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ABSTRACT: Machine Learning (ML) is increasingly applied to fill
data gaps in assessments to quantify impacts associated with
chemical emissions and chemicals in products. However, the
systematic application of ML-based approaches to fill chemical
data gaps is still limited, and their potential for addressing a wide
range of chemicals is unknown. We prioritized chemical-related
parameters for chemical toxicity characterization to inform ML
model development based on two criteria: (1) each parameter’s
relevance to robustly characterize chemical toxicity described by the
uncertainty in characterization results attributable to each parameter
and (2) the potential for ML-based approaches to predict parameter
values for a wide range of chemicals described by the availability of
chemicals with measured parameter data. We prioritized 13 out of
38 parameters for developing ML-based approaches, while flagging another nine with critical data gaps. For all prioritized
parameters, we performed a chemical space analysis to assess further the potential for ML-based approaches to predict data for
diverse chemicals considering the structural diversity of available measured data, showing that ML-based approaches can potentially
predict 8−46% of marketed chemicals based on 1−10% with available measured data. Our results can systematically inform future
ML model development efforts to address data gaps in chemical toxicity characterization.
KEYWORDS: prioritization, uncertainty, chemical space, chemical properties, life cycle impact assessment, chemical substitution,
risk screening, safe and sustainable by design

1. INTRODUCTION
Global chemical production and use are increasing with
growing trends in urbanization, economic growth, and living
standards.1 To fully benefit from the positive contribution of
chemicals to society, such as ensuring food security and
healthcare, rigorous chemical assessment and management are
crucial to preventing unintended chemical impacts on humans
and ecosystems. However, assessing the growing number of
marketed chemicals across different consumer products,
populations, and environments is increasingly challenging.2,3

Characterizing chemical toxicity impacts, including aspects on
environmental fate, exposure, and (eco-)toxicity effects, is
essential across a wide range of chemical-related decision
support tools, such as risk assessment4,5 and screening,6 life
cycle impact assessment (LCIA),7,8 chemical footprinting,9,10

chemical substitution,11 benchmarking chemical pollution
against local-to-global boundaries,12,13 and safe-and-sustain-
able-by-design (SSbD) assessments.14 The application of
chemical-related decision support tools to the >100,000
marketed chemicals15 and the wide range of product uses is
currently limited by a lack of structured, high-quality input data
needed to characterize toxicity for millions of chemical−

product combinations.16,17 Obtaining new data from exper-
imental tests is cost- and time-consuming, and confidential or
nontransparent reporting hinder access to existing data.18−20

To address data gaps, scientists have been developing
quantitative structure−activity relationships (QSAR) for
decades by creating quantitative links between chemical
structures and various target properties, including input
parameters for characterizing chemical toxicity.21,22 With
increasing data availability and computing power, QSAR
evolved from simple regressions on small sets of congeneric
compounds to applying advanced statistical and machine
learning (ML) techniques on large chemical sets with diverse
molecular structures, boosting their predictive performance
and applicability for a broader realm of chemicals.23,24 Several
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advanced chemical data prediction models are readily
accessible through public modeling suites providing predic-
tions for multiple chemical properties25,26 and many more have
been documented in the scientific literature for individual
chemical properties, including dissociation constants,27,28 root
concentration factors,29−31 and ecotoxicity end points.32−37

While the development of ML-based approaches has been an
active field of research, a systematic adaptation for chemical
toxicity characterization is still limited. The main challenges
relate to a lack of oversight into required input parameters
which could support the systematic development of ML-based
approaches and a lack of transparency about whether such
approaches can robustly predict parameter values for diverse
chemicals.
To address these limitations, the main goal of this study was

to prioritize chemical toxicity characterization parameters for
developing ML-based approaches and assess the potential of
these approaches to fill input data gaps for a wide range of
marketed chemicals. To achieve this goal, we defined three
specific objectives: (a) to propose and apply a framework
considering characterization results uncertainty and data
availability for prioritizing chemical-related input parameters
in toxicity characterization frameworks for which ML-based
approaches are most relevant, (b) to explore trends in
characterization uncertainty across chemicals and source
compartments for assessing parameter relevance in different
scenarios, and (c) to analyze the chemical space covered by
available data for assessing the potential of ML-based

approaches to predict prioritized parameters for diverse
chemical structures.

2. METHODS
2.1. Characterizing Chemical Toxicity. Modeling frame-

works that characterize human toxicity and ecotoxicity impacts
are built on various input parameters. Many of these
parameters are chemical- or chemical-product-specific. How-
ever, measured data or appropriate estimates are lacking for
most marketed chemicals,15 leading to substantial data gaps
across toxicity characterization frameworks. To prioritize
relevant parameters for filling data gaps with ML-based
approaches, we assessed 38 chemical-related parameters used
in the global scientific consensus modeling framework
USEtox.38 We focused on USEtox as a reference framework
since it is widely applied in comparative toxicity impact
assessment,39−42 considers human toxicity and ecotoxicity
impacts, and covers different exposure routes and emission-
and product-based impact pathways.7,8 USEtox expresses
toxicity impacts through characterization factors (CFs)
combining environmental fate, exposure, and effects based on
mass balance principles. These factors depend on underlying
parameters, such as partition ratios, environmental half-lives,
and intake-related toxicity effect doses. Figure 1 summarizes all
chemical-related parameters in nine groups and outlines their
primary relevance in modeling fate, exposure, and effect with
USEtox (see Supporting Information (SI), Section S1.1a for
details). Speciation coefficients were outside the scope of our
analysis due to their exclusive applicability for the small group

Figure 1. Schematic illustration of nine groups of chemical-related parameters (white pill-shaped boxes) needed for characterizing toxicity with
USEtox from chemical emission sources covering process emissions, direct environmental application (e.g. pesticide spray applications), and
application in products (dark gray column) via fate within and across near-field and far-field environmental compartments* (green column) and
exposure to contaminated compartments following different exposure routes (light blue column) to harmful effects on humans and ecosystems**
(dark blue column). *Small arrows indicate chemical mass exchange across compartments; not all possible exchange pathways are shown.
Degradation describes biotic and abiotic degradation processes; in-biota metabolism and the formation of metabolites are currently not directly
considered within USEtox. **USEtox models effects on humans and other species based on intake dose-level effect data that include internal
metabolic processes.
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Figure 2. Assessment of 38 chemical-related toxicity characterization input parameters for characterization uncertainty (●) and data availability
(■), used to assign prioritization flags for machine learning model development (★) and flag critical gaps (△) with three highlighted parameter
groups (I−III). Characterization uncertainty and data availability are presented as nested symbols featuring the median (inner) and 95th percentile
(outer) for the uncertainty and chemicals with measured data based on primary (inner) and proxy (outer) data sources for the data availability. The
first two columns present the data underlying the characterization uncertainty and data availability classification. K = partition ratio, t1/2 = half-life,
BAF = bioaccumulation factor, BTF = biotransfer factor, D = diffusion coefficient, Kp = skin permeation coefficient, TD50 = 50% response tumoric
dose, ED10 = 10% response effect dose, HC20 = 20% response hazardous concentration, U = absolute characterization uncertainty distribution.
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of metal ions and therefore do not require ML-based
approaches applicable to a wide range of chemical structures.43

2.2. Framework for Prioritizing Parameters for
Machine Learning. While various parameters are needed to
characterize toxicity impacts, they are neither equally relevant
for obtaining robust characterization results nor equally well-
suited for developing ML-based prediction methods. We
proposed a framework to prioritize parameters for ML model
development based on two criteria: (1) uncertainty in toxicity
characterization results attributable to each parameter and (2)
data availability given by the number of chemicals with
measured parameter data. Characterization uncertainty deter-
mines how strongly input parameter uncertainty affects the
characterization results, which helps identify the most relevant
parameters for obtaining robust results. Data availability is a
limiting factor for developing ML-based approaches since such
methods are principally more predictive when abundant,
diverse training data are available.44 Hence, data availability
informs us where ML has the potential to make predictions for
a wide range of chemicals. Parameters were prioritized if they
exceeded a “medium” uncertainty and data availability class
assigned on a five-point scale, corresponding to a minimum
uncertainty of 2 orders of magnitude and data availability for at
least 1500 chemicals (see SI, Section S1.2a).
2.2.1. Uncertainty Analysis. To determine the relevance of

each parameter for obtaining robust characterization results,
we performed an uncertainty analysis using an adapted version
of USEtox 3.0 beta (https://usetox.org, see SI, section S1.3a).
Each parameter was modified within its 95% confidence
interval derived from parameter-specific squared geometric
standard deviations, GSD2, which we defined based on
performance reported in the literature for available parameter
prediction models commonly used or integrated with USEtox
(see SI, Table S2-1). By propagating this input parameter
uncertainty for 3421 chemicals and ten source compartments
covering emissions to near- and far-field compartments, we
obtained a distribution of characterization results uncertainty
for each parameter, reflecting the nonlinearity in USEtox
modeling behavior (see SI, Section S1.3b). To assign each
parameter an uncertainty class on our five-point scale (see SI,
Table S1-2), we derived the median and 95th percentile of the
absolute uncertainty distribution across these chemical-
emission scenarios. Parameter prioritization was based on the
95th percentile as it allowed capturing strong nonlinearity or
interactions with other parameters, while the median served as
a reference point describing central tendency. The underlying
characterization uncertainty distribution was further analyzed
to identify trends with the parameter value and source
compartment that can feed into ML model development.
2.2.2. Data Availability and Chemical Space Analysis. To

assess the quantity and chemical diversity of data available for
training ML-based approaches, we identified chemicals for
which measured parameter data were available in large public
data repositories and curated data sets published in the
scientific literature (see SI, section S1.4a and Table S2-2). To
assign a data availability class on our 5-point-scale (see SI,
Table S1-3), we derived the number of unique chemicals with
measured data across identified data repositories using
InChIKeys as chemical identifiers to harmonize chemical
identification. For prioritized parameters, we performed a
chemical space analysis to assess how well chemicals with
measured data represent the structural diversity of the wider
realm of chemicals using the existing space of marketed

chemicals as a reference. We compiled this space of marketed
chemicals from chemical lists provided through U.S. EPA’s
CompTox Chemicals Dashboard v2.1 (https://comptox.epa.
gov/dashboard/),45 focusing on official registration and
specific applications lists (see SI, Section S1.4b). All marketed
chemicals were categorized into chemical classes using the
ClassyFire chemical taxonomy.46 We visualized the space of
marketed chemicals by mapping Morgan fingerprints47

calculated with RDKit v2022.3.548 into two dimensions using
a t-distributed Stochastic Neighbor Embedding49,50 (t-SNE)
(see SI, Section S1.4c). As an estimate of the predictive
potential of ML-based approaches, we defined a structural
domain for each prioritized parameter based on the similarity
of every marketed chemical with its five nearest neighbors
among chemicals with measured data derived from average
Jaccard distances (see SI, Section S1.4d). We note that the
presented structural domains provide no information on the
accuracy a model may achieve for chemicals considered
“inside” vs “outside” the domain, as the choice of ML
algorithms and appropriate training features impacts the
achievable performance.51

Based on our analysis, we discussed the potential and limits
of ML-based approaches for addressing the prioritized
parameters and systematically closing gaps in chemical toxicity
characterization. All analysis and visualization steps were done
with Python 3.1052 (see SI, Sections S1.3f and S1.4f for
details).

3. RESULTS AND DISCUSSION
3.1. Prioritized Parameters for Machine Learning. We

assessed the priority of 38 input parameters from the USEtox
toxicity characterization framework for developing ML-based
prediction methods based on the uncertainty propagated into
human toxicity and ecotoxicity characterization results and the
data availability for each input parameter (Figure 2). In brief,
the higher the uncertainty class of a parameter, the more
important it is for obtaining robust characterization results, and
the higher its data availability class, the higher its potential to
train ML-based approaches for predicting a wide range of
chemicals. Parameters with “moderate”, “high”, or “very high”
uncertainty and data availability classes were flagged for
prioritization of ML development. Parameters that show high
relevance for robust toxicity characterization (indicated by the
uncertainty) but insufficient data available for developing ML-
based approaches received a triangular flag symbol, indicating a
critical data gap.

Based on our analysis, 13 parameters were prioritized for
ML model development, while another nine were flagged as
critical gaps due to low data availability. Among the 13
prioritized parameters, seven parameters showed high or very
high uncertainty (3.2 to 5.5 orders of magnitude, OOM), and
six parameters showed high data availability (5077 to 13045
chemicals with measured data). In the following, we
summarize and discuss three groups of flagged parameters
related to environmental partitioning, environmental degrada-
tion, and toxicity effects.
3.1.1. Environmental Partitioning. The first parameter

group relates to environmental partitioning, namely, Henry’s
law constant with its underlying water solubility and vapor
pressure, and the organic carbon−water partition ratio (KOC).
Characterization uncertainty attributable to these parameters
was higher for ecotoxicity than for human toxicity impacts,
reaching high (3.7 OOM) and very high (4.8 OOM)
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uncertainty classes for vapor pressure and Henry’s law
constant, respectively. Characterization uncertainty was partly
driven by differences in input parameter uncertainty derived
from existing prediction models (GSD2 values of 12, 39, 131,
and 443 for KOC, water solubility, vapor pressure, and Henry’s
law constant, respectively). Data availability was moderate for
KOC and Henry’s law constants (2084 to 4492 chemicals), and
high for vapor pressure and water solubility (7278 to 10300
chemicals). Our results demonstrate that these parameters
have good data availability while being highly relevant for
obtaining robust characterization results for many chemical-
emission scenarios, making them a priority for developing ML
models.
3.1.2. Environmental Degradation. The second parameter

group covers environmental degradation half-lives, for which
only the degradation half-life in soil (t1/2soil) was prioritized, while
degradation half-lives in air (t1/2air ) and water (t1/2water) were
flagged as critical gaps. Notably, t1/2air and t1/2water reached high
uncertainty classes (3.5 o 3.8 OOM), driven by high input
uncertainty in t1/2air (GSD2 = 204), while t1/2water gained relevance
by directly influencing the exposure concentration of fresh-
water ecosystems. However, data availability was (very) low

(419 to 749 chemicals) for all degradation half-lives except soil,
which reached moderate data availability with 1774 chemicals.
Higher data availability for t1/2soil results from requirements to
report this parameter for pesticide risk assessment.53,54 Our
results showed that while degradation half-lives in air and water
particularly affect the robustness of characterization results,
current data availability limits the potential to build ML-based
prediction methods for all except degradation in soil.
3.1.3. Toxicity Effects. Toxicity effects-related parameters

are the third and most important group, with 8 out of 12
parameters prioritized and the remaining four flagged as critical
gaps. Uncertainty classes were high or very high (3.2 to 5.5
OOM) for eight parameters, where four parameters also
showed moderate or high uncertainty classes based on the
median (2.4 to 4 OOM). This general relevance across
chemical-emission scenarios results from toxicity-related
parameters’ exclusive influence on the effect factors (EF),
allowing direct input uncertainty propagation (GSD2 ranging
from 32 to 592) to the characterization results. Data
availability was moderate or high for 8 out of 12 parameters,
while only little data (228 to 512 chemicals) were available for
four parameters related to cancer and reproductive-devel-

Figure 3. Uncertainty in human toxicity and freshwater ecotoxicity characterization factors (CF) as a function of (A) Henry’s law constant and (B)
organic carbon−water partition ratio (K organic carbon−water) across ten source compartments. DALY = disability-adjusted life years, PDF =
potentially disappeared fraction of species.
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opmental human toxicity via inhalation or dermal exposure.
These parameters were therefore flagged as critical gaps where
current data availability limits the potential to build ML-based
prediction methods.
In summary, our prioritization demonstrated that parameters

related to toxicity and environmental partitioning had high
relevance and potential to be addressed through ML-based
approaches, while the most critical gap was found for
environmental degradation half-lives. Other parameters that
were flagged as critical gaps were bioaccumulation factors in
fish and root crops and gaseous skin permeation factors. The
remaining parameters were neither prioritized for ML model
development nor flagged as critical gaps, as their relevance for
obtaining robust characterization results across the analyzed
scenarios was low compared to the prioritized parameters.
3.2. Characterization Uncertainty Trends. Character-

ization uncertainty was assessed by propagating input
uncertainty for 38 parameters across 3421 chemicals and ten
source compartments. Input uncertainty was defined as a
parameter-specific value ranging from GSD2 = 5 for dissipation
half-lives in plants to GSD2 = 864 for gaseous skin permeation
coefficients (see SI, Table S2-1). Overall uncertainty described
by the median and 95th percentile of the absolute uncertainty
distribution reached as high as 3 OOM (HC20freshwater) and 5.5
OOM (ED10generalinhalation), respectively (see Figure 2). Character-
ization uncertainties for individual chemical-emission scenarios
can differ from these classes due to nonlinearity in the
characterization framework. SI Figure S1-2 presents an
overview of the signed characterization uncertainty distribu-
tions for all parameters, which span up to 20 orders of
magnitude, with 25 parameters exhibiting positive and negative
correlations across chemical-emission scenarios. Some param-
eters showed distinctive trends in characterization uncertainty
as a function of the parameter value. As an example, Figure 3
shows the uncertainty in human and ecosystem character-
ization results (CF) as a function of the Henry’s law constant
(H) and KOC with each point representing a chemical-emission
scenario. While individual points were scattered, ascending and
descending trends in characterization uncertainty occurred
along the parameter ranges. In particular, absolute uncertainty

values increased significantly for H 10 4 Pa m
mol

3

> · and

K 10OC
1 L

kg
> , where processes influenced by Henry’s law

constant and KOC become important drivers of chemical fate.55

Knowledge of such trends can inform ML model development
to prioritize high prediction performance in critical value
ranges. It also demonstrates the importance of quantifying
input uncertainty at the level of individual chemicals to allow
accurate propagation of uncertainty toward characterization
results.

For other parameters, the characterization distribution
changed significantly depending on the source compartment
of the chemical emission. To illustrate, Figure 4 compares the
uncertainty propagated to human toxicity characterization
results from general noncancer toxicity effect doses via oral,
inhalation and dermal exposure across source compartments.
Characterization uncertainty attributable to oral effect doses
was distributed similarly for emissions to water, soil, and far-
field air compartments (mean ≅ 2). In contrast, inhalation
effect doses were related to higher characterization uncertainty
for emissions to air compartments and dermal effect doses
were relevant only in near-field air and product compartments,
where dermal exposure to chemicals in consumer products can
be a substantial contributor to overall exposure. While our
prioritization applied equal weighting across source compart-
ments to derive a general relevance, changes in parameter
relevance across source compartments are illustrated in SI
Figure S1-3. These results demonstrate the importance of
filling gaps for parameters with context-specific relevance to
allow robust characterization across all source compartments.

Our uncertainty analysis demonstrated how input un-
certainty was propagated differently for parameters and
chemical-emission scenarios, highlighting the need to quantify
input uncertainty at the level of individual chemicals. Some
parameters were relevant across chemicals and source
compartments, whereas others were particularly relevant for
specific scenarios only. This demonstrated the need to
eventually fill gaps for all parameters, which can significantly
influence toxicity characterization results in any given scenario.
3.3. Data Availability and Chemical Space. Data

availability was assessed for all 38 parameters based on our
inventory of data repositories containing measured data for
each parameter (see SI, Table S2-2), with numbers of unique

Figure 4. Distribution of uncertainty in human toxicity characterization factors (CF) attributable to oral, inhalation, and dermal exposure-related
10% response general noncancer toxicity effect doses (ED10) across ten source compartments.
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chemicals ranging from <15 chemicals for gaseous skin
permeation coefficients to >35 000 chemicals for octanol−
water partition ratios (see Figure 2). To determine the

potential of ML-based approaches to predict prioritized
parameters for a wide range of chemicals, we assessed the
structural diversity of chemicals with measured data relative to

Figure 5. (A) Structural diversity of the space of marketed chemicals, colored by ClassyFire superclass with example annotations of classes (bold)
and subclasses (italic) in comparison with the diversity of chemicals with measured data for three prioritized parameters, namely, (B) degradation
half-life in soil (Degradation t1/2 soil), (C) 10% response effect dose for reproductive-developmental toxicity via oral exposure (ED10 repdev oral),
and (D) 20% response hazardous concentration for freshwater ecotoxicity (HC20 freshwater).
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134 055 marketed chemicals derived from chemical registry
and use lists (see SI, Section S1.4b). Results are shown in
Figure 5, presenting chemical space plot examples for three
prioritized parameters (see SI, Section S1.4e for all prioritized
parameters).
Figure 5A shows the two-dimensional space of marketed

chemicals, with each point representing a unique chemical
colored by its superclass and example annotations of classes
and subclasses based on the ClassyFire chemical taxonomy. For
better visibility, we displayed the 15 most frequent out of 27
superclasses occurring in our set of marketed chemicals, and
the remaining 12 superclasses, representing 1.7% of marketed
chemicals, we aggregated into “Other.” Structurally similar
chemicals were arranged into clusters that align well with
human-defined chemical classes, illustrated by the ClassyFire
chemical taxonomy. Organic compounds with cyclic structures
dominate the chemical space, spreading over the left and
bottom-right area, with benzenoids and organoheterocyclic
compounds jointly making up >50% of marketed chemicals.
Other chemical classes, including metal and various acyclic
organic compounds, were grouped in the top-right area.
Figure 5B−D presents the chemical space of degradation

half-life in soil (t1/2soil), reproductive-developmental toxicity
effects via oral exposure (ED10oral

repdev), and freshwater
ecotoxicity effects (HC20freshwater) in three parts: (I) The
space plots show how chemicals with measured data were
located across the space of marketed chemicals. (II) The Venn
diagrams show the shares of chemicals with measured data and
marketed chemicals inside or outside the structural domain
defined by average Jaccard distances, which describe the
similarity between marketed chemicals and chemicals with
measured data. (III) The box plots show how average Jaccard
distances (d̅J) are distributed across ClassyFire superclasses,
illustrating how chemicals with measured data represent
chemical classes differently. Measured t1/2soil data were available
for 1.3% of the marketed chemicals covering 8% in their
structural domain, making it the least covered among
prioritized parameters. Figure 5B(I) shows that chemicals
with measured t1/2soil values were sparsely distributed across the
space of marketed chemicals. In contrast, measured ED10oralrepdev

values were available for 4% of marketed chemicals, covering
35% in their structural domain. Chemicals with measured
ED10oralrepdev spread across the space of marketed chemicals with
varying local densities (see Figure 5C(I)). Thus, while
chemicals with measured t1/2soil represented all superclasses
poorly with d̅J = 0.69 to 0.94 and less than 25% of chemical
class falling inside the structural domain, chemicals with
measured ED10oralrepdev represented chemical classes to different
extents. Figure 5C(III) shows that lipid and hydrocarbon
classes were best represented for ED10oralrepdev with d̅J = 0.51 to
0.53, while organoheterocyclic compounds, alkaloid deriva-
tives, and homogeneous metal compounds were least
represented with d̅J = 0.69 to 0.83. The limited structural
domain for t1/2soil is not only a result of low data availability but
also of low structural diversity. In comparison, structural
domains of other small data sets, such as cancer toxicity effects
via oral exposure (TD50canceroral ) and soil ecotoxicity effects
(HC20soil), covered much larger shares of 18−30% of the
marketed chemicals (see SI, Section S1.4e). The importance of
structural diversity can also be seen by comparing the chemical
space of ED10oralrepdev and HC20freshwater. Measured data to derive
HC20freshwater were available for 10% of marketed chemicals
with a structural domain covering 46% of marketed chemicals,

making it the best-covered among prioritized parameters.
However, Figure 5D(I) shows that with more than twice as
many chemicals with measured data than ED10oral

repdev,
HC20freshwater covers similar parts of the space of marketed
chemicals. Notably, both parameters have low representation
of organoheterocyclic compounds that make up 24% of
marketed chemicals, leading to a visible lack of coverage in
the left part of the marketed chemical space, where most
organoheterocyclic compounds are located. This lack of data
cannot be explained by a lack of toxicity as seen, for example,
in the curated data by Aurisano et al. (2023) for which 58% of
>500 organoheterocyclic compounds with ED10oralrepdev equiv-
alents covered in the data set fall below the median ED10oralrepdev

of 16.5 mg
kg d· across all chemical classes.56 Systematically adding

measured data for organoheterocyclic compounds could
therefore expand the structural domains of ED10oralrepdev and
HC20freshwater to further improve the potential to train ML-
based approaches that predict a wide range of marketed
chemicals for these parameters.

Based on our results, available data for all prioritized
parameters can be used to train ML models that have the
potential to predict many chemicals without measured data.
While measured data were available for only 1−10% of
marketed chemicals, these chemicals with measured data
covered 8−46% of marketed chemicals within their structural
domains (see SI, Table S1-8). Our results show that the
structural diversity of existing data significantly affected their
capacity to represent the space of marketed chemicals. Small
data sets covering diverse structures can reach equal or higher
chemical space coverage compared to significantly larger data
sets. All prioritized parameters covered chemicals from
multiple chemical classes to varying extents. In particular,
organoheterocyclic compounds, the second largest class among
marketed chemicals, were insufficiently represented in all
parameter data sets, leading to a significant gap in the coverage
of the space of marketed chemicals. Our results demonstrated
how evaluating the structural diversity of an available data set
can assess the potential to train ML-based prediction models
applicable to a wide range of chemicals and can also identify
chemicals that could increase the potential for developing ML
models that can predict the realm of marketed chemicals if
measured parameter data for these chemicals were generated.
3.4. Machine Learning Potential and Limits for

Addressing Data Gaps in Chemical Toxicity Character-
ization. Our study demonstrated the potential of ML-based
approaches to address important data gaps in chemical toxicity
characterization frameworks. Out of 38 input parameters, 13
were prioritized for developing ML-based approaches, notably
several toxicity effect parameters. Another nine parameters,
including environmental degradation half-lives, were flagged as
critical data gaps. For the prioritized parameters, our results
provided insights into the expected potential for making ML-
based predictions across structurally diverse chemicals for the
prioritized parameters. By defining the space of marketed
chemicals as a reference, we created comparability across input
parameters and defined a scope for the required level of
predictive capacity that aligns with the broad scope of chemical
toxicity assessments. Based on our results, ML-based methods
have great potential to address large shares of marketed
chemicals for several crucial input parameters in human
toxicity and ecotoxicity characterization frameworks. In
particular, vapor pressure, water solubility, and several
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parameters related to human toxicity (TD50oral
cancer,

ED10oral
repdev, ED10dermal

general) and freshwater ecotoxicity
(HC20freshwater) have diverse data available that can potentially
predict >30% of marketed chemicals based on our structural
domain. In addition, our analysis provided insights into
chemical classes that were less well represented in the
parameter-specific training data. Particularly, organoheterocy-
clic compounds were found to be largely outside the structural
domains of all prioritized parameters. Strategically targeting
these chemicals underrepresented in existing parameter data
sets for data curation and experimental testing could
systematically broaden the chemical coverage, thereby
expanding the potential of ML-based approaches to address
an even wider range of marketed chemicals, while minimizing
costs and effort. Our uncertainty analysis showed that it is
crucial to provide chemical-specific parameter uncertainty to
propagate uncertainty to toxicity characterization results due to
nonlinear modeling behavior. With the increasing use of
predictions alongside measured data in chemical assessments,
it will become increasingly important to consider relative
uncertainties from both measured and predicted data when
quantifying toxicity impacts across chemicals and products. To
support this aim, ML modeling approaches should be chosen
that consider uncertainty and provide confidence intervals
alongside each predicted value. As most ready-made ML
algorithms do not innately handle uncertainty, this requires
designing more advanced (combined) approaches using, for
example, probabilistic modeling,57,58 conformal prediction,59,60

or bootstrapping approaches.61

Despite these promising results, the current and future
potential of ML in addressing critical gaps across parameters
and chemicals is constrained by several factors, the most
important being data limitations. Based on current data
availability, >56% of all marketed chemicals fall outside our
structural domains for all prioritized parameters. Furthermore,
while our identified data repositories (SI, Table S2-2) can be a
suitable starting point for curating relevant training data for
each parameter, it is crucial to consider the data reporting
quality of data sources to create high-quality data sets for
training ML models. Properly documented meta-data on
measurements are required to identify high-quality data, for
example, to include only data records with coherent test
conditions following standardized protocols.62 Similarly, meta-
data can become important predictor variables that allow ML
models to account for factors influencing parameter
predictions, such as water chemistry, environmental temper-
ature, or species characteristics. Although it is good practice to
document meta-data when reporting study results63 and the
importance of providing access to meta-data is widely
recognized,64−66 they are often missing or incomplete in
existing databases.67 Similarly, many of our identified data
repositories did not consistently report such information,
including general testing conditions and material or species
characteristics. In particular, the degradation- and toxicity-
related parameters are affected by substantial differences in
data quality and incomplete meta-data. High quality data
available for training ML models and related structural
domains are, therefore, likely lower than our provided estimate.
Expanding structural domains beyond existing data or making
parameters highlighted with critical data gaps suitable for ML-
based approaches would require the generation of large
amounts of new data, which may not be possible for all
parameters due to economic and ethical constraints. In

particular, parameters relying on animal tests such as
toxicity-related parameters or bioaccumulation and biotransfer
factors will likely be heavily restricted or replaced by new test
systems such as high-throughput in vitro testing and high-
content screening.68 While their high-throughput nature makes
them suitable for ML-based approaches, this new type of data
will need to be linked to existing data, e.g., through IVIVE (in
vivo−in vitro extrapolation) to seamlessly integrate into existing
toxicity characterization frameworks. Future analyses could
include these new parameters as well as chemical-related
parameters that are relevant for other chemical assessment
frameworks, such as pharmacokinetic properties for modeling
internal exposure. Principle-driven or physics-informed mech-
anistic models may be better equipped to address data-sparse
end points due to their deductive nature that allows them to
extrapolate behavior more robustly beyond what is known
from available data, while requiring significantly fewer data for
calibration.69 A good example of parameters that are best
derived mechanistically are speciation coefficients for metal
ions, which can be obtained from models replicating metal ion
specific sorption and complexation reactions such as WHAM
and vMinteq.70,71 While mechanistic models provide causal
explanations generally lacking from ML-based approaches, they
are most suitable within well-characterized key events and
driving mechanisms. Complex interactions of mechanisms may
not be fully captured by a single mechanistic model or may
only be described for a subset of chemical structures, which
makes navigating complementary models challenging for
practitioners screening a variety of chemicals. To overcome
the respective limitations of mechanistic and ML modeling,
both can be harnessed to synergize scientific understanding
and available (old and new) data, for example, in the form of
physics-based ML72 or surrogate modeling.69,73 The develop-
ment of such approaches will require increased efforts and
resources to address marketed chemicals that are currently
outside the intrinsic domain of ML models based on available
data, as illustrated by our structural domains. Thus, while ML
models can make a significant contribution to filling data gaps
in chemical toxicity characterization frameworks, more data
and advanced approaches will be needed to allow robust
toxicity characterization for all marketed chemicals. Strategic
integration of (hybrid) model development and (novel) data
generation efforts will be crucial to increase chemical coverage
and reliability of toxicity characterization results for use in
LCIA, chemical substitution, risk screening, and SSbD to
support decision-making in regulatory and other chemical
management frameworks.
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Review of Existing QSAR/QSPR Models Developed for Properties
Used in Hazardous Chemicals Classification System. Ind. Eng. Chem.
Res. 2012, 51 (49), 16101−16115.
(23) Cherkasov, A.; Muratov, E. N.; Fourches, D.; Varnek, A.;
Baskin, I. I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y. C.;
Todeschini, R.; Consonni, V.; Kuz’Min, V. E.; Cramer, R.; Benigni,
R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.;
Tropsha, A. QSAR Modeling: Where Have You Been? Where Are
You Going To? J. Med. Chem. 2014, 57, 4977−5010.
(24) Wambaugh, J. F.; Bare, J. C.; Carignan, C. C.; Dionisio, K. L.;
Dodson, R. E.; Jolliet, O.; Liu, X.; Meyer, D. E.; Newton, S. R.;
Phillips, K. A.; Price, P. S.; Ring, C. L.; Shin, H. M.; Sobus, J. R.; Tal,
T.; Ulrich, E. M.; Vallero, D. A.; Wetmore, B. A.; Isaacs, K. K. New
Approach Methodologies for Exposure Science. Current Opinion in
Toxicology. 2019, 15, 76−92.
(25) Mansouri, K.; Grulke, C. M.; Judson, R. S.; Williams, A. J.
OPERA Models for Predicting Physicochemical Properties and
Environmental Fate Endpoints. J. Cheminform 2018, 10 (1), 10
DOI: 10.1186/s13321-018-0263-1.
(26) U.S. EPA. User’s Guide for T. E. S. T. (Toxicity Estimation
Software Tool) Version 5.1 A Java Application to Estimate Toxicities and
Physical Properties from Molecular Structure; 2020. https://www.epa.
gov/chemical-research/toxicity-estimation-software-tool-test (ac-
cessed 2021-12-16).
(27) Mansouri, K.; Cariello, N. F.; Korotcov, A.; Tkachenko, V.;
Grulke, C. M.; Sprankle, C. S.; Allen, D.; Casey, W. M.; Kleinstreuer,
N. C.; Williams, A. J. Open-Source QSAR Models for PKa Prediction
Using Multiple Machine Learning Approaches. J. Cheminform 2019,
11 (1), 60 DOI: 10.1186/s13321-019-0384-1.
(28) Xiong, J.; Li, Z.; Wang, G.; Fu, Z.; Zhong, F.; Xu, T.; Liu, X.;
Huang, Z.; Liu, X.; Chen, K.; Jiang, H.; Zheng, M. Multi-Instance
Learning of Graph Neural Networks for Aqueous PKa Prediction.
Bioinformatics 2022, 38 (3), 792−798.
(29) Gao, F.; Shen, Y.; Brett Sallach, J.; Li, H.; Zhang, W.; Li, Y.;
Liu, C. Predicting Crop Root Concentration Factors of Organic
Contaminants with Machine Learning Models. J. Hazard Mater. 2022,
424, No. 127437.
(30) Gao, F.; Shen, Y.; Sallach, J. B.; Li, H.; Liu, C.; Li, Y. Direct
Prediction of Bioaccumulation of Organic Contaminants in Plant
Roots from Soils with Machine Learning Models Based on Molecular
Structures. Environ. Sci. Technol. 2021, 55, 16358.
(31) Bagheri, M.; Al-jabery, K.; Wunsch, D.; Burken, J. G. Examining
Plant Uptake and Translocation of Emerging Contaminants Using

Machine Learning: Implications to Food Security. Sci. Total Environ.
2020, 698, 133999.
(32) Hou, P.; Jolliet, O.; Zhu, J.; Xu, M. Estimate Ecotoxicity
Characterization Factors for Chemicals in Life Cycle Assessment
Using Machine Learning Models. Environ. Int. 2020, 135, 105393.
(33) Hou, P.; Zhao, B.; Jolliet, O.; Zhu, J.; Wang, P.; Xu, M. Rapid
Prediction of Chemical Ecotoxicity through Genetic Algorithm
Optimized Neural Network Models. ACS Sustain Chem. Eng. 2020,
8 (32), 12168−12176.
(34) Gao, F.; Zhang, W.; Baccarelli, A. A.; Shen, Y. Predicting
Chemical Ecotoxicity by Learning Latent Space Chemical Repre-
sentations. Environ. Int. 2022, 163, 107224.
(35) Song, R.; Li, D.; Chang, A.; Tao, M.; Qin, Y.; Keller, A. A.; Suh,
S. Accelerating the Pace of Ecotoxicological Assessment Using
Artificial Intelligence. Ambio 2022, 51, 598.
(36) Hiki, K.; Iwasaki, Y. Can We Reasonably Predict Chronic
Species Sensitivity Distributions from Acute Species Sensitivity
Distributions? Environ. Sci. Technol. 2020, 54 (20), 13131−13136.
(37) Iwasaki, Y.; Sorgog, K. Estimating Species Sensitivity
Distributions on the Basis of Readily Obtainable Descriptors and
Toxicity Data for Three Species of Algae, Crustaceans, and Fish. PeerJ.
2021, 9, e10981.
(38) Rosenbaum, R. K.; Bachmann, T. M.; Gold, L. S.; Huijbregts,
M. A. J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H. F.; MacLeod,
M.; Margni, M.; McKone, T. E.; Payet, J.; Schuhmacher, M.; Van De
Meent, D.; Hauschild, M. Z. USEtox - The UNEP-SETAC Toxicity
Model: Recommended Characterisation Factors for Human Toxicity
and Freshwater Ecotoxicity in Life Cycle Impact Assessment.
International Journal of Life Cycle Assessment 2008, 13 (7), 532−546.
(39) Westh, T. B.; Hauschild, M. Z.; Birkved, M.; Jørgensen, M. S.;
Rosenbaum, R. K.; Fantke, P. The USEtox Story: A Survey of Model
Developer Visions and User Requirements. International Journal of
Life Cycle Assessment 2015, 20 (2), 299−310.
(40) Gentil, C.; Basset-Mens, C.; Manteaux, S.; Mottes, C.; Maillard,
E.; Biard, Y.; Fantke, P. Coupling Pesticide Emission and Toxicity
Characterization Models for LCA: Application to Open-Field Tomato
Production in Martinique. J. Clean Prod 2020, 277, 124099.
(41) Huang, L.; Fantke, P.; Ritscher, A.; Jolliet, O. Chemicals of
Concern in Building Materials: A High-Throughput Screening. J.
Hazard Mater. 2022, 424, 127574.
(42) Aurisano, N.; Huang, L.; Mila ̀ i Canals, L.; Jolliet, O.; Fantke, P.
Chemicals of Concern in Plastic Toys. Environ. Int. 2021, 146,
106194.
(43) Gandhi, N.; Diamond, M. L.; Van De Meent, D.; Huijbregts,
M. A. J.; Peijnenburg, W. J. G. M.; Guinée, J. New Method for
Calculating Comparative Toxicity Potential of Cationic Metals in
Freshwater: Application to Copper, Nickel, and Zinc. Environ. Sci.
Technol. 2010, 44 (13), 5195−5201.
(44) Artrith, N.; Butler, K. T.; Coudert, F. X.; Han, S.; Isayev, O.;
Jain, A.; Walsh, A. Best Practices in Machine Learning for Chemistry.
Nature Chemistry. 2021, 13, 505−508.
(45) Williams, A. J.; Grulke, C. M.; Edwards, J.; McEachran, A. D.;
Mansouri, K.; Baker, N. C.; Patlewicz, G.; Shah, I.; Wambaugh, J. F.;
Judson, R. S.; Richard, A. M. The CompTox Chemistry Dashboard: A
Community Data Resource for Environmental Chemistry. J. Chemin-
form 2017, 9 (1), 61 DOI: 10.1186/s13321-017-0247-6.
(46) Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.;
Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.;
Bolton, E.; Greiner, R.; Wishart, D. S. ClassyFire: Automated
Chemical Classification with a Comprehensive, Computable
Taxonomy. J. Cheminform 2016, 8 (1), 1−20.
(47) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J.
Chem. Inf Model 2010, 50 (5), 742−754.
(48) RDKit. RDKit: Open-Source Cheminformatics, 2022,
DOI: 10.5281/zenodo.6961488.
(49) Van Der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE.
Journal of Machine Learning Research 2008, 9, 2579−2605.
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