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ABSTRACT: Bridging applied ecology and ecotoxicology is key
to protect ecosystems. These disciplines show a mismatch,
especially when evaluating pressures. Contrasting to applied
ecology, ecotoxicological impacts are often characterized for
whole species assemblages based on Species Sensitivity Distribu-
tions (SSDs). SSDs are statistical models describing per chemical
across-species sensitivity variation based on laboratory toxicity
tests. To assist in the aligning of the disciplines and improve
decision-support uses of SSDs, we investigate taxonomic-group-
specific SSDs for algae/cyanobacteria/aquatic plants, invertebrates,
and vertebrates for 180 chemicals with sufficient test data. We
show that splitting improves pollution impact assessments for chemicals with a specific mode of action and, surprisingly, for narcotic
chemicals. We provide a framework for splitting SSDs that can be applied to serve in environmental protection, life cycle assessment,
and management of freshwater ecosystems. We illustrate that using split SSDs has potentially large implications for the decision-
support of SSD-based outputs around the globe.
KEYWORDS: freshwater ecosystems, mode of action, ecotoxicity, Water Framework Directive, water quality, life cycle impact assessment

■ INTRODUCTION
Characterizing ecotoxicity effects, whether as part of chemical
safety assessment, evaluating the environmental performance of
products and services in a life cycle perspective, or environ-
mental quality characterization, requires addressing different
chemicals’ potential to cause harm on different species,1 while
bridging the disciplines of applied ecology and ecotoxicology.2

This can be achieved using chemical-specific species sensitivity
distributions (SSDs). SSDs are classically used to describe
variations in sensitivity across multiple species and are
commonly derived from collections of laboratory toxicity test
endpoints, such as no-observed effect concentrations (NOECs)
or the effect concentration causing a response in 50% of the
exposed individuals (EC50s).3,4 Field-based Species Sensitivity
Distributions (fSSDs) have been proposed as they are
considered more ecologically relevant. However, they present
challenges, e.g., the isolation of the effect of a single chemical
from combined effects of multiple stressors. Recognizing the
regulatory and other practical uses of current laboratory-data-
based SSDs, we focus on the “classical”, laboratory-data-based
SSDs in the present paper.

Laboratory-toxicity data-based SSDs are practically used for
regulatory purposes and Life Cycle Impact Assessment (LCIA),
e.g., to derive protective standards (threshold concentrations) or

expected impact levels of ambient chemical pollution.5,6

Recently, their use has expanded to the comprehensive diagnosis
of the role of chemical pollution as a driver for biodiversity loss
in polluted ecosystems by using SSD-based mixture toxic
pressure information (expressed as msPAF, the multisubstance
Potentially Affected Fraction of species) as pressure metric, as
this resulted in reduced parameters numbers and thus improved
statistical power in diagnostic analyses.2,7,8 The choice of
required input data and the statistical distribution methods vary
among jurisdictions. Models commonly used to fit SSDs include
log-normal, log−logistic, or other models that fit the available
data well, and commonly, confidence intervals or other metrics
of variability and uncertainty are reported.3,9 Crucial to
acknowledge is that SSDs are commonly fitted to all available
test data per chemical�following the principles developed by
the earliest users�where it is assumed that the SSD describes
the exposure-impact relationship for whole field species

Received: June 26, 2023
Revised: September 7, 2023
Accepted: September 8, 2023
Published: September 21, 2023

Articlepubs.acs.org/est

© 2023 The Authors. Published by
American Chemical Society

14526
https://doi.org/10.1021/acs.est.3c04968

Environ. Sci. Technol. 2023, 57, 14526−14538

This article is licensed under CC-BY-NC-ND 4.0

D
ow

nl
oa

de
d 

vi
a 

D
T

IC
 N

A
T

L
 T

E
C

H
 I

N
FO

R
M

A
T

IO
N

 C
T

R
 o

n 
D

ec
em

be
r 

11
, 2

02
3 

at
 0

9:
21

:3
2 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Susan+Anyango+Oginah"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Leo+Posthuma"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Hauschild"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jaap+Slootweg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marissa+Kosnik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+Fantke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+Fantke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.3c04968&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04968?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04968?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04968?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04968?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04968?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/esthag/57/39?ref=pdf
https://pubs.acs.org/toc/esthag/57/39?ref=pdf
https://pubs.acs.org/toc/esthag/57/39?ref=pdf
https://pubs.acs.org/toc/esthag/57/39?ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.est.3c04968?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


assemblages. Today, two key motives support the derivation of
SSDs for distinct taxonomic groups, i.e., split SSDs.

• First, as common in applied ecology, environmental
assessment practices focus on separate taxonomic groups
(rather than whole assemblages).10

• Second, as recognized in applied ecotoxicology, different
compound groups can have different (specific) modes of
action (MoAs) (such as insecticides affecting insects
most), which implies that the currently used, nonsplit
SSDs may show poor statistical fits to data across
taxonomic groups.3,11

The latter argument was already given in an outlook on
developments in SSDs in 2002, arguing that a split in
taxonomically distinct SSDs and accounting for the mode of
action knowledge would be beneficial statistically and
conceptually, with improved interpretation for the decision-
support uses of SSD-outputs,12 with further discussions by Fox
et al. 2021.3 Commonly, the derived toxic thresholds, i.e.,
protective environmental concentrations (HC5) and Predicted
No Effect Concentration (PNEC) for aquatic communities and
regulatory applications, could be improved by splitting the SSDs
regardless of the SSD distributions used.3,13

The optional splitting of SSDs comes with a potential trade-
off. They become statistically less robust because split SSDs are
based on data per taxonomic group. Decision support
applications require robust SSDs, defined by their insensitivity
to changes in the available collections of input data. Robustness
can be characterized with a statistical approach, enabling
categorization of optional splitting as “responsible splits” (robust
resulting SSDs per taxonomic group) or not (nonrobust
outcomes, statistical trade-offs).

In the context of the use of SSDs in setting environmental
quality standards, for life cycle assessments, and for diagnostic
assessments of causes of global change, the present study’s main
goal was to investigate whether and how the splitting of SSDs�
here, according to taxonomic groups�can be systematically
undertaken, that is for chemicals with and without a specific
mode of action while accounting for statistical trade-offs and to
evaluate whether such splitting yields an improved impact
characterization of exposure to chemical contaminants. To
achieve this goal, we defined four specific objectives: (i) To
derive a harmonized ecotoxicity database from available, curated
freshwater ecotoxicity test data and to enrich this database with
taxonomic and mode of action information. (ii) To propose a
generically applicable framework for deriving split SSDs and
demonstrate the utility of the framework for a set of chemicals
with sufficient available freshwater test data. (iii) To evaluate
whether using the proposed framework would result in different
decision-support outcomes, i.e., improved characterization of
the expected ecological impacts of chemical pollution, given that
many chemicals have limited available test data. (iv) To, finally,
derive practical and broadly applicable rules describing when
and how chemical-specific ecotoxicity data can be split
responsibly. In order to illustrate the potential relevance of
splitting SSDs, we apply these rules to a set of chemicals and
illustrate the effects for the derivation of protective standards
and for the derivation of chemical-specific ecotoxicity effect
factors for use in LCIA.14,15

■ METHODS
Overview. The study on splitting SSDs was developed with a

selection of test data, the choice for the log-normal model to

create SSDs, and following a stepwise approach for broader
applications when splitting SSDs would be considered, where
example outputs focus on both protective criteria and LCIA.
These steps are elaborated below. We emphasize that the
findings on splitting SSDs are generic and can be applied to
other data selection criteria, statistical models, and SSD
decision-support outputs. We followed the recommendations
derived in the Global Life Cycle Impact Assessment Method
(GLAM) effort under the auspices of the United Nations
Environment Programme to derive metrics for assessing
ecotoxicity impacts in LCIA as discussed by Owsianiak et al.
2023.15 Main reasons are that the derived effect threshold of
20th percentile is close to the domain of environmentally
relevant concentrations and that this threshold requires only a
minimum of 5 species to have 1 tested species falling within the
range below the HC20.

Experimental Test Data Curation and Harmonization.
We started from a database of experimental ecotoxicity effect
test data for 9868 chemicals,4 from which we selected
experimental data (i.e., we removed read-across data) for
freshwater species for data harmonization and curation. This
process included harmonization of species names, classification
of species into taxonomic groups, and calculation of average
effect test values across data points per combination of species
and chemical (see Table A1). We then selected chemicals with
data for three or more distinct species and taxonomic groups.
The taxonomic groups used in developing the split-SSD
argument were pragmatically inspired by the European Union
(EU)-Water Framework Directive, which discerns various
Biological Quality Elements�from which we selected three
groups (here: Algae, cyanobacteria, and aquatic plants (A),
Invertebrates (I), and Vertebrates (V)). The resulting data set
for 180 chemicals is provided in the Supporting Information
(Excel file Table S1).

Chemicals were first classified according to a systematic
taxonomy based on the ClassyFire approach and assigned a
mode of action (MoA) based on classifications from different
pesticide resistance action committees, the Verhaar scheme,16,17

and reported MoA information,18 before mapping the chemical
MoA to taxonomic groups.19 If MoA information was lacking,
the MoA reported for the chemical class was used. Chemical use
categories were derived from prescribed use information
(pesticidecompendium.bcpc.org).

As a next step, recognizing that the available raw species
sensitivity data are of diverse kinds (acute NOEC, chronic
NOEC, acute EC50, etc.), we used a set of data-driven
extrapolation formulas to “translate” the diverse raw data types
into a set of harmonized endpoint data, to enable derivation of
SSDs from those. Since we illustrate the methodology for the
context of LCIA, we extrapolated the available test endpoint data
(e.g., acute and chronic NOEC, EC50, and EC10) to chronic
EC10 equiv (the recommended starting point for deriving
ecotoxicity impacts in LCIA). This was done by applying the
formulas of Table 1, based on data-driven patterns recognized
and described by Aurisano et al. 2019.20

Chemicals were then classified as “data-rich” (chemicals with
≥3 distinct species from the ≥3 taxonomic groups) for the
present study or as “data-poor” (<3 distinct species per
taxonomic group and/or <3 taxonomic groups) in line with,
e.g., Müller et al. 2017.21 The set of “data-rich” chemicals was
kept for further analysis.

Systematic Decision Tree to Evaluate the Splitting of
SSDs. All SSDs in the present study were derived as log-normal
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distribution of species sensitivity (here: chronic EC10 equiv)
data. Note that other SSD models may be fitted to the data, and
those can be split for taxonomic groups, and the reasoning below
can be specifically adapted if needed for those models.

A log-normal distribution is characterized by its mean and
standard deviation, which are also used as moments of the log-
normal SSDs (as μ and σ, respectively). A systematic evaluation
decision tree was designed to distinguish between alternative
outcomes (full split into three SSDs, if not: partial split, if not: no
split). Given the two main arguments for splitting the data in
taxonomic-group-specific SSDs, the first decision point is a
statistical test series to evaluate whether some taxonomic subsets
of data differ significantly from other subsets. The statistical tests
for inter-SSD comparisons can conveniently be based on
generally applied statistical test methods given the underlying
distribution model (log-normal). The systematic evaluation
decision tree for splitting SSDs thus considers among other
evaluations of (dis)similarities in slopes and means, as depicted
in Figure 1.

The following tests were executed, starting from the raw data
and the relevant descriptive statistics (μ and σ), as illustrated in
Figure 1. Levene’s test was run to check the homogeneity of
variances (considering thus σ = slope differences among SSDs).
If variances are not significantly different, a one-way analysis of
variance (ANOVA) (parametric) was run to evaluate the
(dis)similarity of means (μ, the position parameter of the SSDs)
among subsets of the three taxonomically grouped test data.
Nonhomogeneous variance is a signal of differences across
subsets of the data; in this case, the Kruskal−Wallis test
(nonparametric) was applied to evaluate differences in μ. A
posteriori multiple comparisons tests followed if there were
significant differences between compared taxonomic groups
(that is, Tukey’s HSD (parametric) and Dunn’s (non-
parametric) tests, with the p-value set at 0.05). If full split (A
≠ I ≠ V) is not supported, the independent t test (parametric)
and Mann−Whitney U test (nonparametric) were used to
compare the mean of one taxonomic group versus the other two
groups merged, e.g., A ≠ I + V. For further confirmation, the
conclusion drawn from these tests on splitting SSDs was
evaluated by deriving a linear regression model, whereby one
group is considered an “anchor” to test whether others differ
from the anchor (see Table 2).

The set of results (on differences in σ’s and/or μ’s) were
collated, together with the a posteriori test results, to draw a
conclusion on statistical motives to employ a full or partial split
based on the whole assemblage of test data for a chemical
(minimum: 3 × 3 = 9). The resulting SSDs may be three SSDs
based on (as a minimum) three data points each, which can thus

produce nonrobust outcomes based on the identified subsets of
the data. Therefore, the decision tree proceeds with an
evaluation of the robustness of the resulting SSDs, whereby
nonrobust outcomes are identified. Robust SSDs were defined
by quantifying the confidence interval around the derived LCIA
ecotoxicity impact metric (i.e., HC20). A robust SSD yields an
HC20 with a narrow confidence interval, whereby we pragmati-
cally applied 5 squared geometric standard deviation as the
boundary below which we identify the HC20 of a split-, partially
split, or no-split as robust. Where a split caused a thus-defined
nonrobust SSD, it was investigated whether partial remerging
(i.e., A+V, I+V, or A+I) or full-remerging (A+I+V) resulted in
robust SSDs (following the same robustness test).

All the statistical analyses and the building of split SSDs were
performed in R version 4.1.2,22 modifying and expanding
existing code to construct SSDs (edild.github.io/ssd). Figures
were generated using the ggplot R package, version 3.4.1.23

Evaluating Mode of Action and Use Category
Information. The results of the splitting procedure were
evaluated vis-a-vis information on MoA and use categories,
whereby it was expected that specific modes of action (e.g.,
insecticidal action) or use category (e.g., labeling as an
insecticide) would imply splitting off (at least) the target
taxonomic group as a separate SSD. Data were plotted in
different subgroups and combinations to verify associations
between these two aspects and the results of the splitting
approach.

Derivation of User-Oriented Impact Metrics (HC20)
Values for LCIA. The SSDs that resulted from the split-
assessments are (in the case study) SSDs based on chronic EC10
equiv (SSD-EC10eq) of a compound, which are in turn used to
define the ecotoxicological effect factor of that compound at the
HC20-level (the 20th percentile of that SSD).15,24 Thus, for
sufficiently robust SSDs, we derived those values for all of the
studied compounds. In addition to this, we also illustrate the
impacts of splitting on protective regulatory standards (related
to HC5, PNEC, and similar concepts) for some selected
compounds. Finally, the uncertainty assessment around
taxonomic group-specific HC20s was quantified by combining
intraspecies and interspecies variability (see Supporting
Information Uncertainty analysis section for details).

■ RESULTS
Harmonized Ecotoxicity Test Data for Freshwater

Species. We start with 120,835 species-specific toxicity test
data, totaling 9868 chemicals, 1123 species, and 234 test
endpoints, distributed as shown in Figure 2. Because of
nonsystematic global testing practices, the data set does not
equally cover the taxonomic groups, test durations, and
endpoint types. Invertebrates are the primary taxonomic group
(78%) in the data set. Likewise, acute toxicity data dominate the
data set (71% of the total data across taxonomic groups), mainly
acute EC50s for invertebrates (44,077 acute EC50s and 20,000
acute NOECs), with fewer chronic EC50s (n = 5555), of which
only very few (n = 82) data are for vertebrates.

Species sensitivities span many orders of magnitude for both
short-term peak and longer-term chronic exposures (Figure 2).
For example, acute EC50s range between 7.3 × 10−8 and 3.3 ×
10−9 μg/L for invertebrates, and chronic EC50s range from 1.6
× 10−5 to 1.0 × 10−8μg/L for invertebrates. Likewise, acute
NOECs range between 8.0 × 10−7 and 1.0 × 10−9μg/L, and
chronic NOECs range between 6.0 × 10−6 and 2.5 × 10−8 μg/L.

Table 1. Overview of Regression Equations Derived Based on
All Available Freshwater Test Data for 9868 Chemicals Used
to Extrapolate Laboratory-Test Derived Species Sensitivity
EndPoints (the Diverse Set of Reported Sensitivity Metrics:
Column 1) to Chronic EC10 equiv, Used in the Present Study
to Derive SSD-EC10eq Based on the Extrapolated EC10-
Equivalent Data for the 180 Chemicals

Endpoints Extrapolation equation

Acute NOEC log EC10chronic = 0.816 × log NOECacute + 0.021
Chronic NOEC log EC10chronic = 0.965 × log NOECchronic − 0.144
Acute EC50 log EC10chronic = 0.869 × log EC50acute − 0.508
Chronic EC50 log EC10chronic = 0.872 × log EC50chronic + 0.733
Acute EC10 log EC10chronic = 0.813 × log EC10acute + 0.967
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Figure 1. Schematic summary of a decision tree for evaluating whether the assemblage of available ecotoxicity data for a chemical can be subdivided
into (here) three taxonomic groups based on three specific Water Framework Directive defined Biological Quality Elements: Algae, cyanobacteria, and
aquatic plants (A), Invertebrates (I), and Vertebrates (V). Numbers of cases involved in each step (as result) are shown in red. (top) Description and
selection of input data for the start of the splitting approach. (middle) Analysis steps to evaluate statistical motives to split using all available data per
chemical (fully or partially). (bottom) Evaluating whether the split results in a trade-off of a nonrobust species sensitivity distribution (SSD) for one or
more subgroups. (bottom gray blocks) Summarizing results for practical Life Cycle Impact Assessment (20th percentile values) and evaluating
whether statistical split covaries with the mode of action and use category information. Note that the no-split approach is the historically best-known
form and most frequently applied format of constructing SSDs and using those for environmental decision support purposes, prescribed in various
policy guidance documents (details vary across jurisdictions).
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From the curated data, 180 chemicals were selected as data-
rich (chemicals with data for ≥3 distinct species from ≥3
taxonomic groups), yielding 5217 test end point data for
developing and testing the SSD-splitting framework. Upon
deriving the chronic-EC10-values from these data, some taxa
dominate the final data-rich subset for further study steps, with
47% invertebrates, 33% vertebrates, and 20% algae, cyanobac-
teria, and aquatic plants. Note that only 1.81% of the chemicals
have sufficient data for a potential full split into three taxonomic
group-specific SSDs.

Split SSDs for Different Taxonomic Groups and
Relation to Mode of Action. Statistically significant support
for full or partial splitting into SSDs representing Algae,
cyanobacteria, and aquatic plants (A), Invertebrates (I), and
Vertebrates (V), or the combinations of AI, AV, or IV, was found
for 3 (<2%) and 75 (42%) out of 180 data-rich chemicals,
respectively, based on statistical tests comparing the mean and
standard deviation of SSDs (procedure in Figure 1). Notably,
the available data support the use of a split-SSD modeling
approach for some narcotic chemicals (see Figure 3), which is
visually indicated by nonoverlapping means (dots) and standard
deviations for different taxonomic groups. This latter outcome
was highly unexpected, given three decades of accepted no-split
SSD practices and the expectation that split-SSDs would be
found for only chemicals with a specific mode of action.
However, a split can also be warranted for narcotic chemicals,
provided that the available data set is sufficiently rich. The

Supporting Information Excel file (Excel Table S2) presents all
statistical details and characteristics of the resulting SSDs.

We found a clear and consistent pattern of higher sensitivity of
the targeted taxonomic group for chemicals with a specific MoA
(63% of the 180 chemicals; see Supporting Information Figure
S1), with, as expected, the more sensitive taxonomic groups
predominantly represented at the lower end of the shown
sensitivity distribution patterns (See Figure 3). For example, I
and A are the most sensitive groups in the panels shown on
insecticides (especially AChE (Acetyl Choline Esterase)
inhibition) and photosynthesis inhibition, respectively. The
nontargeted groups are often not statistically different, resulting
in a partial split, likely partly attributable to the absence of an
MoA-related mechanism that would induce a split or possibly
also due to lower numbers of test data for the nontargeted
taxonomic groups.

We summarized the data further, using the “working point” on
impacts that are used to derive LCIA Effect Factors based on
global consensus recommendations (the Hazardous Concen-
tration for 20% of the species, HC20, derived from chronic
EC10 equiv). This yielded similar results, here illustrated for the
gross chemical use categories. Again, there was a match between
the expected and observed sensitive taxonomic groups, e.g.,
insecticides and I and herbicides and A; Figure 4a.
Unexpectedly, one herbicide (tributyltin-cation, CAS 36643-
28-4) with an endocrine-disrupting MoA affected invertebrates,
which appeared as the most sensitive taxonomic group.
Fungicides showed general toxicity, with the most sensitive

Table 2. List of Statistical Tests Used to Evaluate the Potential of Split SSDs for Different Taxonomic Groups: Algae,
Cyanobacteria, and Aquatic Plants (A), Invertebrates (I), and Vertebrates (V)

Step Statistical test Description Interpretation

1 Levene’s test -Tests the null hypothesis that the variances (related to the SSD σ-parameter) of different taxonomic groups (A, I, V) are
equal

p > 0.05 σ1 ≈
σ2 ≈ σ3

-If p > 0.05, the test does not (fails to) reject the null hypothesis that the variances of different taxonomic groups are equal. If
p < 0.05, then taxonomic groups have different slopes (SSDs are different)

1.1 One way
ANOVA test

-Tests the null hypothesis that the mean (related to the SSD μ-parameter) of different taxonomic groups is equal (A, I, V) p ≤ 0.05: μ1 ≠
μ2 ≠ μ3

-If p > 0.05, then taxonomic groups have the same mean. If p ≤ 0.05, then taxonomic groups have different means (SSDs
have different position parameters)

1.1.1 Tukey’s test -Test multiple pairwise comparisons between groups’ means (μ) to identify which groups have a different mean (e.g., A vs I) p≤ 0.05: μA ≠
μI

If p > 0.05, then taxonomic groups have the same mean
-If p ≤ 0.05, then taxonomic groups have different means (specific split of SSDs).

1.1.2 Independent t
test

-Tests the null hypothesis that the mean (μ) of different taxonomic groups is equal (e.g., V vs I+A) p≤ 0.05: μV ≠
μI+A

-If p > 0.05, then taxonomic groups have the same mean
-If p ≤ 0.05, then taxonomic groups have different means. (specific split of SSDs)

1.2 Kruskal−
Wallis test

-Nonparametric equivalent of ANOVA test, tests the null hypothesis that the mean (μ) of different taxonomic groups is
equal (A, I, V)

p ≤ 0.05: μ1 ≠
μ2 ≠ μ3

-If p > 0.05, then taxonomic groups have the same mean
-If p ≤ 0.05, then taxonomic groups have different means.

1.2.1 Dunn’s test -Nonparametric post hoc test similar to Tukey’s test. Test multiple pairwise comparisons between groups’ mean to identify
which taxonomic groups have different means (e.g., A vs I)

p≤ 0.05: μA ≠
μI

-If p > 0.05, then taxonomic groups have the same mean
-If p ≤ 0.05, then taxonomic groups have different means.

1.2.2 Mann−
Whitney U
test

-Nonparametric equivalent to independent t test, test the null hypothesis that the mean (μ) is equal across different
taxonomic groups (V vs I+A)

p≤ 0.05: μV ≠
μI+A

-If p > 0.05, then taxonomic groups have the same mean
-If p ≤ 0.05, then taxonomic groups have different means.

2.0 Linear
Regression

-Linear model with categorical predictors. p≤ 0.05: μA ≠
μI

-Test group-level differences between groups (e.g., A vs I). If p≤ 0.05: the test rejects the null hypothesis that the mean (μ)
is equal across different taxonomic groups; thus, the taxonomic groups are not related
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taxonomic groups differing across chemicals, with algae,
cyanobacteria, and aquatic plants tending to be less sensitive
than other taxonomic groups. Moreover, chemicals with no
specified use category (“Other uses”) showed no clear pattern of
any taxonomic group being affected most.

Specific Regulatory and Decision-Relevance Issues.
The relevance of our findings for the various contemporary

decision-support uses of SSDs is illustrated first by the fact that
our analyses cover 15 Water Framework Directive (WFD)
Priority Substances (marking chemicals of current Europe-wide
concern, black stars in Figure 4) and two chemicals listed under
the fourth WFD Watch List (black crossed dots in Figure 4,
marking chemicals of emerging concern for water quality
policies).25 Second, the relevance of splitting for the outcomes of

Figure 2.Distribution of 120,835 species sensitivity endpoints (Y) for 9868 rank-ordered chemicals (X), distinguishing taxonomic groups (colors) and
endpoint types (measured: rows 1 to 4; extrapolated split-research data: row 5). Rank order was based on mean extrapolated chronic EC10-equivalent
values per chemical for each column. On the x-axis, value gaps lack data for taxonomic group × endpoint combinations (e.g., vertebrates × NOEC) for
the gap intervals.
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using SSDs for decision making shows as substantial differences
between SSD-based insights on protective criteria and/or
impacts of chemicals generated without (classic approach) and
with applying our proposed (partial) split, elaborated in the next
section further.

Third, based on currently available data, the split concerns a
relatively large proportion of the chemicals. The use category
“herbicides” involved 56 chemicals, among which data for 29
chemicals (statistical output) supported a full or partial split,
with a suggested partial splitting of algae, cyanobacteria, and
aquatic plants from the other taxonomic groups for 25 chemicals
(A vs I+V). The use category “insecticides” involved 27
chemicals, among which data for 20 chemicals (statistical
output) supported a full or partial split, with a suggested splitting
of I from the other groups for 14 chemicals. The “fungicide”
category involved 32 chemicals. Data for 14 of these chemicals
supported a partial split; data for 14 of these chemicals
supported a partial split, whereby 12, 8, and 6 were separated
from the rest of the group for primary producers, invertebrates,
and vertebrates, respectively.

The “Other uses” category involved 65 chemicals; data for 27
(statistical output) chemicals supported partial splitting, with
data for 15, 14, and 17 chemicals showing a splitting of A, I, and
V from the rest, respectively. This indicates that there are certain
chemicals in industrial or other (nonagricultural) uses to which
particular taxonomic groups are more sensitive than others. For
instance, algae, cyanobacteria, and aquatic plants appeared
sensitive to 2,4-dinitrotoluene, and vertebrates appeared
sensitive to phenol, both relevant in polymer and plastic
production. Again, note that splitting SSDs is not limited to
chemicals with a specific known MoA or specified use category.

Quantitative Implications of Split SSDs for Decision
Support. The relevance of the proposed split-SSD approach in
decision support is shown quantitatively in Figure 5, illustrating
all potential outcomes (no split, full split, and partial split).
Vertical black and red lines show that critical concentrations (at
the fifth and 20th percentile levels) derived with the SSDs differ
substantially between the classical no-split approach and the full-
or partial-split approaches. That is shown for the derivation of
protective environmental standards (black vertical lines, where a

Figure 3. Distributions of the species sensitivity impact metric (Y, chronic EC10 equiv) for 180 rank-ordered chemicals (X). Taxonomic groups are
colored. Chemicals within each panel are rank-ordered based on the mean impact metric values calculated across all data per chemical. MoA = Mode of
Action, n = number of chemicals in each panel. SSD-splitting grossly coincides (visually) with nonoverlapping dots and standard deviations for
different taxonomic groups (colors). Letters in each panel: For chemicals targeting invertebrates: (a) AChE inhibition (insecticidal MoA; chemical
class with most data for this MoA); (b) other insecticidal MoA (lumped); for chemicals targeting algae, cyanobacteria, and aquatic plants as primary
producers; (c) photosynthesis inhibition (herbicidal MoA with most data); (d) other herbicidal MoA (lumped); for chemicals with baseline toxicity:
(e) Narcosis. (f) “Other known MoA” includes chemicals for which MoA was provided but for which a specific targeted taxonomic group is unknown.
(g) “Unclassified MoA” includes chemicals for which MoA information was lacking.
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regulatory-defined low-end, fifth percentile value of a chronic-
data SSD is used to express a critical protective concentration,
X) and for the estimation of the impact of pollution, by
quantifying the potentially affected fraction of species (Y) at an
ambient exposure level (X), here at the 20th percentile of the
SSD (red vertical lines). Figure 5 also illustrates the influence of
splitting for confidence intervals around the SSDs (gray bands),
which are wider for data-poor SSDs. In these examples, the HC5
or HC20 can shift by more than 1 order of magnitude as a
consequence of splitting, as compared to the whole-assemblage
(classical) SSD.

The first 4 rows of the plots (i.e., simazine, fenthion,
trichlorfon, and sodium pentachlorophenate) illustrate SSD
patterns for chemicals with nonoverlapping 95% confidence
interval (CI) ranges of their split SSDs, supporting a partial or
full split (supported by statistical tests, see Methods). In
comparison, pyraflufen-ethyl showed overlapping 95% CI

ranges, and statistical tests did not support splitting. In all
cases where a responsible split was supported by statistical
evaluation, the whole-species assemblage SSDs showed that the
observed test data for one or more particular taxonomic groups
were unevenly distributed over the SSD, with, e.g., the sensitive
taxonomic group clustering toward the lower tail (Figure 5).

Decision Tree and Resulting HC20s. Figures 3−5
summarize and illustrate results and decision-supporting
relevance of splitting to derive taxonomic group-specific SSDs.
These results reflect outcomes of a systematic decision tree
(Figure 1), in which test data, statistical testing to motivate a
split, and user-required SSD-robustness considerations are
combined. In our analysis, the assessment of all available data
reveals that a full or partial split would be supported for 90 of the
180 chemicals. However, judgment of the trade-off effect on
SSD robustness showed that three chemicals resulted in robust
full split SSDs, 75 in partial split SSDs as a fallback option, and

Figure 4. (a) Distributions of the species sensitivity impact metric (Y, chronic EC10 equiv) for chemical use categories (panels), rank ordered as in
panel (b). Use categories: Insecticides are chemicals used for targeting invertebrates; Herbicides are chemicals used for targeting algae, cyanobacteria
and aquatic plants as primary producers; Fungicides are chemicals targeting fungi. “Other uses” are chemicals for which the targeted taxonomic group is
not specified (e.g., industrial chemicals). (b). Similar results present the HC20-metric that is practically used in Life Cycle Impact Assessment global
consensus approaches (20th percentile of the distribution of the above impact metric across tested species) for only robust SSDs. Percentile values of
SSDs are expressed in LCIA as HC = Hazardous Concentration. HC20-estimates (with standard deviations) are summarized for 134 chemicals with
≥6 data points (low uncertainty) for 261 chemical-taxonomic group combinations.
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Figure 5. Illustration of deriving no-split, full-split, or partially split (taxonomic group-specific) species sensitivity distributions and its consequences
for deriving protective environmental quality standards and for use in Life Cycle Impact Assessment (LCIA). There is no consequence for these
decision support applications if vertical black or red lines, respectively, are similar for full- or partial-split SSDs compared to no-split SSDs. Black or red
lines for a chemical show differences of up to more than 2 orders of magnitude. Columns: no-split (historically the common SSD use, left), full split
(middle), and responsible split (right) SSDs. Rows are selected chemicals. Panels show sensitivity endpoints across species (dots: chronic EC10-
equivalents), sigmoid curves (log-normal fitted SSDs), and 95% confidence intervals (shaded). Protective standards (maximum concentrations) are
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102 in nonrobust split SSDs, of which the latter are therefore
represented by the classical no-split SSD (Excel Table S2). The
final result on SSDs robustness involved a pragmatic decision to
include only SSDs with a squared geometric standard deviation
(GSD2) ≤ 5 around the log-mean as a cutoff point. The
sequence of steps and analyses of the shown decision tree can be
used to judge whether available test data on a chemical can be
(partially) split SSDs into robust results for chemicals other than
the 180 study chemicals included in this study (shown for the
log-normal model, but applicable in a similar way to other data
and model choices).

■ DISCUSSION
Triggered by a need to set regulatory, protective environmental
quality benchmarks, the global regulatory use of SSDs started
with recognizing that log-transformed ecotoxicity test data
collected for various species appeared to follow a bell-shaped
distribution.4 Thereupon, the first broad use of SSDs was to
derive protective environmental quality standards from all
available data, based on the assumption that the distribution of
sensitivities of tested species resembles that of the nontested
field species assemblage.6 This subsequently provided the basis
for a wide array of uses of SSDs in environmental quality
protection, assessment, and management. However, almost all
of the (regulatory) applications still derive SSD from all data,
aiming to represent the whole species assemblage following
initial decisions. Various jurisdictions prescribe different
minimum requirements to the underlying effect data, recogniz-
ing (i) that different taxonomic groups should be represented to
fulfill the adopted assumption and (ii) that more test data
generally imply more robust SSD models. The present study
reconsidered all this and evaluated from “first-principles” (the
two ecological and statistical motives) whether the derivation of
a (partially) split SSD is warranted and, if so, how that would
operate and work out for decision support uses. Illustrated by
chemicals with a minimum of necessary test data, we
demonstrate that an improved fit of SSDs to the underlying
data can be found even for some chemicals with a narcotic
(nonspecific) MoA, in contrast to common expectations and our
own initial beliefs.

Although the results show how the splitting of data into
taxonomic group-specific SSDs improves the fit of the models to
the data and the final decision-support interpretations caused by
that, it should be recognized that the use of SSDs derived from
laboratory toxicity data is not a panacea for all environmental
problems with chemicals. The complexity and diversity of the
chemical pollution problem has, so far, resulted in additional
useful methods to characterize hazards, among which we include
the derivation and use of field SSDs and bioassays�which are
both methods that do not require laboratory-to-field extrap-
olation (as in classical SSDs). Environmental policies and
bridging applied ecology and ecotoxicology can be served by

investigating multiple lines of evidence to disentangle the effects
of multiple stressors and unintended ambient mixtures.

The present study provides the scientific answer on “to split or
not to split”; it is scientifically better to split SSDs according to
taxonomic grouping (better fit of the models to the data and
associated decision-support implications) unless the number
and quality of available test data limits that. Whether this is
implemented in practice and how far this would provide
improved environmental assessments and management depend
on the jurisdiction, the available data per chemical, and the
difference in SSDs between taxonomic groups. If implemented
in practice, there would be consequences for data collection
(seeking to add data that appear missing for specific taxonomic
groups) as well as for derivation of protective standards (such as
HC5, PNEC, and similar terms) for LCIA and environmental
quality assessment (potentially affected fraction of species). The
split-approach undoubtedly results in fewer data per (split-
)SSD, which may have various consequences in practice. Such
SSDs may be statistically robust (as in the present study results).
However, the splitting also relates to the debate on the
“minimum number of species (or taxonomic groups) per
SSD” and using an optional Safety Factor on an HC5 derived
from a split-SSD. The minimum-number debate would need to
ascertain that a (likely lower) minimum number of tests should
represent the sensitivity variation within a taxonomic group. The
Safety Factor debate�which was triggered by uncertainties�
would need to consider that the method likely lowers the HC5
because of accounting for the sensitive taxonomic group,
addressing part of the uncertainties of the “classical” approach.
Such debates can start upon adopting splitting based on the
methodology laid out in the present study.

Our results suggest that “always-splitting” is warranted as a
starting point for any assessment but that splitting may be
limited, and has trade-offs, given the characteristics of the
available data. Specifically, an exploration of the available base
data (120,835 toxicity endpoint values) shows that invertebrates
are frequently tested and evaluated,26−29 which results in a
higher likelihood of finding robust split SSDs for invertebrates.
The lowest number of data was available for bacteria and fungi,
which hampers assessment of risks for these groups as well as for
important functions of microorganisms in ecosystems, even
without the opportunity to derive a split SSD for this group,
where relevant. This points to the need for more tests of
microorganisms in freshwater ecosystems. Despite limitations
due to data scarcity, it is evident that a partial split may result
when assessing chemicals other than the 180 studied chemicals.

The Role of Mode of Action and Use Category
Information. Splitting is principally warranted from the
viewpoint of applied ecology, where distinctive bioassessment
approaches focusing on taxonomic groups are common.
However, the motives for splitting have always been expected
to be stronger for chemicals with a specific MoA or more grossly
defined chemical use categories. In general, the results of both

Figure 5. continued

derived from a uniform policy-chosen Y = 0.05, with protective threshold concentrations (Hazardous Concentration for 5% of the species, HC5)
derived on X (black lines). Impact magnitudes in LCIA are derived from a uniform Y = 0.2 with similar consequences derived on X (red lines). Rows
from top to bottom illustrate the results of different MoA-related splitting situations and results from data-richer to data-poorer chemicals. Row 1: data-
rich herbicide (simazine); rows 2 and 3 data-rich insecticides (fenthion and trichlorfon); row 4 data-rich chemical with baseline toxicity (sodium
pentachlorophenate); row 5: data-poor herbicide (pyraflufen-ethyl). The error lines of the data points show intraspecies variability in the test data set
for each chemical. Interspecies variability is represented by 95% confidence intervals (gray bands) based on bootstrapping (1000 iterations). With
sufficient data, SSD splitting is supported for chemicals with specific MoA (rows 1, 2, 3, and 5) but (surprisingly) also for baseline toxicity (rows 4).
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mechanistic MoA and chemical use category considerations
closely matched expectations on this, supported by patterns
shown in Figure 3 and Figure 4. For instance, invertebrates
appear at the lower level of the sensitivity distribution (lowest
SSD mean) for chemicals designed to operate via the AChE-
inhibition and labeled as insecticides, while primary producers
fall into the lower tails of the distributions for photosynthesis
inhibitors used as herbicides. Our results confirm that it is key to
consider MoA and/or the use category (where this applies, such
as for pesticides) information on chemicals to trigger,
considering the use of better-fitting models for separate
taxonomic groups.30−32 The better principles and the better fit
have implications for practical uses of SSDs, both for deriving
protective standards and for use in environmental impact
assessments and LCIA (Figure 5).

We made two additional notable observations. First,
confirming previous studies and theory, the lowest variation in
sensitivity across taxonomic groups was found in chemicals with
nonspecific MoA, i.e., narcosis (Figure 3, vertical spread). This
supports the hypothesis that even among not closely related
species, toxicity through nonpolar narcosis is associated with
relatively lower interspecies sensitivity differences.33 Although
there may be an applied ecology and a statistical reason to
consider splitting data-rich chemicals with a narcotic MoA, the
improved fit mainly implies improved SSD-based outputs for
chemicals with specific MoA, making the latter the primary focus
for aiming at splitting SSDs in practice.3 Second, some outcomes
are not predictable by MoA or use category information. For
example, the herbicide tributyltin-cation (CAS 36643-28-4) is
relevant in chemical formulations designed to control weeds, but
there are potential side effects on invertebrates, more than for
other herbicides. Most of the observed lower sensitivities in our
SSDs are evidence of unwanted side effects, which are visible
despite the diversity of the side effects, a low number of tests, and
a few chemicals designed to control vertebrates.

The application of splitting or not has various implications for
decision support. Scientifically, it is likely that a study on the
calibration between data on the predicted msPAF values for an
array of sampling sites and the observed effects on a particular
taxonomic group at those sites is more meaningful when based
on split SSDs, given the more accurate impact assessment upon
splitting (Figure 5). For example, observed impacts on
invertebrate species derived from ecological monitoring can be
better calibrated to the msPAF derived from the SSD-
Invertebrates than from the classical overall SSD, with a misfit
of the SSD to the test data. This calibration (higher PAF implies
higher risk, proven with calibration data or not) is often used as a
basis for the decision-supporting uses of SSDs. Specific
calibration work can now be undertaken to quantify the
Potentially Disappearing Fraction (PDF) of species due to
chemical exposure, given the possibility of quantifying impacts
in terms of PAF from the split SSDs. PDF is a biodiversity
damage metric used in LCIA for all impact categories related to
ecosystem quality.34,35

In general, the decision-support uses of SSDs will be
conceptually improved and numerically altered with split
SSDs, provided that those are robust. This holds for data sets,
model choices, or SSD-based output metrics that differ from the
data, model, and metrics used in the present paper. The finding
that splitting SSD is relevant in any case holds without prejudice
to either of these matters. Upon splitting, conceptual numeric
improvements may result in more accurate protective standards
and better quantitative impact assessment of predicted or

observed ambient pollution.36 The black lines in Figure 5
(subfigures a, b, c, and d) illustrate that a protective (no impact)
environmental quality standard, estimated as fifth percentile
from an SSD of chronic data, is lower when a split SSD is
employed. That is understandable, as HC5 for the most sensitive
group now represents a protection of 95% of the species in that
group. In turn, this has (similar) implications for regulatory-
adopted criteria based on these estimated HC 5s, such as the
PNEC. The red lines in Figure 5 (subfigures a, b, c, and d) show
similar results for the LCIA-employed impact metric at the 20th
percentile, leading to different impact estimates of the use of
chemicals in products based on splitting.

After evaluation of the decision tree (Figure 1), our
observation confirms that chemicals with more data (e.g.,
simazine and fenthion) and a specific MoA provide the strongest
basis for responsible splitting. Thus, the more data, the more
robust the SSDs after the (partial) split, even for narcotic
chemicals (e.g., sodium pentachlorophenate). However, species
selection bias during laboratory testing (i.e., for chemicals with
specific MoA) currently limits to often find full-split SSDs. For
example, trichlorfon, an insecticide operating via the AChE
inhibition, statistically supports a full-split SSD. In contrast, few
data points for a nontarget taxonomic group (i.e., Algae,
cyanobacteria, and aquatic plants; n = 3) result only in partial
splitting based on the SSD robustness check, indicating the need
to include more tests for nontarget species to derive taxonomic
group-specific split SSDs where appropriate. Thus, for one to
have a full split SSD, all the taxonomic groups require sufficient
data. At the other end of the spectrum, avoiding a negative trade-
off for prediction accuracy with nonrobust SSDs that occur for
data-poor chemicals is essential. For example, although the
statistical tests on all available test data suggest that the primary
producers could be split off from the rest of the groups for
pyraflufen-ethyl, the broad and overlapping confidence intervals
render the whole-assemblage SSD statistically more robust as
compared to the partial-split alternative. Statistical assessments
may be used to decide on split SSDs, or not, but not solely. It is
also important to evaluate whether splitting is better in practice,
yielding better decision support based on conceptual principles
and trade-off effects. Relatively data-poor chemicals may result
in split SSDs that are not robust for one or more taxonomic
groups because the process of splitting counters the statistical
rule that “more data result in more robust SSDs” (see Figure S2).

We selected 180 data-rich chemicals to develop a decision tree
for splitting SSDs (Figure 1), which can be employed (or
adapted) for all chemicals and taxonomic groups or other ways
to group chemicals, species, or statistical models. In the
exploration of data for a chemical, it is likely that a partial split
(e.g., Algae, cyanobacteria, and aquatic plants versus Inverte-
brates and Vertebrates together) is found for many chemicals or
other taxonomic groups than investigated in the present study.
Applications to split according to specific traits or trophic
positions would follow the same decision tree logic, resulting in
risk information on chemical effects on specific traits or trophic
positions.

Overall, our study highlights that splitting is a better approach
in deriving SSDs and using the models for decision support,
provided that the resulting SSDs are sufficiently robust. Robust
split results improve the fit of the models to the data and,
therefore, the interpretation of SSDs in the discussed uses. The
relevance for decision support may potentially be further
increased when a split would consider different service-
providing units (SPUs), a concept used in the context of
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ecosystem services research.34 This is because it is key not only
to protect and restore biodiversity in terms of structural
characteristics of ecosystems (the present use) but also in
terms of functional characteristics and provided services.37,38

Assessments that would consider ecological information, such as
functional groups or trait characteristics, may help to identify the
SPU and ecosystem services that are both valuable and
potentially impacted.
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