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Abstract
Distributed Raman amplification (DRA) is a key technology that can
improve the performance of fiber optic communication systems. This
amplification scheme provides several advantages over the Erbium-Doped
Fiber Amplifiers (EDFAs), in terms of Noise Figure (NF), broadband gain,
and flexibility in design by means of multi-pumping schemes. Due to its
distributed amplification, DRA enables to control of the shape of signal
power evolution in both frequency and fiber distance. This is crucial for
attaining some of the long-term objectives in fiber optic communications,
including optimization of Signal-to-Noise Ratio (SNR) and compensating
for nonlinear impairments. However, the optimization of the pump power
and wavelength values poses a challenge to DRA configurations.

In this thesis, we utilize Machine Learning (ML) and optimization
techniques to design signal power evolution in two dimensions (2D), i.e.
frequency and fiber distance, using Raman amplifiers. First, an inverse
system model based on a Convolutional Neural Network (CNN) is used
to map the 2D signal power profiles to their corresponding Raman pump
power and wavelength values. The CNN model has shown a statistically
low error in learning the inverse mapping. However, its performance is
not accurate for designing 2D profiles of practical interest, such as a 2D
flat or a 2D symmetric (with respect to the midpoint in the distance). To
accurately design the practical 2D profiles, we use an online optimization
framework based on Differential Evolution (DE). In this framework, the
DE adjusts the pump power values online on the setup aiming to reduce
the cost value between the desired and the designed 2D profiles. The
DE framework is also combined with the CNN inverse model to achieve
better accuracy, more reliable optimum values, and faster convergence.

Finally, we experimentally validate the performance of the CNN model,
the DE, and the CNN-assisted DE framework using an amplifier setup
employing four counter-propagating Raman pumps. Different target
power profiles defined jointly in the entire C-band and in fiber distance
are aimed to be designed. Moreover, the DE framework is tested and
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showed promising performance in an experimental multi-objective design
scenario to achieve 2D profiles with flat gain levels at the end of the span,
jointly with minimum spectral excursion over the entire fiber length.
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Resumé på Dansk
Distribueret Raman-forstærkning (DRA) er en nøgleteknologi, der kan
forbedre ydeevnen af fiberoptiske kommunikationssystemer. Denne
forstærkningsmetode giver flere fordele i forhold til erbium-dopede
fiberforstærkere (EDFA’er), når det kommer til støjfaktor (NF), bred-
båndsforstærkning og fleksibilitet i design ved hjælp af multipumpn-
ing. På grund af sin distribuerede forstærkning muliggør DRA styring
af formen på signalstyrkens udvikling både i frekvens og fiberafstand.
Dette er afgørende for at opnå nogle af de langsigtede mål inden for
fiberoptisk kommunikation, herunder optimering af signal-to-noise ra-
tio (SNR) og kompensation for ikke-lineære forstyrrelser. Dog udgør
optimeringen af pumpekraft og bølgelængdeværdier en udfordring for
DRA-konfigurationen.

I denne afhandling udnytter vi maskinlæring (ML) og optimering-
steknikker til at designe signalstyrkeudvikling i to dimensioner (2D),
nemlig frekvens og fiberafstand, ved hjælp af Raman forstærkere. Først
anvender vi en omvendt systemmodel baseret på et konvolutionsneu-
ralt netværk (CNN) til at kortlægge 2D-signalstyrkeprofiler til deres
tilsvarende Raman-pumpens effekt- og bølgelængdeværdier. CNN mod-
ellen har vist en statistisk lav fejl i indlæringen af den omvendte ko-
rtlægning. Dog er dens præstation ikke nøjagtig nok til at designe 2D-
profiler af praktisk interesse, såsom en 2D-flad eller en 2D-symmetrisk
profil (i forhold til midtpunktet i afstanden). For at kunne designe
praktiske 2D-profiler præcist anvender vi en online optimeringsramme
baseret på Differential Evolution (DE). I denne ramme justerer DE online
pumpens effektværdier i opsætningen for at reducere omkostningsvær-
dien mellem den ønskede 2D-profil og den designede 2D-profil. DE-
rammen kombineres desuden med CNN-omvendtmodellen for at opnå
bedre nøjagtighed, mere pålidelige optimale værdier og hurtigere kon-
vergens i forhold til den selvstændige DE-ramme.

Endelig validerer vi eksperimentelt ydeevnen af CNN-modellen, DE
og CNN-assisterede DE-rammen ved hjælp af en forstærkeropsætning
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med fire modstrøms Raman-pumper. Forskellige målrettede effektpro-
filer, defineret over hele C-båndet og i fiberafstand, sigter mod at blive
designet. Derudover testes DE-rammen og viser lovende præstation i
et eksperimentelt multi-objektivt designscenario for at opnå 2D-profiler
med flade forstærkningsniveauer ved enden af spændet sammen med
minimal spektral afvigelse over hele fiberlængden.
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1
Introduction

Fiber optic communication systems play a pivotal role in our modern
interconnected world as the majority of the Internet data traffic relies
on these systems. Their importance lies in their ability to transmit vast
amounts of data at high speeds over long distances [1]. These technolo-
gies have revolutionized communication by providing greater bandwidth,
faster data transfer rates, and improved reliability, thanks to the introduc-
tion of new enabling technologies like wavelength division multiplexing
(WDM), optical amplifiers, and coherent detection with advanced mod-
ulation formats [1]. Fiber optic communication systems are vital for
supporting the ever-increasing demands of applications such as inter-
net connectivity, cloud computing, video streaming, telecommunication
networks, machine-to-machine communications, and more [2].

Long-term traffic growth is shown to be increasing at a pace of
60%/year, while the fiber capacities only scale at 20% per year [2].
With these enormous growth rates, bandwidth demands will soon reach
the upper limit of the current optical fiber infrastructure, resulting in
an increasingly critical disparity so-called capacity crunch [3]. Concern-
ing this, there has been an extensive effort recently toward improving
or upgrading the currently deployed optical networks. Space division
multiplexing (SDM) is a widely investigate technology that is basically im-
plemented using multiple parallel fibers (MPF), multi-core fibers (MCF),
and/or multi-mode fibers (MMF), which can significantly increase the
capacity of the current systems based on SSMF [4]. However, this ap-
proach requires deploying new types of fibers with high costs. Therefore,
exploring technologies that enhance the capacity of the currently de-
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ployed fibers, such as increasing the available bandwidth, offers a more
cost-efficient solution [5, 6].

Providing higher bandwidth in current optical communication systems
can encounter several challenges. One of the main challenges lies in the
selection of the appropriate optical amplifiers to compensate for signal
degradation over the frequency and fiber distance. Distributed Raman
amplifiers (DRAs) offer significant benefits in addressing these challenges.
One major advantage of DRAs is their capability to provide distributed
amplification along the fiber span, meaning that the signal is amplified
continuously throughout its transmission [7]. By distributing the power
along the fiber, DRAs improve the noise figure (NF) compared to Erbium-
Doped Fiber Amplifiers (EDFAs), which require periodic amplification
stations [8]. Moreover, DRAs have the flexibility to provide any desired
gain or power profile in a broadband WDM system by properly adjusting
the power and wavelength values of the multiple pump lasers operating
in parallel [1]. Nonetheless, in order to achieve the desired gain or
the signal power evolution in the context of a more flexible optical
transmission, a flexible and reliable adjustment framework for Raman
amplifiers will be required as the conventional approaches based on
theoretical models and heuristic fine-tuning can be quite time-consuming
and computationally expensive.

1.1 Motivation and the outline of the
contributions

In recent years, machine learning (ML) models have gained more
attention in optical communications due to the increasing desire to
enhance the performance, efficiency, and reliability of these systems. By
leveraging ML algorithms, it becomes possible to extract valuable insights
from massive amounts of data generated by optical communication
systems, enabling more accurate predictions and decision-making [9,
10]. DRAs can benefit from using ML models to overcome their existing
limitations. In this work, ML models and optimization techniques are
utilized to design the DRAs through numerical and experimental setups.
The main contribution to this project can be summarized as follows:

• DRA inverse system design: DRAs’ behavior in an optical commu-
nication system follows a theoretical model based on the Stimu-
lated Raman Scattering (SRS) effect, which provides the relation
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between the input as the applied pumping configuration and the
output as the resulting signal power evolution. On the other side,
having an inverse model to predict the pumping configuration for
a desired signal profile can be practically beneficial. Deriving the
mathematical inverse model for SRS is not theoretically feasible.
Concerning this, an inverse system based on ML models provides an
approximation of DRA schemes, which accurately represent their
behavior and can be reused in future optimizations.

• Online DRA optimization framework: DRAs can be used to
achieve different signal power evolution shapes in the optical com-
munication link. Moreover, different target profiles implicate satis-
fying various objectives such as spectral gain flatness, spatial power
evolution flatness, or power symmetry along the distance. Ap-
proximate inverse models which are trained off-line, have certain
limitations. Therefore, providing an online ML-based optimiza-
tion framework to directly control the amplification setup is highly
advantageous. The ML optimization framework provides system
automation for future flexible systems, saves time demanded to
optimize the DRAs, and can outperform human fine-tuning opti-
mization.

1.2 Structure of the thesis
This thesis is organized as follows. Chapter 2 provides the theoretical

fundamentals of DRAs schemes. In Chapter 3 , we briefly explain the
concepts of the machine learning and optimization algorithms adopted
in our investigations. In Chapter 4, we introduce our CNN-based model
for inverse DRA design, followed by a numerical evaluation of this model
for different amplification scenarios. In Chapter 5, we propose an online
optimization framework that mainly consists of differential evolution
(DE) as the online optimizer, assisted by the CNN inverse model for
designing power profiles of practical interest. Chapter 6 includes the
results of the experimental validation of the CNN model and the online
optimization framework for designing various target power evolution
profiles. Finally, in Chapter 7, we conclude the thesis and discuss the
future work perspective.

1.2 Structure of the thesis 3





2
Raman amplification in optical
communication systems

As the demand for high-speed and high-capacity signal transmission
continues to grow exponentially, the need for efficient and reliable ampli-
fication techniques becomes crucial to overcome the limitations of signal
degradation over long distances. Distributed Raman amplifiers (DRAs)
have emerged as a key solution to enhance signal quality and extend the
reach of optical networks [7, 11].

DRAs are a class of fiber-based amplifiers that operate based on the
Stimulated Raman Scattering (SRS) effect which involves the inelastic
scattering of photons by molecular vibrations in a medium [12]. Due
to SRS effect, energy is transferred from a higher-frequency pumping
photon to a lower-frequency signal photon, while the excess energy
is absorbed as optical phonons by the material, resulting in molecular
vibrations [5].

The Erbium-Doped Fiber Amplifiers (EDFAs) have gained popularity
in commercial communication systems due to their power efficiency
and straightforward setup configuration [8, 13]. However, broadband
amplification provided by DRAs, has made them an attractive alterna-
tive solution for wideband Wavelength Division Multiplexing (WDM)
schemes [1]. Moreover, EDFAs are typically deployed at fixed intervals
along the fiber, while DRAs offer a unique advantage by providing dis-
tributed amplification [1]. This means that the amplification process
occurs continuously throughout the fiber, which can result in a uniform
distribution of the signal power along the span. A uniform signal power
distribution in the fiber, representing in a loss-less medium, minimizes the
accumulated amplified spontaneous emission (ASE) noise at the receiver
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side and reduces the signal-to-noise ratio (SNR) degradation [14]. In
addition, multiple Raman amplifiers operating at different wavelengths
can be employed in parallel [1]. This attribute, along with the broad
spectral gain and distributed amplification, enables Raman amplifiers
to design any desired gain shape or signal power profile over a large
bandwidth in WDM systems [7].

Considering the aforementioned features, DRAs improve the perfor-
mance of optical communication systems by providing low noise figure
(NF), high gain, and large bandwidth, which makes them ideal for increas-
ing the capacity in long-haul and ultra-long-haul optical transmission [7].
By employing DRAs, the signal reach can be extended without the need
for additional regenerators or repeaters, thereby reducing the complexity
of the optical communication systems [15].

The SRS effect provides a particularly large gain spectrum, extending
over 20–30 THz, with the peak at around 13 THz of frequency shift [1].
The Raman gain profile can change for different types of fibers with
specific dependency on fiber effective area Aeff and fiber Raman gain
coefficient gR [16]. Particularly, gR is measured in [m/W] and scales
linearly with pump frequency [17].
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Fig. 2.1: Normalized Raman gain profile over the frequency for a
fused silica fiber.

Fig. 2.1 illustrates the normalized Raman gain profile of fused silica
fiber for co-polarized pump and signal. According to this plot, the
maximum gain is provided by the pump when there is almost a 13 Thz
space between the pump and the signal frequency, which is referred to as
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Stokes shift [1]. The Raman gain efficiency profile CR in units [1/W/m]
can be obtained by applying a proper scaling factor to the gain coefficient
gR [18] as follows:

CR = gR/Aeff (2.1)
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Pump laser

CouplerSignal  

Pump laser

Coupler

Coupler

Pump laser

Signal  

Pump laser

(a) Co-propagating (b) Counter-propagating

(c) bidirectional propagating

Fiber span Fiber span

Fiber span

Fig. 2.2: Different schematics for amplification based on pump
direction.

Depending on the direction of the pump signal relative to the direction
of the main signal in the fiber, three different amplification scenarios can
be considered: 1) Co-propagating (forward), where the pump signals and
the main signal propagate in the same direction, 2) Counter-propagating
(backward), where pump and signal propagate in the opposite direction,
and 3) Bidirectional propagating, where pump signals propagate in both
directions. These schematics are shown in Fig. 2.2 (a)-(c), respectively.

In the presence of Raman amplification, the relation between the
signal and pump power evolution over the fiber distance is described by
a well-known set of non-linear ordinary differential equations [1]:

dPs,i

dz
= −αsPs,i + CR(fs,i, fp,j)[P +

p,j + P −
p,j ]Ps,i (2.2)
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±
dP ±

p,j

dz
= −αpP ±

p,j − (fp,j

fs,i
)CR(fs,i, fp,j)Ps,iP

±
p,j (2.3)

where Ps is the signal power, P +
p,j and P −

p,j are the co- and counter-
propagating pump powers, αs and αp represent the signal and the pumps
attenuation coefficients measured in m−1, and fs,i and fp,j are the signal
and the pump frequencies, respectively. In these equations, i identifies
the signal channel index for i = {1, ..., nch}, and j identifies the pump
index for j = {1, ..., np}, with np number of pumps.

In Eq. 2.3, the + and − signs in ±, and also used as the superscripts
for P +

p,j and P −
p,j , correspond to co-propagating and counter-propagating

pumps, respectively. The first contribution in the power evolution in both
Eq. 2.2 and Eq. 2.3 represents the power degradation due to the fiber
loss. Instead, the second term in Eq. 2.2 determines the contribution of
signal gain due to SRS, while the second term in Eq. 2.3 represents the
pump depletion [1].

Considering the case of a single pump and signal with negligible deple-
tion of the pump where the second term in Eq. 2.3 is omitted, the analyt-
ical formulation of the pump can be obtained as Pp(z) = Pp(0)exp[−αpz]
for a co-propagating pump, or as Pp(z) = Pp(L)exp[−αp(L − z)] for a
counter-propagating pump. For a single signal evolution and by neglect-
ing the pump depletion, Eq. 2.2 can be solved as follows [19]:

Ps(z) = Ps(0)(−αsz + CRPp(0)(exp(−αpL)[exp(αpz)− 1]
αp

)) (2.4)

Ps(z) = Ps(0)(−αsz + CRPp(0)(1− exp(−αpz)
αp

)) (2.5)

for counter- and co-propagating pumps, respectively.
According to Eqs. 2.4 and 2.5, the amount of pump power Pp(0)

required to fully compensate for the signal loss depends on the Ra-
man gain efficiency CR and the fiber attenuation at pump frequency
αp. To investigate this relation (assuming a fixed CR profile), the signal
power evolution for a 100 km fiber is compensated using a co- or a
counter-propagating Raman pump. The resulting signal power profiles
are shown in Fig.2.3 at different pump attenuation levels. Regarding
the co-propagating pump cases, since the pump power is stronger at the
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Fig. 2.3: Signal power evolution in a 100 km fiber, compensated
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beginning of the fiber, the signal experiences more gain, and due to pump
power reduction due to attenuation over higher distances, the signal
power gradually gets reduced. Moreover, for higher fiber attenuation
levels, the pump power reduction will be more severe and therefore,
there will be more pump power needed to fully compensate for the signal
loss. Considering the counter-propagating pump cases, the pump power
gets attenuated until it gets to the beginning of the fiber, and therefore,
the signal experiences less gain and linearly undergoes towards the end
of the fiber. While the pump power is stronger at the end of the fiber
and the signal experiences a stronger gain when it gets to the end of the
fiber. As the attenuation of fiber at pump frequency increases, the gain
becomes concentrated toward the fiber end, and eventually, there will be
more pump power needed to fully compensate for the signal loss.

Focusing on the provided overall gain, the signal power at the end of
the fiber of length L is formulated as the following [1]:

Ps(L) = Ps(0)exp[CRP0Leff − αSL] (2.6)
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where P0 = Pp(0) for co-propagating, or P0 = Pp(L) for counter-
propagating pump, and Leff is defined as:

Leff = [1− exp[−αpL]]
αp

(2.7)

According to these formulations, the Raman on-off gain in the small-
signal region can be defined as the increase in signal power at the end of
the fiber when the pump is turned on:

Gon−off [dB] = Ps(L)pump−on

Ps(L)pump−off
= exp(CRP0Leff ) (2.8)
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Gain flattening in wavelength-division WDM systems is a crucial tech-
nique employed to ensure uniform amplification of signals across multiple
channels [20]. As pointed out earlier in this chapter, there is a potential
to employ multiple Raman pumps at the same time and extend their
resulting gain over a wide range of frequencies.

Fig.2.4 represents the gain profiles at the end of the fiber resulting
from the utilization of pumps with different powers and operating at
different frequencies for a 100-km long fiber. The total gain is obtained
through the superposition of gains provided by different pumps across
the frequency range, and it is depicted by the black solid curve. By
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appropriate adjustment of the number of pump lasers, their frequencies,
and their powers, it is potentially feasible to achieve uniform gain profiles
across any desired bandwidth [21]. This is because the Raman gain
spectrum covers a broad range of frequencies, spanning 20-30 THz,
with a relatively even distribution, allowing for significant bandwidth
coverage. In this particular case, a relatively flat gain at 8.5 dB with
less than 0.5 dB deviation is achieved between 185 THz and 197 THz by
tuning the power values of four Raman pumps.

It is worth noting that the total gain profile in Fig.2.4 is depicted just
for providing a visual intuition without considering the full SRS effect
including signal-signal and pump-pump interactions. However, when
designing broadband amplification schemes, it is crucial to consider these
interactions, which will be discussed in the following section.

2.1 Full Raman amplification model
In order to design broadband Raman amplification schemes, besides

considering the pump-signal interaction, it is also crucial to take into
account other existing interactions such as the signal-signal and pump-
pump. In a general amplification scenario with Ns signals and Np pumps,
Eqs. 2.2 and 2.3 can be modified as follows [19]:

1
Psi

dPsi

dz
= −αsi +

Np∑
j=1

Cps,jiP
±
pj +

i−1∑
j=1

Css,jiPsj −
Ns∑

j=i+1
( vsi

vsj
)Css,ijPsj

(2.9)

± 1
P ±

pi

dPpi

dz
= −αpi −

Ns∑
j=1

(vpi

vsj
)Cps,ijPsj +

i−1∑
j=1

Cpp,ijP ±
pj −

Np∑
j=i+1

( vpi

vpj
)Cpp,jiP

±
pj

(2.10)

where Psi and Ppi are the instantaneous power of the ith signal at
frequency vs and ith pump at frequency vp, respectively. Moreover, αs

and αp are the fiber attenuation values for the signal and the pump.
Cps, Css, Cpp are the Raman gain efficiency between the pumps and
signals, signals and signals, and pumps and pumps, respectively. The
arrangement of pumps and signals assumes that they are ordered in
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increasing wavelength (decreasing in frequency). In Eq. 2.9, the first
term corresponds to the linear loss of the fiber, while the second term
represents the power obtained from the pump wavelengths. The third
and fourth terms account for the power gained from shorter wavelength
signals and the power lost to longer wavelength signals, respectively.
Similarly, in Eq. 2.10, the first term corresponds to the linear loss of
the fiber, and the second term denotes the power lost to the signals,
leading to amplifier saturation. The third and fourth terms account for
the Raman interactions between the pump wavelengths, with the third
term representing the power gained from shorter wavelengths and the
fourth term indicating the power lost to longer wavelength pumps.

It is worth noting that in these equations, the ASE noise term and
the Rayleigh Back-scattering effect are omitted. These effects can be
investigated in a separate set of ODEs.

2.2 Multiple pump interactions
Considering the Eqs. 2.9 and 2.10, the pump-pump, signal-signal and

signal-pump interactions can produce tilt in the signal power evolution
and also in the gain profile. Moreover, the pumps at shorter wavelengths
transfer energy to the pumps at longer wavelengths. In order to have
a flat gain spectrum, most of the gain needs to be provided by the
pump with the longest wavelength [19]. Therefore, the longest pump
will need to be launched with high power. Nonetheless, by having a
few shorter wavelength pumps, due to pump interactions, the longer
wavelength pumps obtain power from multiple short wavelength pumps,
and therefore, launching it with high power will not be required.

The power evolution over the distance is shown in Fig. 2.5 for a set
of four signals with wavelengths 1530, 1550, 1580, and 1600 nm, and
also for four counter-propagating pumps operating at wavelengths 1423,
1443, 1464 and 1495 nm, which are taking place almost at the peak
gain wavelengths of the pumps, respectively. The shortest wavelength
pump 1423 nm is launched with slightly higher power compared to
the other pumps, while it is attenuated more dramatically by the other
pumps and has the least power after almost 5 km propagation in the fiber
span. On the other side, the pump operating at 1495 obtains gain in the
first 10 km and loses its power slower, using the power provided by the
pumps with shorter wavelengths. Regarding the signals, they initially
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Fig. 2.5: The power evolution over the distance for a set of four
signals with wavelengths 1530, 1550, 1580, and 1600 nm, and
also for four counter-propagating pumps operating at wavelengths
1423, 1443, 1464, and 1495 nm.

experience linear loss in almost the first 60 km and then start interacting
and eventually getting gain from the pumps. The signal at 1602 nm
experiences most of its gain roughly at this point as it’s getting mostly
amplified by the pump at 1495 nm with the highest power level. On the
other side, the signal at 1530 receives its highest gain as it gets closer to
the end of the fiber.

2.3 Higher Order Pumping
In the Raman amplifier configurations discussed so far, the Raman

pumps are one stokes shift away from the signal. Regardless of the rela-
tive direction of the pumps and signals, these configurations are mainly
called first-order pumping schemes. An alternative configuration that can
be investigated further is to use a second-order pump which is utilized to
amplify the first-order pump. As a practical example, in [22] a signal at
1550 nm is amplified by a first-order pump operating at 1455 nm which is
also combined with a second-order pump at 1366 nm. This combination
has more advantages over an amplification setup that utilizes only first-
order pumps especially when used in a bidirectional scheme. One main
advantage is that the second-order pumps help with uniformly distribut-
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ing the signal power along the fiber span [23]. Having a transparent
signal power distribution in the fiber reduces the accumulated ASE noise
at the receiver side, which is one of the main goals in systems where
the ASE is the dominant noise source [24]. Moreover, a co-propagating
second-order Raman pump has fewer induced impairments affecting the
signal compared to the first-order co-propagating pump.

The effect of using first-order and second-order pumps on the evolu-
tion of a single-channel signal operating at 1550 nm over a 100km fiber
is shown in Fig.2.6. In this figure, both counter- or bidirectional propa-
gating schemes are used as an example. The selected pump wavelengths
are chosen as reported in [23]. It is evident that in the case of using bidi-
rectional second-order pumping, the signal will experience less excursion
compared to a first-order amplification. Moreover, according to [23], the
second-order amplification provides a considerable improvement in NF
over a first-order pumping scheme.

2.4 Summary
In this chapter, we briefly discussed the advantages and the theory

behind the application of using DRAs to compensate for signal loss in
transmission systems. We pointed out that DRAs are a key technology
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that are vital to improving the performance of fiber optic communication
systems by providing several interesting characteristics over the EDFAs.
In the next chapter, a brief overview of Machine Learning (ML) models,
especially Deep Learning algorithms, and the concept of gradient-free
optimization techniques will be discussed. The main focus of the next
chapter will be to explain the basics of the ML models used in this project
for designing DRAs.

2.4 Summary 15





3
Machine Learning and
Optimization algorithms

3.1 Machine Learning and Artificial Neural
Networks

Machine learning (ML) and artificial neural networks (ANN) have
emerged as powerful tools in the field of computer science, revolutioniz-
ing various industries and shaping the way we interact with technology.
In an era characterized by the abundance of data and the growing com-
plexity of problems, ML provides a framework for enabling computers
to learn and make predictions or decisions without being explicitly pro-
grammed.

At its core, ML is a branch of artificial intelligence (AI) that focuses
on the development of algorithms and models capable of learning from
and making predictions or decisions based on data. It encompasses a
diverse set of techniques and methodologies that enable computers to
automatically identify patterns, extract meaningful insights, and make
accurate predictions or decisions [25].

One of the fundamental building blocks of ML is the ANN. Inspired
by the structure and functioning of the human brain, an ANN is a com-
putational model composed of interconnected nodes, called neurons,
which work collaboratively to process and analyze data. Each neuron
receives input signals, applies certain operations or transformations to
these inputs, and produces an output signal that is passed on to other
neurons [26].

ANNs are particularly adept at learning complex patterns and rela-
tionships in data, making them well-suited for a wide range of tasks
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such as image and speech recognition, natural language processing, and
predictive analytics. The learning process in neural networks involves
adjusting the strength or weights of connections between neurons based
on the available data, enabling the network to capture and represent the
underlying patterns and relationships in the data.

Over the years, advancements in computing power, the availability
of large-scale datasets, and the development of more sophisticated algo-
rithms have propelled machine learning and artificial neural networks
to new heights. Deep learning, a sub-field of ML that focuses on neural
networks with multiple layers, has emerged as a dominant approach,
achieving remarkable breakthroughs in areas such as computer vision,
speech synthesis, and autonomous systems [27].

3.2 Convolutional Neural Networks
One prominent type of neural network is the Convolutional Neural

Network (CNN). CNNs are specifically designed to excel at processing
and analyzing visual data, such as images and videos. They leverage the
concept of convolution, a mathematical operation that involves sliding
a filter or kernel across an input image to extract meaningful features
[28].

The distinctive characteristic of CNNs is their ability to automatically
learn hierarchical representations of visual features. The initial layers
of a CNN learn simple features such as edges and corners, while subse-
quent layers learn more complex features like shapes and textures. This
hierarchical learning enables CNNs to capture the intricate details and
patterns within visual data, leading to superior performance in tasks
such as object recognition, image classification, and image segmentation
[29].

CNNs have significantly advanced the field of computer vision, achiev-
ing remarkable accuracy and efficiency in a variety of applications. They
have been instrumental in autonomous vehicles, facial recognition sys-
tems, medical image analysis, and many other domains where visual
data plays a crucial role [30]. The success of CNNs can be attributed to
their ability to exploit spatial relationships and local correlations within
images, effectively capturing and representing the relevant information
for accurate decision-making.
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Convolutional Neural Networks (CNNs) are composed of different lay-
ers that perform specific operations, enabling the network to effectively
extract and process features from input data. Each layer plays a crucial
role in the overall architecture of a CNN. Here, we’ll discuss some of the
key layers commonly found in CNNs [29]:

Convolutional Layer: The convolutional layer is the core component of
a CNN. It performs the convolution operation, where a set of learnable
filters (also called kernels) are applied to the input data. Each filter
extracts different features from the input by sliding across the spatial
dimensions and computing element-wise multiplications and summations.
This layer helps capture local patterns and spatial dependencies in the
input data.

Activation Layer: The activation layer introduces non-linearities into
the network. It applies a non-linear activation function element-wise to
the output of the previous layer. Common activation functions include
ReLU (Rectified Linear Unit), sigmoid, and hyperbolic tangent. The
activation layer enables the network to model complex relationships and
introduces non-linearity into the feature maps.

Pooling Layer: Pooling layers reduce the spatial dimensions of the
feature maps while retaining important information. Max pooling is a
widely used pooling technique that selects the maximum value within a
defined pool size, effectively downsampling the feature maps. Average
pooling takes the average of values within the pool size. Pooling layers
help reduce computational complexity, extract dominant features, and
provide translation invariance.

Batch Normalization Layer: The batch normalization layer normalizes
the activations of a previous layer, bringing them to zero mean and unit
variance. It helps with stabilizing and accelerating training by reducing
internal covariate shift, ensuring that each layer receives inputs in a more
consistent distribution. This layer improves the generalization of the
network and reduces the sensitivity to the initialization and learning
rate.

Dropout Layer: The dropout layer is a regularization technique used
during training to prevent overfitting. It randomly sets a fraction of the
input units to zero at each training iteration. By forcing the network to
rely on different subsets of units, dropout reduces the co-adaptation of
neurons and promotes better generalization. Dropout is typically applied
after fully connected layers.
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Fig. 3.1: Data flow in LeNet [31]. The input is a handwritten digit,
and the output is a probability over 10 possible outcomes.

Fully Connected Layer: Fully connected layers, also known as dense
layers, are traditional artificial neural network layers. They connect
every neuron in the current layer to every neuron in the subsequent layer,
allowing for complex relationships and high-level abstractions. Fully
connected layers are commonly found at the end of CNNs to map the
extracted features to specific output classes or regression values.

These layers can be stacked together to form the overall architecture
of a CNN. The arrangement and number of layers depend on the specific
task and complexity of the problem. The deepening of CNNs through
the stacking of these layers enables the network to learn hierarchical
representations of the input data, capturing both low-level and high-level
features, and achieving remarkable performance in various computer
vision tasks. For example, Fig.3.1 represents a CNN architecture called
LeNet [31] which was designed to classify handwritten digits from the
MNIST [32] dataset, consisting of 28x28 grayscale images of handwritten
digits ranging from 0 to 9. This model consists of two parts: (a) a
convolutional encoder consisting of two convolutional layers; and (b) a
dense block consisting of three fully connected layers. More specifically,
Convolutional layers allow LeNet to learn and extract spatial features
from input images. These layers employ a set of filters or kernels that scan
the input image, capturing important patterns and features at different
spatial scales. The extracted features become increasingly complex as
they pass through multiple convolutional layers.

After the convolutional layers, LeNet utilizes fully connected layers
to map the extracted spatial features to specific output classes. These
layers establish connections between all the neurons in the previous layer
and the neurons in the subsequent layer, enabling the network to learn
complex relationships and make accurate class predictions.
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By combining the power of convolutional layers to extract spatial fea-
tures and fully connected layers to map those features to classes, LeNet
demonstrates the ability to recognize and classify handwritten digits in
the MNIST dataset with impressive accuracy. LeNet’s architecture and its
success have had a profound impact on the development of CNNs and
their widespread application in various computer vision tasks. It show-
cased the importance of spatial feature extraction and the effectiveness
of deep learning approaches in solving complex problems related to data
with image-based topology.

3.3 Gradient-free optimization
Gradient-based optimization methods, such as stochastic gradient

descent (SGD) and its variants, are widely used in machine learning to
update model parameters based on the gradients of the loss function
with respect to those parameters [33]. However, these methods rely
on the availability of differentiable functions and gradients, which may
not be feasible in certain scenarios where the objective function is non-
differentiable, noisy, or lacks explicit mathematical formulation. In
such cases, gradient-free optimization techniques provide an alternative
approach to searching for optimal solutions [34].

Gradient-free optimization methods aim to find the global or local
optima of a function without using its gradients. Instead, they explore
the function’s landscape by sampling and evaluating different points iter-
atively. These techniques leverage various strategies, including random
search, evolutionary algorithms, surrogate models, and heuristics, to
guide the search toward better solutions. One such popular gradient-free
optimization algorithm is Differential Evolution (DE) [35].

Differential Evolution (DE) is a population-based optimization algo-
rithm that mimics the process of natural evolution. It was proposed by
Rainer Storn and Kenneth Price in the late 1990s [36]. DE operates
by maintaining a population of candidate solutions, called individuals,
and iteratively evolves them towards better solutions by combining their
information.

The basic steps of the DE algorithm are as follows [35]:

• Initialization: Generate an initial population of individuals, where
each individual represents a potential solution to the optimization
problem.
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• Mutation: For each individual in the population, create a mutant
vector by combining information from multiple individuals. This
is achieved by adding a scaled difference vector to the individual’s
position.

• Recombination: Create a trial vector by recombining the mutant vec-
tor with the original individual, guided by a crossover probability.
The trial vector represents a potential new solution.

• Selection: Compare the trial vector with the original individual. If
the trial vector outperforms the original individual, replace it in
the population; otherwise, keep the original individual.

• Termination: Repeat the mutation, recombination, and selection
steps for a predefined number of iterations or until a termination
criterion is met (e.g., reaching a maximum number of evaluations
or achieving satisfactory performance).

DE utilizes the population dynamics and the stochastic search pro-
cess to explore and exploit the solution space efficiently. It has been
successfully applied to a wide range of optimization problems, includ-
ing parameter tuning in machine learning algorithms, feature selection,
function optimization, and design optimization.

The advantages of DE and other gradient-free optimization techniques
include their ability to handle noisy or non-differentiable objective func-
tions, avoid getting trapped in local optima, and provide robust and
global search capabilities.

3.4 Summary
In this chapter, a brief introduction to the concept of ML algorithms

was provided followed by an explanation of the CNN models used widely
for pattern recognition in data with image topology. Afterward, a brief
summary of the purpose of using gradient-free optimization techniques is
presented. This was followed by providing a brief diagram of DE, as one
of the most popular gradient-free techniques used for optimization.
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4
Inverse design of Raman
amplifiers using Convolutional
Neural Networks

4.1 Introduction
The signal power evolution in an optical communication system is

directly affected by the behavior of the optical amplifiers. Therefore,
modeling and optimizing the amplifier configuration is highly desirable.
Distributed Raman Amplifiers (DRAs) have been extensively researched
recently as they provide several interesting advantages over the Erbium-
Doped Fiber Amplifiers (EDFAs) [1, 11]. As pointed out in Chapter 2, due
to the multi-pumping scheme, DRAs are a practical solution to amplify a
broad range of wavelengths beyond the C-band which eventually results
in increasing the available transmission capacity[37].

One of the main challenges in designing DRAs is to set up the appro-
priate configuration, i.e. to select the pump powers and their frequency
values to achieve desired signal power evolution in the fiber span. Most
of the research conducted in this area has approached designing desired
gain spectra at the receiver side using machine learning (ML) and opti-
mization techniques [37–41]. In [38] a neural network (NN) is combined
with a genetic algorithm to design flat gain profiles. This algorithm is
computationally expensive as it requires performing an iterative process
with multiple integrations of the propagation equations, which must
be performed for every target gain. However, [39] proposed an NN
model to solve this issue by learning the inverse relationship between the
pump powers and wavelength values and the corresponding gain profiles.
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This approach was mainly conducted by using a synthetic dataset of
gain profiles generated with random pump parameters. The trained NN
model was then used to derive the pump parameter values for a desired
gain profile. Moreover, the authors of [39] added two additional NN
architectures so-called fine-tuning and model-averaging to their previous
NN model to refine the predicted pump parameter values to increase
the accuracy. The authors of [39] produced several other contributions
involving the use of NNs for Raman amplification, including experimen-
tal validation of the proposed NN models, noise profile prediction, and
optimization of a hybrid Raman/EDFA scheme [21, 37, 42]. Regarding
the application of NN for gain spectral shaping, a different approach
in [40] is taken, where a differentiable Raman amplification model is
presented and used in the training procedure of an NN model to predict
the pump power values to design groups of flat or tilted spectral gains.

Alternative to gain spectral shaping, utilizing DRAs in designing the
signal power evolution jointly in frequency and along the fiber distance is
also a beneficial approach to satisfy some of the long-time goals in optical
communication systems. It has been demonstrated that controlling
the signal power evolution jointly in frequency and fiber distance can
pave the way to optimize the signal-to-noise ratio (SNR) and mitigate
nonlinearity impairments [43]. More particularly, it is shown that an even
distribution of the power along the fiber distance, which represents a loss-
less link, minimizes the accumulated amplified spontaneous emission
(ASE) noise at the receiver [14, 15, 23]. It is proven that in a system
where ASE is the dominant source of noise, the flat signal power in
distance can effectively improve the optical signal-to-noise ratio (OSNR)
for a fixed nonlinear weight, i.e. the path-averaged signal power [44].
Moreover, a medium with effective zero attenuation is considered a pre-
requisite for some applications such as transmission based on Nonlinear
Fourier Transform (NFT) which relies on analytically solving a lossless
Nonlinear Schrödinger equation (NLSE) [45, 46].

A second practically interesting signal power evolution is a symmetric
profile with respect to the middle point in the distance [47–49]. This
profile optimizes the performance of optical phase conjugation (OPC)
[13, 50] which is mainly used for mitigating the nonlinear impairments
in the system [49, 51].

A significant research effort has been conducted both numerically and
experimentally to design practically interesting two-dimensional (2D)
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signal power profiles such as 2D flat and 2D symmetric power profiles.
These profiles are mostly addressed by heuristically tuning the pump
power values and simplifying the optimization process based on the
physics of the setup under test [15, 24, 52, 53]. In these papers, the
authors present amplification setups including second-order pumps com-
bined with the FBG reflectors to turn the span into an ultra-long laser.
This is mainly conducted to achieve a lossless transmission in frequency
and distance. However, these systems relied on either optimizing the
pumps heuristically [15, 24], optimizing forward pumps and then adjust-
ing the backward pumps to match the desired gain for the central channel
[52], or assuming equal power for backward and forward pumping, thus
simplifying the optimization problem [53].

Finding the optimal pump power through a heuristic search requires
precisely simplifying the optimization problem. This approach can be
challenging, especially when the number of parameters to optimize is
high. Moreover, this optimization process will be difficult and time-
consuming to solve if there are several different target profiles, with
different objectives and constraints, aimed to be designed using a specific
amplifier setup under test. Furthermore, the strategy in heuristic search
will need to be re-defined or adapted in case the system configuration
including the number of pumps, their available power, and frequency, or
the fiber parameters change. Considering these drawbacks mentioned re-
garding heuristic search, a general ML or optimization-based framework
can be beneficial in finding the optimal values, as they have been very
successful in a wide variety of applications.

In this Chapter, we propose an inverse model based on a supervised
Deep Learning (DL) architecture to design Raman amplifiers in spectral
and spatial (fiber distance) domains. The main purpose of the DL model
is to find the mapping between the 2D spectral-spatial signal power pro-
files and their corresponding Raman pump parameters, i.e. pump power
and wavelength values. First, the architecture of the proposed DL model
which is based on a Convolutional Neural Network (CNN) architecture,
will be explained in detail. Afterward, the amplifier setup for evaluat-
ing the CNN’s performance will be presented followed by the synthetic
dataset generation for model training. Finally, the numerical results will
be demonstrated for both counter- and bidirectional propagating DRA
schemes.
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4.2 CNN-based model architecture for inverse
DRA design

Generally, in a system with an input-output function denoted as
Y = f(X), finding models for both direct and inverse mappings can
be of practical interest. This approach can be more crucial when it is
challenging to derive or solve the mathematical or numerical formulation
of the direct or inverse models. The direct mapping model aims at finding
the output of the system given the input value. The inverse mapping
instead aims to find the input in order to receive a desired output.

Considering designing the DRAs, first, we call the direct function f(.)
as the set of nonlinear differential equations presented for DRAs. These
equations were provided with details in Chapter 2 through Eqs. 2.9
and 2.10. The direct model follows the Stimulated Raman Scattering
(SRS) effect which is a physics-based phenomenon that maps the ampli-
fier pumping characteristics such as the pump power and wavelength
values to the spectral gain or spectral-spatial signal power evolution.
To solve this forward mapping, both analytical and black-box modeling
investigations can be performed. In the analytical approach, the direct
model is treated as a boundary value problem with ordinary differential
equations (ODEs), which can be solved with iterative models such as
Runge-Kutta [54, 55]. When it comes to black-box modeling, a commonly
employed strategy involves the utilization of ML models, as explained in
the previous section. The inverse model instead aims at finding the am-
plifier configuration to achieve a desired spectral or joint spectral-spatial
response. Nonetheless, due to the lack of an analytical closed-form for-
mulation for SRS equations, a potentially reliable approach is to take a
black-box modeling approach. In this chapter, our main focus is to pro-
vide an ML-based inverse system model to map the 2D power evolution
profile defined in frequency-distance to the corresponding Raman pump
power and wavelength values.

For the inverse system design scenario, the forward mapping can be
described as Ps(f, z) = f([pp;λp]) where Ps(f, z) = [pij ]Nch×Nz is the
2D signal grid defined in spectral (f) and spatial (z) domains. More
specifically, pij is signal power at i-th spectral channel and j-th distance
index in a WDM system with Nch number of channels and Nz distance
points. Furthermore, pp = [P1, · · · , PNp ]T is the pump power vector
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Fig. 4.1: Diagram of the CNN architecture for the inverse DRA
design. The model input is the 2D target power profile and its
output is the set of Raman pump power and wavelength values.

with and λp = [λ1, · · · , λNp ]T is the pump wavelength vector, where T

indicates the transpose operator.
The proposed inverse mapping learns the inverse function f−1(.) such

that it can simultaneously predict the pump powers and wavelength
values [pp;λp] for a given target power evolution profile Pt

s(f, z). The
suggested inverse model should be able to perform a mapping between
the 2D signal power profile defined in a RNch×Nz space and the Raman
pump settings defined in one dimension R2Np×1 space. One potential
way to perform this mapping could be to apply NN-based frameworks
proposed by [39, 40]. In this approach, the input signal power profile
should be flattened to become a one-dimensional (1D) vector of length
Nch ×Nz, and the model will perform a 1D-to-1D mapping. This ap-
proach is not quite practical for this design case scenario as the proposed
NN will have a large architecture with too many parameters to be trained.
For example, considering a system with Nch = 50 channels and a 100 km
span length with a distance resolution of 1 km, Nz = 100, the number
of the nodes of the input layer will be Nch ×Nz = 5000. If the amplifier
setup has four operating pumps Np = 4, therefore the number of the NN
output nodes will be 2Np = 8 (to predict both pump power and wave-
length values). Hence, the mapping between a long input with 5000
nodes and the pumping configuration with 8 nodes requires a network
with a high number of trainable parameters. Training this network will
not only require a significant amount of time and training data but also
expose it to potential issues such as overfitting and being trapped in local
minima.

Another drawback of converting the 2D power evolution grid into a
1D vector is that it will remove the existing inherent spatial correlation
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in the input data. Based on a physical perspective, each point of the
signal power in the frequency-distance grid has a high correlation with
its neighboring point. Therefore, it is highly probable that they convey
very similar information. However, fully-connected NNs are not capable
of capturing spatial information of grid-shape data and reducing their
redundancies. Concerning these two main issues with fully-connected
NNs, we found that CNNs can be suitable for the DRA inverse system
design since they are sort of DL models designed to process data with
grid-like topologies, such as images. In regard to this, the CNNs can
successfully capture the spectral and spatial dependencies in data with
2D form through the application of relevant filters [56] and weight
sharing.

The diagram of the proposed CNN-based model for inverse DRA design
is illustrated in Fig.4.1. In this diagram, the main goal is to predict the
Raman pump powers and wavelength values for a given target 2D signal
power profile Pt

s(f, z). The proposed diagram is made up of two separate
networks trained end-to-end. The first network consists of three CNN
layers each one followed by an average pooling layer. This network will
be referred to as feature extraction network R(.; θR), defined as:

R(.; θR) : RNch×Nz → Rq×r×n3 , q × r × n3 < Nch ×Nz (4.1)

with θR defined as the training parameters. The definition and the values
of parameters r, q, and n3 will be discussed below, after clarifying the
data flow process in the network.

First, as a pre-processing step and before using the feature extraction
network, the 2D power profile is normalized according to the minimum
and maximum possible power values. Afterward, the normalized profile
passes through the three CNN layers with n1, n2 and n3 number of filters
each with the size f1 × f1, f2 × f2 and f3 × f3, respectively. In each CNN
layer, it is necessary to choose a nonlinear activation function. There are
several commonly used activation functions in the literature for different
DL architectures [27]. Among these options, we select a rectified linear
unit (ReLU(x) = max(0, x)) for each CNN layer due to its simplicity in
gradient calculation, which can contribute to a faster training process
[27].
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As illustrated in Fig. 4.1, each CNN layer is followed by an average
spatial pooling with the window size of m1×m1, m2×m2, and m3×m3,
respectively. The purpose to use pooling layers is to reduce the spatial
size of the input, making it easier to process and requiring less memory.
Pooling layers also help to reduce the number of parameters and make the
training process faster. Furthermore, another advantage of using pooling
layers is to remove local redundancies in the input data. It is worth
mentioning that each pooling layer reduces the length of the input with a
scale equal to the pooling window size. Therefore, the CNN and pooling
layers generate an informative and lower-dimension representation of
the input 2D power profile. The output of the last pooling layer is a three-
dimensional representation which can be referred to as the extracted
features. These features consist of n3 different two-dimensional 2D-grids
generated by the different filters of the last layer each with the spatial
sizes of q = Nch/(m1 ×m2 ×m3) and r = Nz/(m1 ×m2 ×m3). The
next step in inverse system learning is to use a model to map the resulting
low-dimensional features to the pump powers and wavelength values.
To this end, a feed-forward NN can be utilized as it is typically used
towards the end of a CNN when the goal is to take the features learned
by the previous layers and use them to make predictions. Regarding
this, a flattened layer is used to take the extracted three-dimensional
features into a one-dimensional array. The flattening can be performed
here as the resulting 3D representation has much less spatial redundancy
compared to the input, which makes it suitable to be used as an input to
a fully-connected NN. Once the resulting representation is flattened, it
passes through the fully-connected NN which is referred to as a regression
network, defined as F (.; θF ) with the following mapping criteria:

F (.; θF ) : R(q×r×n3)×1 → R2Np×1 (4.2)

with θF defined as its trainable parameters. The proposed regression net-
work has two hidden fully-connected layers of size Nh1 and Nh2. Since
the network is supposed to predict both the pump powers and wave-
lengths, the last layer of the regression network has 2Np neurons (double
the number of Raman pumps). The values of Nh1 and Nh2 are optimized
with grid search depending on the proposed pump configuration.
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4.2.1 Dataset generation and training process

The proposed inverse system model in Fig. 4.1 is categorized as
a supervised learning algorithm. This model learns the approximate
mapping between the 2D power profiles and their corresponding pump
power values. The models learns this mapping using a training dataset
D = {Xk, yk|k = 1, · · · , k} where k is the number of samples, the output
yk = [ppk

;λpk
] and Xk = Pk are the pumping configuration vector and

the corresponding 2D signal profile of the k-th sample, respectively.
The dataset for training the inverse model can be generated by solving

the analytical direct SRS model presented in Eqs. 2.9 and 2.10. Moreover,
each sample in the dataset is generated by a random selection of the
pump power and wavelength values (within the pre-defined constraints),
which is denoted as yk, and the resulting 2D profile Xk is generated by
solving Eqs. 2.9 and 2.10. More specifically, each value of the pump
parameters denoted as the m-th value of the vector y is selected based
on a uniform distribution U:

ym ∼ U[ymin
m , ymax

m ] (4.3)

in which ymin
m and ymax

m are the minimum and maximum values allowed
to be taken by the m-th value of y, respectively.

Once the dataset with k number of samples is generated, we follow the
same procedure performed for supervised learning approaches, which is
dividing the dataset into separate, non-overlapping sets called: training,
testing, and validation. The overall model of the inverse design network
can be described as:

y = R(F (X; θF ); θR) (4.4)

where R and F are jointly trained using the training set and their
optimum corresponding trainable parameters θ∗

R and θ∗
F are found by

solving the following optimization described as follows:

θ∗
R, θ∗

F = argmin
θR,θF

1
L

L∑
l=1

C(ŷl, yl) (4.5)

in which L is the number of training samples, ŷl = R(F (Xl; θF ); θR) is
the network output for a given input Xl, yl is the true output value,
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and C(ŷl, yl) is the mean square error (MSE) value between yl and ŷl,
formulized as the following:

C(ŷl, yl) = 1
2Np

2Np∑
i=1

(yi
l − ŷl

i)2 (4.6)

The parameters θ∗
R and θ∗

F are initialized randomly, and updated
afterward in an iterative process with back-propagation, utilizing the ad-
vanced optimization algorithm RMSprop [57]. RMSprop is an extension
of the Stochastic Gradient Descent (SGD) algorithm, momentum method,
and the foundation of the Adam algorithm, providing a fast and robust
convergence for each parameter. Once the network is trained, the trained
parameters θ = {θR, θF } will be fixed, and the network’s performance in
predicting the pump powers and wavelengths will be evaluated.

4.2.2 Numerical amplifier setup

In this section, we numerically generate a dataset with different pump-
ing configurations to train the CNN network and evaluate its accuracy. To
numerically solve the SRS equations, we have utilized the Raman Solver
function provided by GNPy [58], which is an open-source library devel-
oped in Python programming language for analyzing optical networks.

One single span of a standard single-mode fiber (SSMF) is considered
in our amplifier setup and the signal power evolution is jointly investi-
gated over the distance and the entire C-band (between 192 and 196
THz). Three separate amplification cases are deployed for training and
evaluation: two counter-propagating cases with 2 and 3 pumps and a
bidirectional propagating case with 4 pumps (2co+2counter).

The ranges for pump powers and wavelengths are specified in Table
4.1. The superscripts (-) or (+) on the power ranges specify the counter
or co-propagation of the corresponding pump, respectively.

The C-band (192 and 196 THz) is divided into 40 channels with
100 GHz spacing. The per-channel input signal power is set to 0 dBm,
resulting in a total WDM signal power of 16 dBm. Additionally, a stan-
dard silica fiber with the following parameters is assumed: span length
Lspan =100 km, signal data attenuation αs = 0.2 dB/km, pump power
attenuation αp = 0.25 dB/km, effective area Aeff = 80 µm2, non-linear
coefficient γ = 1.26 1/W/km.
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Tab. 4.1: Power and wavelength ranges for each DRA case

Parameter 2 pumps 3 pumps 4 pumps
p1[mW ] [40− 400]− [30− 300]− [30− 300]+
p2[mW ] [40− 400]− [30− 300]− [30− 300]+
p3[mW ] - [30− 300]− [30− 300]−
p4[mW ] - - [30− 300]−
λ1[nm] [1414− 1449] [1414− 1437.3] [1414− 1449]
λ2[nm] [1449− 1484] [1437.3− 1460.3] [1449− 1484]
λ3[nm] - [1460.3− 1484] [1414− 1449]
λ4[nm] - - [1449− 1484]
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Fig. 4.2: MSE of the validation data-set for different pumping
schemes as a function of the training data-set size

4.2.3 Numerical results

Once the amplification configuration for different pumping schemes
is set, a dataset consisting of 11000 samples is generated and divided
into 8000, 1000, and 2000 samples for training, validation, and testing,
respectively. In order to determine the best training data size for each
pumping case, we have generated training subsets of sizes from 1000
to 8000. Each subset is generated by random selection of the samples
from the primary 8000-size dataset aimed for the training size. For
each training subset, the CNN model is trained and its performance is
evaluated using the resulting MSE value from the validation set.

Fig. 4.2 shows the validation MSE as a function of the size of the
training dataset. Based on the validation MSE and also the training
time, we realized that for 2 and 3 counter and 4 bidirectional cases, the
best training data sizes are 5000, 6000, and 7000 samples, respectively.
According to Fig. 4.2, increasing the training size will not result in a
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remarkable improvement. The model with the best training size for each
pumping scenario is investigated further with different hyper-parameters
values such as the number of CNN filters and their size, the size of the
average pooling layers between each consecutive CCN layer, and the
number of neurons in the hidden layers in the regression network. More
specifically, the parameters of the feature extraction network, including
the number of filters (n1, n2, n3), filter sizes (f1, f2, f3), and the average-
pooling layer window sizes (m1, m2, m3) have been set and evaluated
based on the most common values in the literature. Regarding the
number of filters for each layer, we tested 32 and 64 numbers and
observed that 64 filters increase the training time extremely with no
improvement in performance. Moreover, for each CNN layer, a filter
size of 3× 3 has less number of training parameters with slightly better
validation MSE over a bigger 5× 5 filter. For the average-pooling layers,
a commonly used 2× 2 window has a better MSE over a window of size
3× 3.

In the regression network, we evaluated the validation MSE by setting
the Nh1 and Nh2 values according to the set of {20, 40, 80, 100} values.
For 2 pumping case, Nh1 = 40 and Nh2 = 40 with ReLU activation, and
contrarily, for both 3 and 4 pumping cases, Nh1 = 100 and Nh2 = 40
with ReLU activation function have a lower validation loss.

For all pumping schemes, the training batch size has been set to the
common value of 128, and the learning rate of the RMSprop is set to
0.001. Furthermore, the best distance resolution for 2 and 3 pumps is 2
km, and for 4 pumps is 1 km. The higher resolution of the 4 bidirectional
pump case is mainly because of its more signal variation along the
distance compared to the other two counter-propagating schemes. The
network output is the min-max normalized value of the pump setup, and
its exact value can be obtained after the prediction, using the parameters’
corresponding minimum and maximum values.

Once the network is trained with the above-mentioned parameters,
it is utilized to predict the pump power and wavelength values of the
2D profiles in the test set. The test set has been generated with no
overlap with the training and validation sets, to make sure that the
model is not over-fitting and the test data have not been previously
observed by the network. The most straightforward way to analyze
the trained CNN model performance is to predict the pump power and
wavelength values and compare them with their corresponding true
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Fig. 4.3: True-predicted pump power and wavelength values for
two backward propagating pump case.

values. The scatter-plot of the true versus predicted values for pump
power and wavelength values for the amplification scenario with two
counter-propagating pumps is shown in Fig.4.3. The solid red line in
all sub-plots represents the ideal prediction where the predicted and
the true parameters match perfectly. Instead of showing the plot for
the 3 counter-propagating pumps case (due to its similar scatter-plot to
Fig.4.3), we have shown the results for 4 bidirectional propagating pump
in Fig.4.4. It is visually obvious that the model shows more deviation
around the ideal prediction for the wavelength values, especially for λ2
and λ4, which correspond to the wavelength in the range between 1449
nm and 1484 nm for both co- and counter-propagating pumps. To have
a quantitative analysis of the CNN model performance, the mean (µ)
and the standard deviation (σ) of the MSE error for pump power and
wavelength values are calculated and reported for 2, 3, and 4 pump
scenarios in tables 4.2, 4.3 and 4.4, respectively. Regarding the reported
MSE mean and standard deviation values, in case the number of pumps
increases, the accuracy of the model decreases accordingly since the
pumping scheme becomes more complex to solve and moreover, the
signal power evolution will have more excursion.

One drawback of comparing the true versus predicted parameter val-
ues is that it is difficult to practically quantify the goodness of designing
the profile using the proposed inverse CNN model. In practical scenarios,
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Fig. 4.4: True-predicted pump power and wavelength values for
four bidirectional propagating pump case.

Tab. 4.2: Mean (µ) and standard deviation (σ) of MSE for 2
counter-propagating pumps case.

Parameter p1 p2
µ[dB] 0.29 0.22
σ[dB] 0.35 0.3
Parameter λ1 λ2
µ[nm] 1.37 1.25
σ[nm] 1.66 1.13
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Tab. 4.3: Mean (µ) and standard deviation (σ) of MSE for 3
counter-propagating pumps case.

Parameter p1 p2 p3
µ[dB] 0.38 0.64 0.57
σ[dB] 0.4 0.83 0.73
Parameter λ1 λ2 λ3
µ[nm] 1.08 1.44 1.67
σ[nm] 1.12 1.66 1.64

Tab. 4.4: Mean (µ) and standard deviation (σ) of MSE for 4
bidirectional-propagating pumps case

Parameter p1 p2 p3 p4
µ[dB] 0.38 0.25 0.49 0.30
σ[dB] 0.33 0.28 0.49 0.33
Parameter λ1 λ2 λ3 λ4
µ[nm] 1.15 2.46 1.49 3.11
σ[nm] 1.33 2.32 2.1 3.36

the primary objective is to create a specific target 2D profile. Therefore,
solely predicting the parameters may not be sufficient to evaluate the
goodness of the design. We will likely need to apply the predicted val-
ues back to the system to determine if they produce the same target
profile. Hence, we consider an alternative way to evaluate the model
performance in designing a target 2D power profile X, by applying the
corresponding predicted pump power and wavelength values to the am-
plifier setup, and generating the resulting 2D power profile X̂. Next, the
performance of the CNN is evaluated by quantifying the error, which can
be measured as the maximum absolute error (MAE) between X and X̂.
This can be formulated as follows:

MAE [dB] = max
f,z
|X− X̂| (4.7)

The schematic of the proposed evaluation approach is presented in
Fig. 4.5. For all three pumping schemes, the MAE is calculated for the 2D
profiles in the test set. Fig. 4.6 indicates the probability density function
(PDF) for the maximum absolute error (MAE) of the reconstructed power
profile. The µ and σ values of MAE for all three pumping cases in
reported in table 4.5, asserting the overall good performance of the CNN
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Fig. 4.5: Evaluation diagram of the CNN inverse model.

model in terms of the reconstruction error for 2D profiles defined in the
whole C-band and along the fiber distance.
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Fig. 4.6: Probability density function of the MAE for three pump-
ing cases.

4.3 Fiber length-aware CNN model for inverse
DRA design

In the previous section, all simulation results were performed assum-
ing that the fiber-related parameters, especially the fiber length, are
fixed. Considering a fixed type of fiber (SSMF) under test, one variable
which can normally vary and have perturbations is the fiber length. If the
fiber length in the numerical amplification setup changes, the process of
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Tab. 4.5: Mean (µ) and standard deviation (σ) of reconstruction
MAE for all three pumping scenarios.

Pumping case 2-counter 3-counter 4-bidirectional
µ[dB] 0.51 0.54 0.64
σ[dB] 0.62 0.43 0.38

dataset generation and moreover, the training of the CNN model needs
to be performed from the beginning.

The CNN architecture provided in Fig.4.1 is not capable of considering
the fiber length as an input and performing the inverse system design
for the proposed target fiber length. Additionally, generating thousands
of samples for every possible fiber length and training a separate CNN
model for each fiber length is not a practical approach to dealing with
fiber length variability. Considering this, we aim to modify the CNN
model such that it can accept both the target 2D power profile and the
length of the fiber as the input, and predict the pump power values for
that specific fiber length.
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Fig. 4.7: Diagram of the proposed length-aware CNN architecture
for the inverse DRA design based on target power profile in fre-
quency and distance, considering fiber length as a variable.

The architecture of the proposed length-aware CNN model is shown
in Fig.4.7. In this architecture, the target 2D profile is pre-processed and
then used as the input to the feature extraction network (composed of
the CNN and pooling layers). In the previous CNN architecture, the pre-
processing was only including the min-max normalization of the power
profile. However, here, since the target profile size changes for various
fiber lengths, we also need to perform one further pre-processing step
which is the adjustment of the input dimensions such that all of them
have a unique input power evolution size. In relation to this, we take
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the maximum possible length of fibers under test as the reference and by
performing interpolation, increase the length dimension of the profiles
to match the reference size. The proposed 2D power profile adjustment
makes all profiles with different lengths have the same dimensions. In
order to differentiate these profiles and make the CNN model aware of
the length of each input target 2D profile, we have added the length
as the input to the regression model. In fact, the length parameter is
concatenated to the low-dimensional feature representation of the target
2D power profile which is used further to predict the pump configuration
using the regression network.

4.3.1 Data set generation and training process

Regarding the dataset, we consider generating 2D power profiles with
lengths in the range between 70 km and 100 km with a discrete 5 km
step size. For every discrete length label, 3000 2D profiles are generated
which are divided into 1400 training, 800 validation, and 800 test 2D
profiles. The whole training data, consisting of the 2D profiles and their
corresponding length labels and the pump configuration values, are fed
to train the length-aware CNN model in Fig.4.7.

Regarding the amplifier setup, we use a standard second-order system.
more specifically, we use eight pumps including four co- and four counter-
propagating ones. For each propagation direction, one second-order
pump operating at 1366 nm and three first-order ones operating at 1425
nm, 1455 nm, and 1475 nm are considered. The available power range
for each pump is reported in table 4.6. Unlike the setup introduced in
the last section, and approaching a more practical scenario where the
pump wavelengths are challenging to tune, we assume that the pump
power values in this analysis are the only parameters to be predicted and
the pump wavelength values are fixed. Considering this, there is no need
to have the wavelength values to be predicted in the last layer of the
network and therefore, the last layer of the network is fully dedicated to
predicting the pump power values p.

Once the length-aware CNN model is trained on the training data set,
its performance is evaluated by measuring the MAE between each test 2D
profile and the generated 2D profile after applying the predicted pump
power values to the amplifier setup. After measuring the MAE for all test
2D profiles, its PDF for each corresponding length label is generated and
shown in Fig.4.7. Addtionally, the mean µ and the standard deviation
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Tab. 4.6: Wavelength values and power ranges of the Raman
pumps.

Co-pumps p1 p2 p3 p4
λ [nm] 1366 1425 1455 1475
[pLB, pUB] [mW] [200,1200] [5,150] [5,150] [5,150]
Counter-pumps p5 p6 p7 p8
λ [nm] 1366 1425 1455 1475
[pLB, pUB] [mW] [200,1200] [5,150] [5,150] [5,150]
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Fig. 4.8: Probability density function of the resulting value for the
test dataset of different length values from 70 km to 100 km.

σ of the MAE for each length is reported in table 4.7. According to this
table, the model performance is statistically good for predicting the pump
power values for all test data with different length labels, showing less
than 0.6 dB average error with less than 0.4 MAE standard deviation.

In the above-mentioned simulations, we have evaluated the perfor-
mance of the model in predicting the pump power values for 2D profiles
whose length labels already exist in the training set (70 km to 100 km
with 5 km step size for both training and test data sets are considered).

Tab. 4.7: Mean (µ) and standard deviation (σ) of the CNN model
MAE for test data with equal length labels as training data.

L[km] 70 75 80 85 90 95 100
µ[dB] 0.43 0.44 0.42 0.45 0.49 0.53 0.57
σ[dB] 0.25 0.27 0.25 0.26 0.34 0.34 0.40

40 Chapter 4 Inverse design of Raman amplifiers using Convolutional Neural

Networks



As the NN models are known for their good extrapolation performance
[26], here we aim to evaluate the trained model’s accuracy in designing
2D profiles whose length labels do not exist among the labels of the
training data set. Approaching this, we have generated another set of
test data 2D profiles with the length labels taken from the following list:
L[km] = [73, 78, 83, 88, 93, 98]. For each length label in this list, 800 2D
profiles are generated and the 2D profiles with their corresponding length
labels are fed into the pre-trained length-aware CNN model. Once the
pump power values are predicted, they are applied back to the amplifier
setup, and their resulting 2D profile is generated. Similar to the analysis
for the previous test data, the PDF of the MAE for each length label is
calculated and shown in Fig.4.9.
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Fig. 4.9: Probability density function of MAE for 2D profiles whose
length labels are not among the length labels used for training the
CNN model.

Tab. 4.8: Mean (µ) and standard deviation (σ) of the CNN model
MAE for test data with non-equal length labels as training data.

L[km] 73 78 83 88 93 98
µ[dB] 0.42 0.47 0.49 0.47 0.54 0.58
σ[dB] 0.23 0.31 0.35 0.35 0.40 0.44

Additionally, the MAE mean µ and the standard deviation σ values
are calculated and reported in table 4.8. The resulting average MAE is
less than 0.6 dB for all length labels and its standard deviation is less
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than 0.45 dB, showing statistically good performance for pump power
prediction for the new test data set. According to these results, we
can confirm that the proposed length-aware CNN model has a good
extrapolation performance as it is accurate in designing test 2D profiles
when their length does not exactly match with any of the length labels
existing in the training set. It is worth noting that the test length labels
should lie within the minimum and maximum lengths in the training set
with enough surrounding label values for better extrapolation results.

4.4 Summary
In this chapter, we presented a CNN-based model for inverse DRA

design to shape the signal power evolution in 2D, i.e. in frequency and
fiber distance domains. The proposed inverse model consists of two
networks trained end-to-end: 1) A feature extraction network with 3
CNN layers utilized to extract an informative and low-dimensional set
of features, representing the input 2D target power profile, and 2) A
regression model built based on two fully-connected NN layers, aiming to
predict the pump powers and wavelengths values based on the extracted
features. Numerical simulations show that the proposed framework
provides high accuracy in terms of predicting the pump parameters
for both counter and bidirectional propagating pumps for the signal
propagating in the whole C-band. Moreover, we proposed a length-aware
CNN model in which besides the 2D power profile, the fiber length is also
provided as an input to the network. Considering this, the network has
the capability to perform inverse DRA design for different fiber length
values.
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5
ML-based online optimization
framework for signal power
evolution shaping using DRAs

5.1 Introduction
In Chapter 4, we proposed and numerically validated a Convolutional

Neural Network (CNN) based inverse system model to map the 2D
signal power profiles to the pump power and wavelength values in a
distributed Raman amplifier (DRA) setup. The proposed CNN model was
trained offline using a dataset, which was generated by applying a set of
randomly selected pump power and wavelength values to the DRA setup
and measuring their corresponding 2D power profiles. This model was
tested on a numerical amplifier setup with first-order pumps with counter-
and bidirectional propagating schemes and obtained low average and low
standard deviation means absolute error (MAE) values for the test data.
Nonetheless, most of the focus in the literature has been on designing 2D
profiles that are practically interesting, and moreover challenging, such
as 2D flat or 2D symmetric profiles [14, 15, 47, 48]. Regarding this, both
numerical and experimental investigations in the literature have proven
that practically interesting profiles such as 2D flat or 2D symmetric can be
achieved using high-order Raman pumps in a bidirectional propagating
scheme [47, 59]. Most common Raman amplification setups for designing
the power evolution in fiber distance are made by combining second-
order and first-order pumps in a bidirectional propagating scheme [59],
or by using Raman pumps combined with Fiber Bragg Gratings (FBGs)
as reflectors [14]. In [14, 15], an amplification structure based on
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second-order Raman pumps with FBGs has been presented to provide
a quasi-lossless transmission medium by implementing an ultra-long
Raman fiber laser. Moreover, in [47, 48], numerical optimization of
narrow-band signal power asymmetry for OPC has been addressed by
considering different amplification setups using first-order and second-
order pumps. As also introduced in Chapter 4, many of the proposed
approaches in the literature for designing 2D power profiles rely on
either heuristically optimizing the pump parameters or simplifying the
optimization process based on the specific target profile and the setup
under test [14, 15, 24, 52, 53]. However, it would be highly beneficial to
provide a framework that can automatically optimize the parameters and
moreover, is flexible enough to be applicable to different power profiles
and amplifier setups.

Practically desired 2D profiles such as 2D flat or 2D symmetric pro-
files have their own specific objective or constraints which need to be
fulfilled. The objective functions for these profiles (power excursion or
power symmetry) are non-differentiable with respect to the optimization
parameters which makes it challenging to optimize using gradient-based
learning methods. Moreover, these profiles are still challenging to be ide-
ally obtained with the current amplification setups due to their physical
limitations. Therefore, the performance of the inverse Machine Learn-
ing (ML) methods such as CNN, which have been trained on the data
extracted from the setup, might not be very accurate in designing the
aforementioned practical profiles. Considering these two challenges, a
highly advantageous approach to design these profiles is to use an online
gradient-free optimization framework to tune the parameters.

In this chapter, we propose an online framework based on a gradient-
free optimization technique whose main goal is to minimize the cost
functions in an iterative process directly on the amplifier setup. More
specifically, we will deploy Differential Evolution (DE), known as an
evolutionary-based optimization, to adjust the pump power values in an
amplifier setup. DE is a derivative-free technique with the robustness
and flexibility to capture solutions to complex optimization problems [60,
61].
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Fig. 5.1: An online optimization framework utilized to adjust the
Raman pump power values in an amplification setup to design a
target 2D signal power profile.

5.2 Online framework for 2D power evolution
design using DRAs

Fig. 5.1 illustrates an amplification scheme in which an adjustment
framework is utilized to optimize the pump power values to achieve a
target 2D signal power evolution profile Pt(f, z). In this scheme, Pt(f, z)
is used as the input to the framework which predicts the Raman pump
power values pp, including both co- and counter-propagating pumps.
The pump power values are then applied to the fiber span ends in which
a wavelength division multiplexing (WDM) frequency comb signal with
flat spectra in the entire C-band is propagating through. The signal
power evolution shape is tailored in both frequency and fiber distance
domains due to stimulated Raman scattering (SRS) phenomena and
an analyzer measures the actual resulting 2D power profile P̂

t(f, z).
The resulting profile is used as the second input to the pump power
adjustment framework where its cost value with the main target Pt

s(f, z)
is calculated. Once the resulting cost value is evaluated, the framework
updates the pump power values and applies them to the setup to be
evaluated in the next iteration. This mechanism creates an apply-feedback,
mainly aiming at fine-tuning the optimum parameters by reducing the
cost values in an iterative process. This process continues until a certain
convergence criterion such as a maximum number of iterations or a
certain threshold for cost value is fulfilled.
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5.3 Differential Evolution algorithm for 2D power
evolution design

Evolutionary optimization techniques like DE, start with a population
of individuals which are the primary possible solutions to the optimization
problem. Once the population is initialized, the algorithm follows a set
of rules trying to improve each individual in an iterative process in order
to make it closer to the optimum point [35]. In case there is no prior
information on how to initialize the individuals, the first option will be
to randomly select them in the parameter space.

We consider DE as the main building block of the proposed online
framework for optimizing the pump power values to design 2D signal
power profiles. Considering this, we can define the individuals by a
random selection of values within a lower-bound pLB and an upper-
bound pUB value. The simplest way of specifying pLB and pUB, is to
assign them the minimum and maximum possible values of pump powers,
respectively. Fig. 5.2 shows the detailed numerical block diagram of
the proposed DE framework used to optimize the set of pump power
values pp = [p1, ..., pNp ] to design a target 2D profile Pt(f, z). The DE
framework is combined with the numerical direct model of the Raman
amplification scheme referred to as Raman Solver R(·) which calculates
the signal power evolution in frequency and fiber distance by solving the
SRS Eqs. 2.9 and 2.10, given the pump power values:

P(f, z|pp) = R(pp) (5.1)

In the proposed framework in Fig. 5.2, once the pLB and pUB val-
ues are defined, the population consisting of n individuals is initial-
ized. Each individual in the population is a candidate for the opti-
mization solution and it is represented by a vector of size Np, named
xi = (x1

i , x2
i , ..., x

Np

i ), i = 1, ..., n, as a set of pump power values. Each
individual passes through the Raman Solver R(·) and its corresponding
2D power evolution profile is calculated. Assuming that we already have
a pre-defined cost function J(·), it calculates the cost (error) between
the resulting 2D profiles of all individuals and the main target 2D pro-
file. After calculating the cost for each individual, an iterative process
including mutation and crossover is performed and in each iteration, the
individuals are adjusted and evaluated in a loop using Raman Solver to
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decrease the resulting error, aiming to converge to the optimum point
with minimum cost value [35].
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Fig. 5.2: DE framework, applied to adjust the pump power values
in an online numerical amplification setup.

Providing further details, within the online DE loop, three individuals,
namely xr1 , xr2 , and xr3 , are randomly selected from the population,
with the condition that r1 ̸= r2 ̸= r3 ̸= i. Subsequently, a mutation
process is carried out to generate a donor vector, denoted as vi, which
has the same size as xi. The purpose of generating the donor vector vi is
to enhance the diversity of the population and prevent convergence to a
local minimum. The donor vector can be defined as follows:

vi = xr1 + F · (xr2 − xr3) (5.2)

where F ∈ [0, 1] is the mutation factor, which controls the diversity of
the population.

Following the mutation, the crossover process combines the elements
of the donor vector vi and the current target vector xi to create the trial
vector ui in the following manner:

uj
i =

vj
i , if rj

i ≤ CR or j = jrand

xj
i , otherwise

(5.3)

where uj
i , vj

i and xj
i represent the jth element of ui, vi and xi, re-

spectively. CR is the crossover probability, rj
i ∼ U(0, 1) is a uniform

distribution generated for each j, and jrand ∈ 1, 2, ..., n is a random
integer used to ensure that xi ̸= ui. After performing the mutation and
the crossover, the trial vector is checked if it follows the constraints pLB
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Algorithm 1 Online pump power adjustment framework.
Input: Target power profile Pt(f, z), DE parameters: {n: Population
size, CR: Crossover probability, F: Mutation factor, MaxEv: Maximum
number of cost function evaluations}
Output: Pump power values p∗

p

Optimization procedure:
1: Generate population: xi = (x1

i , x2
i , ..., xn

i ), i = 1, ..., Np, pLB < xi <
pUB

2: Direct model: Calculate P(f, z|xi) = R(xi)
3: Calculate individual cost: J(xi)
4: While Ev < MaxEv:
5: for i = 1 : Np do
6: Select three random individuals xr1, xr2, xr3 from the popu-

lation where i ̸= r1 ̸= r2 ̸= r3
7: Mutation : Form the donor vector as in Eq. 5.2
8: Crossover: Form the trial vector as in Eq. 5.3
9: Check constraints: Check if pLB < ui < pUB, otherwise, go

to the next individual.
10: Direct model: P(f, z|ui) = R(ui)
11: Evaluate: if J(ui) ≤ J(xi), replace xi with ui

12: Ev ← Ev + 1
13: End for
14: End while

and pUB. Afterward, ui is passed through the Raman solver function to
generate the corresponding power evolution profile P(f, z|ui) = R(ui)
and calculate the cost value J . The cost values of the trial vector J(ui)
and the target vector J(xi) are compared with each other and the one
with a lower cost value keeps staying in the population and the other
one will be removed. The selection process can be formulated to form
the new particle xinew as follows:

xinew =

ui, if J(ui) < J(xi)
xi, otherwise

(5.4)

The DE loop continues further until it reaches a maximum number of
iterations MaxEv defined as the convergence criteria. The implementa-
tion procedure of the proposed CNN-assisted DE optimization scheme is
summarized in Algorithm 1.
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5.3.1 Numerical amplifier setup

In this section, we use the proposed online DE framework to perform
pump power prediction for designing practically desired 2D flat and
2D symmetric signal power profiles. In order to enable the framework
to approach these practical profiles, we use a standard second-order
bidirectional numerical amplifier setup which consists of eight pumps
amplifying the signal in the entire C-band in a single span of a standard
single-mode fiber (SSMF). For each propagating direction, four pumps
consisting of a second-order pump with the wavelength 1366 [nm] and
three first-order pumps with the wavelengths 1425 [nm], 1455 [nm],
and 1475 [nm], are considered. The pump wavelengths 1366 [nm] and
1455 [nm] are selected mainly based on the previously presented papers
in which second-order and first-order pumps are utilized to achieve flat
and symmetric power profiles [45–47]. The primary objective in selecting
the 1425 [nm] and 1475 [nm] wavelengths is to ensure an adequate
power supply for all channels across the entire C-band, as discussed in
previous works [53, 62].

In the following analysis, we assume to have fixed pump wavelength
values, approaching a more practical scenario where pump power values
are mostly considered as the free parameters to be tuned. However, it is
worth noting that the proposed framework is also capable of optimizing
the wavelength values, as well. Ranges of the pump powers considered
for [pLB, pUB] are reported in table 5.1.

The desired 2D signal power profiles are designed in the entire C-
band (ranging from 192 THz to 196 THz), divided into 40 channels, each
having a bandwidth of 100 GHz. The input signal power per sub-channel
is fixed at 0 dBm, resulting in a total signal power of 16 dBm. Moreover,
the utilized SMF has the following specifications: length of the span
Lspan = 80 km, signal data attenuation of αs = 0.2 dB/km, second-
order pumps [p1, p5] attenuation α2nd

P = 0.32 dB/km, and first-order
pumps [p2, p3, p4, p6, p7, p8] attenuation α1st

P = 0.25 dB/km, effective
area Aeff = 80 µm2, non-linear coefficient γ = 1.26 1/W/km, and
Raman coefficient peak gR = 0.39 1/W/km. A standard silica Raman
efficiency profile is assumed, as shown in Fig 2.1 [1].

To deploy the numerical Raman Solver model, we have used the GnPy
library [58] which utilizes a Boundary Value Problem (BVP) solver based
on residual error control to solve the set of Raman differential equations.
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We set the distance resolution to zres = 500 m which satisfies the residual
error threshold rth = 10−6.

Tab. 5.1: Raman pump wavelengths and power ranges.

Co-pumps p1 p2 p3 p4
λ [nm] 1366 1425 1455 1475
[pLB, pUB] [200,1200] [5,150] [5,150] [5,150]
Counter-pumps p5 p6 p7 p8
λ [nm] 1366 1425 1455 1475
[pLB, pUB] [200,1200] [5,150] [5,150] [5,150]

5.3.2 Simulation results: 2D flat power profile

In this part, we focus on optimizing the pump power values to provide
a 2D flat profile, meaning that it has the least signal power excursion
jointly in frequency and fiber distance. Considering the cost function
for power excursion minimization, we extend the formulation presented
in the literature and define it to properly fit our wide-band with multi-
channel (entire C-band) analysis [15, 63]. More specifically, We formu-
late power excursion minimization as an optimization problem aiming to
find the optimum pump power values p∗

p that minimize the maximum
power excursion among all distance and frequency signal power points in
the fiber. In more precise terms, we establish three distinct cost functions
to address the design of a 2D flat profile. Each cost function incorporates
a particular constraint to shape the 2D profile. The three proposed cost
functions are sequentially defined as follows.

First, the main objective is to minimize the maximum power excursion
in frequency and along the fiber span J0 [dB]. Maximum power excursion
(which we will refer to as power excursion) is defined as the difference
between the overall maximum and the overall minimum of the signal
power level in frequency and fiber distance domains:

J0(pp) = max
f,z

(P(f, z|pp))−min
f,z

(P(f, z|pp)) (5.5)

In a wide-band amplification system, another desirable requirement
is to minimize the spectrum excursion at the receiver side in order to
achieve optimal signal power distribution [37, 39, 40]. Considering this
objective, we define a generalized cost function that aims to minimize
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the maximum spectrum excursion across all points in the fiber. This cost
function is referred to as spectrum excursion J1 [dB], and it is defined as
follows:

J1(pp) = max
z

[max
f

(P(f, z|pp))−min
f

(P(f, z|pp))] (5.6)

Furthermore, in the experimental configurations outlined in the ex-
isting literature concerning flat power evolution design [15, 63], the
pump power values are adjusted through empirical methods to fully
compensate for the signal loss and achieve a 0-dB gain between the
transmitter and the receiver. In this context, the 0-dB gain J2 between
the transmitter and the receiver is regarded as the third cost value, and
it is formulated as follows:

J2(pp) = max
f
|P(f, z = L|pp)− P(f, z = 0|pp)| (5.7)

where L is the fiber length and |.| is the absolute value operator.
Considering these three cost functions, we define a multi-objective

optimization problem for a 2D flat target profile which aims to find the
optimum pp such that all three cost functions are minimum. Given the
complexity of each individual cost function, determining whether their
minimum values coincide poses a challenge. Therefore, to simplify the
optimization process and also to be able to interpret the impact of each
cost on the overall optimization process, we make an approximation
by converting it into a classical weighted-sum optimization. In this
approach, one weight value is assigned to each cost function, defined
as a hyper-parameter, and it is added to the other weighted costs as the
following:

p∗
p = arg min

pp

2∑
i=0

miJi(pp) = m · JT (pp), (5.8)

such that pLB ≤ pp ≤ pUB, mi > 0,
2∑

i=0
mi = 1

where m = [m0, m1, m2] is a hyper-parameter vector of weights, the
objective vector is J(pp) = [J0(pp), J1(pp), J2(pp)], and T is the transpose
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operator. Considering the optimization problem defined in Eq. 5.8, the
impact of each cost function Ji, i = 0, 1, 2 on the final optimum pump
power values can be tuned by their corresponding weight value defined
as mi. This approach provides the flexibility to tune weights arbitrarily
and depending on our target power evolution shape, designate more
importance to our desired cost function in the optimization process. An
advantage of the DE as a gradient-free optimization technique is that
we can target problems with multiple objectives which we cannot solve
easily with gradient-based ML inverse models like CNNs and fully-connect
Neural Networks (FCNNs).

We utilize the DE framework presented in Fig. 5.2 to perform the
optimization. According to Algorithm 1, DE has a set of hyper-parameters
to be assigned with proper values. We also need to specify cost weight
values m = [m0, m1, m2]. An approach for determining the optimal
set of hyper-parameters is to conduct a grid search, exploring various
combinations of all possible values and evaluating the performance of
the DE algorithm accordingly. Nevertheless, employing a grid search
for identifying the best hyper-parameter set is impractical due to its
complexity and time-consuming nature, making the optimization pro-
cess inefficient. In order to reduce the complexity, we set some of the
DE hyper-parameters values such as the crossover probability and the
mutation factor, as the standard values CR = 0.5 and F = 0.8, normally
used for other applications [64].

During our simulation procedures, we assign a higher weight value to
the power excursion cost function J0(p) weight, which is m0, compared to
the other two cost function weights. Nevertheless, it is worth noting that
various weight configurations can be contemplated in this optimization
process. We explore three distinct scenarios with different values of
m = [m0, m1, m2] to examine their respective impacts.

In the first case scenario, we set m(1) = [1, 0, 0] where the objective is
only to minimize the power excursion J0. In the second scenario, we set
m(2) = [2/3, 1/3, 0] where the objective is to minimize both the J0 and
the spectrum excursion J1 having J0 twice the impact compared to the
impact of J1. In the final scenario, we set m(3) = [2/3, 1/6, 1/6] where
the objective is to minimize J0 , J1 and 0-dB gain variation J2 giving
equal impact to J1 and J2, each one with quarter impact of J0.

Fig. 5.3 shows the results for the first case scenario where m(1) =
[1, 0, 0]. Fig. 5.3 (a) represents the resulting power evolution of all
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channels over the fiber distance after applying the optimal pump power
values found by the DE. Fig. 5.3 (b) shows the optimal pump power
values of co- and counter-propagating pumps operating at different
frequencies. Fig. 5.3 (c) represents the evolution of the cost value J0
over the number of the DE iterations. The final power excursion value
for the resulting 2D profile is J0 = 2.83 dB.
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Fig. 5.3: Results for 2D flat power profile design using DE frame-
work with m(1) = [1, 0, 0]. (a) Resulting 2D power profile. (b) The
optimized pump power values for different pump frequencies. (c)
The evolution of the cost value over the number of DE iterations.

In the previous case scenario, we observe that the resulting 2D power
evolution, despite its low power excursion, has a high spectrum excursion
of 1.64 dB, occurring at the end of the fiber. Regarding this, in the second
design scenario, we have applied m(2) = [2/3, 1/3, 0], where the focus
is on minimizing both power excursion J0 and spectrum excursion J1,
still considering higher weight value for J0. Similar to the previous
case, have shown the results in Fig.5.4. Fig.5.4 (a) illustrates the 2D
power evolution profile over the fiber distance, in which the pump power
values are optimized to minimize both power excursion and spectrum
excursion. In the resulting profile, the power excursion and spectrum
excursion are J0 = 3.04 dB and J1 = 0.82 dB, respectively, asserting
that the optimization framework has significantly improved the spectrum
excursion (decreased from 1.64 dB to 0.82 dB) with a slight increase
in power excursion (from 2.83 dB to 3.04 dB). Fig.5.4 (b) shows the
resulting pump power values for this case. The evolution of cost over the
number of DE iterations is shown in Fig.5.4 (c), asserting no considerable
improvement in cost value after almost 400 DE iterations.

In the previous two case scenarios, we set m2 = 0, meaning that
we have not considered the 0-dB gain cost function J2(p) in the last
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Fig. 5.4: Results for 2D flat power profile design using DE frame-
work with m(2) = [2/3, 1/3, 0]. (a) Resulting 2D power profile. (b)
The optimized pump power values for different pump frequencies.
(c) The evolution of the cost value over the number of DE itera-
tions.

optimization processes. Considering the first and second scenario results
in Fig.5.3 and Fig.5.4. It can be observed that for the first and second
cases, the 0-dB gain cost value is J2 = 2.28 dB and J2 = 2.86 dB, which
can be relatively high values for different applications. Therefore, in
our third design case, we also take into account the minimization of
the last cost function J2(p) by setting m(3) = [2/3, 1/6, 1/6], considering
higher weight value for J0, and lower but both equal weights for J1 and
J2. Fig.5.5 (a) shows the 2D power evolution profile by targeting all
three cost functions simultaneously resulting in cost values J0 = 3.11 dB,
J1 = 0.96 dB and J2 = 1.18. These results show significant improvement
in J2 with a slight increase in J0 and J1 values compared to the last
two case scenarios. Moreover, Fig.5.5 (b) shows the resulting pump
power values and Fig.5.5 (c) illustrates the evolution of the error over
the number of DE iterations, asserting no further improvement after 300
iterations.

The cost values for all three cases are summarized in Table 5.2.

Tab. 5.2: Cost values achieved by DE for a 2D flat target profile.

Design case DE with m(1) DE with m(2) DE with m(3)

J0 2.82 dB 3.04 dB 3.11 dB
J1 1.63 dB 0.82 dB 0.96 dB
J2 2.28 dB 2.86 dB 1.18 dB

It is worth noting that the DE framework initializes the population
with a random sampling of the power values within the pre-specified
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Fig. 5.5: Results for 2D flat power profile design using DE frame-
work with m(3) = [2/3, 1/6, 1/6]. (a) Resulting 2D power profile.
(b) The optimized pump power values for different pump frequen-
cies. (c) The evolution of the cost value over the number of DE
iterations.
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Fig. 5.6: Average cost (plot line) and standard deviation (error
bars) for the DE framework with m(1) = [1, 0, 0] for a 2D flat profile
design.
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Fig. 5.7: Average cost (plot line) and standard deviation (error
bars) for the DE framework with m(2) = [2/3, 1/3, 0] for a 2D flat
profile design.

ranges. Therefore, the quality of the final point will be very sensitive to
initialization. This means that the closer the sampled individuals are to
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Fig. 5.8: Average cost (plot line) and standard deviation (error
bars) for the DE framework with m(3) = [2/3, 1/6, 1/6] for a 2D
flat profile design.

the optimal point, the faster the convergence will be, and furthermore, it
will be less likely to get trapped in a local minimum. To investigate this,
we conducted ten trials of the DE framework for each case scenario, using
different initialization seeds. Then, we plotted the average error with
error bars over the number of DE iterations, as shown in Fig. 5.6, 5.7
and 5.8, respectively. Comparing these figures, the third scenario with
m(3) = [2/3, 1/6, 1/6] exhibits wider error bars, particularly at higher
levels of DE iterations. This indicates the more uncertainty of its results
and also its more likelihood to get trapped in a local minimum.

5.3.3 Simulation results: 2D symmetric power profile

The literature has primarily focused so far on addressing symmetric
power evolution in distance within single-channel narrow-band amplifi-
cation scenarios [47, 48]. The primary objective of designing symmetric
power evolution is to minimize the asymmetry factor A(f) at a specified
frequency f0, either through numerical or experimental methods, as
defined below [47]:

A(f0) =
∫ L/2

0 |P(f0, z)− P(f0, L− z)|dz∫ L/2
0 P(f0, z)dz

(5.9)

where the power profile P(f, z) is defined in linear scale [mW]. Extending
the minimization model to a wide-band scenario, we define the proposed
cost value J as the highest level of asymmetry among all the frequency
channels within the bandwidth as follows:
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J = max
f

(A(f)) (5.10)

in which A(f) and consequently J value, can be formulated as a function
of the pump power values as the following:

J(pp) = max
f

[
∫ L/2

0 |P(f, z|pp)− P(f, L− z|pp)|dz∫ L/2
0 P(f, z|pp)dz

] (5.11)

and the optimization problem is formulated as:

p∗
p = arg min

ppump

J(pp) (5.12)

such that pLB ≤ pp ≤ pUB

After formulating the optimization problem, we utilize the DE frame-
work to determine the optimal values of pump powers that lead to a
symmetric power evolution profile along the fiber distance. The result-
ing power evolution profile is shown in Fig.5.9 (a) with the maximum
asymmetry value of J = 20.05 % over all frequency channels. Fig.5.9
(b) shows the allocation of the pump power values for different co- and
counter-propagating pumps. Moreover, Fig.5.9 (c) shows the evolution
of the cost over the number of the DE iterations.
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Fig. 5.9: Results of using DE framework for designing a 2D sym-
metric power profile. (a) Resulting power profile, (b) Resulting
pump power values, (c) Evolution of the cost value over the num-
ber of DE iterations.
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As discussed earlier, random initialization of the DE can affect its
performance in terms of the quality of the results and the convergence
speed. Similar to the 2D flat power evolution case, we have performed
ten different trials of using the DE framework with different initialization
seeds to optimize the pump powers to generate a symmetric power
evolution. These trials are mainly performed to investigate how much it
is probable to converge to different minimum values with different initial
individuals. We have observed that some of the trials converge to a local
minimum with very high cost (asymmetry) values. For example, Fig. 5.10
(a) shows a power evolution profile that has resulted from convergence
to a local minimum. The maximum asymmetry value for this profile is
J = 32 %. Fig. 5.10 (b) also asserts that there is no improvement in
cost value after almost 100 iterations, which means that none of the
individuals is initialized in the vicinity of the optimum value.

0 20 40 60 80

Dsitance [km]

-1

0

1

2

S
ig

n
a
l 
p
o
w

e
r 

[d
B

m
]

0

10

20

30

P
u
m

p
 p

o
w

e
r 

[d
B

m
]

200 210 220

Frequency [THz]

Co-pumps

Counter-pumps

0 500 1000

# DE iterations

20

40

60

80

100

C
o
s
t 
(A

s
y
m

m
e
tr

y
 [
%

])

Fig. 5.10: Results of using DE framework for designing a 2D
symmetric power profile trapped in local minima. (a) Resulting
power profile, (b) Resulting pump power values, (c) Evolution of
the cost value over the number of DE iterations.

Fig. 5.11 shows the average maximum asymmetry value plot with
the standard deviation, represented as error bars, over the number
of the DE iterations. This plot shows that the size of the error bars
grows with increasing the DE iterations, asserting a higher probability
of convergence into local minimum points every time we run the DE
framework. Considering this, to have more reliable results, especially for
the 2D symmetric power profile design, we will need to run the DE with
different initialization and choose the trial with the lowest error as our
final optimum point. This approach, besides providing a better solution,
can be time-consuming and computationally expensive.
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Fig. 5.11: Average cost (plot line) and standard deviation (error
bars) of using the DE framework for a 2D symmetric profile.

5.4 CNN-assisted DE framework for 2D power
evolution design

In the previous section we illustrated that the DE framework starts
with a random initialization of the pump power values within the whole
range of available power for designing a target 2D profile, This framework
is proposed generally when there is no prior information provided to
narrow the search region for the optimum set of pump power values. In
this blind search approach, the framework would be very sensitive to the
initial distribution of the candidates and liable to slow convergence and
additionally, plunging into a local minimum. This uncertainty in results
was shown in the last section, especially for a 2D symmetric profile in Fig.
5.10 and 5.11. The issues such as slow convergence and local minimum
are more dominant when the cost function is more complex, and the
number of dimensions in the search space, i.e. the number of pumps for
our case, increases. In the case of higher dimensionality, the uncertainty
in convergence to the optimum value decrease since the probability of the
individuals taken in the vicinity of the optimum point will decrease.

In this section, we improve our chance to approach a more reliable and
accurate pump power optimization for the proposed 2D power profile
design problem by using the inverse CNN model as an initializer for the
DE framework. As discussed in Chapter 4, the CNN model is a neural
network trained offline, which learns the inverse mapping based on
a data-set generated by random selection of the pump power values
in the proposed amplification setup. This inverse model has shown
statistically promising results in effectively mapping the achievable 2D
power profiles to their corresponding pump power values while having
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not accurate results for practically challenging profiles. However, this
model approximately predicts the pump power values, providing initial
information for the solution, which can be fine-tuned using the DE
framework to find the optimum pump power values.

The CNN prediction gives prior information about a space region of
pump power values where a better solution to the optimization falls
inside. By initializing the DE population based on the CNN results, we
improve the convergence speed and also the quality of the final solution.
Considering this, the fine-tuning process is performed with parameter
constraints on a relatively narrower space region neighboring the set of
values predicted by the CNN model.

The schematic of the proposed DE framework initialized with the
CNN prediction which we refer to as CNN-assisted DE framework, is
shown in Fig. 5.12. In this scheme, first, the 2D target power profile
Pt(f, z) is used as the input to the pre-trained CNN model to predict
the corresponding Raman pump power values as the initial solution
p∗′

p = [p1, ..., pn]. Afterward, the constraints pLB = p∗′
p −∆p · p∗′

p and
pUB = p∗′

p + ∆p ·p∗′
p are defined, where ∆p = [∆1, ∆2, ..., ∆n] is a hyper-

parameter vector consisting of n number of unit-less scalar values. Each
element of ∆p is multiplied by its corresponding initial pump power
value in p∗′

p . The resulting number for each pump power is considered as
its amount of deviation and the constraints pLB and pUB, accordingly.
After defining the pLB and pUB values using the CNN prediction, the DE
framework will perform the optimization, same as what was proposed in
the last section (Fig.5.2).
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Fig. 5.12: Block diagram of the proposed CNN-assisted DE frame-
work used for pump power optimization based on a specific 2D
target power profile.
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5.4.1 Simulation results: CNN model evaluation

In the proposed CNN-assisted DE framework, first, we need to train
and evaluate the CNN model. To specify the proper size of training data,
training sets with different sizes from 1000 to 5000 samples are used, and
a validation set with 800 samples is used to assess the achieved accuracy
across these training sizes. Validation MSE for datasets with different
training size is shown in Fig. 5.13. Since there is not a considerable
improvement in validation MSE error for training datasets with more
than 3500 samples, we choose this value as the training data size for all
further analyses.
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Fig. 5.13: CNN validation error the different training dataset sizes.

To measure the CNN accuracy, we use R-Squared (R2) [65], which
serves as our measurement tool to assess how well the trained network
fits the data. R-Squared takes on values between 0 and 1, where a
value of 1 signifies that the regression predictions perfectly explain the
variations in the true values. Conversely, lower values of R2 indicate
that the regression model’s outputs do not accurately vary in accordance
with the true values. The R2 values for the predicted pump powers in
the test data set are presented in table 5.3. Notably, all pumps, except
p8, exhibit R2 values higher than 0.90, indicating the good performance
of the CNN in capturing the relationship between the 2D profiles and
their corresponding pump power values in the proposed second-order
amplification scheme.

Tab. 5.3: R2 values of the pump power set for test data

Pump p1 p2 p3 p4 p5 p6 p7 p8
R2 0.98 0.93 0.99 0.97 0.95 0.96 0.95 0.86
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As suggested in Chapter 4, an alternative approach to evaluating the
accuracy of the trained CNN model involves measuring the MAE between
the target and resulting 2D profiles. To calculate the MAE, we utilize
the predicted pump power values for the ith test profile, apply them to
the amplifier setup, and generate the corresponding 2D power profile
P̂

i(f, z). The MAE for the ith profile is computed as follows:

MAEi[dB] = max
z,f
|Pi(f, z)− P̂

i(f, z)| (5.13)
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Fig. 5.14: PDF of the MAE values resulted from CNN inverse
model prediction.

Here we perform the same process and calculate the MAE for all test
2D profiles. The probability density function (PDF) of the MAE for the
test dataset is shown in Fig. 5.14. The low mean µ = 0.62 dB and the
standard deviation σ = 0.33 dB values for MAE also assert the good
performance of the proposed CNN model for the prediction of the pump
power values.

5.4.2 Simulation results: 2D flat profile

For the flat 2D power profile design, first we evaluate the CNN model
performance by providing it with a 0-dBm flat 2D power profile input.
More particularly, we use Pt(f, z) = 0 dBm as the input to the CNN model
to predict the pump power values and apply the predicted pump power
values to the amplifier setup to measure the resulting 2D power profile.
Fig. 5.15 (a) shows the 2D power evolution profile resulting from the
CNN model prediction for a 0-dBm flat input with the predicted pump
power values shown in 5.15 (b). All three cost values Eq. 5.5, 5.6 and
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5.7 are specified on the resulted power profile with corresponding values
of J0 = 3.58 dB, J1 = 1.48 dB and J2 = 0.97 dB, respectively.
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Fig. 5.15: CNN inverse model results for a flat 2D power profile.
(a) Resulting 2D power profile. (b) Resulting pump power values.

The CNN model yields an approximate flat 2D profile, but there is
potential for further improvement by fine-tuning the resulting pump
power values using the online DE framework. Based on the CNN-assisted
DE scheme proposed in Fig.5.12, the pump power values predicted
using the CNN model p∗′

p are used to initialize the DE population. The
population of the DE is initialized within the range between lower-bound
pLB = p∗′

p −∆p · p∗′T
p and lower-bound pUB = p∗′

p + ∆p · p∗′T
p , in which

∆p = [∆1, ∆2, ..., ∆Np ] represents the deviation of the pump power
values around the CNN prediction p∗′

p . Each element of ∆p is a scalar
value corresponding to a pump power deviation. For each value of ∆p, we
use a consistent and fixed scaling factor for the first-order pumps, as well
as the same value for the second-order pumps. Due to the amplification
from the second-order pumps on the first-order ones, we assign a lower
scaling factor value to the second-order pumps compared to the first-
order ones. Since the pump p5 has higher prediction value compared
to the pump power value predicted for p1, we consider 1.4 [W] as the
maximum possible value and consequently ∆1 = ∆5 = 0.35. Addressing
the first-order pumps, based on the highest value which is predicted
for p3, we consider more deviation to first-order pumps by setting their
corresponding scaling factor value to 0.5. With this investigations, we
finally set ∆p = [0.35, 0.5, 0.5, 0.5, 0.35, 0.5, 0.5, 0.5] (0.35 scaling value
for the second-order pumps and 0.5 for the first-order pumps).

Once the lower-bound and upper-bound values are set according to
the scaling factor ∆p, the DE framework is applied to minimize the
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Fig. 5.16: CNN-assisted DE result for a flat 2D power profile,
considering m(1) = [1, 0, 0]. (a) Resulting 2D power profile. (b)
Resulting pump power values.

weighted sum of the cost values J0, J1 and J2 according to solve the
optimization scheme in Eq. 5.8. Similar to the last section’s results, we
have investigated three different optimization scenarios where three sets
of weights m = [m0, m1, m2] are applied and the results are investigated
and compared. In the first scenario, we set m(1) = [1, 0, 0] in which the
cost value J0 is aimed to be minimized, and the other cost values J1
and J2 are neglected. Fig.5.16 (a) shows the resulting power evolution
profile for m(1) = [1, 0, 0] with the corresponding cost values J0 = 2.81
dB, J1 = 1.80 dB and J2 = 1.14 dB. The predicted pump power values
for this case are shown in Fig.5.16 (b).
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Fig. 5.17: CNN-assisted DE result for a flat 2D power profile,
considering m(2) = [2/3, 1/3, 0]. (a) Resulting 2D power profile.
(b) Resulting pump power values.

In the second design scenario, we set m(2) = [2/3, 1/3, 0], meaning
that both cost values J0 and J1 are minimized in the optimization process
without involving the third cost value J2. Fig. 5.17 (a) indicates the
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resulting power evolution profile and Fig.5.17 (b) shows the optimum
pump power values for this design scenario. The cost values for this case
are J0 = 2.97 dB, J1 = 0.88 dB, and J2 = 1.2 dB, asserting the proposed
framework’s ability in minimizing the targeted cost value J1 with a slight
increase in power excursion cost J0.
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Fig. 5.18: CNN-assisted DE result for a flat 2D power profile,
considering m(3) = [2/3, 1/6, 1/6]. (a) Resulting 2D power profile.
(b) Resulting pump power values..

In the third scenario, all cost values are attempted to be minimized
with the corresponding weights m(3) = [2/3, 1/6, 1/6]. The resulting
2D power profile for this case is shown in Fig.5.18 (a) and its resulting
optimum pump power values are shown in Fig.5.18 (b). The cost values
for this profile are J0 = 3.06 dB, J1 = 0.9 dB, and J2 = 0.65 dB. These
results assert a considerable improvement in the cost value J2 with a
slight compromise in the cost values J0 and J1. In order to provide a
better comparison, the cost values for different case scenarios and their
corresponding pump power values (in linear scale) are reported in Table
5.4 and Table 5.5, respectively.

Tab. 5.4: Cost function values achieved by CNN and CNN-assisted
DE framework for a 2D flat input profile

Design case CNN only CNN+DE
with m(1)

CNN+DE
with m(2)

CNN+DE
with m(3)

J0 3.58 dB 2.81 dB 2.97 dB 3.06 dB
J1 1.48 dB 1.80 dB 0.88 dB 0.90 dB
J2 0.97 dB 1.14 dB 1.2 dB 0.65 dB
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Tab. 5.5: Predicted pump power values by the CNN and CNN-
assisted DE with different weights for 2D flat input power profile

model CNN only CNN+DE
with m(1)

CNN+DE
with m(2)

CNN+DE
with m(3)

p1[mW ] 330 430 440 450

p2[mW ] 33 45 49 47

p3[mW ] 145 98 90 76

p4[mW ] 12 12 13 14

p5[mW ] 1030 1150 1060 990

p6[mW ] 12 8 6 6

p7[mW ] 19 12 18 21

p8[mW ] 43 24 63 63
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Fig. 5.19: Power excursion value computed as a function of fre-
quency, shown for different pump power adjustment scenarios.

Besides the analysis provided so far for power excursion in the entire
C-band and along the fiber distance, we will now examine the power
excursion as a function of the signal frequency. This analysis aims to
determine the frequencies that contribute the most to the power excur-
sion. For each frequency channel in the previously proposed 2D profile
design scenarios, the difference between the maximum and the minimum
value of signal power level over the distance is calculated and shown in
Fig. 5.19. This figure illustrates that the power excursion is generally
increasing over the frequency for all scenarios. For all resulting profiles,
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the minimum power excursion which is less than 2.4 dB, is achieved
almost at 192.7 THz. Additionally, The maximum value for all scenarios
is measured at 196 THz. It is worth mentioning that the frequency-based
power excursion value is less than or equal to the power excursion cost
value J0, calculated over the whole frequency-distance plane.

As pointed out in the last section (DE results), the DE framework
without CNN-based initialization, has more potential to converge to
a local minimum for different trials. To confirm this statement, we
performed ten trials with random initialization of the DE and showed the
evolution of the error with error bars over the number of DE iterations. To
provide a visual comparison, we have also performed ten different trials
for the CNN-assisted DE and showed the resulting error bars over the
number of DE iterations together with the stand-alone DE error bars in
Fig. 5.20. When comparing the results of the differential evolution (DE)
with the CNN-assisted DE (referred to as CNN+DE), we observe that the
CNN-assisted DE converges to the optimum point in approximately 100
iterations. This indicates a relatively faster convergence speed compared
to the DE alone. Furthermore, it is worth noting that the error bars of
the CNN-assisted DE are narrower compared to those of the DE alone.
This implies greater reliability and a reduced likelihood of converging to
a local minimum when CNN is employed for the DE initialization.
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Fig. 5.20: Average cost (plot line) and standard deviation (error
bars) for the CNN-assisted DE and the DE frameworks with random
initialization for 2D flat profile design.
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5.4.3 Simulation results: 2D symmetric profile

In the previous section, we utilized the DE framework also to design a
2D symmetric power evolution profile as a practically interesting profile
used to optimize the OPC performance. As discussed, the symmetric 2D
power profile was more prone to a local minimum when the pump power
values are randomly selected between the minimum and maximum
available power values. Here, we provide the simulation results on using
the CNN-assisted DE for designing this practically desired power profile.
Afterward, the CNN-assisted DE performance will be compared with the
DE results presented in the previous section.

Firstly, we assess the CNN model’s prediction for a symmetric power
profile input. While the 2D flat profile is unique, there are multiple
2D profiles that can exhibit symmetry with respect to the midpoint in
distance. In this case, we consider the second half-period of a sinusoidal
signal as the target symmetric power profile for all channels. This signal
is defined in logarithmic [dBm] scale with the following formulation:

Pt(f, z) = 4sin(πz/L + π), ∀f, 0 < z < L (5.14)
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Fig. 5.21: CNN model results for designing 2D symmetric power
profile. (a) Resulting 2D power profile. (b) Resulting pump power
values at different frequencies.

This profile is considered the ideal target symmetric 2D profile for all
channels. The predicted pump power values using the CNN model for
the symmetric input target are applied to the amplification setup and
the resulting power evolution value is generated. Fig. 5.21 (a) shows
the resulting power evolution profile for the symmetric target input,
represented with a dashed black curve. The resulting pump power values
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are depicted in Fig.5.21 (b). The cost value, which is the maximum
asymmetry value among all frequency channels is 33.2 %.
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Fig. 5.22: CNN-assisted DE framework results for designing 2D
symmetric power profile. (a) Resulting 2D power profile, together
with the target profile shown as the dashed black curve. (b)
Resulting pump power values at different frequencies.

In the next step, we use the CNN model prediction to initialize the DE
population and perform the CNN-assisted DE framework. Fig. 5.22 (a)
shows the generated 2D power profile after applying the optimum pump
power values predicted by the CNN-assisted DE. The maximum asym-
metry value for this profile is 14%, providing almost 19% improvement
over the stand-alone CNN model. The pump power values for this profile
are reported in Fig. 5.22 (b). Additionally, with a visual comparison
of profiles in Fig. 5.22 (a) and Fig. 5.21 (a), we can conclude that the
CNN-assisted DE is considerably better than the CNN for designing 2D
symmetric profiles.

It is worth noting that the asymmetry cost value for the power evolu-
tion in Eq.5.11 is according to a power evolution profile in a linear [mW]
scale. Therefore, a potential approach to visually illustrate the symmetry
of the results could be to plot the resulting profiles in linear [mW] scale
together with their reversed version in distance.

Fig.5.23 (a) and (b) show both profiles resulting from the CNN and
the CNN-assisted DE (labeled as CNN+DE) with their corresponding
reversed version in distance. According to this, we can also conclude
that the pump power value prediction using the CNN-assisted DE is more
accurate than the CNN model. The pump power values for both CNN
and the CNN-assisted DE are reported in table 5.6.

5.4 CNN-assisted DE framework for 2D power evolution design 69



0 20 40 60 80

Distance [km]

0.4

0.6

0.8

1

S
ig

n
a

l 
p

o
w

e
r 

[m
W

] CNN only

0 20 40 60 80

Distance [km]

0.4

0.6

0.8

1

1.2

S
ig

n
a

l 
p

o
w

e
r 

[m
W

] CNN+DE

(a) (b)

Fig. 5.23: Resulting 2D power profiles for (a) CNN, and (b) CNN-
assisted DE, together with their reversed version over the fiber
distance.

Tab. 5.6: Predicted pump power values using the CNN and the
CNN-assisted DE framework for symmetric power evolution profile

Model CNN only CNN-assisted DE
p1[mW ] 150 100

p2[mW ] 6 7

p3[mW ] 63 36

p4[mW ] 13 7

p5[mW ] 1230 1480

p6[mW ] 20 13

p7[mW ] 10 6

p8[mW ] 72 33

In Fig. 5.24 the asymmetry values for both the CNN and the CNN-
assisted DE are calculated for each channel and shown as a function of
frequency. For both approaches the average asymmetry is represented
using a dashed line with the same color as the main asymmetry values.
According to this figure, the online DE framework improves the CNN
asymmetry by more than 20%. In addition, the maximum asymmetry
value for CNN is 33.2% which takes place at 195.9 THz and its minimum
value is 28.5%, taking place at 192.1 THz. For the CNN-assisted DE, the
maximum asymmetry is 14% at 195.7 THz, while the minimum value is
7.2%, taking place at 193.8 THz.

To investigate the impact of the CNN on the DE initialization (as
illustrated in the previous section), we perform a set of simulations to
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Fig. 5.24: Asymmetry values for CNN model and CNN-assisted DE
framework over the signal frequency.
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Fig. 5.25: Average cost (plot line) and standard deviation (error
bars) for the CNN-assisted DE and the DE frameworks with random
initialization for designing 2D symmetric profile.

compare DE and the CNN-assisted DE frameworks in terms of their con-
vergence speed, the accuracy of the final results, and the proneness to a
local minimum for designing a 2D symmetric power profile. Regarding
this, we run both DE and the CNN-assisted DE ten times for designing
a 2D symmetric profile and each time record the evolution of the asym-
metry over the number of the DE iteration. Fig. 5.25 shows the line
plot as the average error (asymmetry) value and with the error standard
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deviation (error bars) over the number of the DE iteration for both DE
and the CNN-assisted DE. It illustrates that CNN initialization improves
the DE error by more than 10%. Moreover, it is evident that the error
bars for DE are much wider than those for the CNN-assisted DE, which
confirms the greater reliability of the DE framework when initialized by
the CNN. Hence, the probability of the DE converging to a local minimum
is much higher when it is randomly initialized.

5.5 Summary
We have proposed an online framework for adjusting Raman pump

power values to design 2D flat and 2D symmetric target profiles. This
framework incorporates a DE technique that leverages the amplifier
setup within an apply-feedback loop to dynamically optimize the pump
power values. However, the DE optimization process can be slow and
susceptible to local minima when starting with a random pump power
initialization. To address this issue, we employ a pre-trained CNN model
to provide the DE algorithm with an initial estimate of the pump power
values. The CNN-based initialization has demonstrated improvements
in the DE performance, both in terms of convergence speed and the
accuracy of pump power predictions. This framework has proven to be
effective for designing 2D flat and 2D symmetric profiles. Moreover, it
offers the flexibility to be used in a new setup to design an arbitrary 2D
profile with desired objectives.
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6
Experimental validation of the
spatial-spectral power evolution
design using ML-enabled Raman
amplifiers

6.1 Introduction
In the previous chapter, we presented and numerically verified an

online machine learning (ML) framework, based on differential evolu-
tion (DE) that can be effectively used to design various target 2D power
profiles. The proposed framework mainly aims at designing these 2D
profiles by directly adjusting the pump power values in a Raman amplifier
setup. In this chapter, we present a Raman amplifier setup and experi-
mentally verify the performance of the CNN model, the DE framework,
and the CNN-assisted DE framework for designing 2D power profiles.
More specifically, the experimental validation consists of two phases as
follows

• We validate the proposed ML-based frameworks by designing target
2D power profiles that are achievable using the amplifier setup
under test. Achievable 2D profiles include 2D profiles that are
generated by exciting the amplifier setup with randomly generated
pump power values.

• We experimentally test the DE framework in a scenario where the
target is to shape the 2D signal power evolution to satisfy multi-
ple spatial-spectral objectives simultaneously. Two cost functions
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are aimed to be minimized during the online optimization pro-
cess by tuning the Raman pump power values directly using the
setup. Those cost functions are 1) the maximum deviation from a
spectrally flat-gain profile at the end of the fiber (over the entire
C-band), and 2) the maximum spectral power excursion along the
fiber distance. This is a multi-objective optimization problem with
non-differentiable cost functions with respect to the free param-
eters. Moreover, this optimization process is challenging to be
solved with a gradient-based neural network (NN) model such as
presented in [66].

6.2 Experimental setup
Fig.6.1 shows the schematic of the proposed experimental setup for

validation of the ML-based framework to optimize the pump power
values. We have investigated a standard single-mode fiber (SSMF) span
with a length of 50 km. The Raman pump module consists of four
counter-propagating pump lasers. The pump frequency values are fixed
and shown with their maximum power value pmax in table 6.1, with the
ability to amplify the entire C-band.

OTDR 50 km
SMF

WDM

Pump lasers

Differential
Evolution (DE)

Form 2D
power profile

CNN

Calculate
cost

Input signal

Back-scattered
signal Power optimization framework

1 km
SMF

Attenuator

D
ef

in
e 

   
   

   
   

   
 

CNN-assisted DE

WDM

DE

Fig. 6.1: The experimental setup and the block diagram of the
framework used to optimize the pump powers values for designing
a 2D target power profile Pt(f, z).
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In the proposed setup, a frequency-tunable optical time-domain re-
flectometer (OTDR) is used to measure the signal power evolution over
the spectrum and along the fiber distance. The signal bandwidth of the
OTDR can cover the C-band with frequencies between 191.8 THz and
196.1 THz. In the OTDR we divide the C-band to nch = 44 number of
channels with 100 GHz spacing. There are three elements between the
OTDR and the fiber under test; a tunable attenuator, mainly used to
control the signal power flow into the OTDR, a 1km SMF fiber used to
cover the dead-zone of the OTDR, and a wavelength division multiplexer
(WDM) which is employed to filter out the pump frequencies in the range
between 203.9 and 211.1 THz. The reason for using this WDM is to
filter the pump signals such that they do not enter the OTDR. A WDM
coupler is also used at the end of the fiber to combine the signals and the
pumps.

Tab. 6.1: The pump frequency values with their corresponding
maximum pump power available.

Pump p1 p2 p3 p4
Frequency [THz] 210.6 209.0 207.5 206.1
pmax [dBm] 20.57 21.9 21.15 19.,94

The OTDR lunch signal power for each channel is -12 dBM.The at-
tenuator adds a 4 dB loss to each channel power resulting in -16 dBm
power per channel at the input of the 50 km fiber span. Once the signal
is introduced into each channel, its back-scatter is measured, which is
used by the OTDR to measure the actual signal power evolution inside
the span. This process is performed sequentially, meaning that the signal
power evolution is measured for one channel at a time until the total
C-band is covered. It is worth noting that due to relatively low signal
launch power, the signal-signal interaction due to the stimulated Raman
scattering (SRS) effect can be neglected. Therefore the signal power
evolution profile in the setup will look very much the same as the case
where a full-load frequency comb signal is introduced to the fiber.

To reduce the noise and the power fluctuations in the measurements
and to have a more clear trace for each channel, the signal pulse width
of the OTDR is set to 3 µs, and the distance resolution is set to 8.2 m.
Additionally, after the signal power is measured over the distance for each
channel, a Savitzky-Golay smoothing filter [67] with window size w = 19
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and polynomial order n = 2 in distance to reduce the further signal
fluctuations. The window size of the smoothening filter is equivalent
to 19×8.2=155.8 m in distance. According to the previous numerical
results provided in Chapters 4 and 5, a 2D power evolution profile with
a distance resolution of 500 m is sufficient for the CNN training and
evaluation. Therefore, the smoothed traces in the experimental setup are
down-sampled in distance using linear interpolation to achieve 500 m
resolution. Consequently, a 2D power profile P(f, z) of size 44× 100 is
created. P(f, z) is used as the input to the cost calculation block, where
its maximum absolute error (MAE) value with respect to the pre-defined
target 2D profile Pt(f, z) is calculated. After the cost calculation, the
power optimization framework updates the pump powers and applies
a new set of pump powers to the setup, in order to reduce the MAE in
the next iteration. The process of applying pump powers, recording the
resulting 2D profile, the cost calculation, and pump power value update
continue until convergence criteria such as a minimum cost value without
considerable variation in pump power values or a maximum number of
iterations is achieved.

As proposed in Chapter 5, the main building block of the proposed
pump power adjustment framework is the DE algorithm. This framework
was numerically validated in Chapter 5 for designing 2D power profiles of
practical interest. The DE aims to tune the pump powers in a closed-loop
apply-feedback scenario to dynamically reduce the error between the
target 2D power profile Pt(f, z) and the resulting power evolution profile
P(f, z) in each iteration (for more details regarding the DE optimization
please see Chapter 5).

The DE population can be initialized either with a random sampling of
the pump power values within the minimum and maximum pump power
ranges or based on an initial guess provided by an inverse mapping
model such as the CNN. Considering this, in the experimental setup
we have used two different approaches for the initialization of the DE
by defining the lower-bound pLB and upper-bound pUB values for the
pump powers. In the first approach, which we previously referred to as
the CNN-assisted DE, the pre-trained CNN model is used first to predict
the pump power values p′ for the given target 2D power profile Pt(f, z).
Next the lower-bound and upper-bound values are defined by considering
pLB = p′ −∆p · p′ and pUB = p′ + ∆p · p′, respectively. Similar to the
numerical analysis in the previous chapter, we set ∆p = [0.5, 0.5, 0.5, 0.5],
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allowing all pump power values to deviate within 50% of the predicted
values by the CNN model.

In the second scenario as we also have previously referred to as DE,
the lower-bound and the upper-bound values are defined without having
prior information and they essentially are the minimum pmin = −5 dBm
and the maximum pump power pmax (according to table 6.1) values
available, respectively.

6.3 Designing achievable 2D profiles
In this section, we apply both CNN-assisted DE and DE approaches to

design 2D profiles that are achievable by the proposed experimental setup.
The achievable test set consists of the 2D profiles that are generated by
applying randomly selected pump powers to the system and measuring
their resulting 2D power profile. The resulting 2D power profiles are then
used to evaluate the pump power adjustment framework’s performance.
Therefore, first, we generate a test data set consisting of 500 samples
of randomly selected pump power values and their corresponding 2D
power profile measured by the experimental setup.

Before applying the proposed optimization frameworks, first we need
to train and evaluate the performance of the CNN model. Regarding
this, we have trained the CNN model using a training data set generated
by a random selection of pump power values. It is worth noting that
we also have checked that the samples in the training data set do not
overlap the samples in the test data. The training data set consists of
4100 generated 2D power profiles and their corresponding pump power
values, and 300 2D power profiles are used for the model validation in
the training process.

After training the CNN model, we evaluate its accuracy using the 500
2D profiles in the test data set. In order to provide a visual intuition of the
model’s accuracy, we have plotted the scatter plot of the true versus the
predicted pump power values for all four pumps in the setup in Fig.6.2.
According to this figure, the CNN model shows a better performance
in predicting the high pump power values (>10 dBm), which its main
reason is the low influence of the pumps with low power values in
shaping the 2D signal power evolution. For different pump power values
the R2 test score is measured and reported in table 6.2. As introduced in
Chapter 4, the R2 score is a metric that determines the goodness of fit
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for regression models and varies between 0 and 1, where a high value
represents a better prediction [65].
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Fig. 6.2: The scatter plot of the true versus predicted pump
power values using the CNN model on test data. Each blue dot
corresponds to a test 2D profile and the orange solid line represents
the ideal prediction.

Tab. 6.2: R2 test scores for the CNN model prediction.

Pump p1 p2 p3 p4
R2 0.86 0.87 0.91 0.93

According to the values reported in table 6.2, we can see that in
general, the CNN model has a good performance in predicting all four
pump power values with slightly better performance in predicting the
pump power values p3 and p4 (pumps operating at 207.5 THz and 206.1
THz), compared to p1 and p2 (pumps operating at 210.6 THz and 209.0
THz). The main reason that the CNN model is more accurate in predicting
p3 and p4 values is due to their higher impact on the signal power
evolution control in the C-band, as the peak of their corresponding Raman
gain efficiency lies inside the proposed signal bandwidth (between 191.8
THz and 196.1 THz). However, the peak of the Raman gain efficiency for
two pumps p1 and p2 lies slightly outside the signal bandwidth.

A more rigorous approach to evaluate the CNN model performance
could be to apply its predicted pump power values to the amplifier setup,
measure the resulting 2D profiles, and calculate the MAE between the
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Fig. 6.3: The CNN model performance on test profiles. (a) PDF of
the MAE, (b) CDF of the MAE.

target 2D profiles and the resulting profiles. Fig. 6.3 (a) shows the PDF of
the MAE for the test data set resulting in an average MAE value µ = 0.37
dB with the standard deviation σ = 0.23 dB. Additionally Fig. 6.3 (b)
shows the cumulative distribution function (CDF) of the MAE for the test
data set demonstrating that 80% of the test profiles result in MAE less
than 0.5 dB, and almost 97.8% of the profiles (11 2D profiles out of 500
2D profiles) show MAE less than 1 dB.
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Fig. 6.4: The CNN model performance on test profiles.

Based on the results depicted in Fig.6.3, the CNN model demonstrates
statistically low MAE values. However, it does not perform accurately for
eleven 2D profiles with an MAE>1 dB. To address this issue, we employ
the CNN-predicted pump power values as an initial guess and utilize
the CNN-assisted DE framework to perform online optimization directly
on the experimental setup. Additionally, we conduct a separate set of
experiments for designing these eleven selected 2D profiles, employing
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the DE framework online without initialization using the CNN model.
Subsequently, we compare the performance of the CNN-assisted DE
framework with that of the DE framework alone.

In Fig.6.4, the MAE value for all eleven 2D profiles (starting with
indexes from 1 to 11), is shown for the CNN model, the DE, and the CNN-
assisted DE frameworks. According to this figure, the CNN model results
in MAE>1 dB for all eleven 2D profiles with an MAE average equal to 1.35
dB. However, the CNN-assisted DE shows a considerable improvement
for all profiles resulting in MAE<0.5 dB with an average of MAE equal to
0.26 dB. On the other side, the DE framework without CNN initialization,
results in MAE<1 dB for all cases with an average equal to 0.48 dB.
The obtained results demonstrate a promising improvement achieved by
the CNN-assisted DE framework compared to both the standalone CNN
model and the DE framework with random initialization.
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Fig. 6.5: The CNN model performance on test 2D power profiles.

Besides the better accuracy of using the CNN-assisted DE iteration
over the DE framework, another performance investigation can be made
by looking at the speed of convergence by measuring the evolution of the
error over the optimization time. Considering this, we have recorded the
MAE values over the number of the DE iterations for both CNN-assisted
DE and the DE for the selected eleven 2D target profiles. Fig.6.5 shows
the average MAE value for all eleven 2D profiles using both frameworks
over the number of the DE iterations. This figure asserts that the CNN-
assisted DE can converge to the optimal parameters with less number of
DE iterations. More specifically, the CNN-assisted DE archives average
0.5 dB error after 5 iterations while the DE achieves this error after 90
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iterations. The faster convergence can be a very beneficial characteristic
for saving the experiment time, especially when different target 2D
profiles are aimed to be designed.

Fig. 6.6: CNN-assisted DE result for the 10th selected 2D profile
in Fig.6.4.(a) Target 2D profile, (b) Heatmap of the absolute error
(in dB) between the target and the predicted 2D profiles over the
frequency and distance domains.

Moreover, a visual representation of the CNN-assisted DE framework
result (10th selected 2D profile in Fig.6.4) is shown in Fig.6.6, providing
the target 2D profile Fig. 6.6 (a) and the resulting heatmap of its absolute
error with the predicted 2D profile over the frequency and fiber distance
Fig. 6.6 (b). For this case, the resulting MAE value between the target
and the predicted 2D profile is 0.22 dB.

6.4 Designing objective-based 2D profiles
In the previous section. we experimentally evaluated the performance

of the CNN model, CNN-assisted DE, and the DE in designing 2D power
profiles that are already generated by exciting the amplifier setup with
random pump power values. In this section, we consider a different
scenario in which the target is to design a 2D profile that fulfills one or
multiple objectives rather than minimizing the MAE with the target 2D
profile. More specifically, in the following scenario, we are aiming to
experimentally design 2D profiles with flat gain levels at the end of the
fiber, meanwhile, having minimum spectral excursion along the fiber.

This scenario can be modeled as a multi-objective optimization pro-
cess, which is quite complex to be solved with the heuristic tuning of
the pump power values. While we prove that the DE framework can
solve it online directly by employing the experimental setup, it is worth
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noting that the CNN-assisted DE in Fig.6.1 cannot be practically applied
for this case since there is no 2D target profile Pt(f, z) to be used as the
input to the CNN model. Therefore, we only investigate the DE approach
depicted in Fig.6.1 aiming to minimize two cost functions.

The primary goal is to achieve a 2D power evolution in the fiber
distance that remains spectrally flat. To accomplish this, we introduce
the first cost function J0(p), also known as the maximum spectral power
excursion, which is formulated as follows and needs to be minimized.

J0(p) = max
z

[max
f

(P(f, z|p))−min
f

(P(f, z|p))]. (6.1)

By minimizing J0(p), we can obtain a 2D profile with the least spectral
excursion across the entire fiber distance. To better understand the value
of J0, Fig. 6.7 illustrates a power evolution profile for all channels over
distance, showing the maximum spectral excursion corresponding to the
specified J0 value. In this particular scenario, the maximum excursion
takes place at the end of the fiber.

To address the second objective of attaining a spectrally flat target
gain level, denoted as gt(f), at the end of the span, we introduce the
cost function J1(p). This cost function measures the maximum absolute
deviation between the achieved gain ĝ(f, p) and the target gain level
gt(f) at the end of the fiber. Mathematically, it is formulated as follows:

J1(p) = max
f
|ĝ(f, p)− gt(f)|. (6.2)

where L is the span length, and the on-off gain ĝ(f, p) is defined as:

ĝ(f, p) = P(f, z = L|p)− P(f, z = L|poff ). (6.3)

where P(f, z|poff ) is the 2D power profile when all pumps are turned off.
In Fig. 6.8, a target gain level is targeted and the J1 value is specified
according to a sample 2D profile’s achieved gain at the end of the fiber.

Our objective is to minimize both J0(p) and J1(p) simultaneously by
finding the optimal set of pump power values p∗. In order to simplify
the optimization process and have better control over the impact of each
objective on the final result, we transform the multi-objective optimiza-
tion into a weighted sum, as described in Chapter 4. To achieve this,
we assign weights to each objective, as hyperparameters. Afterward, we
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multiply each objective by its corresponding weight and combine them
using the following equation:

p∗ = arg min
p

[m0J0(p) + m1J1(p)], (6.4)

such that pLB ≤ ppump ≤ pUB, m0, m1 > 0, m0 + m1 = 1.

The weights m0 and m1 are used to determine how much the cost
values J0 and J1 affect the optimization process. In this analysis, we
choose to set both m0 and m1 as 1/2, indicating that we consider both
cost functions to have an equal impact on the optimal point. To get
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an intuition on the highest approximate gain level provided by all four
amplifiers, we adjust them all to their maximum values and measure
the resulting gain, which results to be 4.9 dB. Therefore, it will not be
realistic to expect the DE to design power profiles with a gain of more
than 4.9 dB since the physics of the system limits the framework’s ability
to achieve this target.

In the proposed scenario, we aim to design five equally-spaced gain
levels between 0.48 dB and 4.4 dB. Approaching this, we apply the DE
framework for each case to solve the optimization process proposed by Eq.
6.4. Once the optimal pump power values are achieved, we apply them
to the experimental setup to generate the resulting 2D power profile. Fig.
6.9 (a) shows all five power evolution profiles over the distance which
are designed with different target gain levels, represented with different
color codes. Moreover, the corresponding spectral gain is shown for the
five resulting profiles in Fig. 6.9 (b). The resulting spectral gain profiles
are represented in solid curves with the same corresponding color codes
presented in Fig.6.9 (a). The dashed line represents the target gain level
for each profile.
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Fig. 6.9: DE results of pump power optimization by solving
Eq.(6.4) with different target gain levels. (a) Spatial represen-
tation of the resulting power evolution profiles over the distance.
(b) Spectral representation of target and designed gain levels at
span end.

Fig.6.10 shows the average weighted sum cost values (i.e. 1/2J0 +
1/2J1) for all five 2D power profiles, over the number of the DE iterations.
According to this plot, the DE framework, on average, converges to the
minimum after almost 40 iterations.

Additionally, in Fig.6.11, both cost values J0 and J1 are shown for
different target gain levels, demonstrating less than 1 dB gain deviation
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Fig. 6.10: Average cost value over the number of DE iterations for
all five 2D target profiles.
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Fig. 6.11: Cost values J0 and J1 for different 2D power profiles
with flat targeted gain levels at the end of the fiber.

for target gain values less than 4 dB. However, we can see a noticeable
increase in cost values for the target gain value gt = 4.4 dB. This is
mainly because of the upper-bound limitation of the pump power values
provided by the setup, rather than the failure of the DE framework in fine-
tuning the pump power values. Regarding this statement, we have shown
the resulting pump power values for all four pumps at different target
gain levels in Fig.6.12. According to this figure, it can be particularly seen
that the value of the pump power p4 increases with the target gain level
and reaches the maximum at gt = 3.42, with a tendency to go higher for
the target gain level gt = 4.4. However, since the pump does not provide
higher power values, therefore, the framework will be physically limited
by the setup and as a result, its performance will be affected.

We expect that the model performance would improve if the pumps
could provide more power values. To prove the correctness of this
statement, we perform a set of simulations to numerically emulate the
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Fig. 6.12: Resulting pump power values in the experimental
analysis for different target gain levels.

experimental setup provided in Fig.6.1. The numerical setup has the
same configuration as presented in Fig.6.1, except that all pumps provide
higher power values of up to 23 dBm each. In addition, since the range
of space to explore with the new pump power ranges has a higher
volume compared to the experimental analyses, we set the number of
the DE iterations to 300 (higher than 100 iterations in the experimental
analysis).
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Fig. 6.13: Simulation results of pump power optimization by solv-
ing Eq.(6.4) with different target gain levels. (a) Spatial represen-
tation of the resulting power evolution profiles over the distance.
(b) Spectral representation of target and designed gain levels at
the end of the fiber.

Once the amplifier setup is emulated, the DE framework is applied to
solve the optimization process in Eq.6.4. In this simulation analysis, we
target nine 2D profiles with different equally-spaced flat gain levels at
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Fig. 6.14: Average cost value over the number of DE iterations for
all five 2D target profiles.

the end from gt = 0.7 dB and up to gt = 6.3 (slightly higher than 60%
merit of Raman pumping as proposed in [68]). Fig.6.9 (a) shows all of
the nine 2D power profiles generated with numerical simulations with
their corresponding target gain level values gt. Fig.6.9 (b) illustrates
the designed gain levels (solid curves) with their corresponding target
flat gain levels (b). Moreover, Fig.6.14 illustrates the average weighted
sum cost value for all nine 2D profiles over the number of DE iterations,
asserting that the framework converges after almost 260 iterations.
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Fig. 6.15: Cost values J0 and J1 for different 2D power profiles
with flat targeted gain levels at the end of the fiber.

The resulting cost values J0 and J1 are shown in Fig.6.15 over the
different target gain levels, with a value less than 1 dB for all target
profiles. More particularly, the cost values are slightly increasing for
different gain levels from gt = 0.7 to gt = 5.6. However, the spectral
gain deviation J1 shows more than almost 0.6 dB increase for gt = 6.3
(from J1 =0.24 dB to J1 =0.85 dB). Similar to the experimental setup
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Fig. 6.16: Resulting pump power values in the simulation analyses
for different target gain levels.

analysis, we believe the main reason is that the pump power p4 has
already reached its maximum available power level at 23 dBm with no
possibility of an increase for gains higher than 5.6 dB. To clarify this,
we have plotted all pump power values for different target profiles over
the target gain levels in Fig.6.16. This plot confirms that for all cases
the pump p4 has an increasing trend as it reaches the maximum power
value at the gain level gt = 5.6 dB with no possibility to increase further
(higher than 23 dBm) for the target gain level gt = 6.3 dB.

6.5 Summary
We experimentally validated the CNN model, the DE, and the CNN-

assisted DE frameworks for designing 2D power evolution profiles in
Raman amplifiers. The results demonstrate that the CNN model achieves
an average Mean Absolute Error (MAE) of less than 0.4 dB for the test
2D profiles, with an accuracy rate of 97.8%. For the remaining 2.2%
of profiles where the CNN model is inaccurate, the CNN-assisted DE
approach is applied to fine-tune the pump power values. This refinement
process leads to an average improvement of over 1 dB compared to the
results obtained solely from the CNN model. In another scenario, the DE
framework is utilized to design 2D profiles with two distinct objectives:
1) achieving flat gain levels and 2) minimizing spectral power deviation.
The results demonstrate the effectiveness of the proposed frameworks in
designing 2D profiles through online tuning of the pump power values
within a test amplifier setup.
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7
Conclusion and future work

Distributed Raman amplifiers (DRAs) have emerged as a solution for
enhancing signal quality and increasing the capacity of optical com-
munication systems. This amplification scheme, besides its practical
advantages, encounters challenges in solving the optimization of the
pump power and their frequency value due to the increasing number of
parameters in current optical networks. Furthermore, to align with fu-
ture autonomous system applications where the quality of service (QoS)
is continuously monitored, the utilization of precise optimization tech-
niques can save time and prevent sub-optimal fine-tuning of various
components, especially DRAs. Machine learning (ML) models, due to
their ability to solve complex optimization challenges, have shown to be a
promising tool in improving the performance of different optical commu-
nication components. In this thesis, we numerically and experimentally
verified the ability of ML and optimization techniques to optimize the
Raman amplifiers to shape the signal power evolution in frequency and
fiber distance. We optimized the Raman pump parameters in different
scenarios where a desired signal power evolution profile was aimed to
be achieved in an amplification setup under test. This chapter provides a
conclusion of the results and contributions presented in this work, along
with an outline of future research perspectives.

7.1 Conclusion
The following results are considered as the outcome of this project:

• Inverse DRA design model: An offline inverse system model based
on a Convolutional Neural Network (CNN) model is investigated,
which primarily learns the mapping between the signal power
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profiles, defined in frequency and fiber distance, and their corre-
sponding Raman pump power and wavelength values. This model
has shown statistically good performance by providing low mean
and standard deviation of maximum absolute error (MAE) values
for the 2D test profiles that are achievable using the amplifier setup
under the test.

• Online optimization framework for DRA design: Once the CNN
model is trained, its parameters are fixed, and besides its statisti-
cally good performance, it lacks the potential for further improve-
ment. Additionally, the CNN is not accurate enough for certain
practical power profiles, such as 2D flat and 2D symmetric, which
present challenges. Therefore, an online framework that can be
combined with the physical model to fine-tune the pump param-
eters is practically advantageous. This framework saves time by
efficiently adjusting DRAs parameters with a high degree of free-
dom and eliminates the need for heuristic tuning processes. More
specifically, in this project, the proposed framework consists of the
Differential Evolution (DE) technique, demonstrating its capability
in optimizing pump power values for various 2D power profiles.
The online DE framework is further integrated with the inverse
CNN model to reduce uncertainty in the optimization results, mit-
igate sensitivity to the initialization process, and achieve faster
convergence. This combination enhances the overall performance
of the optimization process, leading to more reliable and efficient
parameter tuning.

• Experimental validation of the ML-based framework for DRA
design: The proposed CNN model, DE framework, and the combi-
nation of both, are experimentally evaluated in a Raman amplifier
setup, verifying the effectiveness of the proposed models to be used
in practical scenarios. The DE framework is used further to tune
the pump power values in a scenario where two different objectives
regarding the spectral gain and the power evolution profile shape
are aimed to be fulfilled. This framework has shown the flexibility
to be used for designing different profiles with various objectives.
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7.2 Future work
Throughout this project, various aspects of Raman amplification in

optical communication systems have been explored and interesting re-
sults have been obtained. Nevertheless, there is still potential for further
research, with some details requiring additional work.

In Chapter 4, the primary objective of the numerical analysis was
to address the inverse DRA design problem while assuming to have
a fiber with fixed parameter values. However, in practical scenarios,
different fiber types with diverse parameters, such as attenuation profile,
effective area, and length, may be employed. In our proposal in Chapter
4, section 4.3, we introduced a length-aware CNN model to design 2D
profiles for different fiber lengths. We anticipate that this model can
be further expanded to incorporate additional fiber variables, such as
attenuation profile and Raman gain efficiency. Having a single inverse
DRA design model which includes the fiber parameters, can be beneficial,
as it can reduce the complexity and increase the model’s generalization
capabilities. A previous study has utilized a Neural Networks (NN)
model, so-called fiber-agnostic NN [69], to design gain profiles using
Raman amplifiers for different fiber types, which aligns with our approach
explained here.

Considering the impact of variations in fiber parameters, such as in
attenuation profile, Raman gain coefficient, length, and effective area,
on the signal power evolution due to the stimulated Raman scattering
(SRS) effect, a potential approach to investigate can be the application
of Raman amplifiers to characterize the fiber parameters by predicting
their values or their perturbations. More particularly, we have started
investigating an inverse model in which pump configuration and the gain
profile are provided and the objective is to predict the fiber parameters or
their perturbation values. With this approach, fiber parameters involved
in SRS can be estimated with a few gain or power profile measurements
after exciting the fiber with Raman amplifiers. The application of Raman
amplifiers for characterizing fibers is currently in its preliminary stages
of development.

Throughout the analyses conducted in this thesis, the signal band-
width was constrained to the C-band. However, Raman amplifiers have
demonstrated their potential in extending the available bandwidth be-
yond the C-band, such as C+L and S+C+L. Taking into account the
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ML-based approaches in this project, a potential future work could in-
volve extending this analysis to design signal power profiles in a broader
bandwidth using Raman amplifiers.

Moreover, the quality of the designed 2D flat and 2D symmetric
profiles in Chapter 5 can be assessed numerically and then experimentally
in an optical communication system by evaluating parameters such as the
signal-to-noise ratio (SNR) or the effectiveness of nonlinearity mitigation
techniques like Optical Phase Conjugation (OPC). This investigation will
provide valuable insights into the performance and applicability of the
designed power profiles in practical optical communication systems.

The ML-based techniques proposed in this project were initially trained
and evaluated separately for both numerical and experimental scenar-
ios. It is important to highlight that the data acquisition process for
the simulation analysis was significantly faster than the experimental
analysis. Considering the time-consuming nature of the experimental
analysis, leveraging the numerically trained models through transfer
learning techniques becomes particularly advantageous. By applying
transfer learning, the knowledge gained during the numerical training
can be effectively transferred and utilized in the experimental setup.
This approach enables the ML models to benefit from prior learning and
accelerates their performance in the experimental context, improving
efficiency and effectiveness.

At last, we have started investigating the application of using Raman
amplifiers for compensation of Microresonator frequency combs (Kerr
combs) in an optical communication scenario. Kerr soliton frequency
combs have gained significant attention in recent years due to their
potential applications in precision metrology, spectroscopy, and optical
communications [70, 71]. For instance, a single-soliton frequency comb
that exhibits a sech2 envelope in the frequency domain will have a
non-flat power at the end of the fiber. Having a power compensation
technique to maintain a flat power level at the receiver side can be
practically advantageous. Raman amplifiers, with their design flexibility,
offer a potential solution for compensating for these frequency comb
signals. In particular, we have explored a simulation scenario where
different flat power levels are attained for a single-soliton frequency
comb by optimizing the pump power and wavelength values of multiple
Raman amplifiers. However, further investigations are still required to
deepen our understanding of this area.
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