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Abstract. Hybrid blockchain architectures combine centralized appli-
cations, like enterprise systems, with (public) blockchain to implement
additional functionality, such as tamper-proof record keeping. To reduce
the latency and cost of using a public blockchain, these systems may rely
on batching of transactions or general-state channel networks. While re-
ducing costs, the former increase the latency. With the latter, only major
state updates are recorded on-chain, while most transactions history re-
mains only on the channels. This paper describes a novel solution that
combines the benefits of both approaches to decrease the latency and
cost of hybrid blockchain applications. We propose to combine a local
blockchain that runs on a centralized server to provide near-immediate
state update confirmation, with a batching mechanism sending transac-
tions to a public blockchain for record-keeping at a most convenient time.
We also introduce a dispute mechanism promoting the prompt delivery
of correct batches to the public blockchain by the application provider,
thereby deterring malicious behaviours. The solution is motivated by a
fintech use case, for which we also show the implementation of a proto-
type and an experimental evaluation of the latency and cost savings.

Keywords: Blockchain, Ethereum, gas price, latency, meta-transaction
delegation

1 Introduction

Blockchains, as transparent and open databases, enable immutable records trace-
able to the original signer; through smart contracts, they can provide auto-
mated rule enforcement [1]. Originally developed for decentralized peer-to-peer
applications, blockchains also enable the so-called hybrid blockchain architec-
tures, where users interact with traditional centralized applications augmented
with blockchain [2]. Specifically, the use of public blockchains presents intrigu-
ing scenarios in enterprise applications. For instance, a corporate enterprise re-
source planning (ERP) system paired with the Ethereum blockchain can provide
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2 Yessenbayev et al.

tamper-proof record keeping and digitized asset tracing. Platforms like Prove-
nance leverage this to prove product authenticity on public blockchains [3], while
MedRec employs the Ethereum blockchain to offer secure medical records, thus
enhancing healthcare data interoperability [4].

The architectural limitations of public blockchains, such as latency from a
few seconds to several hours [5] and volatile transaction costs depending on net-
work congestion and transaction complexity [6], still limit the enterprise-wide
adoption of hybrid architectures. To address these issues, batching and general
state channel networks have emerged as viable solutions. Batching involves send-
ing multiple transactions at once, instead of individually. In this way, the fixed
per-transaction costs [7] can be reduced. However, latency could increase, since
the transactions are not processed until the whole batch is sent. General-state
channel networks allow near-instant interactions between participants by sim-
ulating smart contract state transitions [8] until the final state is posted on
the public blockchain. However, most of the transaction history is recorded off-
chain. Therefore, this option may not suit hybrid blockchain applications, where
the transaction history often serves as a comprehensive, tamper-proof record for
traceability and auditing purposes.

In this paper, we present a novel solution that combines the strengths of
the two approaches described above. We propose a middleware system that can
be integrated with a centralized application to provide reliable and immutable
record-keeping on a public blockchain, limiting the application latency and costs.
The system consists of two key components: (i) a local private blockchain to
instantly simulate state transitions and (ii) an asynchronous process batch-
transferring local transactions to the public blockchain network. A target smart
contract used for record-keeping on the public blockchain is replicated on a local
private blockchain, enabling near-instantaneous transaction confirmation. The
transactions are then cost-efficiently batch-sent to a public blockchain network
for permanent and immutable record-keeping. By maintaining the transaction
order within batches, the proposed approach guarantees consistent execution
across both networks. We also introduce a dispute mechanism that creates an
incentive for the application provider to eventually send all the correct batches
to the public blockchain, thus preventing opportunistic or generally malicious
behaviours. The proposed approach is inspired by the needs of a real-life fintech
company in South Korea providing a flexible salary payment service that uses
a public blockchain for transparent record-keeping. Besides describing this use
case, we also experimentally evaluate the proposed approach in terms of cost
reduction as a function of the batch size, and latency improvement.

The remainder of the paper is organized as follows. Section 2 introduces
the use case and the requirements, while Section 3 presents our solution. Sec-
tion 4 discusses the implementation and the experimental evaluation. Section
5 compares our solution with existing literature. Finally, Section 6 draws the
conclusions and outlines future work.
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2 Problem definition

Section 2.1 introduces the fintech use case that inspired the development of the
proposed solution, whereas Section 2.2 extrapolates more general requirements
that the proposed solution must address.

2.1 A Fintech Motivating Case Study

GivingDays Inc. 3 is a financial intermediary providing a flexible payment service
(Thankspay) enabling employees of partner companies to request salary advances
through their application. The advances are immediately paid by GivingDays
(that is, earlier than the scheduled pay-day) and charged to the partner company
later.

While managing funds purely in cryptocurrency is infeasibile, the ThanksPay
service can leverage public blockchain to ensure traceability, transparency, and
asset reusability. Through private key encryption, blockchain can allow to pub-
licly verify that each salary advance request genuinely originates from a worker,
and is not forged arbitrarily by the ThanksPay service to maliciously charge
partners. This eliminates the need for laborious server audits. Smart contracts
also enable automated and transparent compliance with salary withdrawal reg-
ulations. Finally, the open nature of public blockchains allows to extend the
service to other use-cases, such as flexible loans.

2.2 Requirements

Inspired by the Thankspay use case, we identified a set of requirements that must
be addressed by a more general system that provides transparent record-keeping
by adopting a hybrid blockchain architecture.

R1: Minimize application latency: The latency of public blockchain is
usually high and unpredictable, which might jeopardize an application whose
logic relies on blockchain as a database. For instance, the Ethereum latency is
15-20 seconds for simple cases and significantly higher for complex transactions.

R2: Minimize transaction fees: As the number of transactions to be
recorded grows, the costs of facilitating them also increase. Moreover, transaction
fees on public blockchains like Ethereum might be extremely volatile, posing
additional challenges for a record-keeping system.

R3: Maintain full transaction history: Record-keeping systems must
demonstrate an unalterable record of every transaction. This requires each trans-
action to go through rules-checking and storage on the public blockchain. There-
fore, posting only periodic hash updates would not be sufficient.

R4: Guarantee transaction order and inclusion: Reordering or exclud-
ing user transactions can alter the state of the blockchain. If the correct ordering
is not enforced, the service owner can exploit this for its own benefit.

3 https://www.thankspay.co.kr/
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Fig. 1: Overview of the system

R5: Provide a balanced approach to user self-custody: It would be
infeasible to expect each user to own a cryptowallet to fund and manage trans-
actions. On the other hand, centralizing the entire process within a backend
service recording all the transactions on behalf of the users would nullify the
trust brought by blockchain technology [2].

3 Solution design

We propose a middleware solution functioning as an intermediary between users
and the public blockchain. The static system components are outlined in Sec-
tion 3.1, with a use-case scenario discussed in Section 3.2. Economic incentives
ensuring the service owner’s adherence to the batch-process (i.e. the dispute
mechanism) are explained in Section 3.3.

3.1 System architecture

A high-level overview of the proposed middleware solution is sketched in Fig. 1.
It involves the following entities:

– Owner: the host of the service (e.g., GivingDays hosting the ThanksPay
service in our motivating use case), which deploys smart contracts on the
local and the public blockchains.

– Users: the end-users of the owner’s service (e.g., the workers and partner
companies in the motivating use case).

User actions are recorded as invocations of a Target smart contract deployed
at a public blockchain network, representing the specific business application logic
(i.e., logic of the Thankspay service in the motivating use case, determining, for
instance, when workers can receive their salary in advance). To facilitate the user
interactions with it, the owner instantiates a local private blockchain and deploys
in it a replica of the target smart contract for the lifetime of the application.
The local private blockchan instantly processes user invocations, enabling any
business logic dependencies on the target smart contract state to be immedi-
ately fulfilled. Besides hosting the target smart contract, the public blockchain
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network also hosts a Relayer smart contract, responsible for batch-transferring
transaction invocations from the local blockchain to the public blockchain’s Tar-
get smart contract.

Users sign what are known as meta-transactions[2], transactions signed by
a user’s private key but sent by a third-party service provider. This technique
allows users to interact with smart contracts without having to interact with the
Ethereum blockchain, addressing R5.

The meta-transactions are immediately executed on the local blockchain for
instant feedback (i.e., satisfying R1). When sufficient local transactions are ac-
cumulated, the server batch-transfers them to the public network, combining
reduced per-transaction invocation costs with the possibility of strategically se-
lecting the best time to send a batch to minimize transaction costs (addressing
R2 and R3). The users’ signed messages contain a batch identifier and a relative
position within the batch, guaranteeing the same order of transaction execution.
By leaving a hash-trace of which transactions were executed inside of a public
blockchain, we enable users to open and win monetary disputes against transac-
tion exclusion from malicious owners, thus addressing R4.

To ensure state consistency between the local and the public blockchains,
the Target smart contract follows constraints similar to the ones of general state
channel contracts [9]:

1. Limited access: they should only be invoked by authorized users. In the
local blockchain, this is ensured by giving access only to the users of the
service. On the public blockchain, all calls to the target smart contract are
routed through the Relayer contract.

2. Insulation from external contracts: they should not depend on external
contract states, allowing the application state to be accurately predicted in
advance, before on-chain execution.

3. No global clock dependencies: they should ban references to block.timestamp,
given the unpredictability of when a transaction will be executed on the pub-
lic blockchain.

4. Modifying references to the senders of transactions: in a meta-transaction
executed via a relayer contract, msg.sender refers to the initiating address
(i.e., the Relayer), not the original user. Therefore, the sender’s identity needs
to be included in the relayed transactions for the target smart contract to
identify the user actually sending a transaction.

The latter can be addressed by passing the deciphered user address to the
Target smart contract when invoked by the Relayer smart contract. This is done
in an implementation-specific way (we discuss how we address this in Ethereum
in Section 4).

3.2 System in-use view

The system usage involves two stages: i) local execution of meta-transactions,
which users sign and exchange with the owner and ii) an asynchronous process
batch-transferring these to the public blockchain.
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Fig. 2: Message exchange

Local execution of meta-transactions. Upon user registration, a unique
private key is created locally within a user’s applications. This private key can
be used to produce a unique digital signature against a given message, ensuring
that the signed data has not been tampered with (integrity of the message) and
that the true signer’s public account can be recovered (identity of the user).
Users employ the private key to sign the digest (hash) of meta-transactions. In
particular, the digest is computed from the following data:

(a) txData: a byte-encoded representation of the selected blockchain function
(e.g., requestSalaryAdvance) and specified parameters (e.g., amount).

(b) batchNonce: a per-batch nonce to prevent malicious replay attacks.
(c) positionNonce: a transaction’s position in the batch to prevent reordering

and maintain execution order integrity.

To exchange these meta-transactions with the owner and obtain the owner’s
commitment to including the transaction into a batch, users follow the process
outlined in Fig. 2:

1. Users initiate a request to the owner, who responds with (batchNonce,

positionNonce).
2. Users generate txData and their signature, sigUser, and send these to the

owner.
3. The owner then sends the txData to the local network, which simulates the

transaction, updates the state, and emits the necessary events for immediate
feedback to the users. The owner also sends their signature (sigOwner) over
the same parameters (with the addition of sendTimestamp, the timestamp
by which the transaction is meant to be sent).

The sigOwner acts as proof of the owner’s commitment to include the trans-
action into the next batch destined for the public network (important for the

Pre-print copy of the manuscript published by publisher="Springer Nature Switzerland",
(available at link.springer.com)



A Middleware for Hybrid Blockchain Applications 7

Fig. 3: Asynchronous sending

dispute procedure in Section 3.3). Until then, the users should assume the trans-
action has not yet been processed.

The owner can only process new transactions after the current one completes
or times out. If a user fails to provide the necessary txData and sigUser within
a specified timeout, the transaction is rejected and its positionNonce can be
reused for the next transaction.

Asynchronous batch-transfer process. Once enough transactions are col-
lected, the owner (see Fig. 3) sends a batch to public network through the Relayer
smart contract. The relayTransactions function iterates through the meta-
transactions. For each set of (positionNonce, batchNonce, txData[i]), the
verify function decodes a user’s public address from the message hash composed
of these parameters and the given sigUser[i]. Any alteration to the message
hash or signature will result in a different public address than the original one,
preserving the integrity of the signed message and authenticating the signer’s
identity. The Relayer smart contract then relays txData to the target smart con-
tract, together with the original user’s public address. The target smart contract
executes the transaction and updates its state (and corresponding digital assets)
accordingly, on the behalf of the original user.
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Fig. 4: Dispute procedure

Upon the completion of all transactions in the batch, the Relayer calculates
and saves the hash over the executed transactions (txData[]), providing a ref-
erence for maintaining a consistent transaction execution order across batches.
Afterwards, the smart contract emits the event signifying successful process-
ing; the owner increments the nonce associated with the batch (batchNonce)
off-chain, allowing for the processing of the next batch of transactions.

The signature verification coupled with user address relaying to the receiving
target smart contract enables users to maintain unique and persistent on-chain
identities in meta-transactions. The finalization of transaction batches and the
storage of their associated hashes provide a traceable reference for maintaining
accountability in the system, as detailed in the next section.

3.3 Maintaining accountability of meta-transactions

A malicious owner can potentially disrupt the system by (i) not including certain
local transactions in a batch sent to the public blockchain or (ii) modifying
the order of execution of the transactions. In the Thankspay service scenario,
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this may be driven by financial objectives to manipulate the workers’ account
balances and forge undue settlement.

To address this issue, we introduce a dispute procedure fully managed by the
public Relayer smart contract that allows for the monetary punishment of any
owner misconduct (see Fig. 4)q. This mechanism requires the users to make a
deposit of amount of cryptocurrency X to open a dispute, discouraging frivolous
claims. If the owner does not address a dispute within a specified timeframe, the
user can claim a compensation of X + Y, disincentivizing the owners from any
wrongdoing. To enforce compensation payouts for successful disputes, the Re-
layer smart contract is required to have sufficient funding to continue operating.

Implementing the dispute mechanism requires the following:

1. Proof of the owner’s commitment to include the transaction. The owner is re-
quired to sign a user’s transactions, with the addition of a sendTimestamp,
as part of the feedback to the user (see Section 3.2). This signature, as
sigOwner, ensures that transactions are committed for inclusion in the batch.
Conversely, without this signature, the transactions are not “confirmed” from
a users’ perspective. If a transaction is signed by the owner and not sent to
the public blockchain, the user can use these signatures as proof of commit-
ment on the public blockchain that has not been fulfilled.

2. Trace of transaction execution. To leave an efficient trace of executed transac-
tions in relayTransactions without storing the entire array, all txData[] in
a batch are hashed together and stored in a mapping (batchId => batchHash).

The sendTimestamp is added to determine if the owner’s promised timestamp
has passed by comparing it to block.timestamp, therefore preventing premature
disputes.

If the user is satisfied with the transaction execution, the process is concluded.
If not, the user can initiate the dispute, which unfolds as follows (3.3):

(a) The user opens the dispute by invoking openDispute with the owner’s sig-
nature as proof of commitment and the specified parameters (txData +

nonceId + batchId + sendTimestamp). If the owner’s signature is valid
for these parameters, and sendTimestamp > block.timestamp, the dispute
is successfully opened, and a corresponding event notifies about the opened
dispute is emitted.

(b) The owner may close the dispute if they can provide evidence that the
user’s transaction was included and executed correctly. The owner submits
all txData[] used to create the batch at a given batchNonce and calcu-
lates its hash. They win the dispute if the txData at nonceId matches the
user’s data, and the hash of the array txData[] corresponds to the recorded
batchHash for that batchNonce.

(c) If the owner fails to resolve the dispute after the specified timeframe passes,
the user is eligible to claim compensation.

Overall, this process safeguards against fraud. sigOwner only works for the
given (txData, positionNonce, batchNonce, sendTimestamp) combination,
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deterring users from fabricating commitments. The hashing of all txData[] on-
chain also prevents false inclusion of a user’s txData in the owner’s proof, if it
was not genuinely executed.

4 Implementation and Evaluation

The prototype implementation 4 of the Thankspay service is detailed in Sec-
tion 4.1, with an experimental evaluation presented in Section 4.2.

4.1 Thankspay service implementation

Target smart contract. The Thankspay target smart contract is implemented
as an Ethereum ERC-20 token, called ThanksPaySalaryToken, customized to
manage salary advances, debt tracking, and settlements. The salary advances
are implemented through “minting” and “burning” of the tokens. On a desig-
nated salary day, partner companies mint new tokens equivalent to the workers’
salaries, replenishing balances and offsetting previous advances. As workers re-
quest salary advances, these tokens are burned, reducing the worker’s balance
and increasing the debt of the partner company, as tracked by the partnerDebt

mapping. The debt is settled off-chain by transferring real funds to Thankspay,
which is then reflected on-chain via the settlePartnerDebt function. The ERC-
20 standard provides pre-defined functions and events for token management,
making the solution more generalizable to other use-cases; token-burning func-
tionality is inherited from ERC20Burnable. To minimize on-chain data, worker
salaries are stored off-chain and passed as arrays of integers when required.

To allow the Relayer to pass the user address to the Target smart contract, we
attach the user’s address (authenticated from msgHash and sigUser) to the end
of the relayed call data as contractAddr.call(abi.encodePacked(txArray[i],
msgSender)). Secondly, within the target smart contract, we substitute all ref-
erences to msg.sender with msgSender() from the ERC2771Context [10]. This
function interprets the tail-end of the call data as the sender’s address, identify-
ing the original user.

Relayer smart contract. We set both the deposit (X) and compensation (Y)
values for openDispute to 0.1 ETH, with a dispute resolution time of one day.
Disputes are managed within a mapping, userAddress => disputes. To ensure
sufficient funds for dispute resolution, the smart contract is required to maintain
a minimum balance of 0.5 ETH to continue operating (enough to cover five dis-
putes), enforced by adding a modifier onlyIfFunded to the relayTransactions
function.

Initially, the owner deploys the contract with 0.5 ETH and can add more
funds through the fund function. User deposits also contribute to the contract’s
balance and could potentially be used to resolve earlier disputes. This approach

4 Available at: https://github.com/olzh-yess/A-Middleware-for-Hybrid-Blockchain-Applications.
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Fig. 5: Latency comparison

is justified, since successful dispute resolution results in a net loss of funds (0.2
ETH), implying that the owner would need to replenish the contract’s balance
to maintain the required minimum. This method is cost-effective as checking the
smart contract balance consumes only 38 gas units, significantly less than the
2000 gas units needed to allocate and read a dedicated variable for tracking the
owner’s funds.

4.2 Experimental evaluation

We implemented a server prototype using NestJS with a WebSocket connection
for real-time client-server message exchange. A persistent Ganache simulation
and the Sepolia test network served as local and public blockchains, respectively.
Simulated transactions are stored in SQLite database for easy batch-transferring.

We set up a typical workflow (deploying the target contract, enrolling partner
companies, enrolling workers, processing salary advances, increasing chargeable
balances, and resetting withdrawable balances on salary day) on the Thankspay
service prototype. Then, we evaluated (i) the transaction confirmation latency
and (ii) the cost (gas) savings. We compare our solution with two baselines: one
in which transactions are sent to the public blockchain as soon as generated by
the users, and one in which standard batching of transactions is used (but with-
out local blockchain simulation to speed-up the confirmation). For the standard
batching, we consider batch sizes from 1 to 100.

Latency savings. We define confirmation latency for the three considered sce-
narios as follows:

– Public blockchain without batching: Transactions are submitted directly
to the Sepolia test network. To account for unpredictable network latency, we
report average values from 10 tests for each smart contract function invoca-
tion, spaced at one-hour intervals.

– Public blockchain with standard batching: Transactions are reflected in
the smart contract states only after an entire batch is completed and submitted
to the public network. Consequently, latency comprises the public network
latency and the rate at which new transactions are generated. For the latter,
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Fig. 6: Gas costs

we consider three hypothetical throughput conditions: (a) high - an average
of 100,000 transactions per day (approximately 70 per minute), similar to
Uniswap [11]; (b) medium - an average of 1 transaction per minute; (c) low
- a scenario inspired by the ThanksPay service, with 3.35 transactions per
day based on a scenario with five partner companies with an average of 100
employees, 20% of whom request their salary ahead of time each month.

– Our proposed approach: latency consists of the time required for users to
sign and settle the results on a local network, as well as to get the owner’s sig-
nature. We evaluated the average confirmation latency using the same settings
as the solution described above without batching. The confirmation times on
the public blockchain are expected to be similar to those associated with
standard batching, as they are contingent on the time taken to generate a full
batch.

Fig. 5 shows the results obtained. Our solution (0.1 s) is on average sig-
nificantly faster than the baseline without batching (11 s). Note that the real
Ethereum network may have latency up to four times higher than the Sepolia
network [12]. The confirmation latency on the batching solutions is several orders
of magnitude worse, especially for medium and low throughput scenarios.

Gas cost savings. We examine (see Fig. 6) gas costs of individual function
invocations for batch transfers of varying sizes. Batching can notably reduce per-
transaction invocation costs (e.g. miner fees and transaction verification), while
not affecting the smart contract execution costs. Consequently, less complex
functions, where invocation costs form a greater share of the total expense,
benefit more from batching.

We can observe that gas reductions ranging from 15% to 45% can be achieved
by setting batch sizes between 40 and 50, depending on the specific function.
Increasing batch size further might be impractical, as the gas price reduction
flatlines. Different timing policies of the batch-transfer can even further increase
its efficiency (extensively explored in [7]).
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Dispute procedure costs As disputes are expected to be opened infrequently,
our primary focus is minimizing the amount of smart contract state stored for dis-
pute resolution within the relayTransactions function. The only state-altering
code instruction for disputes is saving the hash-trace of transaction execution
for a given batchNonce,which adds a fixed per-batch additional cost of 30K
gas units. In a batch of 40 transactions, this equates to a mere 750 gas units
per transaction, a relatively low cost considering that the costs per transaction
range from 20K to 100K gas units. Since it does not modify smart contract
state, checking if the smart contract balance is higher than 0.5 ETH before the
function invocation only adds negligible 38 gas units.

The remaining costs related to disputes are opening a dispute (149,623 gas
units), closing a dispute (71,473) and claiming compensation costs (49,688).

5 Related work

The blockchain’s architectural scalability can be achieved by altering its fun-
damental architecture (Level-1 or L1), or by introducing cheaper side-chains
anchored to the native one (Level-2 or L2).

One approach to L1 scaling involves increasing transaction count per block
or accelerating block generation frequency. This, however, faces the “blockchain
trilemma” [13] - a trade-off between security, scalability, and decentralization.
For instance, reducing block time could undermine consensus mechanism if new
blocks cannot promptly reach all nodes. However, increasing the block size might
preclude less powerful nodes from processing new blocks, threatening decentral-
ization. This is illustrated by Binance Smart Chain’s lower fees, but reliance on
only 21 validator nodes [14].

L2 sidechains address the blockchain trilemma by processing a significant
portion of transactions on smaller, faster blockchains with lower fees, while in-
teracting with the main L1 chain when needed [15]. L2 sidechains ensure that
the data is reliable, consistent, and unaltered by posting periodic updates, state
hashes, or cryptographic proofs on the L1 chain. Although L2 sidechains inherit
L1-level security for data integrity, they are still vulnerable to data availabil-
ity attacks due to the smaller number of nodes and the off-chain nature of L2
transactions.

Batching services aim to reduce L1 gas fees by packing multiple meta-transactions
within a single invocation, reducing the fixed per-transaction overhead costs.
Meta-transactions encapsulate a user’s desired action, the target smart contract
address, along with unique signatures verifying the senders’ identity; they are
then batch-sent to the public network on the users’ behalf by a central relayer
and executed by a specially deployed dispatcher smart contract after appropri-
ate verification [16] . Different batching policies have been explored in iBatch
[7], while MultiCall [17] has explored hash-based authentication to decrease the
costs of verification. The EIP-4337 [18] is a successful proposal to enable meta-
transactions in Ethereum.
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Requirement Our Solution Metatransaction Batch-
ing/Relaying

General-State Channel
Networks

3 7 3
R1: Minimize application
latency

Instant feedback with local
blockchain simulation

Increased per-transaction
latency for a batch to accu-
mulate

Low-latency transactions
through off-chain process-
ing

3 3 3
R2: Minimize transaction
fees

Batching and selecting peri-
ods with lower gas fees

Reduced fees through batch-
ing transactions

Significantly reduced fees
with only settling the final
state

3 3 7
R3: Maintain full trans-
action history

Full transfer of transactions
to the public blockchain

Full transfer of transactions
to the public blockchain

Only the final state is set-
tled on-chain

3 7 3
R4: Guarantee transac-
tion order and inclusion

Nonce values and dispute
resolution mechanism

Can maintain order within a
batch, but may not guaran-
tee transaction inclusion by
a batcher

On-chain dispute process by
publishing signatures of the
state

3 ? ?
R5: Provide a balanced
approach to user self-
custody

Multisignature wallets pro-
vide convenience and secu-
rity

Varying degrees of user cus-
tody and traditional meth-
ods depending on implemen-
tation

Often complex and may re-
quire higher technical ex-
pertise, less user-friendly

Table 1: Comparison with different solutions

Channel networks enable the participants to exchange simulated transac-
tions off-chain, settling the final agreed-upon state on-chain. Examples are Bit-
coin’s Lighting Network [19] and Ethereum’s Raiden [20]. General-state channel
networks extend this idea to arbitrarily complex smart contracts [8]. In this
approach, most of the transaction history is not recorded on the main chain;
additionally, the parties need to be online to authorize new state transitions.
While channels imply that multiple parties exchange simulated transactions
among themselves based on self-enforcing signature authorizations, a local pri-
vate blockchain can also be instantiated on the server of one party. Such a
use-case has been explored in [21] for auctions.

To conclude, Tab. 1 qualitatively compares the proposed solution with the
batching and general-state channel networks approaches while addressing the
requirements elicited in Section 2.

6 Conclusion

This study presented a novel middleware solution that streamlines integration of
public blockchains in hybrid architectures. By combining a local blockchain with
asynchronous batch-transfers to a public blockchain, we ensure instant feedback
and reduced costs. The effectiveness of the solution was confirmed by reduced
latency and gas cost achieved by the Thankspay service prototype compared to
two baseline cases. The solution also includes a dispute resolution mechanism
enforcing accountability for the operator of the service.

At present, to ensure consistency between local and public blockchains, the
owner can process only one transaction at a time. For instance, if we locally
process a transaction with a higher positionNonce before a lower one is com-
pleted, it will be executed after the lower one on the public blockchain, leading
to inconsistencies. In the future work, we plan to address this limitation, as well
as to further enhance the dispute resolution mechanism and to test the system
in more complex scenarios.
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