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Abstract. Artifact-driven process monitoring is an effective technique to
autonomously monitor business processes. Instead of requiring human opera-
tors to notify when an activity is executed, artifact-driven process monitoring
infers this information from the conditions of physical or virtual objects
taking part in a process. However, SMARTifact, the existing monitoring
platform implementing this technique, has been designed to run entirely on
edge devices, each of which can monitor only one execution of the process.
Thus, monitoring multiple executions at the same time, or reducing the
computational requirements of edge devices is not possible. In this paper, we
introduce a new artifact-driven monitoring platform that overcomes these
limitations and makes artifact-driven monitoring fully scalable.

Keywords: Process monitoring · Scalability · Fog computing.

1 Introduction

Business Process Management is the discipline devoted to oversee how organizations
perform their work [4]. In particular, process monitoring focuses on gaining insights
on how business processes - a set of activities to be performed to achieve a certain
goal and the dependencies among them - are performed. This is particularly relevant
for so-called multi-party business processes, which require multiple organizations
to take part in the same process and to coordinate their activities. In this setting,
being able to promptly identify any issue with respect to the planned behavior makes
possible for the involved parties to quickly react and take countermeasures.

Among the existing process monitoring techniques, artifact-driven process moni-
toring [12] is one of the few that specifically targets multi-party business processes. By
collecting and processing information coming from physical and virtual objects partici-
pating in a process, artifact-driven process monitoring can autonomously identify when
activities are executed. Also, by relying on a declarative language named Extended-
GSM (E-GSM) to represent the process to monitor, artifact-driven monitoring can im-
mediately detect discrepancies between the planned process and the actual execution.

Despite the advantages brought by artifact-driven process monitoring, SMARTi-
fact, the existing monitoring platform implementing this approach limits its applica-
bility to specific cases. In particular, SMARTifact has been designed to be executed
entirely on edge devices (that is, the physical objects in the process). Also, each device
can only monitor one execution of the process. If two executions are running, they
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must be monitored by two distinct devices. Secondly, SMARTifact maintains the mon-
itoring information on the device and in memory. Therefore, if the device experiences
a malfunctioning or simply it runs out of battery, all monitoring information is lost.

In this paper we introduce a new monitoring platform, based on the fog computing
paradigm, that aims at overcoming the limitations of SMARTifact. In particular, this
platform is specifically designed with scalability in mind, making possible to monitor
a virtually unlimited number of parallel process executions.

This paper is structured as follows. Section 2 introduces artifact-driven process
monitoring and the architecture of SMARTifact. Section 3 discusses the limitations of
SMARTifact and identifies a set of requirements that need to be addressed. Section
4 presents the architecture of our monitoring platform. Section 5 discusses how our
platform has been validated. Section 6 surveys the state of the art for related work.
Finally, section 7 draws the conclusions and outline possible future work.

2 Baseline

To make this paper self-contained, a brief discussion on how artifact-driven monitoring
works, and on the architecture of the SMARTifact platform is provided in this section.
The reader should refer to [12] for further details.

2.1 Artifact-driven Process Monitoring

Traditional process monitoring techniques assume that, whenever an activity in
a process is executed, an event is always produced. This can be relatively easily
achieved when activities are at least partially automated. However, when manual
tasks - activities performed by humans without interacting with a computer - are
present in the process, events must be manually sent by the operators responsible for
the manual tasks and, as such, they are prone to be forgotten or delayed. In addition,
most monitoring techniques can detect discrepancies between the expected execution
and the actual one only after the execution is complete.

To address these limitations, artifact-driven process monitoring has been proposed.
this approach assumes that, whenever an activity is executed, it alters the conditions of
one or more physical or virtual objects, named artifacts, that take part in the process.
Therefore, by monitoring the conditions of these artifacts during a process execution,
it is possible to infer when activities are executed without relying on explicit events.

In order to detect and react to violations, artifact-driven process monitoring
represents the process to monitor with a declarative language named E-GSM. In a
nutshell, E-GSM represent activities and process portions as stages, which are assessed
according to three perspectives: status, compliance, and outcome. The status of a
stage can be unopened, opened or closed, indicating that the corresponding activity or
process portion was never executed, is running, or is complete. The compliance can
be onTime, outOfOrder or skipped, indicating that the activity or process portion
follows the process model, has been executed when it should not, or has not been
executed when it should. Finally, the outcome can be regular or faulty, indicating
that the activity or process portion was correctly performed, or that something went
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Fig. 1. E-GSM model of LHR-AMS, and monitoring results of an incorrect execution.

wrong while it was running. When the process starts, all stages are unopened, onTime,
and regular. Stages can be decorated with data flow guards, process flow guards,
milestones and fault loggers. Data flow guards and milestones specify the conditions
on the artifacts that cause the decorated stage to become, respectively, opened or
closed, determining the status. Process flow guards specify control flow dependencies
(i.e., which other stages should be executed before the decorated stage), determining
the compliance. Fault loggers specify the conditions on the artifacts that cause the
stage to become faulty, determining the outcome.

To better understand E-GSM, Figure 1 shows how it can be used for representing
and monitoring the following process. A truck driver is expected to start the process
in the LHR airport, and to drive to the coast. Once it reaches it, the driver has to take
the Channel tunnel, and finally to drive to the AMS airport. If we consider a process
execution where, instead of taking the Channel tunnel, the truck driver takes a ferry,
stops before reaching the AMS airport and opens the container, an E-GSM engine
will be able to detect activity drive to coast as closed, since it completed its execution,
onTime, since it was the first activity to be executed, and regular, since the container
was never dropped while the activity was running. The engine also will detect take
tunnel as unopened, since it was never executed, skipped, since it was not executed
after drive to the coast ended, and regular. Finally, the engine will detect drive to
AMS as opened, since it is still running, outOfOrder, since it was executed before take
tunnel, and faulty, since the container was dropped while the activity was running.

2.2 SMARTifact

Originally known as mArtifact [1], SMARTifact is one of the first artifact-driven
process monitoring platforms in the literature. Specifically targeting processes involv-
ing physical artifacts, SMARTifact has been designed to run on edge devices (e.g.,
single-board computers) attached to these artifacts. Its architecture, as shown in Fig.
2, consists in the following components deployed on each edge device:
On-board Sensor Interface. This component is responsible for collecting data
from the sensors installed on the edge device attached to a physical artifact.
Event Processor. This component is responsible for aggregating and processing
sensor data, in order to determine when the conditions of the attached artifact change.
Events Router. This component is responsible for sending changes in the conditions
of the attached artifact to the other edge devices taking part in the same process
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Fig. 2. Architecture of the SMARTifact platform.

execution. The events router is also responsible for receiving from the other edge
devices changes on the conditions of the other artifacts in the same process execution.
E-GSM Engine. This component contains the E-GSM model of the process to
monitor. It is responsible for evaluating the data flow guards, process flow guards,
milestones and fault loggers of all stages whenever a change in the conditions of one
of the artifacts in the process is detected. It also exposes a Representational State
Transfer (REST) Application Programming Interface (API) outside the edge device,
which is used to configure the edge device (e.g., by providing the E-GSM model of
the process to monitor) and to retrieve information on the process being monitored
(e.g., the value of the status, compliance and outcome perspectives for each stage).

To communicate with each other, edge devices rely on an Message Queue
Telemetry Transport (MQTT) broker. MQTT is a publish-subscribe protocol
specifically designed for Internet of Things (IoT) applications. Being a message queue-
based protocol, MQTT completely decouples the state of the sender with the recipient.

3 Application Requirements

Despite having proven to be effective in some scenarios, such as smart logistics,
SMARTifact suffers from some limitations. Firstly, with the exception of the MQTT
Broker, all components are meant to run on an edge device. Although single board
computers capable of running SMARTifact are relatively inexpensive, their size and
power consumption can be a limiting factor for some processes. For example, although
SMARTifact can monitor the conditions of a shipping container and its content, it
cannot individually monitor the conditions of each package in the container. To address
this issue in our platform, we define the following application requirement. AR1:
Edge devices should only run components needed to process data they directly collect.

Another limitation of SMARTifact is the inability, for an edge device, to monitor
multiple executions of the same process at the same time. This limitation comes from
the E-GSM Engine, which is capable of running only one instance of the process to
monitor, and makes SMARTifact unsuited to monitor process executions that share
the same artifacts. For example, suppose that a truck is shipping two containers that
have to be delivered in two different places. Then, the E-GSM Engine running on the
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Fig. 3. Architecture of our platform.

truck will consider the two containers as participants of the same execution, rather
than to two distinct executions. To address this issue in our platform, we define
the following application requirement. AR2: the platform should allow monitoring
multiple instances of the same process at the same time.

4 Proposed Solution

To address the requirements identified in Sec. 3, the architecture shown in Fig. 3 has
been designed. This architecture reuses and, when needed, adapts the components
present in SMARTifact. In addition, new components and interfaces are introduced.

To address AR1, this architecture embraces the fog computing paradigm [15].
Only the On-board Sensor Interface and the Events Processor are deployed on the
edge devices, since they are responsible for processing data created on that device.
To accommodate this change, the Events Processor no longer communicates changes
in the condition of the artifact to Events Router directly. Instead, it publishes them
to an MQTT topic. Therefore, it requires an MQTT interface to the MQTT Broker.

To address AR2, the E-GSM Engine and the Events Router are moved inside the
Engine Worker component, which is deployed in a cloud environment. To achieve ver-
tical scalability, a software wrapper has been built around the E-GSM Engine, making
it multi-instance. Also, to achieve horizontal scalability, the Engine Worker is deployed
inside a container, making it easy to deploy multiple instances of this component.

The Supervisor and Front-end Application components have also been
introduced. These components are deployed in a cloud environment as well. The
Supervisor keeps track of which Engine Worker instances are in charge of monitoring a
specific process execution. It also instantiates, monitors, and destroys Engine Worker
instances when needed. The Front-end Application is a web application that allows the
user to interact with the monitoring platform. By communicating with the Supervisor
through WebSocket, the Front-end Application can know which process executions are
monitored and by which Engine Worker. By communicating with the Engine Worker
through a REST API, the Front-end Application can pull monitoring information on-
demand, and show them to the user. With the exception of the Front-end Application,
all components communicate through the MQTT broker. This makes possible for the
components to communicate with each other even if some of them change address,
new instances are instantiated, or unneeded instances are destroyed.
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Fig. 4. Memory usage of our solution compared to SMARTifact.

5 Evaluation

To evaluate our solution, we implemented a prototype of the monitoring platform1.
Since the E-GSM Engine and the Events Router were originally built in Node.js,
and we planned to extend them rather than to rewrite them, the Engine Worker
was implemented in Node.js. Also, since Node.js was proven to be resource efficient
and easy to port across different environments, and it also provided native support
for MQTT, we adopted this programming language also for the Supervisor. The
Front-end Application was built in Angular, due to the availability of many data
visualization libraries and the tight synergy with Node.js. Like in SMARTifact, we
implemented the Events Aggregator with Node-red. Also, to simulate the On-board
Sensor Interface, we adopted the simulator that was used by the authors of SMAR-
Tifact to test it, which generates sensor data from low-level logs. Finally, to deploy
the components composing the architecture, we adopted Docker.

To assess how our solution performs in terms of scalability, we compared the
memory usage of the Engine Worker components with the one of SMARTifact. To
this aim, we initiated an instance of the Engine Worker with a maximum engine limit
set to 10. We then proceeded to instantiate and monitor 20 instances of an extended
version the LHR-AMS process - which was also used to validate the original version of
SMARTifact [12] - 10 of which were compliant and 10 non compliant. As we reached
a total of 10 running process instances, we initiated another Engine Worker and
continued creating engines until we reached a total of 20 running engines. In order
to draw a meaningful comparison with SMARTifact, we enclosed the Event Router
and the E-GSM of that platform inside a container. We then deployed 20 instances
of that container, and we measured the total memory usage and the time to start
monitoring a new execution. The results of this comparison are presented in Figure 4.

As shown in this figure, the usage of Engine Worker components led to a sub-
stantial reduction in memory usage when compared to the individual deployment of
SMARTifact instances. The disparity in memory utilization becomes more pronounced
as the number of process executions increases. With SMARTifact, monitoring a new
1 Source code available at https://github.com/eGSM-platform.
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execution requires creating two instances of the Event Router and the E-GSM Engine.
In contrast, the Engine Worker implementation only adds a negligible amount of
data to its internal data structures. This is also the reason why our solution is faster
at starting to monitor a new instance. Compared to SMARTifact, which requires on
average 76 ms, our solution requires only 28 ms. When the maximum engine limit is
reached and an additional Engine Worker is instantiated, memory utilization doubles.
Nevertheless, even considering this spike, the memory usage of the Engine Worker
remains significantly lower than SMARTifact. This trend is expected to persist as
the number of engines continues to increase.

Finally, to verify that no side-effects in process monitoring were introduced in our
platform, we compared the monitoring results with the ones obtained by SMARTifact
and ensured they were identical.

6 Related Work

Several solutions for runtime business process monitoring exist in the literature. In
[16] and [2], a Complex Event Processing (CEP) engine is adopted to determine if an
execution deviates from the expected behavior. Similarly, [13] proposes an alternative
platform to detect deviations as soon as they occur. However, all these approaches
rely on high-level events explicitly indicating that an activity has started or completed
its execution. Therefore, they cannot autonomously infer when activities are running.

To address this limitation, [14], [7] and [6] rely on IoT data to infer when activities
are running. [3] focuses on monitoring multi-party business processes. The authors
assume that monitoring services are available for each participant, and propose an
algorithm to optimize them. It is worth noting that all these solutions are unable
to handle deviations from the expected execution.

To handle flexibility in process execution, several architectures relying on artifact-
driven process models have been introduced. In [8] and [5] the authors present a
platform for process execution. Similarly, [11] introduces a service-oriented software
architecture to integrate business artifacts with social media. [9] presents a platform
aiming at optimizing scalability. However, all these solutions are mainly focused on
process execution, rather than monitoring.

An artifact-driven monitoring platform is introduced in [10]. Despite allowing for
greater flexibility than monitoring platforms relying on imperative process models,
this platform still requires the process to behave as specified in the process model.
Therefore, it is unable to handle deviations. To our knowledge, SMARTifact [1] is the
only artifact-driven monitoring platform capable of detecting and reporting deviations
from the expected execution.

7 Conclusion and Future Work

In this paper we presented an artifact-driven monitoring platform capable of handling
a virtually unlimited number of process executions. By leaving on edge devices only
the components responsible for creating and processing data generated by these

Pre-print copy of the manuscript published by publisher="Springer Nature Switzerland",
(available at link.springer.com)



8 G. Meroni and S. Garda

devices, it is possible to significantly reduce their computational requirements. Thus,
our platform can monitor processes involving small and inexpensive physical objects.

A limitation of the current platform is the lack of security mechanisms in the
communication between edge devices and components running in the cloud. Future
work will focus on introducing authentication and encryption mechanisms in the
communication protocol. We also plan to more extensively validate the platform with
real-world use cases.
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