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Machine learning guided development of high-performance 
nano-structured nickel electrodes for alkaline water electrolysis 
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A B S T R A C T   

Utilizing a human in the loop Bayesian optimisation paradigm based on Gaussian process regression, we opti-
mized an Ni electrodeposition method to synthesize nano-structured, high-performance hydrogen evolution 
reaction electrodes. Via exploration-exploitation stages, the synthesis process variables current density, tem-
perature, ligand concentration and deposition time were optimized influencing the deposition layer morphology 
and, consequently, hydrogen evolution reaction activity. The resulting structures range from micrometre-sized, 
star-shaped features to nano-sized sandpaper-like structures with very high specific surface areas and good 
hydrogen evolution reaction activity. Using the overpotential at 10 mA cm− 2 as the figure of merit, hydrogen 
evolution reaction overpotentials as low as -117 mV were reached, approaching the best known technical high 
surface area electrodes (e.g. Raney Ni). This is achieved with considerably fewer experiments than what would 
have been necessary with a linear grid search, as the machine learning model could capture the unintuitive 
interdependencies of the synthesis variables.   

1. Introduction 

In order to reduce global carbon emission it is not enough to switch 
from fossil fuels to renewable energy sources. The green transition will 
rely heavily on the availability of green hydrogen as an energy carrier. 
Both for energy storage applications, to counteract the inherently 
intermittent nature of wind and solar power, but also as a chemical 
precursor for e-fuels and to decarbonize industry sectors such as cement 
and steel production [1,2]. 

To reach the global goal of carbon neutrality, the demand for green 
hydrogen will increase substantially. The International Energy Agency’s 
Net Zero Emissions Scenario for 2050 assumes that a total installed 
electrolyser capacity of 850 GW by 2030 and 3600 GW by 2050 will be 
needed - a roughly 7000-fold increase in less than three decades from the 
0.5 GW that were operational by the end of 2021 [3]. This implies that 
low cost materials, simple fabrication methods and TWh scalability are 
hard requirements for the industrial application of any new technology 
in this field. Irrespective of this, novel electrolysers also need to operate 
more efficiently than current systems in order to be economically 
feasible. Highly active catalyst materials comprised of abundant ele-
ments present a pathway to achieve these objectives. 

Alkaline water electrolysis (AWE) is the most mature commercial-
ized electrolysis technology available. Nevertheless, AWE systems still 
struggle with corrosion and low operating current densities [4–6]. For 
the hydrogen evolution reaction (HER), noble metals such as platinum 
show good catalytic performance but remain unsuitable at large and 
industrial scales due to their prohibitive cost and scarcity [5]. Nickel 
(Ni) on the other hand, is relatively inexpensive, earth abundant, has 
been studied widely as an alkaline electrolysis catalyst and is often used 
in commercial electrolysers due to its decent catalytic activity and sta-
bility in alkaline media [5,7]. Its performance as a HER catalyst can be 
further improved by secondary elements such as cobalt and molybde-
num or by increasing the amount of catalytic active sites via high surface 
area secondary Ni structures [7]. Raney-type Ni is a well-known 
example of high surface area Ni catalysts with outstanding perfor-
mance [8] yet is difficult to synthesise and suffers from deactivation 
under intermittent operation. 

Electrodeposition is a facile, scalable, fast and in-expensive deposi-
tion method [5,9] proven to be capable of creating different secondary 
Ni structures [5,10–14]. The structure deposited through electrodepo-
sition depends strongly on plating parameters such as current density, 
deposition time, solution temperature, concentration and pH, which 
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creates a large parameter space. Developing well performing secondary 
Ni structures is a challenging and time consuming process, requiring 
numerous experiments guided by intuition, trials and errors. One way of 
speeding up such parameter optimization task is by applying machine 
learning (ML) techniques. ML models have been used to accelerate the 
computational communities discovery of energy materials, for example 
in batteries, solar cells and catalysts [15–18]. Being a data driven 
method, such an approach relies on the controlled generation of high 
fidelity large volume computational data. It is much more challenging 
with experimental data sources due to small data regime and noisy 
observations. Recently ML based “design of experiments” for materials 
optimization has increasingly attracted interest in experimental mate-
rials synthesis community from an accelerated discovery perspective as 
high throughput experiments become accessible [19,20]. 

Experimental search campaigns with AI guided design of experi-
ments and a closed-loop feedback can outperform human intuition 
driven drastically as cognitive limitations of human researchers impede 
the optimal exploration of complex parameter spaces. Recent break-
throughs in AI driven experiment design have focused on organic re-
action planning and optimization [21–23] but a handful of recent 
articles demonstrate the usefulness of AI guided optimization towards 
synthesis of solid state materials [24–27] as well. 

In this work, we showcase the benefits of applying AI guided iterative 
optimization even outside of autonomous labs, where Ni based elec-
trodes for the alkaline HER are optimized. Guided by an exploration- 
exploitation scheme we vary the process parameters of the Ni electro-
deposition to optimize the electrochemically active surface area (ECSA), 
using the HER overpotential at a given current density as the figure of 
merit for the underlying Gaussian process regression model. The 
Bayesian optimization in an iterative approach helps us choose the most 
promising parameter sets for the next synthesis batch based on the ex-
pected value of overpotential and the related uncertainty. This allowed 
us to obtain large improvements in catalytic performance and HER ac-
tivities approaching the Raney-Ni domain in a complex search space 
with reduced experimental effort. 

2. Material and methods 

2.1. Experimental 

2.1.1. Materials 
KOH (ACS reagent, ≥ 85 %), NiCl2 • 6H2O (≥ 98 %), H3BO3 (ACS 

Reagent ≥ 99.8 %), ethylenediamine dihydrochloride (EDA, 98 %) and 
HCl (37 wt%) were supplied by Sigma Aldrich, while NH4OH (25 %) was 
supplied by Alfa Aesar. Perforated Ni plate with a 300 µm thickness, 1 
mm hole size and 0.7 mm hole spacing was used as substrate. Ni plates 
(99.95 %) were supplied by Alfa Aesar. 

2.1.2. Electrode preparation 
As electrode substrate, perforated Ni plates were cut to samples with 

a size of 2.5 cm • 2.5 cm. To ensure a clean and smooth surface, the 
samples went through a three step pre-treatment process. To remove 
organic substances the substrate was ultrasonicated in an acetone- 
ethanol (1:1) solution for 30 min whereafter the substrate was sub-
merged in 3 M HCl for 30 s to remove Ni oxides. Lastly, to ensure good 
adhesion, a Ni coating was deposited. Between each step the substrate 
was rinsed with deionized water. 

To deposit the nanostructured Ni we adopted a process from Zhou 
et al. [28] using a solution composed of NiCl2•6H2O, H3BO3 and eth-
ylenediamine dihydrochloride (EDA) as shown in Table 1. The reactants 
were dissolved in deionized water by stirring the solution while heating 
the solution slowly to 65 ◦C. Once the temperature had stabilized the pH 
was adjusted to 4 by dropwise addition of 10 % NH4OH. To ensure even 
deposition on both sides of the substrate, two 10 cm • 2 cm • 0.16 cm Ni 
plate pieces were used as anodes. The exposed area of the anodes was 
limited to 2 cm • 2 cm with polyester tape (1280, 3 M), while the 

distance to the Ni substrate was 3 cm (see step 1 in Fig. 1). A wide neck 
bottle with a total solution volume of ca. 550 ml was used as the syn-
thesis reactor. The reactor was placed in a heated water bath on a hot 
plate for improved temperature stability. Current was supplied by an 
Elektro-Automatik EA-PS 5040–40A power supply, by connecting the 
electrodes with crocodile clamps. The deposition was started ca. 1 hour 
after the temperature had reached the target temperature by applying a 
constant current for a specified time. Detailed operating conditions are 
shown in Table 1. 

The electrodeposition solution was reused for multiple samples. To 
ensure reproducibility the solution stability was monitored by synthe-
sising control samples on a regular basis. For more information on the 
solution stability see Fig. S1 in the supplementary information (SI). 

2.1.3. Electrochemical characterization 
The electrochemical measurements were conducted using a con-

ventional three electrode setup connected to a Gamry Reference 600 
Potentiostat. 1 M KOH was used as an electrolyte, a 2.5 cm ⋅ 2.5 cm 
perforated Ni plate as counter electrode and a reversible hydrogen 
electrode (RHE, Gaskatel mini-HydroFlex) as a reference electrode. 

Before testing, the electrodes were preconditioned by potential 
sweeps from 200 to − 400 mV vs. RHE (5x) using a scan rate of 20 mV 
s− 1. 

Subsequently, 5 cyclic voltammetry (CV) scans were recorded in a 
region from +85 to − 40 mV vs. RHE at different scan rates (10, 20, 50, 
75 and 100 mV s− 1) to estimate the double layer capacitance. For each 
scan rate the respective charging current (ic) is determined in a linear 
region according to Equation 1: 

ic =
∑N

n=1

1
N

(⃒⃒iforward
n − ibackward

n

⃒
⃒

2

)

Where n are given datapoints across the linear region and N the total 
amount of datapoints. Plotting the scan rate vs. charging current yields a 
straight line with a slope equal to the specific double layer capacitance 
(Cdl), which is directly proportional to the electrochemical surface area 
(ECSA) and by association the roughness factor (Rf ), as shown in 
Equation 2. 

ECSA = Ageo
Cdl

Cs
= AgeoRf 

Where Ageo is the geometrical area of the electrode and Cs the specific 
capacitance, which according to P. Connor et al [29] can be estimated to 
20 μF cm− 2 for metallic surfaces. 

The solution resistance was estimated using electrochemical 
impedance spectroscopy (EIS) performed at open circuit potential from 
105 to 1 Hz using an AC amplitude of 10 mV, and later used for IR 
compensation (95 %). 

To evaluate the electrode performance linear sweep voltammetry 
(LSV) was conducted using a scan rate of 1 mV s− 1 in the range 
200− 400 mV vs. RHE. From the compensated LSV curves the 

Table 1 
The composition and operating condition intervals of the solution used for 
electrodepositing nano-structured Ni.  

Bath composition Concentration 

NiCl2•6H2O 200 g L− 1 

H3BO3 25 g L− 1 

EDA 200 g L− 1 

10 % NH4OH – 
Operating conditions Value 
Current density 4–160 mA cm− 2 

Temperature 20–65 ◦C 
Time 2–64 min 
pH 4.0 
Anodes 2 cm • 2 cm • 0.16 cm Ni 
Stirring 60 rpm  
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overpotential at 10 mA cm− 2 (η10) was extracted. 

2.1.4. Physical characterization 
Images of the electrodeposited microstructure were acquired using a 

high resolution scanning electron microscope (SEM, Zeiss Merlin). X-ray 
photoelectron spectroscopy (XPS) was recorded with a Thermo Fischer 
Scientific ESCALAB 250Xi. 

2.2. Machine learning methods 

To guide the experiment towards optimal input parameters, we 
applied a human-in-the-loop Bayesian optimization (BO) approach. 
Various machine learning techniques can be utilized for such optimi-
zation problems, although some require very large data sets, such as 
neural networks. In this study, relatively few data points are being 

generated and we therefore consider Bayesian optimization appropriate, 
as it is known to give good optimization results on small data sets. Non- 
linear relationships between the synthesis parameters and the corre-
sponding output of interest, the achieved overpotential, are expected. 
For this reason, a Gaussian process (GP) regression model with the 
squared exponential covariance function (aka. RBF kernel) [30] is 
chosen as the fit function. Given a good fit of the data, the GP model can 
provide mean (μGP) and uncertainty (σGP) predictions of the output for 
unobserved sets of synthesis parameters x. These predictions can be used 
to identify new synthesis parameters that optimize the output by eval-
uating an acquisition function (facq) computed as μGP plus σGP, which is 
similar to the widely used GP-UCB algorithm [31]: 

facq(x) = μGP(x) + σGP(x)

Where typical BO algorithms are often designed to automatically 

Fig. 1. The optimization process can be described by an iterative loop of five steps. (1) Electrodes are synthesized in batches of 5–6 according to Section 2.1.2. (2) 
Electrodes are tested and characterized using the method described in Sections 2.1.3 and 2.1.4. (3) The used synthesis parameters and performance metric (η at 10 
mA cm− 2) are fed into a database. (4) Bayesian optimization, including a sensitivity analysis, is conducted using the database, resulting in a heat map of mean 
predicted overpotentials for any given combination of synthesis parameters. (5) Synthesis parameters for next batch are chosen manually based on the heat map 
(human in the loop). The drawing of the setup has been created with Chemix (https://chemix.org). 
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identify a single set of input parameters with maximum potential, we 
instead applied a human-in-the-loop approach where a researcher uses a 
visualization of the facq to select a batch of new and interesting synthesis 
parameters (step 4 and 5 in Fig. 1). This enables the selection of multiple 
sets of inputs in every iteration that are both diverse and interesting. 
Consequently, this allows the researcher to perform multiple lab ex-
periments in each iteration, which is also more practical. For simplicity a 
grid size of 1 was used. 

2.2.1. Sensitivity analysis 
Additionally, the fitted GP regression model can be utilized to 

identify the most important synthesis parameters by performing a global 
sensitivity analysis (SA). In this context, the input parameter sensitivity 
can be defined as the expected change of the output as a function of the 
input parameter [32]. We can compute this quantity empirically for 
each input parameter d with the GP as the mean squared derivative of 
the predicted output over a set of query points xi: 

s2
d(x) =

1
N

∑N

i=1

(
∂μGP(xi)

∂xi,d

)2 

The derivative in the above expression can be computed analytically 
or with automatic differentiation for a GP using the squared exponential 
covariance function. To enable direct comparison of input parameters 
with different scales, the inputs were normalized. In visual presentations 
of the sensitivities, we plotted the square root of the sensitivity sd. 

3. Results 

3.1. Linear grid study 

Before applying AI guided optimization a linear grid study was 
conducted, where all but one parameter was kept constant. This to 
investigate how temperature (T), current density (i) and deposition time 
(t) affect the deposited nanostructure and its electrochemical perfor-
mance individually, and to establish a training data set for the optimi-
zation algorithm. For this study the parameter space was limited to 
cover 2–64 min, 5–160 mA cm− 2 and 20–65 ◦C. A t of 5 min, i of 75 mA 
cm− 2 and a T of 65 ◦C was used as standard parameters. 

Fig. 2 (a–c) shows that the microstructure visually does not vary as 
function of t. On the other hand, the i and T changes the microstructure 
significantly as shown in Fig. 2 (d–f) and (g–i), respectively. At low 
current densities long spikes can be observed that become shorter and 
less pronounced when increasing the i. At low T the microstructure 
appears flat, a structure which coarsens with increasing T, until spikes 
start to form above 60 ◦C. 

According to Fig. 2 only two out of three investigated synthesis pa-
rameters change the deposited microstructure. It was therefore expected 
to observe changes in the electrochemical performance for variations in i 
and T. As shown in Fig. 3, t and i changes the electrochemical perfor-
mance significantly, while T, even though it changes the microstructure 
the most, does not affect the electrochemical performance much. For 
reference a bare perforated Ni plate on average requires an η10 of − 321 

Fig. 2. SEM images illustrating how the synthesis parameters; t (a-c), i (d-f) and T (g-i) changes the deposited microstructure. From a-c the microstructure visually 
does not change suggesting that t only creates a thicker layer. From D-f the spike length decreases with increasing i, while the microstructure from g-i changes 
drastically from almost flat and sandpaper-like at low and intermediate T to spiky at high T. 
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mV, showing that almost all structures deposited in this study improve 
the substrates performance. 

Improvements in performance seen in Fig. 3 scale with the measured 
Rf, indicating that the variations arise due to a change in active surface 
area. 

3.2. Optimization 

To make good predictions concerning the synthesis parameters, the 
training data must be large and randomly spread across the search space. 
Initially, the linear grid study data served as training data, however, as 
shown in Fig. S2, it was based on a linear search grid and thus there are 
many underrepresented areas of the search space, inducing a high σGP. 
Additional samples were therefore made using randomised parameters, 
creating a dataset with 31 samples significantly lowering σGP. Subse-
quently, 3 iterations of the Bayesian Optimisation (BO) loop were per-
formed. The test candidates were chosen from areas in the prediction 
model with comparatively low predicted η10. It should be noted that 
testing parameter sets with high predicted η10 can be used to further 
validate the model in those areas. However, since the objective of this 
study is to optimize the achieved overpotentials with minimal experi-
mental effort and the model already had relatively low uncertainty, this 
was deliberately omitted. 

After fitting a GP regression model to the training data in step 4 of the 
BO loop (see Fig. 1) a sensitivity analysis was conducted, to investigate 
how the μGP of η10 changes as function of either T, i or t (see Fig. S3). 
Already the first iteration revealed that the mean η10 prediction only 
depends on two out of three investigated parameters: i and T. Since these 
two parameters were dominant, the optimisation problem reduced from 
a three- to two-dimensional problem. It was chosen to keep varying t 
randomly for the following iterations, however, since no time-sensitivity 
was found the t range was reduced after each iteration for practical 
reasons. This is a surprising finding and counter-intuitive, as one would 
expect the coating thickness to vary with t, and therefore also the 
availability of surface area obtained from porous coatings. For valida-
tion of this, sample 4 was synthesized again while reducing t from 30 
min to 5 min, yielding practically identical results (see Fig. S4). 

Fig. 4 shows heat maps of μGP and σGP, as well as facq. Two distinct 
areas with lower predicted η10 are found in all three iterations (brighter 
colours), centred approximately around (140 mA cm− 2, 55 ◦C) and (<
10 mA cm− 2, 25 ◦C). As the number of iterations and samples in the 
training data increases the model changes and σGP decreases. σGP for the 
first iteration is lowest around parameters frequently used in the linear 
grid study (75 mA cm− 2 and 65 ◦C), and does not change significantly 
after iteration 2, indicating that a confident model has been established. 

Throughout iteration 1 and 2 exploration and exploitation were 
conducted, while the area with the lowest η10 were exploited in the third 
iteration. The results (synthesis parameters, η10, Rf) of all three 

iterations are summarized in Table 2. 
As a general rule, samples synthesized with parameters in proximity 

to the μGP optima show the lowest η10, indicating good agreement of 
experiment and prediction model. 

Sample 4 showed the best performance in this study with η10 = −

129 mV. As expected, it also shows the highest Rf value (11,836), even 
though there is essentially no structuring visible in the SEM image in 
Fig. 5. This indicates that the porous, deposited layer exhibits features in 
the nanometre range, below the resolution limit of the microscope. 
Higher resolution microscopic techniques, e.g. STM, could be applied in 
future investigations to confirm that these nano-sized features are 
indeed present, but lie outside the scope of this study. 

In Fig. 6 the LSV curves of the best sample (sample 4, green) are 
compared to LSV curves of perforated Ni plate substrate, Ni foam, Pt-foil 
and Raney Ni (on perforated Ni plate). Sample 4 outperforms all mate-
rials except Raney Ni. As higher current densities are reached, the 
sample approaches the Raney Ni domain. 

Ni electroplating for HER catalysis has been exhaustively studied in 
the past. A comparison to several recent reports on such electrodes 
(Table 3) highlights the BO loops efficiency: a total of only 35 samples 
was sufficient to rival the best reported catalysts in this category, 
without prior knowledge of what a “good” set of parameters is for this 
specific synthesis route. 

3.3. Four-dimensional parameter space optimization 

Discovering the best sample after the first iteration in Section 3.2 can 
seem like a coincidence. To further explore the feasibility of the BO loop, 
a study using the method described in Section 2 was conducted with a 
modified setup and four parameters: in addition to i, t and T, the EDA 
concentration was varied in a range from 50 to 300 g L− 1. A sample with 
lower η10 than sample 4 (− 117 mV @ 10 mA cm− 2) was found after 1 
iteration and 30 additional samples (see Table S2), proving that ML can 
steer the scientists into the right direction fast and efficiently, whereafter 
only fine tuning of the synthesis parameters is needed. The prediction 
model, even though progressing differently, ultimately finds t to remain 
a non-sensitive parameter (no substantial dependency between η10 and 
t, Fig. 7). It also indicates that further improvement is possible e.g. by 
reducing the EDA concentration to approximately 220–230 g L− 1 

(Fig. 7). It should be noted that since there is no straight-forward visual 
representation of functions with four or more dimensions, the test can-
didates were chosen by visual comparison of the predicted η10 as a 
function of two parameters each. For true 4-parameter optimization, one 
could implement an optimization algorithm that outputs discrete 4- 
parameter sets with low predicted η10 values alongside the continuous 
prediction model. 

Fig. 3. η10 (blue) and Rf (red) as function of t, i and T. With the chosen parameters the i appears to be the most sensitive synthesis parameter, followed by time and 
T. η10 generally decreases with increasing Rf . 
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4. Discussion 

Over the course of this study, the application of ML for electrode 
development proved to be very effective: a substantial improvement of 
204 mV over the performance of the Ni support was achieved iteratively 
in two separate instances, despite changes in the experimental setup. 

In contrast to the linear grid study (Section 3.1), the sensitivity 
analysis of the ML optimization finds T to be the most influential 
parameter for the synthesis. This discrepancy could be explained by the 
fact that for the linear grid study, only one parameter was varied while 
the others were kept constant. Therefore, only the T dependency along a 
straight line in the three-dimensional phase space is taken into account. 
This could lead one to investigate under false assumptions, whereas the 
sensitivity analysis utilizes all measured results. 

When reducing the synthesis time of the best performing samples 
from 30 min down to 5 min (Fig. S4), there is no significant reduction in 
performance nor any notable visual change of the sample surface. This 

indicates that the t mainly affects the layer thickness, while the micro-
structure stays the same. Also, it indicates that the porosity is homoge-
neous throughout the layer thickness and invariant to the synthesis time. 
Only the outermost part of the thicker layer is electrochemically active 
due to mass transport limitations. This effectively limits the maximum 
ECSA that can be achieved by this method and implies that even shorter 
deposition should be applicable while maintaining HER performance. 
Both the required time and material utilization are essential parameters 
for industrial production. Future studies should therefore also investi-
gate the influence of deposition time on the structure and electro-
chemical performance as it approaches zero. This issue could potentially 
be bypassed by implementing a multi-step synthesis to achieve a pore 
size gradient throughout the layer to improve gas diffusion and allow 
deeper penetration of the layer. 

Since there are no dopants added and XPS analysis revealed no res-
idue from the precursors of the synthesis solution or contamination of 
iron from the temperature probe (see Fig. S6) that could affect HER 

Fig. 4. Illustration of the established μGP, σGP and a plot of facq, the ladder used to identify promising synthesis parameters. The model is based on known data points 
(31, 36 and 40 data points for iteration 1, 2 and 3 respectively) and shows the predicted η10 as function of T and i. Brighter colors indicate a low η10and thus a good 
electrode performance. The figure shows that the prediction changes slightly and that the uncertainty is lowered with increasing number of iterations and samples. 
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catalysis, it is reasonable to assume that the main factor for HER per-
formance is the ECSA. This is confirmed by double-layer capacitance 
measurements (see Fig. S5) which show a logarithmic relationship be-
tween overpotential and surface roughness, as predicted by the Butler- 

Volmer equation. Ni perforated plates were chosen in this study 
because they are a commonly used substrate for technical electrodes, 
applied in commercial electrolyzers. Additionally, they offer relatively 
low cost, ease of handling and wide accessibility. Further reduction of 
the overpotential could be achieved with high surface area substrates 
such as Ni foams or meshes, which allow for higher absolute ECSA 
values. 

While higher T and i typically yield more porous structures, it is not 
intuitive how these synthesis variables, as well as the EDA crystal 
modifier, impact the Ni nucleation and growth mechanism. Other 
studies such as [33–36] have tried to investigate how and why synthesis 
parameters such as i, T, pH and bath composition affect the deposits 
morphology and properties, yet findings sometimes conflict. For 
instance, Ebrahimi et al. [34] state that a high i should promote grain 
refinement due to a resulting higher overpotential promoting nucle-
ation. Besides, he found that Cziraki et al. [37] experienced the opposite 
in their studies. Therefore, it can be difficult to predict which combi-
nation of synthesis parameters yields low η10, high porosity and ECSA. 
Implementing a AI based optimization process enabled us to find a 
performance maximum in considerably less iterations and with higher 
confidence as compared to a linear grid search. With the used grid 
spacing (1 mA cm− 2, 1 min, 1 ◦C, 50 g L− 1) a full linear grid search in the 
defined range would comprise over 2 million parameter sets. It is clear 
that in a real manual study the researcher would rule out many com-
binations for impracticality or from scientific intuition and the actual 
number of experiments would be much smaller – however it is also 
evident that such a linear grid search would still be impossible. This 
work shows that computational guidance can enable us to explore far 
more complex search spaces than traditionally feasible, by pointing to 
their most promising regions and thus avoiding unnecessary experi-
mental effort. This effect will be exacerbated as the number of param-
eters is increased, e.g. in the case of multi-metal coatings. 

5. Conclusion 

In this work it has been shown that an EDA modulated Ni electro-
deposition method can be used to synthesize nano porous, high- 
performance HER electrodes. The method allows for precise control 
over the layer thickness and morphology, ranging from micrometre- 
sized, star-shaped features to sandpaper-like structures with specific 
surface areas and overpotentials (− 129 and − 117 mV @ 10 mA cm− 2) 
approaching the best known technical high surface area electrodes such 
as Raney Ni. Implementation of a ML assisted optimization process 
enabled us to find a performance-maximum twice in considerably less 
experimental iterations than what would have been necessary with a 
linear grid search, due to the unintuitive interdependencies of the syn-
thesis variables. 
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Table 2 
Complete list of all the samples synthesized during the 3 iterations of the BO 
loop. In the table the measured η10 and Rf has been included as well.  

Iter. No. Synthesis Parameters η10 [mV] Rf 

T [ ◦C] i [mA cm− 2] t [min] 

1 1 22 17 23 − 210 3684 
2 26 4 39 − 194 4428 
3 48 132 16 − 168 7635 
4 51 147 30 − 129 11,836 
5 52 124 26 − 144 5645 

2 6 31 8 11 − 220 3499 
7 34 15 24 − 183 7903 
8 50 158 17 − 180 6466 
9 53 142 8 − 191 5249 
10 55 152 15 − 180 5269 

3 11 48 143 10 − 166 7381 
12 49 126 4 − 222 7513 
13 50 140 3 − 241 3466 
14 51 146 7 − 169 9358 
15 52 136 12 − 178 6411 
16 52 170 6 − 212 5061 
17 53 155 8 − 211 4544  

Fig. 5. SEM image of sample 4′s surface showing rough sandpaper-like features, 
which are hard to resolve further by SEM. 

Fig. 6. Smoothened LSV curves for the substrate (red), Ni foam (yellow), Pt-foil 
(blue), best performing sample (sample 4, green) and Raney NiMo 
(NiMo, purple). 

Table 3 
Short overview of different state of the art Ni electrodes. All electrodes have 
been synthesised using an electrodeposition method. The electrodes listed in the 
table have been tested in KOH at room temperature. Values marked with * have 
been determined manually from LSV curves.  

Electrode Type Substrate KOH Conc [M] η10 [mV] Ref. 

Ni Nano Particles Ti 1 − 197 [10] 
Ni Nanocones Cu 1 − 215* [5] 
Ni Nanowire Array Ti 1 − 128 [11] 
3D Ni Foams Stainless Steel 8 − 175* [12] 
Porous Ni Ni 1 − 243 [13] 
Nanostructured Ni Laser-treated Ni 1 − 108 [14] 
Sample 4 Perforated Ni 1 − 129 This work  
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Fig. 7. Illustration of f_acquisition used to identify promising synthesis parameters. The model is based on known data points from Table S2 and shows the predicted 
η10 as function of four parameters, T, i, t and EDA concentration. Brighter colors indicate a low η10and thus a good electrode performance. 
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