.10: Top (T) and hollow (H) adsorption sites for overlayer doping configuration.

Table A.8: Binding energies (eV) of HOCO*, CO*, H* and OH* on different adsorption
sites for overlayer doping configuration.

BE for overly. Sites HOCO* CO* H* OH*

Sc
top -4.344 -3.911 -3.463 -5.161
hollow -5.407 -4.877 -4.458 -5.790

Ti
top 0.359 -0.711 0.793 -0.613
hollow 0.174 -0.710 -0.020 -0.528

V
top 0.184 -0.927 0.367 -0.247
hollow 0.187 -0.923 0.239 0.094

Cr
top -0.018 -1.262 0.193 -0.026
hollow -0.016 -1.264 0.266 0.315

Mn
top -0.216 -1.587 0.067 -0.610
hollow -0.479 -0.653 0.250 0.460

Fe
top -1.566 -1.639 -0.033 -0.057
hollow -1.500 -2.037 0.244 -0.800

Co
top -0.734 -1.266 0.126 0.200
hollow -0.828 -1.953 0.253 -0.418

Ni
top -0.438 -0.999 0.387 0.930
hollow 0.041 -0.616 0.267 -0.469

Cu
top 0.974 -0.333 1.222 -
hollow 1.076 -0.089 0.920 1.001

Zn
top -1.898 -2.973 -2.300 -3.155
hollow -2.029 -2.678 -1.919 -2.864

Y
top -16.174 -9.814 - -10.373
hollow -15.721 -16.347 -16.096 -13.788

Zr
top -1.252 -0.749 -0.041 -1.945
hollow -1.578 -0.751 0.105 -1.784

Nb
top 0.519 -0.680 0.309 -0.465
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hollow 0.210 -0.677 0.455 0.140

Mo
top 0.304 -1.156 0.010 -0.174
hollow 0.077 -1.155 0.420 0.390

Ru
top -0.028 -1.631 -0.194 0.627
hollow -0.148 -0.818 0.269 0.716

Rh
top 0.313 -0.810 0.175 1.350
hollow 0.329 -1.007 0.397 1.597

Ag
top 1.363 -0.218 1.581 -
hollow - -0.185 1.066 -

Cd
top -4.891 -5.273 -5.416 -4.877
hollow -4.618 -5.579 -5.213 -5.237

Hf
top -0.567 -0.913 0.018 -1.879
hollow -1.531 -0.912 -0.083 -1.822

Ta
top 0.171 -0.949 -0.052 -0.898
hollow -0.171 -0.949 0.409 -0.075

W
top 0.083 -1.284 -0.274 -0.489
hollow -0.206 -1.284 0.516 -0.028

Re
top 0.133 -1.477 -0.240 0.101
hollow -0.533 -1.495 -0.164 -0.139

Table A.9: Contributions to the free energy corrections for different intermediates using
the vdw-BEEF functional.

Intermediate EZPE (eV)
∫
CpdT
(eV) -T *S (eV) Total (eV)

HOCO* 0.657 0.091 -0.162 0.586

CO* 0.186 0.080 -0.156 0.110

H* 0.190 0.003 -0.004 0.189

OH* 0.355 0.056 -0.103 0.308

Table A.10: DFT energies, zero point energy, heat capacity correction, entropy correction,
and final free energies of different gas species.

Species EDFT
(eV)

EZPE
(eV)

∫
CpdT
(eV)

-T *S
(eV)

Free
energy
(eV)

H2 -7.158 0.274 0.091 -0.402 -7.196

CO2 -18.459 0.306 0.099 -0.662 -18.718

H2O -12.833 0.572 0.104 -0.669 -12.827

CO -12.118 0.132 0.091 -0.668 -12.564
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Table A.11: Gibbs free energy difference (eV) of intermediates HOCO*, CO*, H* and
OH*, and describer ∆GHOCO∗ −∆GH∗ for single doping configuration.

Single ∆GHOCO∗ ∆GCO∗ ∆GH∗ ∆GOH∗
∆GHOCO∗−

∆GH∗

Pure 0.820 0.216 0.501 1.581 0.319

Sc 1.062 0.026 0.682 -0.283 0.380

Ti 0.917 -0.213 0.674 -0.083 0.242

V 0.837 -0.443 0.470 0.087 0.368

Cr 0.849 -0.756 0.199 0.413 0.650

Mn 0.839 -1.029 -0.054 0.770 0.893

Fe 0.817 -0.881 -0.036 1.126 0.852

Co 0.962 -0.380 0.296 1.538 0.666

Ni 0.981 0.101 0.656 1.392 0.325

Cu 1.057 0.388 0.675 1.803 0.382

Zn 1.105 0.422 0.665 1.004 0.439

Y 0.887 0.029 0.517 -0.467 0.370

Zr 0.764 -0.238 0.654 -0.518 0.110

Nb 0.755 -0.432 0.019 -0.089 0.736

Mo 0.849 -0.725 0.145 0.402 0.703

Ru 0.669 -0.841 -0.073 1.101 0.741

Rh 0.977 -0.120 0.363 1.713 0.614

Ag 1.089 0.461 0.670 2.009 0.420

Cd 1.161 0.436 0.751 -0.190 0.410

Hf 0.848 -0.255 0.717 -0.531 0.131

Ta 1.072 -0.430 -0.022 -0.243 1.094

W 1.015 -0.605 0.148 0.279 0.867

Re 1.018 -0.191 0.204 0.996 0.813
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Table A.12: Gibbs free energy difference (eV) of intermediates HOCO*, CO*, H* and
OH*, and describer ∆GHOCO∗ −∆GH∗ for dimer doping configuration.

Dimer ∆GHOCO∗ ∆GCO∗ ∆GH∗ ∆GOH∗
∆GHOCO∗−

∆GH∗

Pure 0.820 0.216 0.501 1.581 0.319

Sc 0.431 0.070 0.249 -0.508 0.182

Ti 0.782 -0.178 0.542 -0.193 0.240

V 0.811 -0.458 0.071 0.092 0.740

Cr 0.194 -0.573 0.080 -0.037 0.114

Mn 0.520 -0.815 0.044 0.216 0.477

Fe 0.675 -0.782 -0.027 0.933 0.702

Co 1.021 -0.375 0.157 1.353 0.864

Ni 1.030 0.045 0.588 1.404 0.442

Cu 1.127 0.399 0.720 1.488 0.407

Zn 1.110 0.440 0.762 0.619 0.347

Y -0.058 0.190 -0.095 -0.769 0.037

Zr 0.194 -0.170 0.285 -0.669 -0.091

Nb 0.777 -0.380 0.473 -0.144 0.304

Mo 0.657 -0.551 0.145 0.385 0.512

Ru 0.628 -0.760 0.014 1.149 0.614

Rh 0.986 -0.133 0.363 1.462 0.623

Ag 1.193 0.462 0.678 1.784 0.515

Cd 1.285 0.447 0.751 0.854 0.535

Hf 0.643 -0.174 0.586 -0.669 0.058

Ta 0.719 -0.363 0.405 -0.386 0.314

W 0.793 -0.483 0.257 0.248 0.537

Re 0.815 -0.525 0.152 0.769 0.663
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Table A.13: Gibbs free energy difference (eV) of intermediates HOCO*, CO*, H* and
OH*, and describer ∆GHOCO∗ −∆GH∗ for triangle doping configuration.

Triangle ∆GHOCO∗ ∆GCO∗ ∆GH∗ ∆GOH∗
∆GHOCO∗−

∆GH∗

Pure 0.820 0.216 0.501 1.581 0.319

Sc 0.520 -0.055 0.313 -0.586 0.207

Ti 0.652 -0.248 0.494 -0.401 0.158

V 0.480 -0.518 -0.147 -0.158 0.627

Cr 0.252 -0.766 0.380 -0.296 -0.128

Mn 0.503 -0.976 -0.230 0.140 0.732

Fe 0.518 -0.889 -0.185 0.936 0.703

Co 0.931 -0.533 0.037 1.444 0.893

Ni 0.931 0.041 0.416 1.675 0.515

Cu 1.249 0.391 0.718 1.550 0.531

Zn 0.915 0.289 0.669 0.286 0.246

Y -0.468 0.026 -0.729 -1.309 0.261

Zr 0.317 -0.241 0.275 -0.852 0.042

Nb 0.581 -0.376 0.474 -0.325 0.107

Mo 0.592 -0.706 0.224 -0.037 0.368

Ru 0.608 -0.795 -0.012 1.043 0.621

Rh 0.871 -0.119 0.367 1.442 0.504

Ag 1.284 0.468 0.829 1.804 0.455

Cd 1.052 0.411 0.584 0.733 0.467

Hf 0.404 -0.179 0.494 -0.808 -0.090

Ta 0.411 -0.455 0.339 -0.588 0.072

W 0.761 -0.571 0.229 0.008 0.532

Re 0.550 -0.767 -0.031 0.285 0.581
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Table A.14: Gibbs free energy difference (eV) of intermediates HOCO*, CO*, H* and
OH*, and describer ∆GHOCO∗ −∆GH∗ for parallelogram doping configuration.

Parall. ∆GHOCO∗ ∆GCO∗ ∆GH∗ ∆GOH∗
∆GHOCO∗−

∆GH∗

Pure 0.820 0.216 0.501 1.581 0.319

Sc -0.204 -0.299 0.043 -1.333 -0.247

Ti 0.509 -0.165 0.407 -0.222 0.102

V 0.531 -0.448 0.363 0.056 0.168

Cr 0.411 -0.830 0.295 -0.176 0.116

Mn 0.499 -0.801 0.142 0.442 0.357

Fe 0.364 -0.794 -0.044 0.489 0.408

Co 0.434 -0.797 0.199 0.662 0.235

Ni 0.847 0.035 0.489 1.064 0.358

Cu 1.203 0.373 0.708 1.058 0.495

Zn 0.804 0.118 0.649 0.290 0.155

Y -0.647 -0.803 -0.946 -1.452 0.299

Zr 0.396 -0.119 0.597 -0.782 -0.201

Nb 0.541 -0.277 0.499 -0.232 0.043

Mo 0.331 -0.768 0.364 -0.075 -0.033

Ru 0.452 -0.815 -0.057 0.778 0.510

Rh 0.908 -0.215 0.342 1.559 0.566

Ag 1.360 0.453 0.826 1.390 0.534

Cd -0.358 0.037 0.474 -0.629 -0.831

Hf 0.248 -0.237 0.390 -0.894 -0.142

Ta 0.571 -0.272 0.348 -0.360 0.223

W 0.163 -0.632 -0.167 -0.128 0.330

Re 0.163 -0.906 -0.137 0.283 0.300
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Table A.15: Gibbs free energy difference (eV) of intermediates HOCO*, CO*, H* and
OH*, and describer ∆GHOCO∗ −∆GH∗ for island doping configuration.

Island ∆GHOCO∗ ∆GCO∗ ∆GH∗ ∆GOH∗
∆GHOCO∗−

∆GH∗

Pure 0.820 0.216 0.501 1.581 0.319

Sc -0.183 0.040 0.557 -0.958 -0.739

Ti 0.397 -0.242 0.222 -0.421 0.175

V 0.495 -0.553 0.219 -0.090 0.276

Cr 0.526 -0.885 -0.258 -0.161 0.784

Mn 0.073 -1.562 -0.595 -0.354 0.667

Fe 0.254 -1.140 -0.254 -0.113 0.508

Co 0.660 -0.629 -0.047 0.891 0.707

Ni 1.011 0.085 0.515 1.414 0.495

Cu 1.139 0.326 0.595 1.239 0.544

Zn 0.944 0.443 0.711 0.465 0.233

Y -2.354 -2.260 -2.055 -3.655 -0.300

Zr -1.036 -0.808 -0.445 -2.278 -0.591

Nb 0.228 -0.366 0.351 -0.326 -0.123

Mo -0.044 -1.028 -0.057 -0.274 0.013

Ru 0.486 -0.825 -0.350 0.444 0.836

Rh 0.788 -0.284 0.279 1.532 0.509

Ag 1.440 0.456 0.840 1.649 0.601

Cd 1.177 0.424 -0.404 -0.455 1.581

Hf -0.856 -0.442 -0.142 -1.985 -0.714

Ta 0.003 -0.592 0.186 -0.968 -0.183

W 0.353 -0.880 -0.894 -0.542 1.247

Re 0.395 -0.835 -0.407 0.360 0.802
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Table A.16: Gibbs free energy difference (eV) of intermediates HOCO*, CO*, H* and
OH*, and describer ∆GHOCO∗ −∆GH∗ for overlayer doping configuration.

Overlayer ∆GHOCO∗ ∆GCO∗ ∆GH∗ ∆GOH∗
∆GHOCO∗−

∆GH∗

Pure 0.820 0.216 0.501 1.581 0.319

Sc -4.993 -4.298 -4.300 -5.457 -0.693

Ti 0.588 -0.132 0.138 -0.280 0.450

V 0.598 -0.348 0.397 0.086 0.201

Cr 0.396 -0.685 0.351 0.307 0.045

Mn -0.065 -1.008 0.225 -0.277 -0.290

Fe -1.152 -1.458 0.125 -0.467 -1.277

Co -0.414 -1.374 0.284 -0.085 -0.699

Ni -0.024 -0.420 0.425 -0.136 -0.450

Cu 1.388 0.246 1.078 1.334 0.310

Zn -1.615 -2.394 -2.142 -2.822 0.526

Y -15.760 -15.768 -15.938 -13.455 0.177

Zr -1.164 -0.172 0.117 -1.612 -1.281

Nb 0.624 -0.101 0.467 -0.132 0.157

Mo 0.491 -0.577 0.168 0.159 0.323

Ru 0.266 -1.052 -0.036 0.960 0.303

Rh 0.727 -0.428 0.333 1.683 0.394

Ag 1.777 0.361 1.224 1.841 0.553

Cd -4.477 -5.000 -5.258 -4.904 0.782

Hf -1.117 -0.334 0.075 -1.546 -1.192

Ta 0.243 -0.370 0.106 -0.565 0.137

W 0.208 -0.705 -0.116 -0.156 0.325

Re -0.119 -0.916 -0.082 0.194 -0.037
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Figure A.11: The formation of two bonds consisting of C-metal and O-metal and the metal
atom is the same one for HOCO* on the doped PdH(111) surface.

Figure A.12: The scaling relation of intermediates on doped PdH(111) with different ele-
ments between HOCO* and OH* in different doping configurations. The red line is fitted
by Fe, Co, Ni, Cu, Ru, Rh, and Ag-doped PdH(111) due to the formation of one bond for
HOCO* on the surface. The blue line is fitted by all element doped PdH(111).
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Figure A.13: The scaling relation of intermediates on doped PdH(111) with different ele-
ments between CO* and H* in different doping configurations.

Figure A.14: The logarithm of partial current density j of CO* as a function of temperature
for Ti doping with parallelogram configuration.
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Table A.17: The average bond lengths of the first metal layer of doped surfaces in the
configuration of overlayer and bulk metals. Different degrees of lattice mismatch can be
seen for overlayer configuration.

Elements Bond length of overlayer
of doped surfaces

Bonds length of bulk
metals

Sc 2.926 3.237

Ti 2.926 2.860

V 2.926 2.615

Cr 2.926 2.459

Mn 2.926 2.481

Fe 2.926 2.448

Co 2.926 2.479

Ni 2.927 2.502

Cu 2.926 2.590

Zn 2.926 2.951

Y 2.926 3.546

Zr 2.926 3.186

Nb 2.926 2.882

Mo 2.926 2.729

Ru 2.926 2.664

Rh 2.926 2.716

Ag 2.926 2.967

Cd 2.926 3.367

Hf 2.926 3.122

Ta 2.926 2.868

W 2.926 2.748

Re 2.926 2.759
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Table A.18: The C-Metal (C-M) and O-Metal (O-M) bond lengths (Å) of HOCO* on doped
surfaces in the configurations of single, dimer, and triangle, respectively.

Dopants
Single Dimer Triangle

C-M O-M C-M O-M C-M O-M

Sc 2.150 2.123 2.063 2.129 2.055 2.113

Ti 2.020 2.129 2.214 2.013 2.234 2.063

V 1.963 2.117 2.129 2.083 2.047 2.054

Cr 1.931 2.166 2.056 2.092 2.022 2.041

Mn 1.984 2.392 1.966 2.039 1.967 2.045

Fe 1.974 2.532 2.010 2.781 2.036 2.815

Co 2.056 2.856 1.974 2.775 1.954 2.766

Ni 2.054 2.852 2.056 2.846 2.046 2.845

Cu 2.061 2.853 2.061 2.859 2.070 2.871

Zn 2.061 2.855 2.083 2.120 2.076 2.106

Y 2.328 2.255 2.074 2.287 2.087 2.245

Zr 2.171 2.241 2.179 2.195 2.186 2.217

Nb 2.100 2.256 2.295 2.251 2.118 2.262

Mo 2.056 2.314 2.172 2.232 2.038 2.144

Ru 2.142 2.955 2.103 2.874 2.097 2.889

Rh 2.058 2.884 2.047 2.857 2.055 2.875

Ag 2.054 2.847 2.063 2.859 2.075 2.866

Cd 2.059 2.854 2.074 2.869 2.285 2.443

Hf 2.151 2.198 2.16 2.167 2.165 2.179

Ta 2.227 2.842 2.108 2.297 2.098 2.208

W 2.170 2.574 2.174 2.216 2.020 2.122

Re 2.124 2.404 2.096 2.190 2.137 2.906
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Table A.19: The C-Metal (C-M) and O-Metal (O-M) bond lengths (Å) of HOCO* on doped
surfaces in the configurations of parallelogram, island, and overlayer, respectively.

Dopants
Parall. Island Overlayer

C-M O-M C-M O-M C-M O-M

Sc 2.061 2.098 2.404 2.077 2.333 2.046

Ti 2.259 2.032 2.247 2.062 2.307 2.059

V 2.094 1.999 2.141 2.104 2.146 2.119

Cr 2.025 2.069 2.057 2.081 2.042 2.072

Mn 1.967 2.051 1.985 2.756 1.958 2.000

Fe 2.021 2.784 1.924 2.030 1.895 1.954

Co 1.931 2.757 1.972 2.800 1.851 1.973

Ni 2.061 2.854 2.051 2.846 1.909 2.084

Cu 2.059 2.851 2.063 2.847 2.012 2.822

Zn 2.074 2.106 2.072 2.122 2.056 2.922

Y 2.140 2.253 2.470 2.361 2.559 2.237

Zr 2.185 2.213 2.224 2.225 2.316 2.092

Nb 2.304 2.191 2.303 2.205 2.310 2.234

Mo 2.165 2.196 2.066 2.340 2.166 2.203

Ru 2.110 2.881 2.072 2.549 2.091 2.904

Rh 2.055 2.863 2.064 2.885 2.059 2.860

Ag 2.066 2.868 2.057 2.841 2.270 3.090

Cd 3.760 3.417 2.276 2.492 2.298 2.438

Hf 2.397 2.097 2.272 3.423 2.276 2.045

Ta 2.239 2.122 2.291 2.153 2.284 2.184

W 2.161 2.167 2.216 2.216 2.143 2.139

Re 2.087 2.143 2.130 2.910 2.062 2.116
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Figure A.15: O-Metal (O-M) bond lengths (Å) of HOCO* on doped surfaces in the different
configurations.
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Figure A.16: Charge density difference with (a) Ti doping, (b)W doping, and (c) Cu doping
in the single dopant configuration. Their O-M bond lengths are 2.123, 2.574, and 2.853 Å,
respectively. The blue spheres are Pd atoms, the small white spheres represent H atoms,
the red spheres are O atoms, and the small grey spheres are C atoms. Isosurface value
is set as 0.003 e Å−3.

Figure A.17: Histogram of O-M bonds (Å) in the configurations of single, dimer, triangle,
parallelogram, island, and overlayer.
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Bond formation analysis
We list the C-Metal (C-M) and O-Metal (O-M) bond lengths of HOCO* on doped

surfaces in different configurations as shown in Table A.18 and A.19. It can be found that

C-M bonds are always around 2.0 Å, which illustrates that the C atom can always form a

chemical bond on the surface. However, O-M bond length varies a lot, ranging from 1.8

to 3.0 Å, which means that the O atom can form a chemical bond on the doped surfaces

in some cases, and does not bond to the surfaces in other cases. Figure A.16 shows

the charge density difference of HOCO* adsorbed with a single Ti, W, and Cu dopant.

When the bond length is 2.123 Å, there is a clear charge transfer between the O and the

M atom. The charge transfer still exists but is weaker when the O-M bond length is longer

(2.574 Å). However, there is no obvious charge transfer when the O-M is much longer

(2.853 Å). Figure A.17 displays the bond length distribution in different configurations. It

can be seen that no O-M bond lengths between 2.625 and 2.750 Å are found and there

may be a bond length threshold between them. Here, we define the threshold as 2.7 Å,

which means that the chemical bond would form when the bond length is less than 2.7

Å. As shown in Figure A.15, we can find that the O-M bonds do not form on Fe, Co, Ni,

Cu, Ru, Rh, and Ag-doped surfaces in all doping configurations in a very large number

of cases, which displays that it is much easier to only form C-M bond for them. However,

for other element doping, they tend to form both C-M and O-M bonds on their doped

surfaces in most cases. In most cases, the O-M bond length is either around 2.0-2.3 Å or

around 2.8-3.0 Å, and slightly changing the O-M distance determining whether there are

one or two bonds will not significantly affect our classification. Besides, it can be noticed

that the binding energies of HOCO* vary as the doping configurations change. This may

be because HOCO* has more degrees of freedom of movement due to its asymmetric

structures, which causes a wider binding energy distribution.
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Pourbaix diagrams
In order to study stability at electrochemical conditions we calculate Pourbaix dia-

grams. Free energy calculations of dissolved metal ions are obtained from the following

equations: [178, 179, 211]

Pd(s) −−→ Pd2+ + 2e− E0 = 0.951 (A.1)

GPd2+ = EPd(bulk) + 2E0 + 0.0592 · log[Pd2+] (A.2)

Nb(s) −−→ Nb3+ + 3e− E0 = −1.099 (A.3)

GNb3+ = ENb(bulk) + 3E0 + 0.0592 · log[Nb3+] (A.4)

Ti(s) −−→ Ti2+ + 2e− E0 = −1.628 (A.5)

GTi2+ = ETi(bulk) + 2E0 + 0.0592 · log[Ti2+] (A.6)

Ti3+ + e− −−→ Ti2+ E0 = −0.369 (A.7)

GTi3+ = GTi2+ + E0 + 0.0592 · log [Ti
3+]

[Ti2+]
(A.8)

The corrosion process of doped PdH(111) is considered as follows:

PdxMyHz −−→ PdxMy−1Hz−1 +Mn+ + H+ + (n+ 1) e− (A.9)

Gdissolution = GPdxMy−1Hz−1 +GTi3+ + 0.5 ·GH2 − (n+ 1) · eU − kB ·T · pH · ln(10) (A.10)

where PdxMyHz is bare surface of doped PdH(111). PdxMy –1Hz –1 represents the surface

after dissolving a metal atom and one hydrogen atom and Mn+ represents dissolved metal

ion. According to this equation, we can calculate the free energy of the dissolving metal

ion.
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Figure A.18: Surface stability of HOCO*, CO*, H*, OH*, Ti2+, Ti3+, and bare Ti doped
PdH(111) surface at pH = 0 in the configuration of parallelogram. Temperature is at 298.15
K and the metal ion concentration is considered as 10−6 M.

Figure A.19: Surface Pourbaix diagram of Ti doped PdH(111) in the configuration of
parallelogram. Temperature is at 298.15 K and the metal ion concentration is considered
as 10−6 M.
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Figure A.20: Surface stability of HOCO*, CO*, H*, OH*, Ti2+, Ti3+, and bare Ti doped
PdH(111) surface at pH = 0 in the configuration of overlayer. Temperature is at 298.15 K
and the metal ion concentration is considered as 10−6 M.

Figure A.21: Surface Pourbaix diagram of Ti-doped PdH(111) in the configuration of over-
layer. Temperature is at 298.15 K and the metal ion concentration is considered as 10−6

M.
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Figure A.22: Surface stability of HOCO*, CO*, H*, OH*, Nb3+, and bare Nb doped
PdH(111) surface at pH = 0 in the configuration of overlayer. Temperature is at 298.15 K
and the metal ion concentration is considered as 10−6 M.

Figure A.23: Surface Pourbaix diagram of Nb-doped PdH(111) in the configuration of
overlayer. Temperature is at 298.15 K and the metal ion concentration is considered as
10−6 M.
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Figure A.24: Surface stability of HOCO*, CO*, H*, OH*, Pd2+, and bare PdH(111) surface
at pH = 0. Temperature is at 298.15 K and the metal ion concentration is considered as
10−6 M.

Figure A.25: Surface Pourbaix diagram of pure PdH(111) surface. Temperature is at
298.15 K and the metal ion concentration is considered as 10−6 M.
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Appendix B

Supplementary material for PdHx(111)

This appendix is the supplementary material of Chapter 4, which is
based on the supporting information of Paper II.



126 Supplementary material for PdHx(111)

Calculation details
In this work, only the (111) surface of PdHx is studied as it is energetically the most

stable surface and it is exposed on octahedral nanoparticles having the highest activity
and selectivity for the CO2RR. We adopt a 4× 4 supercell model of the PdHx(111) with
four bilayers. Each bilayer is composed of one Pd atomic layer and one H or X (vacancy)
atomic layer, and the bottom two bilayers are fixed during relaxation. An approximate 15
Å vacuum layer is set in the z-direction to avoid interactions of separated periodic slab
images due to periodic boundary conditions. Furthermore, A series of energy corrections
are used to further promote the accuracy of energies, in this work. A +0.15 eV correction
per C=O, +0.15 eV correction for HOCO*, and +0.1 eV correction for H2 are applied for
systematic overbinding corrections with the BEEF-vdw functional in all calculations.[174,
175, 189] In terms of implicit solvent stabilization effect at the water-catalyst interface, -
0.25 eV correction for HOCO* and -0.1 eV correction for CO* are utilized, respectively.[40]
The influence of the electric field on the free energy of the adsorbates at the electrochem-
ical interface of catalysis is not considered in our calculations.

In order to obtain the convex hull of PdHx, the mixing energy EMixing is calculated by
the following definition:

EMixing = EPdHx − xEPdH − (1− x)EPd (B.1)

where EPdHx denotes the energy of PdHx when the H concentration, x, is between 0 and
1. EPdH means the energy of PdH when H concentration is 1, while EPd is the energy of
pure Pd when H concentration is 0.

The binding energies Eb of intermediates in this work are calculated by the following
equation:

Eb = E∗+ads − E∗ − Eads (B.2)

where E∗+ads is the total DFT energy of slab and adsorbate. E∗ denotes the energy of
the clean slab and Eads denotes the energy of the adsorbate with respect to gas phase
molecules.

TheGibbs free energy (G) is divided into four parts according to the following definition:

G = EDFT + EZPE +

∫
CpdT − TS (B.3)

where EDFT denotes the DFT energy with correction. EZPE denotes the zero-point energy.
Cp, T and S are the heat capacity, temperature, and entropy. The free energy calculations
of the slabs with adsorbate use the harmonic approximation via calculations of vibrational
frequencies, while gas-phase species are calculated within the ideal gas approximation.
The detailed terms are listed in Table A.9 and Table A.10. The computational hydrogen
electrode (CHE) model[168] is used to avoid calculations of solvated protons.

The ensembles from BEEF-vdW are calculated to estimate binding energy errors and
plot error ellipses, which represent the covariance. Each DFT ensemble calculation will
generate 2000 energy values and then they can be used to calculate ensemble binding
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energies with 2000 values. The covariance matrix cov(∆Ex,∆Ey) of two column ensem-
ble binding energies of adsorbates A* and B* is calculated the following equation:[212]

cov(∆Ex,∆Ey) =

[
var(x) cov(x, y)

var(x, y) var(y)

]
(B.4)

where ∆Ex and ∆Ey denote the ensemble binding energies of adsorbates A* and B*,
respectively. var(x) and var(y) are the variances and can be expressed as var(x) =

cov(x, x) and var(y) = cov(y, y). In addition, var(x, y) is the covariance of the two-column
ensemble binding energies. The covariance matrix can be decomposed into eigenvalues
and eigenvectors by single-value decomposition according to the following equation:

cov(∆Ex,∆Ey) = UΣU∗, Σ =

[
a 0

0 b

]
, U =

[
x1 y1

x2 y2

]
(B.5)

where U is the orthogonal eigenvector, which maximizes the description of correlation.
σ represents the eigenvalues in the diagonal, which utilizes the size or weight in each
orthogonal orientation. The eigenvalues can be normalized into the parameters of the
ellipse equation ( x2

a2σ
+ y2

b2σ
= 1). Their parameters can be obtained by the equation:

ασ =
√
a ∗ χ2(fractile, df), α ∈ a, b (B.6)

where ασ denotes the parameters of the ellipse and χ denotes the chi-squared probability
density function with df degrees of freedom. [212]
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Figure B.1: The flowchart of active learning cluster expansion of PdHx(111) surface to
find candidates from DFT convex hull.
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Figure B.2: (a) The linear fitting plot of cluster expansion energy and DFT energy using
2-body configuration. (b) ECIs distribution obtained from cluster expansion 2-body fitting.
(c) The linear fitting plot of cluster expansion energy and DFT energy using a 3-body
configuration. (d) ECIs distribution obtained from cluster expansion 3-body fitting.
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Figure B.3: The Monte Carlo simulated annealing for each H concentration in round 1 of
ALCE. The x-axis shows indices of temperatures and they are 1e10, 10000, 6000, 4000,
2000, 1500, 1000, 800, 700, 600, 500, 400, 350, 300, 250, 200, 150, 100, 75, 50, 25, 2,
and 1 K.
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Figure B.4: The linear fitting plot between cluster expansion energy and DFT energy for
(a) round 2, (b) round 3, (c) round 4, and (d) round 5.

Figure B.5: The linear fitting plot between cluster expansion energy and DFT energy for
(a) round 6, (b) round 7, (c) round 8, and (d) round 9.
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Figure B.6: The DFT convex hull curves of mixing energy as a function of H concentration
in round 1, (b) round 2, (c) round 3, and (d) round 4.

Figure B.7: The DFT convex hull curves of mixing energy as a function of H concentration
in round 5, (b) round 6, (c) round 7, and (d) round 8.
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Figure B.8: The H concentration of each layer as a function of the total concentration of
H for the structures of final candidates.

Figure B.9: The H concentration plots of each layer as a function of the total concentration
of H for the slab with adsorbates HOCO*, CO*, OH*, and H*, respectively.
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Figure B.10: The side view and the top view of surface (a-b) PdH64, (c-d) PdH63, (e-f)
PdH39 and (g-h) PdH31. The blue spheres are Pd atoms and the white spheres represent
H atoms.

Figure B.11: (a) The 4× 4× 1 PdHx(111) structures with one missing layer from bottom
to top layer and (b) their corresponding DFT energies. The dashed area is the sublayer
corresponding to the 2nd layer.
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Figure B.12: (a) The 1× 1× 4 PdHx(111) structures with one missing layer from bottom
to top layer and (b) corresponding DFT energies. The dashed area is the sublayer corre-
sponding to the 2nd layer.

Figure B.13: The binding energy relations with error ellipsoids between adsorbates
HOCO*, CO*, OH* and H*. The error ellipsoids represent the confidence interval of bind-
ing energies. The black horizotal and vertical lines show ∆GH∗ = 0 and ∆GCO∗ = 0,
repectively.
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Semi-grand canonical Monte Carlo calculation

Figure B.14: The top view of 20× 20 supercell surface of PdHx (111). The blue spheres
are Pd atoms and the small white spheres represent H atoms.

A semi-grand canonical Monte Carlo is implemented to study H chemical potential
as a function of H concentration of PdHx(111) surface. The 20 × 20 supercell surface is
utilized as shown in Figure B.14. The chemical potentials of H are ranging from -4.5 to
-3.0, and 200 even points are generated between them. The chemical potential (µH2) of
H2 is dependent on temperature and the partial pressure of H2, which can be expressed
as the following equation: [183]

µH2(T, pH2) = µ0H2
(T ) + kBT ln

pH2

p0H2

(B.7)

where µ0H2
(T ) is the temperature-dependent H2 chemical potential at the reference pres-

sure and p0H2
is the reference pressure. kB is the Boltzmann constant.

Figure B.15 shows H chemical potential as a function of the concentration of H at
different temperatures for PdHx(111) surface. The concentration of H gradually goes up as
H chemical potential increases and the effect of temperature is small. It can be seen that
the equilibrium concentration of H between internal H of the surface and H2 gas is around
0.6 at room temperature at standard pressure. The pressure of H2 and temperature as a
function of the concentration of H are studied as shown in Figure B.16. Under the same
pressure, the concentration of H2 will be lower if the temperature is higher. Under the
same temperature, the concentration of H2 will be higher if the pressure is higher. It can
be found that the maximum H concentration is around 60%.
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Figure B.15: H chemical potential as a function of H concentration of PdHx(111) at differ-
ent temperatures at standard pressure. The dashed red line is the chemical potential of
the half of H2 at room temperature at standard pressure.

Figure B.16: (a) The H2 pressure as a function of H concentration of PdHx(111) at dif-
ferent temperatures. (b) The temperature as a function of H concentration at different H2
pressures.
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Phase transformation calculation
Phase transformation frommetal Pd to PdHx is theoretically explored at an experimen-

tal pH value of 7.3. There exist two different phases of palladium hydride, α-PdHx and
β-PdHx. [213] α-PdHx has a low H/Pd ratio, while β-PdHx has a high H/Pd ratio. Experi-
mentally, Pd can be transformed into palladium hydride by applying a potential during the
electrochemical process. Chen et al. reported that their X-ray absorption spectroscopy
and in-situ X-ray diffraction were used to identify the transformation of Pd to palladium
hydride and the phase transformation finished at -0.5 V vs. RHE.[58] Gao et. al. exper-
imentally reported the phase transformation potential was between -0.2 and -0.5 V vs.
RHE through in situ synchrotron radiation XRD patterns.[180] Diercks et al. experimen-
tally reported that H concentration was increasing until the applied potential was around
-0.8 V vs. RHE via electrochemical measurements and the maximum concentration of
H is around 0.55-0.6.[181] Here, we theoretically study the phase transformation via the
Pourbaix diagram. The free energy difference (∆G) is calculated according to equations
(B.8) and (B.9) as follows:

Pd64H64 ←−→ Pd64Hx + (64-x) · (H+ + e− ) (B.8)

∆G = GPd64Hx
−GPd64H64+

1

2
(64−x)µH2+(64−x)∗eU−(64−x)∗kBT ∗pH ∗ ln(10) (B.9)

where GPd64Hx
and GPd64H64 are the free energies of Pd64Hx and Pd64H64, respectively.

U is the applied potential and pH is the pH value. USHE can be transformed via URHE =

USHE + kBT ∗ pH ∗ ln(10).
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Figure B.17: (a-i) Partial density of states of d-band for all candidates‘ bare slabs. The
blue zones mean below the corresponding d band center.

Figure B.18: The H concentration of all candidates as a function of d-band center for bare
slabs. The red line is the linear fit line and the corresponding R-squared error is shown in
the bottom left corner.
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Figure B.19: (a-i) Partial density of states of the d-band for all candidates‘ slabs with
HOCO*. The blue zones mean below the corresponding d band center.

Figure B.20: (a) The H concentration of all candidates as a function of the d-band center
for slabs with HOCO*. (b) The HOCO* binding energy as a function of the d-band center.
The red line is the linear fit line and the corresponding R-squared error is shown in the
bottom left corner.
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Figure B.21: (a-i) Partial density of states of the d-band for all candidates slabs with CO*.
The blue zones mean below the corresponding d band center.

Figure B.22: (a) The H concentration of all candidates as a function of the d-band center
for slabs with CO*. (b) The CO* binding energy as a function of the d-band center. The
red line is the linear fit line and the corresponding R-squared error is shown in the bottom
left corner.
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Table B.1: Binding energies of adsorbates HOCO*, CO*, H* and OH*, and corresponding
H concentration at the most stable site for all candidate surfaces.

Surface H concentration EHOCO∗ ECO∗ EH∗ EOH∗

Pd64 0.000 -0.179 -1.838 -0.366 0.525

Pd64H2 0.031 -0.168 -1.775 -0.405 0.419

Pd64H4 0.062 -0.063 -1.768 -0.399 0.441

Pd64H8 0.125 0.096 -1.596 -0.346 0.619

Pd64H10 0.156 0.310 -1.517 -0.323 0.729

Pd64H13 0.203 0.374 -1.050 -0.280 1.021

Pd64H31 0.484 0.373 -1.022 0.111 1.264

Pd64H39 0.609 0.272 -0.756 -0.227 1.333

Pd64H53 0.828 0.678 -0.896 0.137 1.153

Pd64H62 0.969 0.707 -0.320 0.512 1.144

Pd64H63 0.984 0.586 -0.187 0.210 1.430

Pd64H64 1.000 0.381 -0.360 0.295 1.443

Table B.2: Free energies of adsorbates HOCO*, CO*, H* and OH*, and corresponding H
concentration at the most stable site for all candidate surfaces.

Surface H concentration GHOCO∗ GCO∗ GH∗ GOH∗

Pd64 0.000 0.235 -1.259 -0.208 0.858

Pd64H2 0.031 0.246 -1.196 -0.247 0.752

Pd64H4 0.062 0.351 -1.189 -0.241 0.774

Pd64H8 0.125 0.510 -1.017 -0.188 0.952

Pd64H10 0.156 0.724 -0.938 -0.165 1.062

Pd64H13 0.203 0.788 -0.471 -0.122 1.354

Pd64H31 0.484 0.787 -0.443 0.269 1.597

Pd64H39 0.609 0.686 -0.177 -0.069 1.666

Pd64H53 0.828 1.092 -0.317 0.295 1.486

Pd64H62 0.969 1.121 0.259 0.670 1.477

Pd64H63 0.984 1.000 0.392 0.368 1.763

Pd64H64 1.000 0.795 0.219 0.453 1.776
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Appendix C

Supplementary material for PdMH(111)

This appendix is the supplementary material of Chapter 5, which is
based on the supporting information of Paper III.
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Figure C.1: The flowchart of the active learning cluster expansion model equipped with
Monte Carlo simulated annealing and the subsequent screening processes.
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Figure C.2: The linear fitting plot between CE energy and DFT energy for iteration 1 of
PdxTi1– xHy .

Figure C.3: The linear fitting plot between CE energy and DFT energy for (a) iteration 2,
(b) iteration 3, (c) iteration 4 and (d) iteration 5 for PdxTi1– xHy .
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Figure C.4: The linear fitting plot between CE energy and DFT energy for (a) iteration 6,
(b) iteration 7, (c) iteration 8 and (d) iteration 9 for PdxTi1– xHy .

Figure C.5: The linear fitting plot between CE energy and DFT energy for (a) iteration 10
and (b) iteration 11 for PdxTi1– xHy .
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Figure C.6: The DFT convex hull curves of formation energy as a function of H concen-
tration and Pd concentration in iteration 1, (b) iteration 2, (c) iteration 3 and (d) iteration 4
for PdxTi1– xHy .

Figure C.7: The DFT convex hull curves of formation energy as a function of H concen-
tration and Pd concentration in iteration 5, (b) iteration 6, (c) iteration 7 and (d) iteration 8
for PdxTi1– xHy .
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Figure C.8: The DFT convex hull curves of formation energy as a function of H concentra-
tion and Pd concentration in iteration 9, (b) iteration 10 and (c) iteration 11 for PdxTi1– xHy .

Figure C.9: Volume of DFT convex hull as a function of the number of iterations for
PdxTi1– xHy .
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Figure C.10: The CE convex hull curves of formation energy as a function of H concen-
tration and Pd concentration in iteration 1, (b) iteration 2, (c) iteration 3 and (d) iteration 4
for PdxTi1– xHy .

Figure C.11: The CE convex hull curves of formation energy as a function of H concen-
tration and Pd concentration in iteration 5, (b) iteration 6, (c) iteration 7 and (d) iteration 8
for PdxTi1– xHy .
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Figure C.12: The CE convex hull curves of formation energy as a function of H concentra-
tion and Pd concentration in iteration 9, (b) iteration 10 and (c) iteration 11 for PdxTi1– xHy .

Figure C.13: (a) The 3D CE convex hull of formation energy as a function of H concen-
tration and Pd concentration in iteration 12 and the corresponding (b) top view and (c)
main view and (d) side view for PdxTi1– xHy .
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Figure C.14: Free energy diagram of CO2RR of all candidates after CO* filter in the stage
4 in the screening workflow for PdxTi1– xHy .
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Figure C.15: Free energy diagram of HER of all candidates after CO* filter in the stage 4
in the screening workflow for PdxTi1– xHy .
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Figure C.16: The scaling relations of different adsorbates for all candidates after CO*
filter in stage 4 in the screening workflow for PdxTi1– xHy . The candidates marked by
blue, red, yellow, and black are active for CO2RR, which comes from the activity volcano
plot.

Figure C.17: Distribution of atom Pd, Ti and H of all candidates within the cutoff sphere
as a function of (a) the OH* and (b) the H* binding energies for PdxTi1– xHy .
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Figure C.18: Selectivity plot toward CO and H2 for PdxTi1– xHy . Active candidates for
CO2RR are marked.
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Figure C.19: The top (a) and the side view (c) of PdH (111) with water layer. The top (b)
and the side view (d) of PdH (111) with OH* and water layer.

In order to see if there is OH* poisoning, the stabilization energy is calculated for OH*
on PdH(111) with one water layer. The stabilization energy of OH* adsorbate is calculated
as follows:

∆W
stabE(OH∗) = ∆bE(OH∗)−∆W

b E(OH∗) (C.1)

where ∆W
b E(OH∗) is the adsorption energy when the water layer is presented, which is

obtained by the following equation:

∗|(N − 1)H2O+ H2O ⇌ OH∗|(N − 1)H2O+
1

2
H2 (C.2)

∆W
b E(OH∗) can be given by:

∆W
b E(OH∗) = E(OH∗|(N − 1)H2O) +

1

2
E(H2)− E(∗|(N − 1)H2O)− E(H2O) (C.3)

where E(∗|(N − 1)H2O) is calculated as:

E(∗|(N − 1)H2O) = E(∗|NH2O)− E(H2OWL) (C.4)

where E(H2OWL) is given by:

E(H2OWL) = E(H2O) +
1

N
∆EWL =

1

N
(E(∗|NH2O)− E(∗)) (C.5)

The top view and the side view of PdH (111) with water layer and PdH (111) with OH*
and water layer can be seen in Figure C.19. The OH* stabilization energy is calculated
as 0.356 eV. The stabilization energy correction and zero point energy (0.355 eV) are
considered for calculations of OH* binding energy in Figure C.16 and C.34.
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Figure C.20: The linear fitting plot between CE energy and DFT energy of iteration 1 for
PdxNb1– xHy .

Figure C.21: The linear fitting plot between CE energy and DFT energy for (a) iteration
2, (b) iteration 3, (c) iteration 4 and (d) iteration 5 for PdxNb1– xHy .



Appendix C 157

Figure C.22: The linear fitting plot between CE energy and DFT energy for (a) iteration
6, (b) iteration 7, (c) iteration 8 and (d) iteration 9 for PdxNb1– xHy .

Figure C.23: The linear fitting plot between CE energy and DFT energy for (a) iteration
10, (b) iteration 11 and (c) iteration 12 for PdxNb1– xHy .
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Figure C.24: The DFT convex hull curves of formation energy as a function of H concen-
tration and Pd concentration in iteration 1, (b) iteration 2, (c) iteration 3 and (d) iteration 4
for PdxNb1– xHy .

Figure C.25: The DFT convex hull curves of formation energy as a function of H concen-
tration and Pd concentration in iteration 5, (b) iteration 6, (c) iteration 7 and (d) iteration 8
for PdxNb1– xHy .
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Figure C.26: The DFT convex hull curves of formation energy as a function of H con-
centration and Pd concentration in iteration 9, (b) iteration 10 and (c) iteration 11 for
PdxNb1– xHy .

Figure C.27: Volume of DFT convex hull as a function of the number of iterations for
PdxNb1– xHy .



160 Supplementary material for PdMH(111)

Figure C.28: The CE convex hull curves of formation energy as a function of H concen-
tration and Pd concentration in iteration 1, (b) iteration 2, (c) iteration 3 and (d) iteration 4
for PdxNb1– xHy .

Figure C.29: The CE convex hull curves of formation energy as a function of H concen-
tration and Pd concentration in iteration 5, (b) iteration 6, (c) iteration 7 and (d) iteration 8
for PdxNb1– xHy .
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Figure C.30: The CE convex hull curves of formation energy as a function of H concen-
tration and Pd concentration in iteration 9, (b) iteration 10, (c) iteration 11 and (d) iteration
12 for PdxNb1– xHy .

Figure C.31: (a) The 3D CE convex hull of formation energy as a function of H concen-
tration and Pd concentration in iteration 12 and the corresponding (b) top view and (c)
main view and (d) side view for PdxNb1– xHy .



162 Supplementary material for PdMH(111)

Figure C.32: Free energy diagram of CO2RR of all candidates after CO* filter in the stage
4 in the screening workflow for PdxNb1– xHy .
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Figure C.33: Free energy diagram of HER of all candidates after CO* filter in the stage 4
in the screening workflow for PdxNb1– xHy .
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Figure C.34: The scaling relations of different adsorbates for all candidates after CO*
filter in the stage 4 in the screening workflow for PdxNb1– xHy . The candidates marked by
blue and red are active for CO2RR, which comes from the activity volcano plot.

Figure C.35: Distribution of atom Pd, Nb and H of all candidates within the cutoff sphere
as a function of (a) the OH* and (b) the H* binding energies for PdxNb1– xHy .
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Figure C.36: Selectivity plot toward CO and H2 for PdxNb1– xHy . Active candidates for
CO2RR are marked.
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Appendix D

Supplementary material for PdTiH(111) with adsorbates

This appendix is the supplementary material of Chapter 6, which is
based on the supporting information of Paper IV.
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Computational details
The free energy calculation for CO2RR is given by:

CO2(g) + ∗+ H+ + e− ←−→ HOCO∗ (D.1)

HOCO∗+ H+ + e− ←−→ CO∗+ H2O(l) (D.2)

CO∗ ←−→ CO(g) + ∗ (D.3)

When calculating the binding energies, HOCO*, H*, and OH* replace the position of one
CO* on the surface, respectively. All sites are considered if there are multiple CO* on
the surface, and the most stable site for each adsorbate is used to calculate the binding
energy and free energy. For candidates 119, 165, 479, 594, 695, 715, 774, 803, 849, and
900, an extra OH* is also added on the hollow site of existing CO* to calculate the free
energy of CO2RR, and only the most stable sites are used in this work.

After propagating backward a loss function to calculate the gradient of the parameters,
the neural networks (NNs) parameters are optimized by the Adam optimizer according to
the gradients. The loss function L is a combination of energy and forces loss function as
follows:

L =
1− λ

N

N∑
i=1

(
Êi − Ei

)2
+

λ

NM

N∑
i=1

M∑
j=1

3∑
k=1

(
F̂ jk
i − F jk

i

)2
(D.4)

where λ is an empirical parameter to control the balance between energy and forces loss
function. N is the number of images and M is the number of atoms in a image. Êi and
Ei are the NNs and DFT energy of image i, respectively. F̂ jk

i and F jk
i are the NNs and

DFT forces of atom j in the k direction. Root mean squared errors (RMSE) of energy and
force between DFT and NNs predictions are calculated by:

ERMSE =

√√√√ 1

N

N∑
i=1

(
Êi − Ei

)2

FRMSE =

√√√√ 1

3NM

N∑
i=1

M∑
j=1

3∑
k=1

(
F̂ jk
i − F jk

i

)2 (D.5)
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Figure D.1: The active learning workflow of machine learning with GA for the global
optimization of PdxTi1– xHy with CO*, H*, and OH* adsorbates.
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GA opterators
The GA operators in this work can be categorized into three types: slab operators,

adsorbate operators, and crossover operator as shown in Figure D.2. Slab operators in-
clude InternalHydrogenAddition operator that randomly removes one internal hydrogen
in the slab, InternalHydrogenRemoval operator that randomly adds one hydrogen into
a vacancy site in the slab, InternalHydrogenMoveToUnoccupied operator that randomly
moves one internal hydrogen to another vacancy site in the slab, InternalMetalPermu-
tation operator that randomly swaps the positions of Ti and Pd in the slab and Internal-
MetalComposition operator that randomly mutates Ti into Pd or mutates Pd into Ti in the
slab. Adsorbate operators include AdsorbateAddition operator that adds one random ad-
sorbate on a random available adsorption site, AdsorbateRemoval operator that removes
one random adsorbate from a random occupied site, AdsorbateSwapOccupied operator
that randomly swaps positions of two types of adsorbates, AdsorbateMoveToUnoccupied
operator that moves one random adsorbate to a random available site. The crossover op-
erator includes AdsorbateCutSpliceCrossover operator that randomly combines the slab
from structure 1 and adsorbates from structure 2.

Figure D.2: The GA operators for operating adsorbates, internal hydrogens, and metal
atoms of the slab.
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Figure D.3: The energy RMSE (meV/atom) and forces RMSE (meV/Å) in different archi-
tectures for the first iteration as a function of the number of training steps.

Figure D.4: The learning curves of the average and variance of the energy RMSE
(meV/atom) and forces RMSE (meV/Å) for the first iteration as a function of the num-
ber of training steps.

Figure D.5: The energy RMSE (meV/atom) and forces RMSE (meV/Å) in different archi-
tectures for the last iteration as a function of the number of training steps.
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Figure D.6: The learning curves of the average and variance of the energy RMSE
(meV/atom) and forces RMSE (meV/Å) for the last iteration as a function of the num-
ber of training steps.

Figure D.7: The number of new candidates as a function of the number of active learning
iterations.
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Figure D.8: (a) The surface free energy as a function of applied potential at∆µPd=-2.249
eV, ∆µTi=-7.285 eV, temperature=298.15 K, and CO partial pressure=5560 Pa. (b) The
surface free energy as a function of temperature at fixed ∆µPd, ∆µTi, potential=-0.5 V,
and CO partial pressure=5560 Pa. The corresponding most stable structures are shown
at the bottom.

Figure D.9: The surface free energy as a function of applied potential with 25 different
chemical potential differences of Pd and Ti at the room temperature=298.15 K and CO
partial pressure=5560 Pa.
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Figure D.10: The surface free energy as a function of partial pressure of CO with 25
different chemical potential differences of Pd and Ti at the room temperature=298.15 K
and applied potential=-0.5 V.
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Figure D.11: The surface free energy as a function of temperature with 25 different chem-
ical potential differences of Pd and Ti at applied potential=-0.5 V and CO partial pres-
sure=5560 Pa. The candidates marked by red dashed squares are active for CO2RR.
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Figure D.12: The candidate structures at the different reaction conditions between the
chemical potential differences of Pd and Ti, applied potentials, temperature, and partial
pressure of CO.
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Figure D.13: The top views of all candidate structures at the different reaction conditions:
the chemical potential differences of Pd and Ti, applied potentials, temperature, and partial
pressure of CO. The top views of active structures for CO2RR are embedded in the figure.
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Figure D.14: The CO2RR free energy diagram of all candidates at room tempera-
ture=298.15 K and CO partial pressure=5560 Pa.



Appendix D 179

Figure D.15: TheHER free energy diagram of all candidates at room temperature=298.15
K and CO partial pressure=5560 Pa.
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Table D.1: The free energies and binding energies for candidates at the most stable
site. The colonms are the candidate structures with CO*, the indices in the database, the
binding energy of HOCO* and CO*, the free energy difference of HOCO*, CO* and H*,
and describer ∆GHOCO∗ −∆GH∗.

Structures Index EHOCO∗ ECO∗ ∆GHOCO∗ ∆GCO∗ GH∗
∆GHOCO∗-
∆GH∗

Pure 0 0.192 0.059 0.606 -0.028 0.430 0.175

Pd14Ti2H4+3CO 101 0.944 -0.182 1.358 -0.269 0.148 1.211

Pd14Ti2H6+2CO 119 0.445 -0.690 0.859 -0.777 0.717 0.142

Pd14Ti2H5+2CO 165 0.381 -0.758 0.795 -0.845 0.606 0.188

Pd14Ti2H7+1CO 479 0.542 -0.149 0.956 -0.236 0.188 0.769

Pd14Ti2H5+3CO 532 0.731 -0.575 1.145 -0.662 0.286 0.859

Pd12Ti4H4+3CO 539 0.614 -0.350 1.028 -0.437 0.033 0.995

Pd14Ti2H4+2CO 594 0.220 -0.381 0.634 -0.468 0.017 0.617

Pd9Ti7H16+1CO 695 -1.381 -1.503 -0.967 -1.590 -0.814 -0.154

Pd9Ti7H17+1CO 175 -0.065 -0.157 0.349 -0.244 0.368 -0.019

Pd14Ti2H6+3CO 764 0.735 -0.642 1.149 -0.729 0.733 0.416

Pd14Ti2H17+1CO 774 0.181 -0.044 0.595 -0.131 0.702 -0.107

Pd5Ti11H18+1CO 803 -1.281 -1.429 -0.867 -1.516 -0.823 -0.043

Pd14Ti2H12+3CO 825 0.837 -0.151 1.251 -0.238 0.325 0.926

Pd5Ti11H20+2CO 849 0.083 0.236 0.497 0.149 0.768 -0.271

Pd5Ti11H20+1CO 900 0.157 0.164 0.571 0.077 0.905 -0.334
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Data and code availability

This appendix includes data and code availability in this thesis,
which is openly available.
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Data availability
1. The data that support the findings in Chapter 3 are openly available in DTU Data

Repository at https://doi.org/10.11583/DTU.17263532.

2. The data that support the findings in Chapter 4 are openly available in DTU Data
Repository at https://doi.org/10.11583/DTU.21325017.

3. The data that support the findings in Chapter 5 are openly available in DTU Data
Repository at https://doi.org/10.11583/DTU.23798751.

4. The data that support the findings in Chapter 6 are openly available in Zenodo
Repository at https://doi.org/10.5281/zenodo.8191834.

Code availability
All codes for plot, pre-processing, post-processing, GA operators, and workflow in

this thesis are openly available in the Gitlab repository named Pcat: https://gitlab.com/
changzhiai/pcat.

https://doi.org/10.11583/DTU.17263532
https://doi.org/10.11583/DTU.21325017
https://doi.org/10.11583/DTU.23798751
https://doi.org/10.5281/zenodo.8191834
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Metal-Doped PdH(111) Catalysts for CO2 Reduction
Changzhi Ai,[a] Tejs Vegge,[a] and Heine Anton Hansen*[a]

PdH-based catalysts hold promise for both CO2 reduction to CO
and the hydrogen evolution reaction. Density functional theory
is used to systematically screen for stability, activity, and
selectivity of transition metal dopants in PdH. The transition
metal elements Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo,
Ru, Rh, Ag, Cd, Hf, Ta, W, and Re are doped into PdH(111)
surface with six different doping configurations: single, dimer,
triangle, parallelogram, island, and overlayer. We find that

several dopants, such as Ti and Nb, have excellent predicted
catalytic activity and CO2 selectivity compared to the pure PdH
hydride. In addition, they display good stability due to their
negative doping formation energy. The improved performance
can be assigned to reaction intermediates forming two bonds
consisting of one C� Metal and one O� Metal bond on the PdH
surface, which break the scaling relations of intermediates, and
thus have stronger HOCO* binding facilitating CO2 activation.

Introduction

Emission of the greenhouse gas carbon dioxide (CO2) has
increased rapidly with the development of industrialization in
the past decades. A long-term goal of the Paris Agreement was
proposed to achieve a balance between CO2 emissions from the
combustion of traditional fossil fuels and removals of the
greenhouse gas, and it is urgent to limit global warming to
1.5 °C by the year 2100.[1,2] In order to overcome this challenge,
the three strategies of decarbonization, carbon sequestration,
and carbon recycling will play crucial roles in mitigating net
CO2 emissions.[2] The CO2 utilization technology of the electro-
chemical CO2 reduction reaction (CO2RR) is considered as a
promising strategy to convert CO2 into valuable chemicals as it
is not only beneficial to carbon recycling but also conducive to
increasing chemical energy storage.[3] So far, significant efforts
have been made to reduce CO2 to C1� C3 products including
formic acid (HCOOH),[4] carbon monoxide (CO),[5] methane
(CH4),

[6] ethylene (C2H4),
[7] methylglyoxal (C3H4O2),

[8]

acetaldehyde,[9] and alcohols.[10] Among them, CO is one of the
most potential products due to the transfer of only two
electrons, which leads to higher energy conversion efficiency
compared to other products with more electron transfer.[11]

More importantly, the hydrogen evolution reaction (HER)
usually occurs together with the electrochemical reduction of
CO2, CO, and H2, which are the main components of syngas, can
be effectively synthesized into liquid hydrocarbons via the
Fischer–Tropsch processes.[11,12] Therefore, CO is an important

feedstock in industry and it could be crucial to explore efficient
catalysts for conversion from CO2 to CO.

Many previous studies have been done to study metal
catalysts for the CO2RR. Gold (Au),[13,14] silver (Ag),[15,16] and
copper (Cu)[17] have been the most widely studied for the
electrochemical CO2RR and show good performance for CO
production. Au nanoparticles formed from thick Au oxide films
were reported to have high selectivity for CO2 reduction to CO
at 140 mV overpotential and they kept their activity for no
more than 8 h.[18] Kim et al. reported Ag nanoparticles sup-
ported on carbon has good Faradaic efficiency and low
overpotential.[16] Raciti et al. reported that Cu nanowires
produced by electrochemical reduction are highly active and
selective for the CO2RR to CO at an overpotential of 0.3 V.[17]

However, Au, Ag and Cu cannot tune the desired CO/H2 ratio
with high CO2RR catalytic activity.

[11,19] In addition, metal-nitro-
gen-carbon (M� N� C) electrocatalysts with high faradaic efficien-
cies for CO generation are also popular in the field of CO2RR.
Among them, Fe� N� C electrocatalyst shows high selectivity
and CO formation activity at low overpotentials (0.3 to 0.5 V).
Ni� N� C electrocatalyst exhibits good selectivity and activity at
higher overpotentials because it is more favorable toward the
HER. Co� N� C electrocatalyst has a lower selectivity for CO
throughout the entire potential range.[20] Palladium (Pd) was
reported to be a potential candidate catalyst for CO2RR to CO
by Gao et al. in 2015.[21] Moreover, Chen et. al. thought the Pd
catalyst was more suitable to produce syngas (CO2 and H2)
compared to other metals, and that the reason why Pd showed
good activity and selectivity in the process of electrochemical
CO2RR was the Pd metal catalyst was transformed into
palladium hydride (PdH).[11] The formation of PdH would
significantly improve Faradaic efficiencies of production of CO
and H2. Furthermore, the PdH(111) surface experimentally
exhibited higher current density and Faradaic efficiency
compared with other crystal surfaces.[11] Subsequently, in order
to further improve the performance of PdH, several approaches,
such as applying transition metal nitrides as promising supports
and using bimetallic catalysts has been explored in recent
years.[22]

[a] Dr. C. Ai, Prof. T. Vegge, Prof. H. A. Hansen
Department of Energy Conversion and Storage,
Technical University of Denmark
Anker Engelunds Vej, 2800 Kgs. Lyngby (Denmark)
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In this work, density functional theory (DFT) simulations are
performed to study transition metal-doped PdH catalysts. Due
to the difficult formation of forming HOCO* on the pure
PdH(111), we explore the possibility of lowering the HOCO*
formation energy through doping transition metal elements Sc,
Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd, Hf,
Ta, W, and Re into the PdH(111) surface in different config-
urations to systematically study their properties. First, the
doping formation energies are calculated to illustrate the
stability of different doped surfaces. Then, the scaling relations
between reaction intermediates, free energy diagrams, and
kinetic model were carried out to explore the CO2RR catalytic
activities after doping. Finally, selectivity toward CO2RR and HER
was also studied to describe the competition between CO2 and
H2.

Computational Details
All calculations in this work are carried out with spin-polarized
density functional theory simulations using the Vienna ab initio
simulation package (VASP, version 5.4)[23–26] and the Atomic Simu-
lation Environment (ASE, version 3.2).[27,28] The effects of exchange
and correlation are approximated by using the Bayesian error
estimation functional with van der Waals correlation (BEFF–vdW).[29]

The ionic cores are treated using the projector augmented wave
(PAW) method[30] and the wave functions are expanded in a plane
waves basis set. A cutoff energy is set as 400 eV and a Gaussian
smearing of 0.05 eV is used for the electronic states. In order to
remove the electrostatic dipole-dipole interaction between periodi-
cally repeated surface slabs, the dipole correction is used in the
direction perpendicular to the slab in all calculations. All calculation
processes, data col- lection and analysis are performed in a custom
build workflow and a computational database is freely available in
the DTU Data Repository.[31]

Bulk PdH is in the rock salt (NaCl) crystal structure and the (111)
surface, which is energetically the most stable, is considered in this
work. A 3×3 supercell model of the PdH(111) with six bilayers is
built and each bilayer consists of one Pd atomic layer and one H
atomic layer, where the bottom three bilayers are fixed in their bulk
positions during optimization. A 3×3×1 Monkhorst-pack grid[32] of
k-points is applied to sample the first Brillouin zone of the PdH(111)
slab. The convergence threshold of Hellman–Feynman force is set
to 0.01 eVÅ� 1 and the energy convergence criteria on each atom
was set to 10 � 6 eVatom–1. A vacuum layer of about 15 Å is adopted
in z direction to separate periodic slab images and avoid
interactions between them. In order to further improve accuracy, a
+0.15 eV correction per C=O is applied for systematic overbinding
corrections with the BEEF-vdW functional, +0.15 eV for HOCO* and
+0.1 eV for H2.

[33,34] For solvent stabilization correction at the water-
catalyst interface, � 0.25 eV for HOCO* and � 0.1 eV for CO* are
used in all calculations, respectively.[35] The effects of the electric
field at the electrochemical interface of catalysis on the free energy
of the adsorbates are ignored in this treatment.

The formation energies of PdH doped with transition metals are
calculated according to the following definition:

Eform ¼ EnM-doped� Epure� nmM þ nmPd (1)

where EnM-doped denotes the energy of doping the PdH(111) slab
with n metal atoms, while pure is the energy of the pure undoped

PdH(111) slab. μM and μPd represent the chemical potential of
doped metal atom and Pd, respectively.

The binding energies Eb of different intermediates in this work are
given by the following equation:

Eb ¼ E�þintermediate� E�� Eintermediate (2)

where E*+ intermediate is the total DFT energy of slab and intermediate.
E* and Eintermediate are the energies of clean slab and intermediate
with respect to gas phase molecules, respectively.

The calculation of Gibbs free energy (G) is done using Equation (3):

G ¼ EDFT þ EZPE þ
Z

CpdT � TS (3)

where EDFT represents the DFT energy with overbinding correction
and solvent stabilization correction. EZPE represents the zero-point
energy of the species. Cp and S are the heat capacity and entropy,
respectively, and T is temperature. EZPE, Cp and the entropy of slabs
are obtained from statistical mechanics using the harmonic
approximation throughout calculations of vibrational frequencies.
We assume that variations in these terms are small compared with
that of binding energies and thus the energies of these terms for
pure PdH(111) are applied to other surfaces as listed in Table S9 in
the Supporting Information. Gas-phase species are obtained by
ideal gas methods and the corresponding free energies listed in
Table S10.

The reaction mechanism for CO2 reduction to CO in this work is
considered as follows:[19]

CO2ðgÞ þ * þ Hþ þ e� Ð HOCO* (4)

HOCO* þ Hþ þ e� Ð CO* þ H2OðlÞ (5)

CO* Ð COðgÞ þ * (6)

Reaction free energies are calculated by the computational hydro-
gen electrode (CHE) model,[36] which provides an elegant method
to avoid calculations of solvated protons. In this model, 0 V is
defined based on the reversible hydrogen electrode (RHE). The
reaction is defined as in equilibrium at 0 V, at standard pressure:

Hþ þ e� ! 1=2H2 (7)

Therefore, the sum of the chemical potential of H+ and e– is equal
to half of that of gaseous hydrogen. The reaction free energy
dependence on the applied potentials are as follows:

DG1 ¼ GHOCO*� G*� mCO2ðgÞ� 1=2m
H
A

2
þ eU (8)

DG2 ¼ GCO* þ H2OðlÞ � GHOCO* � 1=2m
H
A
2
þ eU (9)

DG3 ¼ G* þ mCOðgÞ� GCO* (10)

where the applied potentials are relative to the RHE. ΔG1, ΔG2 and
ΔG3 are the free energy difference of the three step reactions for
CO2RR. GHOCO*, GCO* and G* are the free energies of species HOCO*,
CO* and the surface, respectively. μCO2ðgÞ, μCO(g), μH2OðlÞ and mHA

2

represent the chemical potentials of gaseous CO2, gaseous CO,
liquid H2O and gaseous H2, respectively.
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Moreover, experimental vapor pressures are utilized for them in this
work. The partial pressures of H2O and CO are 3534 Pa and 5562 Pa,
respectively.[35] The partial pressure of CO2 and H2 are both under
standard pressure 101325 Pa.[35,37] We ignore electric field effects on
adsorption energies in this work.

The reaction mechanism for the HER can be described by the
following steps:[38]

Hþ þ e� þ * Ð H* ðVolmer stepÞ (11)

H* þ Hþ þ e� Ð H2ðgÞ þ * ðHeyrovsky stepÞ (12)

A kinetic model is utilized to study the activity for CO2 reduction to
CO. The net reaction rates of CO2RR are described as

[39]

r1 ¼ k1q*pCO2 �
k1
K1

qHOCO* (13)

r2 ¼ k2qHOCO* �
k2
K2

qCO* (14)

r3 ¼ k3qCO* �
k3
K3

q*pCO (15)

where k1, k2, and k3 represent forward rate constants for the three
steps of CO2RR. K1, K2, and K3 are the corresponding equilibrium
constants and backward rate constants can be calculated by
forward rate constant over the corresponding equilibrium con-
stants. For example, backward rate constant is equal to k1/K1. p and
θ represent the partial pressure and surface coverage, respectively.
For the electrochemical step 1 and step 2 with coupled electron
proton transfer, the forward rate constants are denoted as

ki¼1;2 ¼ A0exp �
be U � U0i
� �

kBT

� �

(16)

where the pre-exponential factor A’ is a material independent
constant. A value of A’=3.6×104 s–1 is used as in previous work.[39]

kB is the Boltzmann constant and β is a symmetry factor which is
set as 0.5 here. U0i is the reversible potential of reaction step i

U0i ¼ �
DGi

e (17)

where ΔGi is the reaction free energy difference at zero voltage (vs.
RHE) calculated by DFT using the CHE model. The corresponding
equilibrium constants are given by

Ki ¼ exp �
e U � U0i
� �

kBT

� �

e (18)

For the chemical step 3 with no electron or proton transfer, the rate
constant is approximated as

k3 ¼ nexp �
ECO*
kBT

� �

(19)

where ECO* represents the binding energy of intermediate CO*. A
typical pre-exponential factor ν is 1013 s� 1.

Results and Discussion

Before investigating transition metal element dopants, the pure
PdH(111) surface is first studied by DFT with the BEEF–vdW
functional. The crystal constants of optimized bulk PdH are a=

b=c=4.138 Å, which is well consistent with the experimental
result of 4.090 Å.[40] Figure S1 shows the top and side view of
pure PdH(111) structures. The PdH(111) slab is built by
optimized bulk PdH and its lattice constants are a=b=8.778 Å
and c=27.140 Å. The top and side views of pure PdH(111) with
adsorbates HOCO*, CO*, H* and OH* are shown in Figure S2.
We notice that HOCO*, CO* and OH* tend to adsorb on the top
site of PdH, while H* prefers to adsorb on the hollow site
according to their binding energies in Table S1. Figure S3
demonstrates the CO2RR free energy diagram of PdH(111) at
0 V (vs. RHE), at room temperature. The free energies of the
HOCO*, CO* and CO intermediates in this diagram are 0.820,
0.216 and 0.123 eV, respectively. Because the HOCO* formation
step has the highest free energy, this reaction step is the
potential-limiting step on pure PdH(111). This is consistent with
the DFT results of 0.67 eV for the HOCO* step found by by
Sheng et al. using the PW91 functional.[11] At the same time, the
HER free energy diagram of PdH(111) at 0 V (vs. RHE) is also
shown in Figure S4 and the free energy of the Volmer step is
0.501 eV, which is lower than 0.820 eV for CO2RR. Therefore, the
CO2RR steps are thermodynamically more difficult than the HER
steps for pure PdH. Experiments by Sheng et al. found that the
CO/H2 ratio is always lower than 1 at different potentials and
thus show CO has a lower proportion, which has good
agreement with computational results.[11]

In order to improve the CO2RR performance of PdH, the
impact of doping transition metal elements into the PdH(111)
surface is explored below. As displayed in Figure 1, we try to
dope different elements Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr,
Nb, Mo, Ru, Rh, Ag, Cd, Hf, Ta, W and Re into the PdH(111)
surface in different doping configurations which we demote as:
single, dimer, triangle, parallelogram, island and overlayer,
respectively. Their formation energies per dopant atom in the
different doping configurations is first calculated and shown in
Table S2 and in Figure 2. We find, in most cases, that the
overlayer doping is the most unstable, while single doping is
the most stable when an element is doped in different

Figure 1. Top views of doping PdH(111) surface in different doping
configurations: (a) single, (b) dimer, (c) triangle, (d) parallelogram, (e) island
and (f) overlayer. The blue spheres are Pd atoms, the small white spheres
represent H atoms and the grey spheres represent dopant atoms.
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configurations. Moreover, the doping formation energies of Sc,
Ti, Zn, Y, Zr, Nb, Hf and Ta in all doping configurations are
negative except overlayer doping of Zn. This demonstrates that
Sc, Ti, Zn, Y, Zr, Nb, Hf and Ta are easier to be doped into PdH
compared to other elements. We note that for the largest
dopants: Sc, Zn, Y, Zr, Ag, Cd, and Hf significant destabilization
of the overlayer structure compared to single dopant by more
than 1 eV can be observed. This is likely caused by the
increased strain with the full overlayer.

The CO2RR free energy diagrams of doping PdH(111) with
different elements in different configurations are calculated to
explore the possibility of lowering the potential-limiting HOCO*
step as displayed in Figure 3. The free energies are calculated
using the most stable adsorption sites according to the binding
energies in Tables S3–S8 and the corresponding specific free
energies are listed in Tables S11–S16 in the Supporting
Information. For single atom doping of PdH(111), Fe, Zr, Nb and
Ru doping effectively decrease the free energy of the HOCO*
step by � 0.003, � 0.06, � 0.07, and � 0.15 eV, respectively,
compared to the pure PdH. However, the doping formation
energies of Fe and Ru are positive and thus unstable. Therefore,
the candidates for lowering the HOCO* step are Nb and Zr
doped PdH for doping with a single atom. For dimer doping of
PdH(111), the free energies of HOCO* step of Sc, Ti, V, Cr, Mn,
Fe, Y, Zr, Nb, Mo, Ru, Hf, Ta, W and Re are downhill relative to
undoped PdH. Their free energy differences with respect to PdH
are � 0.39, � 0.04, � 0.01, � 0.63, � 0.30, � 0.143, � 0.88, � 0.63,
� 0.04, � 0.16, � 0.19, � 0.18, � 0.10, � 0.03, and � 0.01 eV,
respectively. Among them, Sc, Ti, Zr, Nb, Hf and Ta are stable
according to their doping formation energies, and thus they are
possible candidates for CO2RR for this case. Doping with Y
dimers is neglected due to structural distortion upon optimiza-
tion. Still, for the triangle doping, Sc, Ti, V, Cr, Mn, Fe, Zr, Nb,
Mo, Ru, Hf, Ta, W and Re doping leads to a free energy
reduction of the potential-limiting step, and the free energy
differences compared to pure PdH(111) are - 0.30, � 0.17, � 0.34,
� 0.57, � 0.32, � 0.30, � 0.50, � 0.24, � 0.23, � 0.21, � 0.42, � 0.41,
� 0.06 and � 0.27 eV, respectively (Y doping is removed due to
large structure distortion). The ones that could be stable are still

Figure 2. Formation energies of doping PdH(111) with different elements in
different doping configurations.

Figure 3. Free energy diagrams of doped PdH(111) with doping elements in different configurations.
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Sc-, Ti-, Zr-, Nb-, Hf- and Ta-doped PdH. Similarly, there are
more doping elements that can lower the potential-limiting
step: Sc, Ti, V, Cr, Mn, Fe, Co, Zr, Nb, Mo, Ru, Hf, Ta, W and Re in
the parallelogram configuration. Their free energy differences
with respect to PdH are � 1.02, � 0.31, � 0.29, � 0.41, � 0.32,
� 0.46, � 0.39, � 0.42, � 0.28, � 0.49, � 0.37, � 0.57, � 0.25, � 0.66,
and � 0.66 eV, respectively. In the parallelogram configuration
Zn, Y and Cd doping are discarded due to large structural
distortion. Again, the most promising stable candidates are Sc,
Ti, Zr, Nb, Hf and Ta dopants. It is worth to notice that Sc
doping in this case greatly decreases the HOCO* step and the
line connecting HOCO* to CO* in the free energy diagram
intersects with lines from other dopants. This illustrates that Sc
doping clearly breaks the scaling relation between HOCO* and
CO*. For the case of island doping, the free energies of Sc, Ti, V,
Cr, Mn, Fe, Co, Nb, Mo, Ru, Rh, Ta, W and Re are downhill
compared with that of the undoped PdH(111), and the free
energy differences are � 1.002, � 0.423, � 0.325, � 0.293, � 0.747,
� 0.565, � 0.160, � 0.592, � 0.864, � 0.333, � 0.032, � 0.817,
� 0.466 and � 0.424 eV, respectively. Y, Zn, Zr, Cd and Hf doping
are discarded due to large structure distortion in the island
configuration. However, the stable dopants are Sc, Ti, Nb and Ta
in the light of their negative formation energies. In the last
configuration of overlayer doping, several structures are not
stable after binding the reaction intermediates including Sc, Y,
Zn, Zr, Cd and Hf overlayer surfaces. This may again be related
to the large size of these dopants and the corresponding lattice
mismatch that can be seen in Table S17, and thus they are
removed in this case. Ti, V, Cr, Mn, Fe, Co, Ni, Nb, Mo, Ru, Rh, Ta,
W and Re doping can effectively reduce the free energy of
HOCO* step and the free energy differences are � 0.232,
� 0.222, � 0.423, � 0.884, � 1.971, � 1.234, � 0.844, � 0.196,
� 0.329, � 0.554, � 0.093, � 0.577, � 0.611 and � 0.939 eV,
respectively, but only Ti, Nb, Ta and V doping are the stable
ones. The candidates of different configurations for CO2RR are
finally summarized in Table 1. Overall, we find that Ti, Sc, Nb, Zr,
Hf and Ta doping of PdH(111) are promising dopant candidates
in most configurations.

The scaling relations of intermediates on doped PdH(111)
with different elements in different doping configurations are
further studied to understand catalytic performance. Taking the
top site adsorption as an example, the structures of the surface
with HOCO*, CO*, H* and OH* are displayed in Figure 4a–d. The
binding energies in the most stable sites are, however, applied
in the following analysis with the corresponding data listed in
Tables S3–S8. Figure 5 shows the scaling relation between
HOCO* and CO* in the six dopant configurations. We use R2, a

statistical measure that represents the proportion of the
variance between two variables, to describe how well a linear
scaling relation is fitted, and a good fit has R2 close to 1. In
Figure 5a–f, Fe, Co, Ni, Cu, Ru, Rh and Ag doping are marked in
red dots and the corresponding fitted lines are also shown in
red. They display clear linear scaling relations in all config-
urations with R2 values 0.84, 0.88, 0.89, 0.96, 0.97 and 0.86,
respectively. This is because they all form only a C� metal bond
on the top of one dopant in all doping configurations according
to optimized HOCO* structures as shown in Figure 4a. The fitted
lines of the six doping cases using all doping elements are
displayed by the blue lines. They show much lower R2 values of
0.42, 0.36, 0.51, 0.48, 0.41, and 0.80, respectively. This is because
the surfaces doped with Sc, Ti, Nb, Zr, Zn, V, Mn, Mo, Cr, Hf, Cd,
W, Ta, and Re mostly tend to form two bonds to the surface
consisting of a C� Metal (C� M) and an O� Metal (O� M) on two
different metal atoms for HOCO* on the surface as displayed in
Figure 4e. A small part of them, however, forms two bonds to
the same metal atom as shown in Figure S11. All structures are
summarized in the database in the supporting information and
the corresponding formation of two bonds can be found in the
database. The C� M and O� M bond lengths of HOCO* on the
doped surfaces in different configurations are listed in
Tables S18 and S19, and O� M bond lengths are summarized in
figure S15. We have chosen a surface-oxygen distance of 2.7 Å
to determine whether a bond is formed between the O in
HOCO and the surface because few surfaces have O� M bond
lengths between 2.4 and 2.8 Å. A more detailed discussion is
given in the supporting information. For example, Figure 4f
shows the charge density difference for HOCO* on the Ti
parallelogram doped surface, which clearly demonstrates that
two bonds form to the surface. The bond length of C� Ti is
2.259 Å and the bond length of O� Ti is 2.032 Å. We therefore
conclude the formation of two bonds breaks the previous single
C� Metal scaling relations and thus reduces the R2. Furthermore,
the dopant structures resulting in the formation of two bonds
show stronger HOCO* binding with the surface compared to
their CO* binding energy, which may be the reason the free
energies of the HOCO* step with the two bonds are relatively

Table 1. Possible candidates for different PdH(111) doping configurations
according to free energy diagrams.

Doping configurations Possible candidates

single Nb, Zr
dimer Sc, Ti, Nb, Zr, Hf, Ta
triangle Sc, Ti, Nb, Zr, Hf, Ta
parallelogram Sc, Ti, Nb, Zr, Hf, Ta
island Sc, Ti, Nb, Ta
overlayer Ti, Nb, Ta, V

Figure 4. Structures of intermediates (a) HOCO* (one bond), (b) CO*, (c) H*
and (d) OH* on the top sites of a doped PdH(111) surface. (e) HOCO* forms
two bonds with PdH(111). The blue spheres are Pd atoms, the small white
spheres represent H atoms, the big grey spheres represent dopant atoms,
the red spheres are O atoms, and the small grey spheres are C atoms. (f)
Charge density difference figure for HOCO* with two bonds. The blue region
represents charge depletion while the yellow region means charge
accumulation.
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low in Figure 3. Figure S12 shows the scaling relations of
adsorbates HOCO* vs. OH* in different doping configurations.
Similarly, for the surfaces doped with Fe, Co, Ni, Cu, Ru, Rh, and
Ag, their HOCO* binding energies can scale linearly with the
OH* energies, and the R2 values are 0.81, 0.82, 0.81, 0.63, 0.77
and 0.83 in different doping configurations, respectively.
However, their scaling relations of total metal element doped
surfaces have worse R2 values of 0.03, 0.46, 0.62, 0.60, 0.80, 0.50,
respectively. This could also be attributed to the formation of
the two bonds of HOCO* on the surfaces as we described
before. The scaling relations between CO* and H* intermediates
on doped PdH(111) surfaces in different doping configurations
are also shown in Figure S13. The CO* and H* intermediates
display good scaling relations with R2 values of 0.68, 0.80, 0.74,
0.66, 0.78 and 0.49. This can be attributed to the fact that only
one atom in CO* and H* interacts with the surfaces.

In order to further study the kinetic activity of doped
PdH(111), a kinetic model is utilized. In Figure 6, the activity
volcano of doped PdH(111) for CO2RR in different doping
configurations are given. It is seen that the kinetic activities
depend on the binding energies of both HOCO* and CO*. The
partial pressure of CO2 and CO are 101325 Pa and 5562 Pa,
respectively, and the overpotential (the difference between the
applied potential and the equilibrium potential calculated with
the BEEF–vdW functional) is set to 0.3 V. It can be noted that Ti,
Sc, Nb and Zr demonstrate excellent catalytic activities in
different doping configurations. Among them, Sc doping with
dimer, triangle and island configurations, Zr doping with dimer,
triangle and parallelogram configurations and Hf doping with
dimer, triangle and parallelogram configuration are close to the
center of the volcano and thus show good activities. However,

according to binding energy in Figure S12, OH* binding of Sc,
Zr and Hf are so strong on the PdH surface, which will cause
OH* poisoning. Besides, we notice that Ti doping with parallelo-
gram and overlayer configuration and Nb doping with overlayer
configuration are also closer to the center of the volcano
compared to PdH. Furthermore, the free energies of OH* are
smaller than 0.3 eV and thus will not be poisoned at 0.3 V
overpotential. Therefore, they are expected to have better
kinetic activities than pure surface. However, we can find that
CO* binding of Ti and Nb doping are stronger than pure PdH,
which limits their kinetic activities at room temperature due to
slow CO desorption. In order to further improve CO* activities
of noneletrochemical step, one could increase the temperature.
As shown in Figure S14, we take Ti doping in the parallelogram
configuration as an example. With the temperature increasing,
the partial current density of CO* would increase and
7.72 mA cm� 2 can be achieved at 350 K. In addition, we
calculate the surface stability and the corresponding Pourbaix
diagram[41,42] of HOCO*, CO*, H*, OH*, metal ion dissolution, for
PdH(111) surfaces including Ti doping in parallelogram and
overlayer configurations, Nb doping with overlayer configura-
tions, and pure PdH(111) as displayed in Figures S20–S25. The
detailed methods are given in the supporting information. It is
noticed that ion dissolution is unfavorable when the potential is
less than or equal to � 0.304, � 0.290, � 0.224 and 1.017 V at
pH=0 for these four configurations, and the dissolution
potential will be more negative as pH increases. This means
that these three doped surfaces are stable under negative bias
typically required for CO2 reduction, but that stability might be
an issue above the working potential.

Figure 5. Scaling relation of intermediates on doped PdH(111) with different elements between HOCO* and CO* in different dopant configurations. The red
line is fitted to Fe, Co, Ni, Cu, Ru, Rh and Ag doped PdH(111) where HOCO* forms one bond to the surface. The blue line is fitted to all doped PdH(111).
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Figure 7 illustrates the selectivity for CO2RR and HER of
doped PdH(111) in different doping configurations with the
corresponding data listed in Tables S3–S8. We apply ΔGHOCO*–
ΔGH* as a descriptor to demonstrate the trend of producing CO2
and H2. When the value of ΔGHOCO*–ΔGH* is more negative, it
indicates that there would be higher selectivity toward CO2RR.
Otherwise, the more positive value of ΔGHOCO*–ΔGH* represents
the higher selectivity toward HER. We find that a majority of
elements doped PdH in different doping configuration will
generate more H2 than CO according to Figure 7. However,
some overlayer doping such as, Sc, Mn, Fe, Co, Ni and Zr prefer
to generate more CO. It is worth noting that the values for Ti
and Nb doping are more negative than for pure PdH(111) in

most doping configurations and thus tend to produce more
CO.

Conclusions

Density functional theory calculations have been applied to
study the CO2RR and the competing HER of PdH(111). 22
transition metal elements Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y,
Zr, Nb, Mo, Ru, Rh, Ag, Cd, Hf, Ta, W and Re are doped into the
PdH(111) surface in different doping configurations to explore
their catalytic performance. Doping formation energies show
Sc, Ti, Zn, Y, Zr, Nb, Hf and Ta dopants are easier to dope into
the surface. Free energy diagrams identify Ti, Sc, Nb, Zr, Hf and
Ta as possible doping candidates which lower the HOCO*
limiting step for the CO2RR. The scaling relations of HOCO* vs.
CO* binding energies in different doping configurations display
well-defined scaling relations for Fe, Co, Ni, Cu, Ru, Rh and Ag
doping because HOCO* and CO* intermediates all form a single
C� Metal on the surfaces. However, the formation of the two
bonds consisting of one C� Metal and one O� Metal bond break
the scaling relation for other dopants, which is the reason why
these dopants have strong HOCO* binding compared to the
CO* binding. According to kinetic volcano plots, Ti doping with
parallelogram and overlayer configuration and Nb doping with
overlayer configuration are further found to have better kinetic
activities than pure PdH(111) at a low overpotential of 0.3 V. At
the same time, Ti and Nb are also possible to generate more CO
compared with pure surface based on their selectivity toward
the CO2RR and HER.

Figure 6. Activity volcano plots of doped PdH(111) with different elements for CO2RR at 0.3 V overpotential in different dopant configurations.

Figure 7. Selectivity plot for CO2RR and HER of doped PdH(111) with
elements in different dopant configurations.
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Impact of Hydrogen Concentration for CO2 Reduction on

PdHx : A Combination Study of Cluster Expansion and

Kinetics Analysis

Changzhi Ai†, Jin Hyun Chang†, Alexander Sougaard Tygesen†, Tejs Vegge†,

and Heine Anton Hansen∗†

Abstract

Pd hydride has shown better electrochemical CO2 reduction reaction (CO2RR) perfor-

mance compared to metal Pd implying that H in the PdHx surface plays a vital role in

affecting the performance. Using density functional theory (DFT) calculations in combination

with active learning cluster expansion and Monte Carlo simulated annealing we identify 12

stable PdHx (111) configurations on the DFT convex hull and investigate the binding energies

of intermediates in the CO2RR and the competing hydrogen evolution reaction. Through

analysis of intermediate binding energies and a microkinetic model, we identify the atomic

structures of the PdHx phase most likely to produce syngas. The high activity of the PdH0.6

surface can be attributed to the fact that H segregation in the PdHx (111) surface breaks the

linear relation between HOCO* and CO* adsorbates.

1 Introduction

The primary driver of global climate change is carbon dioxide (CO2) emissions in the world nowa-

days. It is widely recognized that it is urgent to reduce CO2 emissions as parties to the Paris

Agreement agreed “the increase in the global average temperature to well below 2 ℃ above pre-

industrial levels and to pursue efforts to limit the temperature increase to below 1.5 ℃ above

pre-industrial levels.”[1, 2] Conversion and utilization of CO2 is considered as a possible scheme

to mitigate these emissions. Several technologies to realize the CO2 reduction exist, such as elec-

trocatalysis, thermocatalysis, photocatalysis, and biocatalysis. Among them, the electrochemical

CO2 reduction reaction (CO2RR) is one of the most promising approaches for converting CO2 to

∗Corresponding author

Email: heih@dtu.dk
†Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, 2800

Kgs. Lyngby (Denmark)
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valuable fuels and chemicals[3]. In fact, the electrochemical processes of CO2RR would involve mul-

tiple electron/proton transfer, which can generate different common products, such as 2, 6, 8, and

12 electrons for the formation of CO, CH3OH, CH4 and C2H5OH.[4–6] In general, longer reaction

pathways that accompany more electron/proton transfers have lower energy conversion efficiency

than shorter pathways. Converting CO2 into the CO product only needs two electron/proton

transfers during the electrochemical reaction process and thus has higher energy conversion ef-

ficiency, which shows great potential for industrial applications. However, high overpotential is

generally required due to the high stability of CO2. Under the high overpotential, the competitive

hydrogen evolution reaction (HER) will also likely produce H2. Many efforts have been made to

suppress the HER, such as designing various electrocatalysts, electrodes, and so on, to promote

high selectivity for the CO2RR.[7] An alternative to finding highly selective catalysts is to tune

the CO/H2 ratio. This is because CO and H2, the main components of syngas, can be used as

downstream reactants to synthesize many basic organic chemicals and intermediates through the

Fischer–Tropsch processes.[8] Therefore, it is necessary to find efficient electrocatalysts to produce

syngas with a suitable CO/H2 ratio.

The Faradaic efficiency and chemical selectivity of the CO2RR are strongly related to the

structure and chemical nature of the electrocatalysts as well as the electrolysis conditions, such

as the applied potential.[9] Over the past decades, many works have been devoted to studying

metal catalysts as they exhibit good catalytic activity for the CO2RR.[10, 11] Copper (Cu) is the

only metal catalyst that can realize significant C-C coupling to produce multiple hydrocarbons, in

addition to methane, formic acid, hydrogen, and CO.[10] Among them, up to 20% CO Faradaic

efficiency can be reached at -0.85 V versus the reversible hydrogen electrode (RHE), which can be

attributed to its moderate adsorption energy for carbon monoxide.[10, 12, 13] Gold (Au) nanopar-

ticle electrocatalyst can exhibit a highly selective electrocatalytic reduction of CO2 to CO, and the

maximum selectivity can reach 90% Faradaic efficiency at -0.67 V vs. RHE when the size of the

nanoparticle is 8 nm.[14] Furthermore, the selectivity can be higher, reaching 97% CO Faradaic

efficiency toward CO at -0.52 V vs. RHE when Au nanoparticles are embedded in a matrix of butyl-

3-methylimidazolium hexafluorophosphate.[14] A nanoporous silver (Ag) electrocatalyst was also

reported to be able to reduce CO2 to CO with about 92% selectivity under moderate overpotentials

of less than -0.5 V vs. RHE, which is 3000 times higher than its polycrystalline counterpart.[15]

Non-noble metal Zinc (Zn) has recently been illustrated to be a potential alternative to Au and

Ag for reducing CO2 to CO due to its abundant reserves. A hierarchical hexagonal Zn catalyst

was reported to have high selectivity up to 95% CO production at -0.95 V vs. RHE when using

a CO2-saturated 0.5 M KCl electrolyte.[16] Therefore, Cu has modest CO Faradaic efficiency and

selectivity, and even though Au, Ag, and Zn selectively produce CO, they can not generate the

favorable CO/H2 ratio with efficient CO2RR activity.[17]

Recently, metallic palladium (Pd) electrocatalyst has received attention for reducing CO2 to

194



CO; it not only exhibits good selectivity and activity but also can split CO and H2 simultaneously

to synthesize gas with an adjustable H2 to CO ratios.[17] Pd is usually considered as a favorable

HER catalyst, but it can also produce CO at a very similar ratio to H2.[18] Chen et al. revealed

that carbon-supported palladium (Pd/C) nanoparticles can generate CO and H2 simultaneously in

an aqueous electrolyte with a tunable CO/H2 ratio from 0.5 to 1, which is a favorable ratio range

to perform Fischer–Tropsch reaction that already exists in the industrial processes.[18] Chen et al.

continued to explore the influence of different facets of Pd with cubic and octahedral particles dom-

inated by Pd(100) and Pd(111) surfaces, respectively.[17] Their results show that the octahedral Pd

particles have better activity and selectivity than cubic Pd particles, and both can produce suitable

CO/H2 ratios between 1 and 2, which are desirable ratios for Fischer–Tropsch process. It is worth

noting that experiments show that a key factor of the high performance is because Pd particles are

transformed to Pd hydrides (PdH).[17, 19] In fact, there could exist different concentrations of H in

Pd hydrides (PdHx ) controlled by the applied potential, which has an important influence on the

CO2RR performance.[19, 20] Experiments only give the relation between the applied potential and

CO2RR performance and corresponding DFT calculations have only compared the performance of

pure Pd and stoichiometric PdH. However, the best concentration of H of PdHx surface for CO2

reduction to CO is not given and it is unclear whether there is a saturation concentration of H.

Some previous theoretical efforts have been done to study CO2RR or HER properties of PdHx .

Chen et al. reported the free energy diagram of Pd(111) and PdH(111). They concluded that

the CO* desorption from metal Pd(111) surface could be the rate-limiting step due to strong CO*

binding compared to PdH(111).[17, 18] Chorkendorff and co-workers reported hydrogen adsorption

on palladium and palladium hydride at 1 bar. They showed the relation between the adsorption

energy of H and surface H coverage on Pd(111) and Pd hydride slabs, and that the H binding

energies became weaker as H coverage increased. They thought the adsorption and desorption

of H2 are faster on β-Pd hydride than α-Pd hydride at 1 bar.[21] Erhart et. al. constructed

the phase diagrams of bulk Pd hydride and Pd-Au hydride using a cluster expansion and studied

their thermodynamic properties.[22] However, these theoretical efforts have not systematically

investigated the effect of H concentration on CO2RR.

This study uses an active learning cluster expansion (ALCE) model equipped with Monte Carlo

simulated annealing to search for the stable composition of PdHx (111) surfaces. Energies calculated

by density functional theory (DFT) are used to train the ALCE model and find the ground state

CE structures of each H concentration of PdHx from the CE convex hull. Furthermore, we perform

DFT relaxation to verify the CE convex hull and finally get the DFT convex hull to identify the

ground state DFT candidates. Once the stable candidates are found, the CO2RR activity and

selectivity are further studied. As a result, PdH, PdH0.97, and PdH0.60 are finally screened out to

be the most active candidates and able to generate CO/H2 with suitable ratios.
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2 Computational details

All spin-polarized density functional theory (DFT) calculations are carried out to train the cluster

expansion model and calculate adsorption energies using the atomic simulation environment (ASE)

[23, 24] and the Vienna Ab initio Simulation Package (VASP) with the projector augmented wave

(PAW) method.[25–27] The Bayesian error estimation functional with van der Waals correlation

(BEEF-vdW) ensemble is used for exchange and correlation functional, which performs quite well

for chemisorption processes.[28] The first Brillouin zone is sampled by a 3× 3× 1 Monkhorst-pack

grid[29]. 400 eV is set for cutoff energy. The dipole correction is utilized in the z direction to

remove the electrostatic dipole-dipole interaction due to periodically repeated surface slabs in all

calculations. The structures are relaxed until all Hellman-Feynman forces are less than 0.01 eV/Å

and the energy convergence criterion is within 10−6 eV. More DFT calculation details can be found

in the supporting information.

All cluster expansion (CE) calculations in this work are performed with the Cluster Expansion in

the Atomic Simulation Environment software package (CLEASE) developed by Chang et. al.[30]

CE can greatly decrease the computational cost by mapping the first principles results onto a

Hamiltonian that is fast to evaluate. The main idea of CE is to express the scalar physical

quantity q(σ) of crystal structure, which here is the electronic energy, as its configuration σ that

is an N-dimensional vector consisting of site variables. It can be expressed as a linear expansion

of cluster functions:[30, 31]

q(σ) = J0 +
∑

αmα Jα ϕα (1)

Where Jα denotes the effective cluster interaction (ECI) per occurrence, which must be fitted. J0

is the ECI of an empty cluster. mα denotes the multiplicity factor illustrating the number of α

per atom and correlation function ϕ is the average value of the cluster functions in cluster α. mα

and ϕ can be calculated from the crystal structure. The equation can be simplified as follows:

q = Xω (2)

where X is the correlation functions matrix and ω is a column vector of ECI values. q denotes a

column vector of energies here.

ECIs are fitted by the ordinary least squares method with regularization. We utilize l1 regu-

larization to avoid overfitting by adding a regularization term as follows:

min
ω
∥Xω − q∥22 + λ∥ω∥1 (3)

where λ is the regularization constant and ∥ω∥1 is the l1 -norm of the column vector ω. Furthermore,

10-fold cross validation is used to evaluate the prediction performance of the model in order to

improve the model reliability.
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Monte Carlo simulated annealing at each H concentration of PdHx is performed in order to

search for the ground state structure of each concentration, which is carried out in CLEASE. The

standard Metropolis Monte Carlo at each temperature during simulated annealing is used and has

the acceptance probability Pacc as follows:[30]

Pacc = min

{
1, exp

(
−(Enew − Eold)

kBT

)}
(4)

Where Enew and Eold are the energies of new and old structures, respectively. kB is the Boltzmann

constant and T denotes temperature. The temperatures are set as 1010, 10000, 6000, 4000, 2000,

1500, 1000, 800, 700, 600, 500, 400, 350, 300, 250, 200, 150, 100, 75, 50, 25, 2 and 1 K. For

each temperature, 1000 Monte Carlo sweeps are applied (1 sweep includes N steps, where N is the

number of atoms.)

The elementary reactions for CO2RR in this work are considered as follows:[17, 32]

CO2(g) + ∗+ H+ + e− ←−→ HOCO∗ (5)

HOCO∗+ H+ + e− ←−→ CO∗+ H2O(l) (6)

CO∗ ←−→ CO(g) + ∗ (7)

The elementary reactions for the HER can be considered by the following:[33]

H+ + e− + ∗ ←−→ H∗ (Volmer step) (8)

H∗+ H+ + e− ←−→ H2(g) + ∗ (Heyrovsky step) (9)

A kinetic model is applied to analyze the activity for the CO2 reduction to CO. The net reaction

rates of three elementary reactions are illustrated as[32, 34]

r1 = k1 θ∗pCO2 −
k1

K1
θHOCO∗ (10)

r2 = k2 θHOCO∗ −
k2

K2
θCO∗ (11)

r3 = k3 θCO∗ −
k3

K3
θ∗ pCO (12)

where k1, k2, k3 denote forward rate constants of the three elementary reactions for CO2RR. K1,

K2, K3 represent the corresponding equilibrium constants. p and θ represent the corresponding

partial pressure and surface coverage, respectively. Experimental vapor pressures are utilized for

them in this work. The partial pressure of H2O is 3534 Pa and CO partial pressure is 5562 Pa.[35]

The partial pressure of both CO2 and H2 are under standard pressure 101325 Pa.[10, 35]. Further

details for the calculations for Gibbs free energy and the kinetic model can be found in our previous

work and the supporting information.[34]
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Figure 1: (a) The side view and (b) the top view of PdHx (111) surface that take H concentration

of 50% as an example. The blue spheres are Pd atoms, the white spheres represent H atoms, and

the red spheres are H vacancies.

3 Results and discussion

To illustrate the structures of the PdHx (111) surface, we take an H concentration of 50% as an

example here and display the side and top views in Figure 1. The structure has four bilayers,

including 16 Pd atoms and up to 16 H atoms. It can be seen that PdHx has a Pd atom (blue

spheres) framework, with the smaller H atoms (white spheres) filling octahedral sites between

the larger Pd atoms. Red virtual atoms show H vacancies. The PdHx (111) slab is cut from the

optimized bulk PdH with the crystal constants a = b = c = 4.138 Å and the slab size is 4× 4× 4

with a = b = 11.704 and c = 28.362 Å. Here, we ignore the crystal constants variation when the H

concentrations change because they vary only in a small range, approximately 0.2 Å from 0 to 1 for

H concentration, which is less than 5% of the lattice constants of PdH.[36] Besides, previous work

reported the strain of PdH only has a small impact on the performance of CO2RR and HER.[37]

There can be up to 64 H atoms in the PdHx (111) surface as shown in Figure 1. It is impossible

to run DFT calculations for all the possible structures (2 64 neglecting symmetry). Instead, we

utilize an active learning cluster expansion (ALCE) surrogate method. The workflow of the ALCE

for PdHx (111) is shown in Figure S1. After defining the CE settings, we generate 50 random H

concentration structures of PdHx to form the initial database pool and then relax the structures

to get their DFT energies, which can be used to train the CE model and get the initial ECI

values. If the root mean square error (RMSE) between DFT energies and CE energies is less

than 5 meV/atom, we consider the CE model converged. Otherwise, more random structures will

be generated and run by DFT, which are finally added to the database pool to verify if the CE

model is converged. Once we have the converged the CE model, Monte Carlo simulated annealing

(MCSA) with the CE calculator is performed to search for ground state structures for each H

concentration of PdHx , which gives 63 MCSA in total because the numbers of H range from 0
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to 64 (concentration from 0 to 1) except pure slabs Pd(111) and PdH(111). The CE convex hull

can be calculated according to all ground state structures at each concentration of H of PdHx .

Theoretically, the stable structures could be found from the vertices of the CE convex hull at this

point. However, considering the uncertainty of the processes, the obtained ground state structures

should be verified by DFT calculations. Therefore, the possible stable candidates of the CE convex

hull are further collected, relaxed by DFT calculations, and finally added to the database pool to

continue the next new round. At the same time, the DFT convex hull is also carried out until

its convergence. The criterion of convergence is defined that the shape of the DFT convex hull

will not change for three rounds. After that, the final stable candidates can be found according

to converged DFT convex hull and their CO2RR activity and selectivity toward CO and H2 are

further studied.

Figure 2: (a) The linear fitting plot of CE energy and DFT energy for 50 random structures. (b)

The ECIs distribution obtained from cluster expansion fitting. (c) The DFT convex hull curve of

mixing energy as a function of H concentration in round 9. (d) The H concentration of each layer

as a function of the total concentration of H for the structures of the DFT lowest energies in each

concentration.

To study stable compositions of PdHx (111), CE calculations are performed using the CLEASE

package. Figure 2a shows the linear fitting between CE energies (ECE) and DFT energies (EDFT)

when we have 50 random structures in round 1. It can be seen that both 10-fold cross validation
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error and RMSE are really small, 1.043 meV/atom and 0.450 meV/atom, respectively, which

illustrates that the CE model is really good for the PdHx (111) surface. The ECI value distribution

as a function of cluster diameter (1st, 2nd, 3rd, or 4th nearest neighbor) is displayed in Figure 2b.

It can be noticed that the ECIs of 0, 1, and 2-bodies are larger, while there are more 3-body and

4-body ECI values closer to 0. To avoid overfitting, we choose to use up to 4-body interactions

and neglect high terms. To get accurate stable compositions, ALCE is carried out to deal with

the uncertainty of the CE. After 9 rounds, the vertices of the DFT convex hull are unchanged in

the last three rounds, which means the convex hull is converged. In addition, the fitting RMSEs

remain small during the 9 rounds as displayed in Figure S4 and Figure S5, meaning that the CE

models remain good. For each round, simulated annealing at each H concentration is calculated

to find ground state structures as the example round 1 in Figure S3. As shown in Figure 2c,

12 stable candidates can be finally obtained and are marked by black crosses. They are Pd64,

Pd64H2, Pd64H4, Pd64H8, Pd64H10, Pd64H13, Pd64H31, Pd64H39, Pd64H53, Pd64H62, Pd64H63 and

Pd64H64 and the corresponding H concentrations are 0, 0.0313, 0.0625, 0.1250, 0.1563, 0.2031,

0.4844, 0.6094, 0.8281, 0.9688, 0.9844 and 1, respectively. The side and the top view of optimized

example structures among them can be found in Figure S10. Figure 2d shows the H distributions

of each layer as a function of total concentrations of H in the slabs for the slabs of the DFT

lowest energies in each concentration. The first layer is first filled up with H, then the fourth

and third layers are filled up, respectively. Finally, the sublayer (second layer) will be finally

filled at last. Possible artifacts due to the finite thickness of the model slab should be considered.

To further confirm our conclusion, the PdHx (111) structures with more atomic layers with one

missing layer are explored as displayed in Figure S11 and S12 in the supporting information. It

can still be found that removing the sublayer H has the lowest energy and thus will be filled at last,

independent of the slab thickness. In addition, semi-grand canonical Monte Carlo calculations are

implemented to study H chemical potential, temperature, and pressure influence on H concentration

as shown in Figure S14, S15 and S16 and the corresponding analysis can be found in the supporting

information. Besides, all bare candidates surfaces are used to study the Pourbaix diagram and the

phase transformation process from Pd to PdH under the applied potential in Figure 5c-d assuming

the surface to be in equilibrium with protons and electrons at all potentials. The corresponding

computational details can be found in the supporting information. Figure 5c shows the relative

free energy of surface structure as a function of potential at pH 7.3, where the H concentration

increases when the larger potentials are applied. The corresponding H concentration as a function

of applied potential is shown in Figure 5d. This displays metal Pd can be completely transformed

to Pd hydride at a potential of about -0.6 V vs. RHE assuming the surface is in equilibrium

with protons and electrons. However, characterization of Pd aerogels by Schmidt and co-workers

suggests H concentration is saturated around 60% already at -0.1 V,[20] which suggests the surface

can be in equilibrium with H2 gas rather than protons and electrons. In that case, the Pd64H39
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surface is likely the active surface for CO production.

Figure 3: (a) Adsorption sites schematic diagram on PdHx (111) surface. (b) Binding energies of

HOCO*, CO*, OH*, and H* as a function of H concentration. (c) Cutoff sphere schematic diagram

of adsorbate on PdHx (111) surface. (d) Free energy diagram of CO2RR of candidates. The insets

show HOCO* and CO* adsorption surface structures. The blue spheres are Pd atoms, the small

white spheres represent H atoms, the grey spheres are C atoms, the red spheres are O atoms and

the small green spheres denote adsorption sites.

After identifying stable candidates on the DFT convex hull, their CO2RR and HER perfor-

mances are further studied. Figure 3a shows the different adsorption sites of a random structure,

which are displayed in small green spheres. They are automatically found according to local simi-

larity, which compares the similarity of local structure as displayed in Figure 3c. The similarity is

defined by comparing the neighbor list information of each adsorbate within a 2.8 Å cutoff sphere,

including numbers of neighbor atoms, neighbor element types, and distance lists between adsorbate

and neighbor atoms. We consider they are the same adsorption site if the similarity is 1; otherwise,

they are different sites. Here only the top site, fcc site, and hcp site are considered, and the fcc

sites very close to H atoms (less than 1 Å) are not considered because adsorbates located in these

sites can easily react with the neighboring H. We do not consider bridge sites because they are
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unstable. All information on surface structures with adsorbates on all unique sites can be found in

our database.[38] Binding energies of adsorbates of HOCO*, CO*, OH* and H* on the most stable

sites of all PdHx candidates are shown in Figure 3b and the corresponding data can be found

in Table S3. It can be seen that the binding energies of all adsorbates gradually increase as the

concentration of H goes up from 0 to 1, especially for the adsorbate CO*. The CO2RR free energy

diagram of all candidates with adsorbates on the most stable sites is displayed in Figure 3d, and

the corresponding data can be found in Table S4. We notice that most surfaces have very negative

binding energies and thus have strong CO* binding, which results in CO* poisoning, especially

for candidates with low H concentration. For example, the free energies of Pd64, Pd64H2, Pd64H4,

Pd64H8 and Pd64H10 at CO* step are -1.259, -1.196, -1.189, -1.017 and -0.938 eV, respectively.

They have so strong CO* binding that CO* is very hard to release from the surface, which is

the reason why CO* poisoning happens. This can also be found in Figure S13e. On the other

hand, for candidates with high H concentration, their free energies at HOCO* are very high. For

example, the free energy of Pd64H62 at the HOCO* step is 1.121 eV, which is too weak to bind

HOCO* at low overpotential. Therefore, the ideal CO2RR candidate should have strong HOCO*

binding and weak CO* binding. It is worth noting the PdH surface with full H occupation does not

have too high HOCO* free energy step (0.79 eV), and weak CO* free energy (0.22 eV) and thus

no CO* poisoning. Besides, Pd64H63 has very weak CO* binding, 0.392 eV of CO* free energy,

and acceptable HOCO* free energy. Pd64H39 has weak HOCO* binding free energy (0.686 eV)

and acceptable CO* adsorption. Thus, Pd64H64, Pd64H63 and Pd64H39 are possible candidates of

CO2RR, which is consistent with the activity volcano in Figure 5a.

Figure 4: Scaling relations for adsorbates on PdHx (111) configurations on the convex hull.
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To further understand the catalytic performance of PdHx (111) surfaces, the scaling relations

between different adsorbates are shown in Figure 4 and the binding energy relations with error

ellipsoids can be found in Figure S13. The relations ECO∗ vs. EHOCO∗, EOH∗ vs. EHOCO∗, EH∗

vs. EHOCO∗, EOH∗ vs. ECO∗, EH∗ vs. ECO∗ and EH∗ vs. EOH∗ are displayed in 4a-f, respectively,

and their R2 values are given, which is a statistical measure to illustrate how well the linear scaling

relations are fitted. For the ideal scaling relation, the R2 value is close to 1. Otherwise, it is worse

if the R2 value is close to 0. We can see that their R2 values are 0.72, 0.65, 0.68, 0.87, 0.77, and

0.60, respectively, which demonstrates that they have good scaling relations. However, it can also

be noticed that there are some obvious outliers. For example, Pd64H39 in Figure 4f is far from the

best-fit line. This might be attributed to H segregation, which breaks the scaling relation. The

H concentration distribution plots of clean surfaces and surfaces with adsorbates are displayed in

Figure S8 and Figure S9 in the supporting information. It can be noticed that there are fewer H

atoms in the 1st layer and more H atoms in the 2nd layer for OH*, while more H is in the 1st layer

and less H is in the 2nd layer compared to that of the clean surface for Pd64H39.

Figure 5: (a) Activity volcano plot of PdHx (111) candidates for CO2RR at -0.5 V overpotential.

(b) Selectivity plot toward CO and H2. (c) Stability of ground state structures at pH 7.3. (d) The

concentration of H as a function of potentials. The dashed line shows the saturation of H if the

surface is in equilibrium with H2 at 1 bar.

A kinetic model explores the CO2RR activity for the PdHx (111) surfaces. Figure 5a shows
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the activity volcano at -0.5 V overpotential at room temperature. The current density depends on

both EHOCO∗ and ECO∗, which is more accurate than a single descriptor. We notice that PdHx

with low H concentration is far away from the apex of the volcano due to the strong CO binding,

which means they have poor kinetic activity. The completely H-filled Pd64H64 is the closest to the

apex, illustrating that it has the best activity. In addition, Pd64H39 and Pd64H63 also exhibit good

kinetic activity for higher H concentration. Besides, according to Figure 4b, we can see that the

OH* binding energies on Pd64H64, Pd64H39 and Pd64H63 are weak, so OH* will not poison them.

Figure 5b shows the selectivity of all candidates toward CO and H2. We compare the binding

energies of the first step of the CO2RR and the HER. If the binding energy of H* is lower than

that of HOCO*, it means HER is thermodynamically prefered over CO2RR and the catalyst tends

to produce more H2. We notice that all of the candidates tend to generate more H2 as shown in

Figure 5b. Besides, Pd64H64 is very close to the black dashed line and can produce more CO, and

thus its CO/H2 ratio is closer to components of syngas compared to other candidates.

Figure 6: Distribution of atom Pd and H of all candidates within the cutoff sphere as a function of

HOCO*, CO*, OH*, and H* binding energies. The yellow curves are fitted Gaussian distribution

of H.

The statistical distribution of all candidates is calculated to reveal the effect of H and Pd on

binding energies. Here, the statistical data of binding energies includes all possible adsorption

204



sites on all the candidate surfaces. Figure 6a-d display the frequencies of H, Pd, and the total

atoms within a sphere with a 2.8 Å radius centered on the adsorbate as a function of the binding

energies of HOCO*, CO*, H* and OH*, respectively. In addition, Figure 6a-b indicate the most

favorable binding energy for HOCO* and CO* marked in blue, respectively. We see the tendency

that the binding energies for all adsorbates are weaker when there are H atoms within the cutoff

sphere of adsorbates. The fitted Gaussian distributions of H are also shown in the yellow curves in

Figure 6. Their positions at the center of the peak are 0.60, -0.15, 0.44, and 1.52 eV, respectively,

which are relatively weak in their corresponding binding energy distributions. Therefore, it can be

concluded that H atoms weaken the binding energies of all adsorbates on PdHx surface. To further

verify the conclusion, the partial density of states (PDOS) of the d-band is calculated. Figure S17

shows the PDOS of the bare surfaces of all candidates, and the corresponding d-band centers are

given. It can be seen that d-band centers gradually decrease as H concentrations increase. The

linear fit between d-band centers and H concentrations is also shown in Figure S18. The R-squared

value is used to describe the degree of their linear relation. The linear relation will be stronger

if the R-squared value is closer to 1. The R-squared value is 0.87 in Figure S18 and thus they

have strong linear relation. The lower d-band center means weaker binding energy.[39] We further

calculate d-band centers for surfaces with HOCO* and CO* to support this. Figure S19 and

Figure S22 show the PDOS and d-band center for all candidate surfaces with HOCO* and CO*,

respectively. Their corresponding linear fits between H concentrations and d-band centers and

between adsorbate binding energies and d-band centers for all surfaces with adsorbates are shown

in Figure S20 and Figure S22, respectively. It can be noticed that there are still very good scaling

relations between H concentration and d-band centers for surfaces with adsorbates. And their

binding energies have a good linear relation with d-band centers. This can be further concluded

that increased H concentration can weaken the binding energy.

4 Conclusions

In this work, the effect of H concentration on PdHx (111) surfaces on the CO2RR and the HER has

been studied using theoretical methods. Active learning cluster expansion equipped with Monte

Carlo simulated annealing has been implemented to find stable PdHx (111) surface candidates.

We have obtained 12 stable candidates from converged DFT convex hull, which are Pd64, Pd64H2,

Pd64H4, Pd64H8, Pd64H10, Pd64H13, Pd64H31, Pd64H39, Pd64H53, Pd64H62, Pd64H63 and Pd64H64.

We have carried out a method to find adsorption sites and then calculate the binding energies au-

tomatically. Their free energies are further calculated, illustrating the PdHx (111) surfaces with

low H concentration have CO* poisoning. The scaling relations between different adsorbates show

there are still good linear relations, but the segregation of H may have an influence on their scaling

relations. According to the activity volcano, Pd64H64, Pd64H63 and Pd64H39 corresponding H

concentrations of 1, 0.97, and 0.60 respectively, show high current densities at an overpotential of
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0.5 V. The Pd64H39 surface is stable when the surface is in equilbrium with H2 gas, and the H con-

centration match well with the experimentally determined 60% H concentration of Pd hydride.[20]

Due to the existence of the competitive reactions between CO2RR and HER, the selectivity plot

toward CO and H2 is calculated and illustrates these three candidates have better CO production

compared to others, especially for Pd64H64. The statistical distribution of Pd and H atoms in all

candidates reveals that H atoms can weaken the binding energies of all adsorbates, which may

provide good guidance to tune the binding energy.
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Abstract

Electrochemical experiments and theoretical calculations have shown that Pd-based metal

hydrides can perform well for the CO2 reduction reaction (CO2RR). Our previous work

on doped-PdH showed that doping Ti and Nb into PdH can improve the CO2RR activ-

ity, suggesting that the Pd alloy hydrides with better performance are likely to be found

in the PdxTi1−xHy and PdxNb1−xHy phase space. However, the vast compositional and

structural space with different alloy hydride compositions and surface adsorbates, makes it

intractable to screen out the stable and active PdxM1−xHy catalysts using density functional

theory calculations. Herein, an active learning cluster expansion (ALCE) surrogate model

equipped with Monte Carlo simulated annealing (MCSA), a CO* binding energy filter and

a kinetic model are used to identify promising PdxTi1−xHy and PdxNb1−xHy catalysts with

high stability and superior activity. Using our approach, we identify 24 stable and active

candidates of PdxTi1−xHy and 6 active candidates of PdxNb1−xHy. Among these candidates,

the Pd0.23Ti0.77H, Pd0.19Ti0.81H0.94, and Pd0.17Nb0.83H0.25 are predicted to display current

densities of approximately 5.1, 5.1 and 4.6 µAcm−2 at -0.5V overpotential, respectively, which

are significantly higher than that of PdH at 3.7 µAcm−2.

1 Introduction

Society still relies heavily on fossil fuels, producing excessive carbon dioxide (CO2) emissions. CO2

is the primary greenhouse gas that causes weather anomalies and global warming.[1, 2] Therefore,

it is crucial to mitigate CO2 emissions through various new technologies. On the one hand, it

is possible to capture CO2 that arises from the combustion of fossil fuels and from industries

and then sequestrate it in an alternative geological formation.[3] On the other hand, CO2 can

be transformed into valuable fuels and chemicals via catalytic approaches, such as photocatalysis
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and electrocatalysis. Electrochemical CO2 reduction reaction (CO2RR) shows great potential to

valorize CO2 as useful fuels or chemicals.[3–5] The utilization of renewable energy sources such

as wind and solar energy is gradually increasing to generate electricity, and the utilization cost

is decreasing. However, there are still significant challenges for storing the generated electrical

energy.[6, 7] To face the challenges, the electrochemical CO2 reduction is one of the most effective

approaches via converting the generated electric energy to chemical energy carriers, such as carbon

monoxide (CO), methane (CH4), ethylene (C2H4), ethanol (C2H5OH) and propanol (C3H7OH).

[3, 8, 9] This is an elegant solution that not only decreases the greenhouse effect but also obtains

hydrocarbon chemicals when coupled with the utilization of renewable electricity. However, due to

the chemical inertness of CO2, it is very challenging to reduce CO2 as it requires both energy input

and favorable catalysts. Stability, activity, and selectivity of catalysts during the electrochemical

process should be considered.[10]

Pure transition metal catalysts are usually stable and active for CO2RR at room temperature,

but their selectivities are quite different. Pure metal catalysts can be grouped into four categories

based on their selectivity: (I) Cu is classified as its own category because it is the only metal

that can simultaneously reduce CO2 to multiple hydrocarbons and multi-carbon products such as

CH4, C2H4 and C3H7OH.[8, 11–13] (II) Pb, Hg, Tl, and In are most likely to produce formate

(HCOO– ) and the Faradaic efficiency of the products are over 90 %.[3] (III) Ni, Fe, Pt, and

Ti produce H2 without producing or producing only a very small amount of hydrocarbons (the

Faradaic efficiency of H2 over 90 %) via hydrogen evolution reaction (HER).[3] (IV) Au, Ag, Zn and

Pd mainly reduce CO2 to carbon monoxide (CO). It is worth pointing out that Pd can also produce

an almost equal proportion of H2 while producing CO.[13] We note that both CO and HCOO–

are 2-electron products from CO2RR, while CH4, C2H4 and C3H7OH are 8-, 12- and 18-electron

products, respectively.[14] CO and HCOO– have the shortest reaction pathways, and their energy

conversion efficiencies can be very high. On the other hand, the pathways of the higher number of

electron products are long, and their conversion efficiencies are usually very low. This is because

a long reaction pathway makes the process complex and arduous to manipulate.[9] The conversion

efficiency of CO2RR for synthesizing multiple electron products C2 and C3, in particular, is far

from the level viable for practical productions due to the consumption of a lot of electrons and

protons and long pathways.[9, 15] In contrast, the Faradaic efficiencies of 2-electron products CO

or HCOO– are usually higher than other products due to the short reaction pathways. Compared

to liquid HCOO– , CO is a gas that is easier to separate, and thus, reducing CO2 to CO appears

to be more achievable.

Though the Faradaic efficiency for CO formation on Pd is lower than that on Au, Ag, and Zn,

Pd can simultaneously generate H2 at a similar Faradaic efficiency due to the competitive HER.

The generated CO and H2 are the main components of syngas, which can be directly used to

synthesize valuable chemical products via the Fischer–Tropsch processes.[3] Several works report

211



that Pd-based catalysts can also produce syngas through electrochemical CO2RR. Sheng et al.

report that carbon-supported Pd nanoparticles (Pd/C) can simultaneously generate syngas with

a CO to H2 ratio between 0.5 and 1.[16] The current density can reach 0.6 mA cm−2 at −0.7 V

overpotential vs. reversible hydrogen electrode (RHE). In this electrochemical process, metal Pd

nanoparticles are transformed into Pd hydride (PdH) as observed by in-situ X-ray absorption

spectroscopy and in-situ X-ray diffraction. Density functional theory (DFT) calculations showed

that PdH weakens the binding energies of both CO* and H*.[16] Zhu et al.[17] illustrated that

different facets of Pd nanoparticles have an influence on their performance in CO2RR to syngas;

for example, Pd(111) surface has a higher activity of CO2RR and better CO selectivity than the

Pd(100) surface. The CO partial current density of PdH(111) in their work can reach 17 mA cm−2

at −0.7 V overpotential vs. RHE, while that of PdH(100) is around 3 mA cm−2, which is greater

than that of commercial Pd catalysts. DFT calculations explain that forming PdH(111) makes

CO* desorption no longer difficult and thus improves the activity of CO2RR.[17]

Liu et al.[18] reported that Pd-modified niobium nitride (Pd/NbN) can produce a much higher

partial current density of syngas and larger CO Faradaic efficiency than Pd-modified vanadium

nitride (Pd/VN) catalyst and commercial Pd/C catalyst. Among them, the CO partial current

density of Pd/NbH is the highest at around 0.7 mA cm−2 at −0.7 V vs. RHE. In-situ X-ray diffrac-

tion illustrated the formation of PdH in Pd/NbN, which weakens *CO desorption and enhances

the CO2 conversion to syngas.[18] Lee et al.[19] reported the use of Pd-based bimetallic hydrides

for producing syngas using electrochemical CO2RR approach. The second metal, such as Co,

Ni, Cu, Ag, and Pt, was chosen to form alloys with precious metal Pd nanoparticles and con-

centrations of the second metals were fixed at 25 % in their work. After applying potentials, the

CoPd, NiPd, CuPd, AgPd, and PtPd alloys were transformed to (CoPd)H, (NiPd)H, (CuPd)H,

(AgPd)H, and (PtPd)H, respectively, and their potentials of alloy hydrides formation were −0.322,

−0.352, −0.434, −0.544 and −0.544 V vs. RHE, respectively. (AgPd)H, (CuPd)H, (NiPd)H, and

(CoPd)H show higher CO partial current density than that of PdH. According to their CO/H2

ratio, (CuPd)H and (NiPd)H are more suitable to produce syngas with the ratio range between

1 and 2.[19] Our previous study[20] using DFT suggested that among the transition metals Sc,

Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Ag, Cd, Hf, Ta, W, and Re doped

into PdH(111) at different doping configurations, Ti and Nb doping yielded a higher performance

of CO2RR than undoped PdH(111). Furthermore, their generated CO and H2 are suitable for

generating syngas,[20] providing clear guidance to further study of Ti- and Nb-Pd alloy hydrides.

In this work, PdxTi1–xHy(111) and PdxNb1–xHy(111) alloy hydrides are systematically stud-

ied via a hierarchy of theoretical calculations. Due to the vast search space of composition of

PdxTi1–xHy and PdxNb1–xHy , their stabilities are first explored by an active learning cluster

expansion model equipped with Monte Carlo simulated annealing of each concentration.[21] The

advantage of this method is to search the ground-state structure at each concentration efficiently.
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Furthermore, the final ground-state structures are verified by DFT calculations. After obtaining

the stable slabs, the most stable absorption sites are further searched for each slab. Finally, a

kinetic model is applied to calculate the activity of CO2RR, and a large number of candidates with

catalytic activities better than that of PdH(111) are found. The selectivities are analyzed to see if

they are suitable for producing syngas.

2 Computational details

All DFT calculations are performed using the atomic simulation environment (ASE) [22, 23] with

the Vienna Ab initio Simulation Package (VASP) with the projector augmented wave (PAW)

method.[24–26] The exchange and correlation functional used in this work is the Bayesian error

estimation functional with van der Waals correlation (BEEF-vdW) ensemble.[27] The cutoff energy

is set to 400 eV and the electronic smearing width is 0.05 eV. A Monkhorst-Pack grid of 3× 3× 1 is

used to sample the first Brillouin zone.[28] The electronic relaxation is set to stop when the energy

difference between two steps is smaller than 10−6 eV. The ionic relaxation will converge when all

the forces’ norms are less than 0.01 eV Å
−1

. The PdxM1–xHy (111) surface is utilized because PdH

(111) surface is the most stable in experiments (M is the metal element Ti or Nb).[17] To remove

the electrostatic dipole-dipole interaction in the z direction due to periodic boundary conditions,

a vacuum layer of approximately 15 Å is added, and the dipole correction is applied along the z

direction. A 4× 4 surface supercell cell of the PdxM1–xHy (111) is utilized. Four atomic bilayers

are used, each consisting of one Pd or M atomic layer (M is Ti or Nb element) and one H or X

atomic layer (X denotes H vacancy). We fix the bottom two bilayers in their bulk positions when

relaxing the slab.

The Cluster Expansion in the Atomic Simulation Environment software package (CLEASE)

is used to implement cluster expansion (CE) calculations of the surface.[29] The initial slabs and

corresponding relaxed energies are used to train the CE model, which can quickly predict the

energies of the given new structures and thus greatly reduce the computational cost. The physical

quantity (here it is the energy) of the material can be expressed as the following equation:[29, 30]

q(σ) = J0 +
∑
α

mαJαϕα (1)

where q(σ) is the energy of the configuration σ. J0 is the effective cluster interaction (ECI) of an

empty cluster. Jα denotes the ECI of cluster α, which needs to be fitted. mα is the multiplicity

factor that means the number of α per atom. ϕα denotes the correlation function of the cluster α,

which is the average value of the cluster functions.[29] Up to 4-body clusters are included in this

work, with the cutoff radii of 6.0, 5.0, 4.0 Å for 2-body, 3-body, and 4-body clusters, respectively.

Monte Carlo Simulated Annealing (MCSA) is carried out to find the ground-state structure at each

concentration. 65× 65 MCSAs are implemented in parallel for each active learning iteration (65 H

concentrations and 65 metal (Ti or Nb) concentrations in this work). Each MCSA uses standard
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Metropolis Monte Carlo at decreasing temperatures of 1010, 10000, 6000, 4000, 2000, 1500, 1000,

800, 700, 600, 500, 400, 350, 300, 250, 200, 150, 100, 75, 50, 25, 2, and 1 K. 1000 Monte Carlo

sweeps are set at each temperature and each sweep has N attempted swaps (N is the number of

atoms in the cell). During the MCSA, the acceptance probability Pacc can be expressed as:[21, 29]

Pacc = min

{
1, exp

(
−∆E

kBT

)}
, (2)

where ∆E is the energy difference between the new and the old structures. kB denotes the

Boltzmann constant and T is temperature in kelvin.

The binding energies, Eb, of adsorbates are calculated as:

Eb = E∗+ads − E∗ − Eads, (3)

where E∗+ads is the DFT energy of the surface with an adsorbate. E∗ is the DFT energy of the

clean surface, and Eads is the DFT energy of the adsorbate. The adsorbates include HOCO*, CO*,

OH*, and H*. The binding energy calculations of HOCO*, OH*, and H* are referenced to CO2,

H2, and H2O gas molecules, respectively, while that of CO* is referenced to CO gas molecule.

The stabilization energy and zero point energy are considered when the OH* binding energy is

calculated. The stabilization calculation details can be seen in Figure S18 and the corresponding

description in the supporting information.

The mixing energy, EMixing, is calculated to obtain the convex hull of PdxM1–xHy according

to:

EMixing = EPdxM1−xHy
− xµPd(bulk) − (1− x)µM(bulk) − y

1

2
µH2(g) (4)

where EPdxM1−xHy is the DFT energy of PdxM1–xHy , where x is the concentration of element Pd

and y is the concentration of element H. µPd(bulk) and µM(bulk) denote the chemical potentials of

bulk Pd and bulk metal M, respectively. µH2(g) is the chemical potential of H2 gas at 1 bar.

The CO2RR elementary reactions and the corresponding net reaction rate equations of the

kinetic model are considered:[17, 20, 31]

CO2(g) + ∗+ H+ + e− ←−→ HOCO∗ (5)

HOCO∗+ H+ + e− ←−→ CO∗+ H2O(l) (6)

CO∗ ←−→ CO(g) + ∗ (7)

r1 = k1θ∗pCO2
− k1

K1
θHOCO∗ (8)

r2 = k2θHOCO∗ −
k2
K2

θCO∗ (9)

r3 = k3θCO∗ −
k3
K3

θ∗pCO (10)

k1, k2 and k3 denote forward rate constants of equations 8, 9 and 10, respectively. K1, K2 and K3

are the corresponding equilibrium constants. pCO2
is the CO2 partial pressure of 101 325 Pa. pCO

is the CO partial pressure of 5562 Pa. θ denotes the surface coverage.[8, 11]
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The HER elementary reactions are considered as:[32]

H+ + e− + ∗ ←−→ H∗ (Volmer step) (11)

H∗+ H+ + e− ←−→ H2(g) + ∗ (Heyrovsky step) (12)

The Gibbs free energy (G) is calculated from:

G = EDFT + EZPE +

∫
CpdT − TS (13)

where EDFT, EZPE, Cp, and S are the DFT energy, the zero point energy, the heat capacity,

and entropy, respectively. The free energy calculations of gas-phase species utilize the ideal gas

approximation. The harmonic approximation is used to calculate the free energy of the slabs with

adsorbate. The free energy calculations of HOCO*, CO*, OH*, and H* are references to CO2

gas, H2 gas, and liquid H2O. A +0.15 eV correction per C=O, +0.15 eV correction for HOCO*

and +0.1 eV correction for H2 are used for systematic overbinding corrections with the BEEF-vdw

functional in all calculations.[20, 33] The free energy calculations of the molecules and various

adsorbates can be found in Table S1 and Table S2, which are the same as in our previous work.[20]

To avoid calculations of solvated protons, the computational hydrogen electrode (CHE) model is

used in this work.[34]

3 Results and discussion

The workflow for the screening of stable and active candidates of PdxM1–xHy for the CO2RR can

be divided into the following five stages. The first stage shows the search space of the slabs of each

PdxM1–xHy . For the 4×4×4 bare slabs, there are 64 metal sites, which can be occupied by either

Pd or the metal M, and 64 hydrogen sites which can be occupied by H or be vacant. Thus, the

search space (including symmetrically identical slabs) is 264×264 ≈ 3.4×1038, which is intractable

to run DFT calculation for all slabs. To handle the huge search space, the ALCE model equipped

with MCSA in parallel is utilized to obtain the ground-state slabs at each concentration. The

specific implementation of the ALCE+MCSA can be seen in Figure S1. The ALCE can obtain

the accurate surrogate model to speed up the CE energy prediction of the new given slabs, while

MCSA is used to obtain the ground-state structures at each concentration quickly. During this

stage (the second stage), 100∼200 stable bare slabs are found according to the DFT convex hull,

which is a huge reduction of search space from the original 3.4×1038 possible configurations. Since

there are several unique adsorption sites for each stable bare surface, a local similarity comparison

method is implemented to find unique sites.[21] After finding the unique adsorption sites, CO*

adsorbate is added to the bare slabs, and its binding energies are calculated using DFT. During

this stage (the third stage), 600∼900 unique slabs with CO* are found. The kinetic model in the

fourth stage can be built to find the active range of CO* binding energies, reducing the number
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of possibly active slabs down to 200∼300. Because the number of slabs is limited at this point,

the binding energies of HOCO*, OH*, and H* adsorbates can now be calculated via DFT. In the

last stage, the final candidates can be found through the kinetic model dependent on the binding

energies of CO* and HOCO* at the most stable adsorption sites. Finally, less than 30 stable and

active candidates of PdxM1–xHy are found. All structures for the final candidates with adsorbates

can be found in our database.[35]

Figure 1: The workflow of the processes of the screening stable and active candidates of PdxM1–xHy

for CO2RR. The top and side views of an example structure are given for the first 4 stages. The

top views of HOCO* and CO* of an example candidate for the last stage. The blue spheres are

Pd atoms, and the big grey spheres are metal M atoms (e.g., Ti). The white spheres are H atoms.

The small grey spheres in adsorbates are C atoms, and the red spheres are O atoms.

To quickly and accurately obtain the energies of slabs, a good surrogate model is very important.

Here, The ALCE method is carried out to train the CE model. The CE candidates are extracted

from the CE convex hull and calculated by DFT and then added to the train set of the CE. We

re-train the CE model with the new train set and then get new CE candidates from the new CE

convex hull. During this process, we focus on the DFT convex hull of each iteration rather than the

CE convex hull, which means the CE convex hull will be confirmed by DFT, and thus, the DFT

convex hull is more reliable. This differs from other approaches that directly use the convex hull

predicted from the surrogate model. As are shown in Figure 2a and Figure 2b, both PdxTi1–xHy

and PdxNb1–xHy have 12 ALCE iterations. The green curves are 10-fold cross validation (CV)

errors that we mainly focus on. The initial 10-fold CV error of PdxTi1–xHy is 10.276 meV/atom as

shown in Figure S2, which is a large error because only 50 random structures are in the initial train

set. During the process of ALCE, the new structures of 50, 50, 200, 406, 500, 528, 382, 339, 320,

312, and 279 are added into the train set from iteration 2 to iteration 12, respectively. Their fitting
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Figure 2: The 10-fold CV or RMSE as a function of ALCE iterations for PdxTi1–xHy (a) and

PdxNb1–xHy (b). The linear fitting plots of CE energy and DFT energy of ALCE iteration 12 for

(c) PdxTi1–xHy and (d) PdxNb1–xHy .

plots can be found in Figure S3, Figure S4 and Figure S5. The 10-fold CV is gradually decreased

and finally maintains stable at around 2.0 meV/atom as seen in Figure 2c. A similar case is

observed for PdxNb1–xHy in Figure 2b. Its initial 10-fold CV error is as large as 10.276 meV/atom

as shown in Figure S20. Then, we add the new structures of 488, 499, 546, 575, 444, 437, 373,

272, 321, 342, and 352 into the train set from iteration 2 to iteration 12, respectively. The 10-fold

CV error drop rapidly since iteration 2 and then remain stable at about 3.2 meV/atom, where

the fitting plots can be seen in Figure S21, Figure S22, Figure S23, and Figure 2d. Besides, the

orange curves in Figure 2a and Figure 2b are the RMSEs of only train sets (without test sets) for

PdxTi1–xHy and PdxNb1–xHy . They are very small at first and then gradually go up to stable

values, and finally, the RMSEs are close to their 10-fold CV errors. This could be because the

overfitting is very large at first and gradually decreases as more structures are added to the train

set.

To identify stable compositions of PdxTi1–xHy and PdxNb1–xHy , their CE and DFT convex

hull plots are calculated. Before obtaining the CE convex hull, the most stable slabs at each unique

H and Pd concentration are first calculated by MCSA. Since there are 65×65 unique concentrations,
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Figure 3: The CE convex hull plots of ALCE iteration 12 for (a) PdxTi1–xHy and (b) PdxNb1–xHy .

The DFT convex hull plots of ALCE iteration 12 for (c) PdxTi1–xHy and (d) PdxNb1–xHy .

MCSAs at each concentration are implemented to get 65 × 65 stable slabs, which can be used to

calculate CE convex hull. The points on the vertices of the CE convex hull are likely to be stable

compositions considering the uncertainty of the CE model. The possible stable candidates from

the CE convex hull need to be verified by the DFT convex hull. To better understand the shape

of the convex hull for PdxTi1–xHy and PdxNb1–xHy , their 3D CE convex hulls in iteration 12

are displayed in the Figure S13 and Figure S31. However, in order to clearly see the specific

concentrations of the convex hull, the 2D convex hulls are used in the following. Figure 3a and

Figure 3b show the CE convex hull plots of the ALCE final iteration 12 for PdxTi1–xHy and

PdxNb1–xHy , respectively. The CE convex hull of iteration 1-11 of PdxTi1–xHy can be found

in Figure S10, Figure S11 and Figure S12, while that of PdxNb1–xHy can be found in Figure

S28, Figure S29 and Figure S30. We notice that the CE convex hull of the last iteration is quite

different from the initial one, but that of the last several iterations are very similar. This is because

the CE model in the beginning is not good enough, and the overfitting is very large. However,

the CE model is eventually improved and there is almost no overfitting in the end. It is worth

pointing out that this situation is more obvious for the DFT convex hull. Figure 3c and Figure 3d

display the DFT convex hull plots of the ALCE in iteration 12 for PdxTi1–xHy and PdxNb1–xHy ,

respectively. The previous iterations 1-11 of the DFT convex hull of PdxTi1–xHy are shown in

Figure S6, Figure S7 and Figure S8, while that of the DFT convex hull for PdxNb1–xHy are shown
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in Figure S24, Figure S25 and S26. Since there are very similar tendencies for PdxTi1–xHy and

PdxNb1–xHy , we only take PdxTi1–xHy as an example here. We can notice that the DFT convex

hull shapes greatly differ in the first 5 iterations. After that, their shapes become quite similar.

Especially the DFT convex hulls for the last 3 iterations are almost identical and thus we conclude

that the DFT convex hull is converged. Furthermore, the volume of the DFT convex hull is a

more straightforward quantity to understand whether the convex hull is converged. As shown in

Figure S9 and S27, we can see that the volume of the DFT convex hull is rapidly going up in the

first 5 iterations and finally reaches a stable maximum in the last several iterations, which further

verify the converged DFT convex hull. However, we should clarify that it is very difficult to ensure

that all the global ground state structures are located for any model at 65× 65 concentrations.

Even though our ALCE method with MCSA makes DFT convex hull converged, there still exists

the rare probability that the true global ground state structures are not found, but the number of

them is so few that we do not consider them. Finally, we find 125 stable slabs for PdxTi1–xHy

and 116 stable slabs for PdxNb1–xHy , which has greatly reduce the search space.

Figure 4: Activity volcano plot of (a) the PdxTi1–xHy(111) candidates and (b) the corresponding

partial magnification of black dashed area for CO2RR at −0.5 V overpotential. Activity volcano

plot of (c) the PdxNb1–xHy(111) candidates and (d) the corresponding partial magnification of

black dashed area for CO2RR at −0.5 V overpotential.
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In order to further study the CO2RR activity of PdxTi1–xHy and PdxNb1–xHy , a kinetic

model is built as illustrated in Equation 8, Equation 9 and Equation 10. As shown in Figure

4a and Figure 4c, the activity volcano plots of the PdxTi1–xHy(111) and the PdxNb1–xHy(111)

depend on the binding energies of CO* and HOCO* and the color bars show the current density

calculated by the kinetic model at −0.5 V overpotential. The white dots in the Figures are all

candidates after screening by the CO* filter in stage 4 in Figure 1, and PdxTi1–xHy(111) has 111

candidates and PdxNb1–xHy(111) has 76 candidates. The red dot is the slab of Pd64H64, about

3.7 µA cm−2, used for the comparison. It can be noticed that there are lots of candidates with

better CO2RR activity than that Pd64H64 for the PdxTi1–xHy(111) in Figure 4a and they can

be seen in the black dashed rectangle. For the PdxTi1–xHy(111), 24 active candidates can be

found in detail in the partial magnification in Figure 4b, which can be divided into four categories.

The dots marked by blue has comparable current densities (3.7-4.2 µA cm−2) compared to the

pure Pd64H64; the current densities of the dots marked by red, yellow, and black are sequentially

better than that of Pd64H64. Especially, the current densities of the Pd15Ti49H64 and Pd12Ti52H60

can reach at about 5.1 µA cm−2 that is significant greater than Pd64H64. There is no too strong

OH* binding on these active candidates as shown in Figure S16 and thus no OH* poisoning.

Besides, it can be noticed that the active candidates have a higher concentration of Ti and H.

For the PdxNb1–xHy(111), there are fewer active candidates, only 5 comparable slabs, which are

shown in the partial magnification Figure 4d. They are Pd8Nb56H27, Pd12Nb52H56, Pd15Nb49H29,

Pd36Nb28H33 and Pd11Nb53H16, which have high Nb concentraion. Especially, the Pd11Nb53H16

has the highest current density, 4.6 µA cm−2. The OH* binding on these active candidates are

not too strong and thus do not poison the surfaces as shown in Figure S34. Besides, it is worth

mentioning that the candidates of the Pd alloy hydride have much better CO2RR activity than

the corresponding candidates of the doped Pd hydride in our previous work.[20]

In order to further understand the catalytic activities of active PdxTi1–xHy and PdxNb1–xHy

candidates, the free energy diagrams of the CO2RR and HER are shown in Figure 5. The black

curves in all Figures are the free energy diagram of pure Pd64H64, which is used as a reference.

The CO2RR free energy diagrams in Figure 5a and Figure 5c illustrate that the HOCO* step of

Pd64H64 is the potential limiting step, which means the free energy of the HOCO* is too high and

thus the HOCO* binding is too weak to form efficiently on the surface. We notice that all of the

HOCO* steps of the active candidates are lower than that of Pd64H64, which results in stronger

HOCO* binding on the surface and thus make the reaction 5 easier. Besides, it can be noticed that

the majority of active candidates have a stronger binding of CO* than Pd64H64, but the binding

energy should not be too strong to avoid CO* poisoning. The CO2RR free energy diagrams of all

candidates at stage 4 in Figure 1 are also displayed in Figure S14 and Figure S32, most of them

are inactive for both PdxTi1–xHy and PdxNb1–xHy . This is because either their HOCO* step

is so high (the binding is too weak) that it is too difficult to produce HOCO*, or the CO* step
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Figure 5: Free energy diagram of (a) CO2RR and (b) HER of active candidates for the

PdxTi1–xHy(111). Free energy diagram of (c) CO2RR and (d) HER of active candidates for

the PdxNb1–xHy(111).

is too low (the binding is too strong)causing CO* poisoning. For the Pd15Ti49H64, Pd12Ti52H60,

and Pd11Nb53H16 with high current densities, their HOCO* binding is not weak and the CO*

binding is not strong, which is the reason why they are very active. However, the HER free energy

diagrams for both PdxTi1–xHy and PdxNb1–xHy indicate that the candidates that are active for

CO2RR also have better HER performance than Pd64H64 as shown Figure 5b and Figure 5d. All

of them have lower free energy of the Volmer step compared to the Pd64H64, which can improve

their HER activity. The HER free energy diagrams of all candidates at stage 4 in Figure 1 are also

given in Figure S15 and Figure S33. We notice that most candidates have stronger binding of H*

than Pd64H64 and the bindings are not strong, which leads to their high HER activity. However,

the candidates with high concentrations of H and Pd have weaker binding of H* than Pd64H64 and

thus lower HER activity, which is consistent with our previous work.[21] In addition, there are no

obvious scaling relations between the binding energies of different adsorbates for both PdxTi1–xHy

and PdxNb1–xHy as shown in Figure S16 and Figure S34, which may be attributed to the high

complexity of the composition of the surfaces and the different stable adsorption sites. Figure S19
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and Figure S36 describe the selectivity of all candidates toward CO and H2 for PdxTi1–xHy and

PdxNb1–xHy , where ∆GHOCO∗ −∆GH∗ is used as a descriptor to illustrate the tendency towards

CO2RR and HER. The more positive value of ∆GHOCO∗−∆GH∗ tends to generate more H2, while

the more negative value will produce more CO2. It can be seen that a majority of candidates can

produce more H2 than CO2 and only a small part of candidates can generate more CO2.

Figure 6: Distribution of atom Pd, Ti, and H of all candidates within the cutoff sphere as a function

of (a) the HOCO* and (b) the CO* binding energies. Distribution of atom Pd, Nb, and H of all

candidates within the cutoff sphere as a function of (c) HOCO* and (d) CO* binding energies.

To further reveal the role of each element in affecting the binding energies, the statistical distri-

butions of the binding energy of different adsorbates as a function of the frequency of appearance of

each element in a local environment are displayed in Figure 6. The grey rectangle area is the active

zone for HOCO* or CO* according to the kinetic model for CO production. Figure 6a and Figure

6b are the distributions of the binding energies of HOCO* and CO* for PdxTi1–xHy . Most of the

HOCO* binding energies are not in the active zone, and only a small part of elements Ti and H

is distributed in this active zone. However, the center of the CO* binding energies is nearly in the

middle of the active zone. The distributions of the OH* and H* binding energies for PdxTi1–xHy

are also shown in Figure S17. It is worth pointing out that Pd is distributed in the weak binding

zone of the HOCO*, CO*, and OH*, which implies that Pd may weaken their binding. This is not
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the case for H* distribution as the element Pd is mainly distributed in the center of the zone of

the H* binding energies. For the PdxNb1–xHy , the distributions of binding energies of HOCO*,

CO*, OH* and H* are displayed in Figure 6c-d and Figure S35a-b, respectively. Similar to the

PdxTi1–xHy , most of the binding energies of the HOCO* are higher than the active zone, and

only a tiny part of Ti and H is in the HOCO* active zone. The centers of the distributions for

the element Pd, Nb, and H are roughly in the middle of the CO* binding. Their OH* and H*

distributions are displayed in Figure S34. The metal element Pd is obviously only in the weak

binding zone of the OH* (1.0-2.0 eV), while element Nb is mainly in the strong binding zone of

the OH*. This means element Pd may weaken the OH* binding. Pd is mainly distributed in the

strong binding zone of the H*. It is worth noting that the frequency of occurrence of element Pd

is very low within the local spheres for both PdxTi1–xHy and PdxNb1–xHy , which is much lower

than that of Ti/Nb and H. This indicates that the adsorbates binding to elements Ti/Nb and H

mainly contribute to the binding energy of the candidates.

4 Conclusions

We have used a surrogate model ALCE+MCSA, a CO* filter, and kinetic model to screen high-

performance catalysts of alloy hydrides of PdxTi1–xHy and PdxNb1–xHy for CO2RR, which greatly

reduces the massive search space. Due to the large complexity that includes different composi-

tions of alloy hydrides, different concentrations of metal elements and H of alloy hydrides, different

adsorption sites, and different adsorbates, it is impossible to find the stable and active cata-

lysts only using the density functional theory calculation. We utilize the high precision and low

overfitting ALCE model with RMSE of about 2 or 3 meV/atoms, and a large amount of MCSA

to identify the ground state Pd alloy hydride surfaces from the convex hull. Adsorption sites

and binding energies of adsorbates are also accurate as they are also calculated from DFT. Fi-

nally, 24 active candidates of PdxTi1–xHy and 5 active candidates of PdxNb1–xHy are screened

out according to the kinetic model. Especially, the Pd15Ti49H64 (Pd0.23Ti0.77H), Pd12Ti52H60

(Pd0.19Ti0.81H0.94) and Pd11Nb53H16 (Pd0.17Nb0.83H0.25) have good stability and excellent cur-

rent densities (approximately 5.1, 5.1 and 4.6 µA cm−2, respectively), which are higher than that

of Pd64H64 at 3.7 µA cm−2. These are because their HOCO* binding is not too weak, and CO*

binding is not too strong. Consequently, three candidates Pd0.23Ti0.77H, Pd0.19Ti0.81H0.94 and

Pd0.17Nb0.83H0.25 are recommended for further experimental investigations.

Data availability

The data including all DFT structures with the adsorbates HOCO*, CO*, H* and OH* on all

adsorption sites in this work are availabe at DTU database: https://doi.org/10.11583/DTU.

23798751
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Graph Neural Network-Accelerated Multitasking Genetic

Algorithm for Optimizing PdxTi1–xHy Surface under Various

CO2 Reduction Reaction Conditions

Changzhi Ai†, Shuang Han†, Xin Yang†, Tejs Vegge†,

and Heine Anton Hansen∗†

Abstract

Palladium (Pd) hydride-based catalysts have been reported to have excellent performance

for the CO2 reduction (CO2RR) and the hydrogen evolution reactions (HER). Our previous

work on doped-PdH and Pd-alloy hydrides showed that Ti-doped and Ti-alloyed Pd hydride

could improve the performance of the CO2 reduction reaction compared to pure Pd hydride.

Compositions and chemical orderings of the surfaces with only one adsorbate under certain

reaction conditions are linked to their stability, activity, and selectivity towards CO2RR and

HER, as shown in our previous work. In fact, various coverages, types, and mixtures of the ad-

sorbates, as well as state variables such as temperature, pressure, applied potential, and chem-

ical potential, could impact their stability, activity, and selectivity. However, these factors are

usually fixed at common values to reduce the complexity of the structures and the complexity

of the reaction conditions in most theoretical work. To address the complexities above and the

huge search space, we apply a deep learning-assisted multitasking genetic algorithm to screen

for PdxTi1–xHy surfaces containing multiple adsorbates for CO2RR under different reaction

conditions. The ensemble deep learning model can greatly speed up the structure relaxations

and retain a high accuracy and low uncertainty of energy and forces. The multitasking genetic

algorithm simultaneously finds globally stable surface structures at each reaction condition.

Finally, 23 stable structures are screened out under different reaction conditions. Among

these, Pd0.56Ti0.44H1.06+25%CO, Pd0.31Ti0.69H1.25+50%CO, Pd0.31Ti0.69H1.25+25%CO, and

Pd0.88Ti0.12H1.06+25%CO are found to be very active for CO2RR and suitable to generate

syngas consisting of CO and H2.
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1 Introduction

The electrochemical CO2 reduction reaction (CO2RR) is one of the most attractive approaches

to convert CO2 into chemical fuels and feedstocks.[1] This is because it can reduce the greenhouse

gas CO2 and produce valuable chemicals. Among them, reducing CO2 to CO is a trendy scheme

as its short reaction pathway only requires 2 electron/proton pairs and thus has a high energy

conversion efficiency. At the same time, it usually can simultaneously produce H2 due to the com-

petitive chemical reaction in the process of producing CO.[2] The obtained CO and H2 are the

components of syngas that can be synthesized to other valuable multi-carbon chemicals via the

Fischer–Tropsch processes.[3] Many experimental works report that PdH is a promising material

to synthesize syngas because of its high CO2RR and hydrogen evolution reaction (HER) perfor-

mance.[2, 4–7] The phase transformation from Pd to PdH at reducing potentials weakens the CO

binding energy and has been linked to the good syngas production performance on PdH.[2] A series

of improved materials based on PdH, such as bimetallic catalysts[5], single-atom catalysts[6], and

material supports[2], have been explored to improve the Faradaic Efficiency (FE) of the syngas

production. However, due to the complexity of locating the relevant atomic structures of the mate-

rials, especially for bi/multi-metallic alloy hydrides, it is very challenging to experimentally reveal

the relationship between the structures and the FE in the electrochemical CO2RR. Even though

the theoretical calculations are applied to explain the reaction mechanism in the alloy hydride

system, the selection of the atomic structures in most theoretical work typically relies on chemical

intuition.

Three key factors need to be considered to search for the relevant surface structures while

handling the complexity. Firstly, a global optimization method, such as minima hopping[8], simu-

lated annealing [9, 10], or a genetic algorithm (GA)[11–15], need to be utilized to find the global

minimum of a property of interest. Secondly, surrogate models, including cluster expansion[16] or

machine learning potentials[17, 18] can be used to speed up the calculations. The cluster expansion

model can predict the energy of a given structure with good accuracy; however, it is challenging to

apply to complex systems, such as a surface with multiple adsorbates potentially in contact with

an explicit solvent. Machine learning interatomic potentials have recently gained significant atten-

tion due to their computational efficiency and accuracy. They offer a promising alternative to the

cluster expansion model for complex chemical systems. Broadly, machine learning potentials can

be classified into three categories: kernel methods such as Gaussian approximation potentials[19,

20], descriptor-based feed-forward neural networks (such as the Behler-Parrinello neural network

potential[17, 21–23]), and deep neural networks[18, 24]. Among them, deep neural networks, par-

ticularly rotationally equivariant message-passing neural networks, have become highly popular

owing to their rapid and precise predictions for directional properties, like forces and dipole mo-

ments. Notable examples of these models include Nequip[25], MACE[26], and PaiNN[18]. Last, but

not least, it is also crucial to determine what physical properties need to be optimized. Structural
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stability is usually the property that we should consider optimizing first. There are two common

types of stability: thermodynamical compound stability[27] and electrochemical stability[28]. The

compound stability is determined by the convex hull of formation energy or mixing energy. It

means a structure is thermodynamically stable if it is in its lowest energy state, or in chemical

equilibrium with its components. During electrochemical reactions, electrochemical stability is

another key factor determining if the material is thermodynamically stable in an aqueous electro-

chemical system. The most common method is constructing a surface Pourbaix diagram, which

plots surface free energy as a function of applied potential and pH value. Besides, the surface

free energy can also depend on additional state variables, such as chemical potential, temperature,

pressure, etc.

Substantial efforts have been made in Pd-based hydride systems to establish relationships be-

tween the structures and the electrochemical performance.[2, 6] Our previous systematic doping

study builds the relationship between transition metal doping and the CO2RR activity. 22 tran-

sition metal elements are doped into the PdH(111) surface with different doping configurations,

and Ti-doped Pd hydride shows high CO2RR and HER activity.[29] Based on this information,

the Ti-Pd alloy hydride system with a higher complexity is also likely to accommodate very ac-

tive candidates. Subsequently, the chemical composition of the alloy hydride PdxTi1–xHy(111)

surface is searched by cluster expansion method equipped with Monte Carlo simulated annealing

according to the compound stability.[30] Some stable PdxTi1–xHy structures are found to be very

active for the CO2RR and the HER. However, the adsorbate coverage and mixtures of different

adsorbate species under the electrochemical reaction conditions are ignored during this structure

searching process, which is crucial in the electrochemical CO2RR and HER.[31, 32] It is very chal-

lenging to consider the full complexity because the search space increases drastically due to the

huge complexities associated with the structure and reaction conditions. Herein, this work focuses

on dealing with these complexities to identify relevant structures under diverse reaction conditions

quickly and accurately.

In this work, we apply a graph neural network-assisted multitasking genetic algorithm to screen

PdxTi1–xHy surface with adsorbates under different CO2RR conditions. The complex structural

configurations result in a huge search space, where a deep learning model is used to speed up

the atomic-scale calculations. Structures from DFT relaxations are used to train an ensemble of

PaiNN models, and the trained models are utilized to optimize the new structures and calculate

their energy uncertainty. The surface free energy is used to evaluate the surface stability, which

depends on temperature, CO partial pressure, applied potential, and the chemical potential dif-

ference between Pd and Ti. Due to the complexity of the state variables above, a multitasking

genetic algorithm employing the maximum gain dynamic niching (MGDN) algorithm [33] is used

to search for stable PdxTi1–xHy surface structures simultaneously under all considered reaction

conditions. Finally, 23 stable surface structures with adsorbates are found to be stable under dif-
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ferent reaction conditions. Among them, Pd0.56Ti0.44H1.06+25%CO, Pd0.31Ti0.69H1.25+50%CO,

Pd0.31Ti0.69H1.25+25%CO, and Pd0.88Ti0.12H1.06+25%CO are found to be active for the CO2RR.

2 Computational details

All density functional theory (DFT) calculations are performed by the Vienna Ab initio Simu-

lation Package (VASP) equipped with the projector augmented wave method.[34, 35] The atomic

simulation environment (ASE) is used as the interface to all VASP calculations in this work.[36,

37] The Bayesian error estimation exchange-correlation functional is used with van der Waals cor-

relation (BEEF-vdW) ensemble[38], which is suitable for chemisorption calculations. A 3 × 3 × 1

Monkhorstpack grid of k-points is used to sample the first Brillouin zone, and the energy cutoff

is set to 400 eV.[39] The Hellman-Feynman forces and the energy convergence criterion for all

structure relaxations are set as 0.01 eV/Å and 10−5 eV, respectively. The dipole correction is used

in all DFT calculations to remove the electrostatic dipole-dipole interactions in the z direction due

to periodical boundary conditions.

The surface free energy is used to construct the fitness function Fi in the GA global optimization.

Fi can be calculated as follows:[40]

Fi = −(γ − κi ∗ σi) (1)

where κ is a factor that determines the relative weight of the predicted mean and uncertainty, and

0 and 1 are used in our calculations. σ is the standard deviation of the ensemble energies. The

surface free energy γ of the PdxTi1–xHy(111) surfaces (with adsorbates) is used to evaluate the

surface stability in the solution. It can be represented in the following equations:

γPdH =
1

2A
(GPdH(slab) −N(slab)µPdH(bulk)) (2)

γ =
1

A
[G(N2

Pd,N
2
Ti,N

2
H,Ni

ads)
−G(N1

Pd,N
1
Ti,N

1
H) − ∆NPd∆µPd − ∆NTi∆µTi − ∆NH∆µH

−
∑
i

Ni(ads)µi(ads) − neU − nekBT ln10pH] − γPdH (3)

where G(N2
Pd,N

2
Ti,N

2
H,Ni

ads)
and G(N1

Pd,N
1
Ti,N

1
H) are the free energies of structure 2 and structure 1,

respectively. Structure 2 is an arbitrary surface with adsorbates, and structure 1 is a bare Pd16H16

without adsorbates. ∆µPd, ∆µTi, ∆µH, and µi(ads) are the chemical potential difference of Pd, Ti,

H and the chemical potential of adsorbate, respectively. U , pH, and T are the applied potential,

pH, and temperature, respectively.

The possible Pd and Ti chemical potentials for the Pd-Ti-H system are identified from the

chemical potential diagram in Figure 1. More than 200 structures are collected from the Materials

Project[41] and the Open Quantum Materials Database (OQMD)[42]. The collected structures are

then reoptimized with our chosen DFT parameters. The calculated energies are used to construct
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Figure 1: The phase diagram (a) and chemical potential diagram (b) of PdxTiyHz .

the Pd-Ti-H phase diagram and chemical potential diagram using the Pymatgen package.[43] The

bulk PdH, the H2 or proton, and the bulk TiPd3 are assumed to be in equilibrium with PdxTi1–xHy

surface because we are interested in high H and Pd concentrations but low Ti concentrations.

The adsorbate species CO*, H*, and OH* are assumed to be in equilibrium with CO, H2, H2O,

protons and eletrons according to the reactions:

CO∗ ⇀↽ CO(g) + ∗ (4)

H+ + e− + ∗ ⇀↽ H∗ (5)

H2O(l) + ∗⇀↽ OH∗ + H+ + e− (6)

A rotationally equivariant message-passing neural network, namely the polarizable atom inter-

action neural network (PaiNN)[18, 44], is applied to speed up the relaxation of the structures. The

PdxTi1–xHy(111) surfaces with adsorbates are first calculated by DFT, and we select one single-

point structure for every 10 ionic steps, which are fed to the deep learning model. The cutoff

radius is set to 5.0 Å. We use ensemble PaiNN models with 8 different architectures (116, 120, 124,

128, 132, 136, 140, 144 node features) to obtain the mean energy and forces and their variances.

They are trained using the Adam optimizer, and the learning rate is 0.0001. The maximum train

step is 2,000,000, and the batch size is 12. A mixed loss function of energy and forces is used (see

Equation S4) and the balance parameter λ is set to 98% weight on forces. Root mean squared

errors (RMSE) of energy and force are calculated by Equation S5 in the Supporting Information.

A multitasking genetic algorithm (MTGA) is carried out to search for the PdxTi1–xHy(111)

surfaces (with adsorbates) under various reaction conditions. The surface structures with adsor-

bates can have different compositions and chemical orderings of the surface with different coverages,

types, and mixtures of the adsorbates. The structural diversity is mainly controlled by the oper-

ators, which is crucial to determining how to generate new structures. We develop the operators
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including slab operators that manipulate metal and hydrogen atoms in the slab, adsorbate oper-

ators that manipulate adsorbates on the surface, and crossover operator that combines the slab

from one structure and adsorbates from another structure. The details can be found in the Sup-

porting Information. A set of comparators is used to identify duplicates, including the potential

energy comparator, nearest neighbor matrix string comparator in ASE[37], and graph comparator

in ACAT[33]. The population size is set to 50. The MTGA converges when new candidates can-

not be found anymore in the last three consecutive generations. In the MTGA calculations, the

maximum gain dynamic niching (MGDN) algorithm (implemented in ACAT)[33] is employed to

find the best candidate structures under all considered reaction conditions. After integrating the

MTGA and the PaiNN model, an automated active learning workflow based on MyQueue[45] is

used to find the global minima.

The search space of surface structures Nstruct and the number of tasks Ntask for PdxTi1–xHy

(111) with adsorbates are calculated by the following equation 7:

Nstruct = 2NPd/Ti(slab) · 2NH(slab) · (Nads + 1)Nsites (7)

Ntask = NT ·NPCO ·NU ·N∆µPd
·N∆µTi ·Nκ (8)

where NPd/Ti(slab) and NH(slab) are the numbers of Pd/Ti and H in the slab without adsorbates,

respectively. Nads is 3 including CO*, H*, and OH*. Nsites is the number of the adsorption

sites. NT , NPCO , NU , N∆µPd
and N∆µTi are the number of considered temperatures, CO partial

pressures, applied potentials, chemical potential differences of Pd and Ti, respectively.

3 Results and discussion

To study the thermodynamic stability of the compounds, the Pd-Ti-H ternary phase diagram

is calculated as shown in Figure 1a. The green circles in the phase diagram show the stable

compounds, including Pd, Ti, H2, TiPd8, TiPd5, TiPd3, TiPd2, TiPd, Ti2Pd, TiH2 and PdH.

Unstable phases within 1 eV (above) of the convex hull are shown in the phase diagram, marked by

the red squared dots. We assume the Pd-Ti-H slab is in equilibrium with the stable compound PdH,

H2, and TiPd3 because we are interested in high H and Pd concentration but low Ti concentration.

Figure 1b shows the corresponding chemical potential diagram. The total chemical potential of

PdxTiyHz without adsorbates is dependent on the chemical differences ∆µPd, ∆µTi and ∆µH. The

equilibrium chemical potential of the three stable compounds PdH, H2 and TiPd3 is highlighted

in the dashed red circle, and their equilibrated chemical difference values of ∆µPd, ∆µTi and ∆µH

are -2.249, -7.285 and -3.614 eV, respectively. These terms are used to calculate the surface free

energy shown in Equation 3. Figure 2 is a more straightforward representation of the equilibrium

between the PdxTi1–xHy slab with adsorbates and the corresponding stable compounds. The right

part of the slab (the blue part) is equilibrated with the bulk PdH, the protons, and the bulk TiPd3

as described above. The left (red) part illustrates the adsorbates are equilibrated with the CO gas,
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Figure 2: The phase equlibrium between the PdxTi1–xHy with CO*, H* and OH* adsorbates

and CO gas, H2 gas, liquid H2O, bulk PdH and bulk TiPd3.

the protons, and the liquid H2O. In the electrochemical CO2RR process, the HOCO*, CO*, H*,

and OH* are all potential adsorbate species that can present on the catalyst surface. However, the

adsorption energy of the HOCO* is usually weaker than the other three adsorbates and thus not

stable on the surface. So we do not consider the HOCO* adsorption here. The CO*, H*, and OH*

are assumed to be in equilibrium with the CO gas, proton/electron pair, and H2O, respectively

(see Equation 4, Equation 5 and Equation 6).

Figure 3 shows the process of the global optimization for PdxTi1–xHy with adsorbates CO*, H*

and OH* in the active learning workflow, and the corresponding example structures and complexity

are given. We use a 2 × 2 × 4 slab with multiple adsorbates and fix the bottom layer (12 metal

atoms, 4 internal hydrogen atoms, 12 adsorption sites, 3 types of adsorbate species). Hence,

there exist 220 = 1, 048, 576 possible slab configurations and 412 = 16, 777, 216 possible adlayer

patterns, which constitute a total structural search space of approximately 1.8 × 1013 structures

if we ignore the symmetry. Besides, the total number of tasks is 11,250 calculated by Equation

8. The total search space is the product of structural search space and the total number of tasks,

which is approximately 2.0 × 1017. The detailed active learning workflow can be found in Figure

S1. Initially, 100 random PdxTi1–xHy(111) surfaces with adsorbates are generated and relaxed by

DFT. The calculated end-point structures are collected and fed to the ensemble PaiNN model with

8 different NN architectures. The trained ensemble PaiNN model can be used to optimize new

structures generated by the GA operators. During the MTGA calculations, we customize three

types of operators that can generate new PdxTi1–xHy surface structures with adsorbates, which

is shown in Figure 3, namely the slab operators that control the composition and permutation

of the metals and internal hydrogen atoms, the adsorbate operators that control the coverage
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Figure 3: The process of the global optimization for PdxTi1–xHy with adsorbates CO*, H*, and

OH* in the active learning workflow, and the corresponding complexity.

and permutation of the adsorbates, and the crossover operator that combine the adsorbates from

one structure and the slab from another structure. The detailed operators can be seen in the

GA operators part of the Supporting Information. After optimizing a newly generated structure

using the PaiNN model, the energy of the optimized structure is used to calculate the surface free

energy and thereby the fitness function. The surface free energy dependents chemical potential

differences of ∆µPd, ∆µTi, applied potential U , temperature T , and CO partial pressure PCO

adn the used values can be found in Table 1. The MGDN algorithm [33] in MTGA is applied to

find the candidate structures at each reaction condition. Then, the candidate structures and the

last generation are picked for DFT relaxation. In order to avoid repeated DFT calculations, the

repeated structures are removed by comparing their similarity. The identified unique structures are

further optimized by DFT and collected to retrain the PaiNN model. This procedure is repeated

until the whole active learning process converges. The convergence condition is that the number of

new DFT candidates keeps decreasing until it reaches zero, and new candidates cannot be found

anymore in the last 3 iterations, as shown in Figure S7. After convergence, the candidates at all

considered reaction conditions are obtained and then used to analyze the activity and selectivity

for the CO2RR and HER.
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Table 1: The values of different state variables while calculating surface free energy.

State variable Values

Chemical potential difference of Pd: ∆µPd (eV) -2.249, -2.499, -2.749, -2.999, -3.249

Chemical potential difference of Ti: ∆µTi (eV) -7.285, -7.535, -7.785, -8.035, -8.285

Applied potential U (V) 0, -0.1, -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8

Temperature T (K) 283.15, 298.15, 313.15, 338.15, 353.15

CO partial pressure PCO (Pa) 0.101325, 10.1325, 1013.25, 5562, 101325

Figure 4: (a) The energy RMSE in the process of active learning. (b) The fitting curve of the

DFT energies and the corresponding neural network potential energies of the optimized structures.

The green error bars of each point are the uncertainties calculated by ensemble energies.

To evaluate the performance of the active learning framework, the energy RMSE between the

DFT energies and the neural network energies in the process of the active learning is shown in

Figure 4a. The blue curve shows the energy RMSE rapidly declines in the first several iterations

while it goes down very slowly in the last several iterations. The yellow curve illustrates the energy

RMSE without the first iteration in which the structures are generated randomly. We can find

that the energy RMSE rapidly levels off. It can be noticed that active learning mainly contributes

to the decrease in the energy RMSE of the GA candidates rather than all structures in the whole

search space. This can explain the slow RMSE decline in the last several iterations because the

accuracy of the deep learning model cannot improve too much for all structures even though it is

already good enough for the potential candidates. Figure 4b shows the parity plot between the

DFT energies and the neural network potentials for the last iteration. The corresponding error

bars for the neural network energy variance are also displayed. The energy RMSE is as low as

5.274 meV/atom and the energy variances are so small that the most error bars cannot be seen.
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The learning curve of the energies in Figure S4a further illustrates the small energy RMSE and

variance. For comparison, the learning curve of the energies in the first iteration can be seen

in Figure S6a. We can see that both the energy RMSE and variance in the last iteration are

significantly decreased compared to the first iteration. The force RMSE is also crucial because it

determines the precision of the structure relaxation. Figure S4b and Figure S6b display the forces

learning curves of the last and the first iteration, respectively. It can be noticed that the same

scenario happens as for the energy RMSE curves. Both the forces RMSE and variances are greatly

decreased. Especially for the force variances, they are so small that we almost cannot see them

in Figure S6b. Besides, the energy and forces learning curves of the 8 NN architectures for the

first and the last iteration are also shown in Figure S3 and Figure S5, respectively, which further

illustrate that the precision of energy and forces of the deep learning model have been greatly

improved after the active learning.

Figure 5: The surface free energy as a function of the state variables between the chemical

potential differences of Pd and Ti, applied potentials, temperature, and partial pressure of CO.

To study the effects of the different reaction conditions on the surface free energy, the contour

plots of the surface free energy as a function of the chemical potential differences ∆µPd and ∆µTi,

applied potentials U , temperature T , and CO partial pressure PCO are shown in Figure 5. The

corresponding heatmaps for candidate structures at the same reaction conditions are shown in

Figure S12. To simplify, the unique number for each structure (the index of the DFT database) is

used, and the corresponding top view can be found in Figure S13. When the potential, temperature,

and CO partial pressure are fixed at -0.5 V, 298.15 K, and 5562 Pa, respectively, the smaller ∆µPd

and larger ∆µTi will minimize the surface free energy as shown in Figure 5a. At this condition, the

candidate structure tends to have high Ti concentration and adsorbate CO* with 25% coverage

on the surface as the top view of structure 900 in Figure S13. When the large ∆µTi or the small
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∆µPd are fixed at -7.285 eV, -3.249 eV, respectively, under 298.15 K and 5560 Pa as displayed in

Figure 5b-c, the lower applied potential and smaller ∆µPd or larger ∆µTi will make the surface free

energy lower. At both conditions, the candidate structure has high Ti concentration and adsorbate

H* with high coverage on the surface as the structure 782 shown in Figure S13. When the CO

partial pressure and temperature are fixed at 5562 Pa and 298.15 K, respectively, under the large

∆µTi=-7.285 eV and the small ∆µPd=-3.249 eV, as displayed in Figure 5d-e, the lower applied

potential will minimize the surface free energy. Compared to the applied potential, the temperature

and CO partial pressure do not substantially influence the surface free energy. Similarly, the

candidate structure at low potential and different temperatures and CO partial pressure have high

Ti concentration and adsorbate H* with high coverage on the surface. When the condition is at

large ∆µTi=-7.285 eV, small ∆µPd=-3.249 eV and potential=-0.5 V, high CO partial pressure=1

bar and low temperature=0 ℃ can lower the surface free energy. The candidate structure at this

condition has high Ti concentration and adsorbate CO* with 50% coverage arranged in a hexagonal

pattern.

To reveal the relations between the stable structures and certain reaction conditions, the surface

free energy under several typical reaction conditions is displayed in Figure 6. The top views of the

corresponding structures are shown at the bottom of each plot. The free energy as a function of the

applied potential at four different chemical potential conditions (the vertices in Figure 5a) under

the room temperature=298.15 K and CO partial pressure=5560 Pa can be found in Figure 6a, 6b,

S8a, and 6d. There are very high concentrations of Ti for all of the stable candidates and the top

layers are Ti overlayer pattern when the chemical potential difference is at large ∆µTi=-7.285 eV

and small ∆µPd=-3.249 eV as shown in Figure 6a. Besides, there are 0.25% CO* coverage and

very high H* coverage on the surface when the potential is larger than -0.66 V. Otherwise, there

is only high H* coverage and no CO* on the surface. After lowering only ∆µTi to -8.285 eV or

increasing only ∆µPd to -2.249 eV, the same surface free energy plot can be obtained as shown in

Figure 6b, and Figure S8a. When the potential is larger than -0.31 V, the Ti concentrations are

very low with no Ti in the top layer, and there are only CO* adsorbates on the surface and the

coverage is 50%. When the potential decreases below -0.31 V, the Ti concentration increases and

the top layer is in a Ti hexagonal pattern. Besides, CO* coverage is lowered to 25% and H* begins

to appear on the surface. When the potential decreases below -0.65 V, there is no CO* anymore

and only higher H* coverage on the surface. After lowering ∆µTi to -8.285 eV and increasing

∆µPd to -2.249 eV as shown in Figure 6d, the surface free energy is higher than that in Figure

6a, which is consistent with the result in Figure 5a. When the potential is larger than -0.38 V, Ti

concentration is very low, and no Ti is in the top layer, and only adsorbates CO* is on the surface

with 50% coverage. When the potential is less than -0.38 V, the Ti concentration increases, and

the top layer is in a line pattern. The CO* coverage goes down to 25% and H* coverage goes up.

The surface free energy as a function of CO partial pressure at ∆µPd=-3.249 eV, ∆µTi=-7.285 eV,
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Figure 6: (a, b, d) The surface free energy as a function of applied potentials with different chemi-

cal potential differences of Pd and Ti at temperature=298.15 K, and CO partial pressure=5560 Pa.

(c) The surface free energy as a function of CO partial pressure at fixed ∆µPd, ∆µTi, potential=-

0.5 V, and temperature=298.15 K. The corresponding most stable structures are shown at the

bottom.

potential=-0.5 V and temperature=209.15 K is displayed in Figure 6c. The Ti concentrations for

all candidates are very high and the top layer is an overlayer. Furthermore, the H* coverage for

all candidates is very high. When the pressure is larger than around 104 Pa, the CO* coverage is

50% in a hexagonal pattern. After the pressure is lowered below 104 Pa, the CO* coverage is 25%.

After the pressure is lowered below 5 Pa, the CO* disappears from the surface.

The influence of temperature is also studied at ∆µPd=-3.249 eV, ∆µTi=-7.285 eV, potential=-

0.5 V and CO partial pressure=5562 Pa as shown in Figure S8b. There is only one candidate

with high Ti concentration, high H* coverage, and 25% CO* coverage on the surface. It can be

noticed that the slope is very low for the surface free energy as a function of both CO partial

pressure and temperature, which can be attributed to their weaker impact on surface free energy

compared to the potential. Besides, the complete surface free energy plots versus potential, CO

partial pressure, and temperature are also given as a reference in Figure S9, Figure S10 and Figure
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S11 in the supporting information.

Figure 7: (a-b) The CO2RR and HER free energy diagram of active candidates at room temper-

ature=298.15 K and CO partial pressure=5560 Pa. (c) The activity volcano plot of all candidates

at potential=-0.5 V and CO partial pressure=5560 Pa. (d) The selectivity towards H2 and CO2

for all candidates.

To understand the CO2RR activity and the selectivity towards H2 and CO2, the binding ener-

gies and free energies for the obtained candidates with CO* are further calculated and analyzed. We

only consider the most stable structures for each composition and the most stable CO* adsorption

sites. The details for calculating binding energies can be found in the supporting information. Fig-

ure S14 shows the free energy diagram for the CO2RR for all candidates. It can be seen that most

of the candidates have too strong or too weak adsorption of HOCO* compared to pure PdH(111).

It is also worth noting that the free energies of HOCO* of Pd9Ti7H17+1CO, Pd5Ti11H20+2CO,

Pd5Ti11H20+1CO and Pd14Ti2H17+1CO are 0.349, 0.497, 0.570 and 0.595 eV, respectively, which

are not too strong or too week, and weaker than 0.606 eV of pure PdH. Furthermore, their free ener-

gies of CO* are not too strong or weak compared to -0.028 eV of pure PdH, which are -0.244, 0.149,

0.077, and -0.131 eV, respectively. The CO2RR free energy diagram for them is shown in Figure

7a. Hence, they are likely to produce more CO2 compared to pure PdH. The HER free energy dia-

gram for all candidates is shown in Figure S15. The free energies on H* step of Pd14Ti2H4+2CO,

Pd12Ti4H4+3CO, Pd14Ti2H4+3CO, Pd14Ti2H7+1CO, Pd14Ti2H5+3CO, Pd14Ti2H12+3CO and
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Pd9Ti7H17+1CO are 0.017, 0.033, 0.148, 0.188, 0.286, 0.325 and 0.368 eV, respectively, which

are weaker than that of pure PdH (0.430 eV), but not too strong. Therefore, they are likely

to produce more H2 compared to pure PdH. The HER free energy diagram for them is shown

in Figure 7b. Figure 7c shows the CO2RR activity volcano at -0.5 V of potential and 5560

Pa of CO partial pressure. We can see that Pd9Ti7H17+1CO (Pd0.56Ti0.44H1.06+25%CO),

Pd5Ti11H20+2CO (Pd0.31Ti0.69H1.25+50%CO), Pd5Ti11H20+1CO (Pd0.31Ti0.69H1.25+25%CO),

and Pd14Ti2H17+1CO (Pd0.88Ti0.12H1.06+25%CO) are more active than pure PdH, which is con-

sistent with the result of Figure 7c. The selectivity towards H2 and CO2 for all candidates is

illustrated in Figure 7d. A descriptor ∆G(HOCO∗)−∆G(H∗) is used to describe the trend to gener-

ate CO and H2.[29] If we focus on the CO2RR active candidates, all ∆G(HOCO∗)−∆G(H∗) values

for Pd5Ti11H20+2CO, Pd5Ti11H20+1CO and Pd14Ti2H17+1CO and Pd9Ti7H17+1CO are nega-

tive and then tend to produce more CO2. It should be noticed that their values are close to 0 eV

and thus suitable to generate syngas consisting of CO and H2. The detailed values can be found in

Table S1 of the supporting information. Besides, there is no OH* found on any candidate surfaces,

which indicates that there is no OH* poisoning.

4 Conclusions

In this work, a deep learning-assisted multitasking genetic algorithm is used to screen for

PdxTi1–xHy surfaces with multiple adsorbates for CO2RR under different reaction conditions.

The ensemble PaiNN model trained by DFT single-point structures can not only greatly speed up

the new structure relaxation but also keep a high accuracy of energy and forces. The model can

successfully deal with the structural complexity including compositions and chemical orderings of

surfaces with different coverages, types, and mixtures of the adsorbates. A genetic algorithm with

maximum gain dynamic niching algorithm is used for global optimization of the surface free energy

at each reaction condition, which can efficiently handle the complexity of state variables, such as

temperature, CO partial pressure, applied potential, and chemical potential differences of Pd and

Ti. A multitasking genetic algorithm is built to simultaneously deal with the complexity of struc-

tures and state variables. 23 stable structures are screened out under different reaction conditions.

Among them, Pd0.56Ti0.44H1.06+25%CO, Pd0.31Ti0.69H1.25+50%CO, Pd0.31Ti0.69H1.25+25%CO,

and Pd0.88Ti0.12H1.06+25%CO are found to be very active for CO2RR compared to pure PdH(111)

and suitable to generate syngas.

Data Availability

The data, including a final DFT trajectory and a task file given all reaction conditions, and over-

all figures of surface free energy versus state variables, and candidate structures under all different

reaction conditions are available at Database: https://doi.org/10.5281/zenodo.8191834

241



Code Availability

All codes for plot, pre-processing, and post-processing in this paper are available at the following

Gitlab repository named Pcat: https://gitlab.com/changzhiai/pcat.

Acknowledgment

This work was supported by the China Scholarship Council and the Villum Foundation through

the research center V-Sustain (9455). The authors thank the Niflheim Linux supercomputer cluster

at the Department of Physics at the Technical University of Denmark.

Keywords

CO2 reduction; PdxTi1–xHy ; Surface free energy; Deep learning; Graph neural network; Ge-

netic algorithm.

References

[1] S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L.

Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev.

2019, 119, 7610–7672.

[2] W. Sheng, S. Kattel, S. Yao, B. Yan, Z. Liang, C. J. Hawxhurst, Q. Wu, J. G. Chen, Energy

Environ. Sci. 2017, 10, 1180–1185.

[3] I. Wender, Fuel Processing Technology 1996, 48, 189–297.

[4] D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, J. Am. Chem.

Soc. 2015, 137, 4288–4291.

[5] J. H. Lee, S. Kattel, Z. Jiang, Z. Xie, S. Yao, B. M. Tackett, W. Xu, N. S. Marinkovic, J. G.

Chen, Nat. Commun. 2019, 10.

[6] Q. He, J. H. Lee, D. Liu, Y. Liu, Z. Lin, Z. Xie, S. Hwang, S. Kattel, L. Song, J. G. Chen,

Adv. Funct. Mater. 2020, 30, 2000407.

[7] W. Zhu, S. Kattel, F. Jiao, J. G. Chen, Adv. Energy Mater. 2019, 9, 1802840.

[8] A. A. Peterson, Topics in Catalysis 2013, 57, 40–53.

[9] M. Abatal, A. R. Ruiz-Salvador, N. C. Hernández, Microporous and Mesoporous Materials

2020, 294, 109885.

[10] C. Ai, J. Chang, A. Tygesen, T. Vegge, H. A. Hansen, 2023.

[11] L. B. Vilhelmsen, B. Hammer, The Journal of Chemical Physics 2014, 141, DOI 10.1063/

1.4886337.

242
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