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Tunable Floating Point for High Quality
Audio Systems: The Sound of Numbers
G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, R. La Cesa, A. Nannarelli,(1) and M. Re

Department of Electronics, University of Rome Tor Vergata, Rome, Italy
(1)DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract—The purpose of this work is to show the advantages
of implementing digital signal processing for high quality audio
applications in custom floating-point. We consider the trade-offs
dynamic range vs. precision (i.e., quantization) by comparing
standard floating-point (namely, binary32) to custom floating-
point. Moreover, by resorting to Tunable Floating-Point (TFP)
hardware units, we can adjust the dynamic range and the
precision in different parts of the algorithms to explore several
alternatives. Results show that 16-bit floating-point formats can
give a good compromise between quality and energy efficiency.

I. INTRODUCTION

In this work, we investigate the effects of the finite precision
arithmetic representation for different floating-point represen-
tations in high quality audio applications.

Although the use of single or double precision floating-point
(FP) in audio applications is well established, it is interesting
to evaluate the impact of the recently introduced reduced-
storage FP formats.

Machine Learning (ML) algorithms require a large number
of operations on huge amounts of data. To limit the memory
bandwidth and the energy footprint, the ML computation is
progressively migrating from the traditional double and single
precision FP to “ad-hoc” formats with reduced storage.

For example, in place of using single precision FP, binary32
in the IEEE 754 standard [1], requiring 32 bits of storage,
several ML applications resort to binary16 (half precision) or
BFloat16 [2], requiring only 16 bits of storage.

In this work, we assess the use of 32/24/16 and even 8-
bit storage formats for audio applications in terms of audio
quality and energy efficiency. We take advantage of the
Tunable Floating-Point (TFP) representation, introduced in
[3], to simulate audio applications on actual variable-precision
hardware units.

The experiments, are carried out both in the time and fre-
quency domains. Moreover, to validate the analytical results,
we performed a psychoacoustic test for selected audio samples
done by 45 volunteers.

The results of the analysis and the test indicate that the audio
quality in 16-bit storage formats is as good as in larger storage
formats (namely, 32 and 24 bits) at lower power dissipation.

In contrast, acoustic tests of applications implemented in
8-bit storage formats are affected by crackling noise, and the
overall audio quality is poor.

II. BINARY FLOATING-POINT FORMATS

The floating-point representation of a real number x is

x = (−1)SX ·MX · bEX x ∈ R

where SX is the sign, MX is the significand or mantissa
(represented by m bits), b is the base (b = 2 in the following),
and EX is the exponent (represented by e bits). The represen-
tation in the IEEE 745 standard [1] has significand normalized
1.0 ≤MX < 2.0 and biased exponent: bias=2e−1−1.

The dynamic range of the representation is the ratio between
the largest and the smallest (non-zero and positive) number [4].
The dynamic range for binary floating-point (BFP) is

DRBFP = (2m − 1) · 22
e−1 . (1)

For example, for binary32 (32-bit storage with m=24, e=8)
the dynamic range is

DRb32 = (224 − 1)22
8−1 ≈ 9.7× 1083 .

In comparison, the dynamic range of the 32-bit fixed-point
(FXP) representation is much smaller

DRFXP = 232 − 1 ≈ 4.3× 109 .

In signal processing, the dynamic range is sometimes ex-
pressed in deciBell (dB). According to [5], the dynamic range,
in dB, for n-bit fixed-point numbers is

DRFXP (dB) = 6.02 · n+ 1.76 dB ' 6 · n dB .

while for floating-point, the empiric expression is

DRBFP (dB) = 6 · (2e − 1) dB . (2)

The precision of a floating-point format is the weight of the
“unit in the last position” (ulp) in the significand. Considering
the normalization, the fraction bits of the significand are
f=m−1, and consequently, the precision is expressed as
ulp = 2−f .

For our analysis, we consider some popular floating-point
formats:
• binary32, or single precision, 24-bit significand (fraction

bits f=m−1=23), 8-bit exponent. We consider in the
following the representation for binary32 “equivalent”
to the real number. In other words, we assume the
representation error for binary32 to be zero.



TABLE I
DYNAMIC RANGE AND PRECISION FOR THE SELECTED FORMATS.

Format m e
dynamic range precision
(1) (2) ulp

binary32 24 8 9.7× 1083 1530 dB 2−23

PXR24 16 8 3.79× 1081 1530 dB 2−15

binary16 11 5 4.3× 1012 186 dB 2−10

BFloat16 8 8 1.48× 1079 1530 dB 2−7

FP8m4e4 4 4 4.92× 105 90 dB 2−3

FP8m3e5 3 5 1.50× 1010 186 dB 2−2

FXP 32-bit 32 0 4.3× 109 192 dB 2−31∗

∗Assuming 1 integer and 31 fractional bits (1.31)

Fig. 1. Alignment of TFP32 numbers in 32-bit words: binary16 (f=10, e=5)
case. Biasad exponents (green) are sign-extended to 8 bits. Significands (red)
are padded with zeros beyond bit of weight 2−f .

• PXR24 a 24-bit storage format, introduced by Pixar [6],
with 16-bit significand (f=15), and 8-bit exponent.

• binary16, or half precision, 11-bit significand (fraction
bits f=10), 5-bit exponent. The storage is 16 bits for
binary16.

• BFloat16, Google’s Brain-FP [2] a 16-bit storage format
with 8-bit significand (f=7), and 8-bit exponent.

We also consider two 8-bit storage formats used by Nvidia
[7] and Tesla [8] in their deep learning applications:
• FP8m4e4 with m=4 (f=3) and e=4.
• FP8m3e5 with m=3 (f=2) and e=5.
We summarize the dynamic range and precision for the

above formats in Table I. In the table, we also included the
32-bit fixed-point (FXP) format for comparison purposes.

III. TUNABLE FLOATING-POINT

The Tunable Floating-Point (TFP) representation, intro-
duced in [3], is a format in which the precision and the
dynamic range of operands and results can be “tuned” by
adjusting the number of bits for the significand and the
exponent in the floating-point representation. For example, by
tuning the precision of a given algorithm to the minimum
precision achieving an acceptable target error, we can make
the computation more power efficient.

The TFP representation is normalized to have the conver-
sions compatible with the IEEE 754 standard. Moreover, TFP
supports several rounding modes, including roundTiesToEven,
the default mode in IEEE 754.

The basic format, TFP32, reserves 32 bits for storage
and can handle significand precision from 24 to 3 bits, and
exponent from 8 to 4 bits. The maximum precision and range
(m=24, e=8) is that of binary32.

The TFP32 format include all the formats listed in Table I.
The significands are rightward aligned to the decimal point
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Fig. 2. TFP16 unpacking and re-packing in 16-bit storage format. Only LSB
of exponent (black) and MSB of fraction (red) are shown in figure [9].

(fractional numbers), while the exponents are leftward aligned
to zero (integer numbers) as illustrated in Fig. 1 for binary16.

The 16-bit storage format, TFP16, introduced in [9], com-
prises four formats: binary16, IBM’s DLFloat16 [10] (m=10,
e=6), TFPm9e7 (m=9, e=7), and BFloat16. Differently than
TFP32, in TFP16 the 16-bit operands are expanded (unpacked)
in the processing units and re-packed before storage, as shown
in Fig. 2.

IV. THE EXPERIMENTS

In this section, we describe the experiments carried out to
explore the influence of the different representation formats in
the audio domain.

We start by characterizing a sinusoidal signal converted to
the floating-point formats in Table I, and compute the Total
Harmonic Distortion (THD). We consider both the quanti-
zation of the sinusoidal signal and the impact of arithmetic
operators, such as adders and multipliers, on the THD.

As a second experiment, we compute the quantization error
introduced by the different FP representations on the time-
domain response of a typical filter used in audio processing.

The third experiment is a psychoacoustic test performed on
actual audio tracks, generated for the different FP formats, to
compare the representations auditorily as well.

A. Total Harmonic Distortion (THD)

In the first experiment, we estimate the THD introduced by
the different floating-point representation formats in Table I.

The THD evaluation is performed by converting a sine
wave, with frequency of 900 Hz and sample frequency of
48 kHz, to the various formats and analyzing the resulting
spectra [11].

The spectra of the selected floating-point formats are shown
in Fig. 3 together with the computation of the THD introduced
by the different floating-point representations. The spectra are
obtained by using the thd() Matlab function that returns the
THD in dBc1 of the sinusoidal signal. The THD is computed
from the fundamental frequency and the first five harmonics
using a modified periodogram with the same length of the

1dBc: deciBells relative to the carrier.



Fig. 3. THD (from top-left) for binary32, PXR24, binary16, BFloat16, FP8m4e4, and FP8m3e5.

input signal. The modified periodogram uses a Kaiser window
with β = 38 [12].

Fig. 3 displays that the different FP formats introduce
even- and odd-order harmonics associated to the format of
the representation. The distortion increases as the number of
storage bits decreases and the precision of the representation
drops.

To examine the impact of arithmetic operators (adders and
multipliers) on the THD, we conducted experiments using a bi-
quadratic IIR filter, a commonly utilized component in audio
applications.

Specifically, the filter is a second-order Butterworth IIR
filter, digitally implemented in the direct form of Type 1, with
cut-off frequency Fc-off = 10 kHz and quality factor Q= 1√

2
.

We processed the sinusoidal signal through the IIR biquad
filter for the different formats, and generated the THDs. The
resulting spectra resemble those in Fig. 3, but the THD values
worsen due to the impact of the arithmetic operators. The THD
comparison for the two cases (wave only, and filtered wave),
is depicted in Fig. 4.

B. Audio Track Played through an IIR Filter

An audio track (about 9 s. duration), sampled at 48 KHz,
is filtered by the IIR biquad filter specified in Sec. IV-A.

The audio track is processed by the filter (in Matlab) and
the following traces/info are extracted:

Format

T
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D
 [

d
B

]

THD comparison

THD sine wave

THD sine wave plus IIR filter

Fig. 4. Comparison of THDs. Sinusoidal signal only, and IIR filtered signal.

• A trace of the operations executed in the filter: a sequence
of multiplications and additions.

• A trace file with TFP test vectors to be used for the VHDL
simulations of the hardware units in Sec. V.

• Statistics on the errors with respect to the binary32
representation.

The error estimate is carried out by reading the binary32



TABLE II
ERRORS (MAX. AND AVERAGE) WITH RESPECT TO binary32 FOR OTHER

FP-FORMATS.

Format m e εmax εave

binary32 24 8 - -
PXR24 16 8 1.41× 10−5 < 2−16 6.93× 10−7 < 2−20

binary16 11 5 2.98× 10−4 < 2−11 2.23× 10−5 < 2−15

BFloat16 8 8 3.02× 10−3 < 2−8 2.18× 10−4 < 2−12

FP8m4e4 4 4 3.91× 10−2 < 2−4 3.43× 10−3 < 2−8

FP8m3e5 3 5 3.91× 10−2 < 2−4 2.97× 10−3 < 2−8

reference trace, and by reading a second trace with one of
the other formats-Under-Test (fUT). By calling zb32 the result
of the specific operation executed in binary32, and zfUT

the result executed in another format, we compute the error
(absolute value) as: ε = |zb32 − zfUT | .

Analyzing the whole trace, we determine the maximum
error εmax, and the average error εave.

The maximum and average errors for the different FP
formats with respect to binary32 are reported in Table II.

By examining Table II, we can notice that the maximum
error corresponds to ulp

2 , i.e., the weight of bit in position
2−m. For the FP8m4e4 format, the average error is worse than
for FP8m3e5 because, due to the limited dynamic range of the
representation, about 18% of operations produce an underflow
and the results are flushed to 0 (εave increases).

C. Psychoacoustics Tests for Several Audio Tracks

The error rates in Table II show that when precision and
dynamic range decrease the degradation becomes large from
an analytical viewpoint. However, it is important to know what
level of degradation is audible by humans.

For this reason, we set up a MUSHRA (Multiple Stimuli
with Hidden Reference and Anchor) listening test [13]. The
test consists in rating the Basic Audio Quality (BAQ) of audio
samples produced in different conditions. The BAQ is a single
and global attribute that is used to judge any and all detected
differences between the reference audio sample and samples
with modified conditions.

The listener is presented three different audio fragments:
“ROCK”, “FEVER” and “SONNO”. For each fragment, the
reference audio sample is provided along with the samples
in the different TFP formats. The listener must provide a
BAQ score on a scale from 0 to 100 (“excellent”). The test
is available on-line at https://mushra.inglacesa.it/ [14], and its
results are reported in Table III. In the table, the BAQ score
is averaged for all listeners (45 participants) for the single
fragment, and averaged for the three fragments (last column).

The BAQ scores in Table III indicate that the quality of the
audio is in the “excellent” range for the 32/24/16-bit formats
(BAQ above 85). In contrast, for 8-bit storage formats, the
scores between 12 and 27 indicate poor audio quality (e.g.,
presence of crackling noise).

TABLE III
RESULTS OF THE MUSHRA PSYCHOACOUSTIC TEST (45 PARTICIPANTS).

Format Basic Audio Quality

ROCK FEVER SONNO Average

binary32 87.45 94.48 91.69 91.21
PXR24 89.14 92.59 90.64 90.79
binary16 86.52 93.24 90.74 90.16
BFloat16 89.29 86.48 85.43 87.06
FP8m4e4 24.17 19.64 13.62 19.14
FP8m3e5 26.83 20.17 12.17 19.72

V. TUNABLE FLOATING-POINT UNITS

Hardware support for floating-point arithmetic is normally
more expensive than support for fixed-point. However, if the
extra costs are not in excess, floating-point may be a good
trade-off for flexibility and to adapt the best format to different
parts of the algorithm.

For example, we evaluated the implementation in a 45 nm
CMOS library of standard cells of a fixed-point 32x32-bit
multiplier (FXP-32), similar to the multiplier in the ADI
SHARC DSP [15], and the implementation of a binary32
multiplier (FP32-mul). The results show that the FP32-mul
is 15% slower than the FXP-32 multiplier, due to the extra
latency for normalization and rounding. However, the area of
the FP32-mul is about 30% smaller than the FXP-32, and also
the FP32-mul power consumption is reduced by about one
third.

Next, we implement a TFP32 and a TFP16 unit to estimate
the power dissipation to play music in the different TFP
formats. The units are implemented in a 45 nm CMOS library
of standard cells by using commercial synthesis tools.

A. TFP32 Unit

The unit to process TFP32 formats is composed of:
• a TFP32 multiplier, similar to the one described in [3];
• a TFP32 add/subtract unit, similar to the one in [16].

Both sub-units are pipelined into two stages at a clock rate of
667MHz (Tclk=1.5 ns, latency is 3 ns). The implementation
metrics are given in Table IV.

B. TFP16 Unit

The unit to process TFP16 formats is composed of:
• a TFP16 multiply/divide unit [9];
• a TFP16 add/subtract unit.
As for the case of TFP32, both sub-units are 2-stage

pipelined, and the metrics are given in Table IV.

C. Power Estimate

The power dissipation is estimated by simulating the IIR
filtering application, based on the trace-generated VHDL pat-
terns of Sec. IV-B, for the different formats in the TFP32 and
TFP16 units. The results of the average power dissiapation
(Pave at 100 MHz), together with the average errors, εave of
Table II, are reported in Table V and depicted in Fig. 5.



TABLE IV
HARDWARE IMPLEMENTATION OF TFP UNITS.

Units stages Tclk Area
[ns] unit? total? ratio

TFP32 ADD 2 1.5 6,080 16,330 1.00MUL 2 10,250

TFP16 ADD 2 1.5 1,960 5,980 0.37MUL/DIV 2 4,020

?Area is given in [µm2]. Area NAND-2 ' 1.06µm2.

TABLE V
AVERAGE POWER DISSIPATION FOR DIFFERENT TFP FORMATS AND UNITS.

TFP32 Unit

Format m e εave
Pave

[mW ] Ratio

binary32 24 8 – 0.999 1.00
PXR24 16 8 < 2−20 0.754 0.75
binary16 11 5 < 2−15 0.613 0.61
BFloat16 8 8 < 2−12 0.514 0.51

FP8 formats 4 4 < 2−8 0.390 0.39
3 5 < 2−8 0.382 0.38

TFP16 Unit

Format m e εave
Pave

[mW ] Ratio?

binary16 11 5 < 2−15 0.434 0.71
BFloat16 8 8 < 2−12 0.368 0.72

? Ratio TFP16/TFP32 for same format.

The results show that, if the distortion is tolerable (as in
the case of 16-bit formats), the power savings are sizable
compared to binary32. Moreover, by resorting to the smaller-
datapath TFP16 unit, the power is further reduced, without any
error penalty, by about 30% with respect to the TFP32 unit.

VI. CONCLUSIONS

In this work, we present an analysis on how the floating-
point representation of signals can impact the performance of
audio systems in terms of harmonic distortion, error rates, and
energy efficiency.

The combination of analytical results and psychoacoustic
tests carried out on audio samples indicate that FP 16-bit for-
mats are particularly attractive for audio applications because
they offer the best distortion-energy efficiency trade-off.

Moreover, the TFP16 unit is about 30% more power efficient
than the TFP32 unit when executing operations on 16-bit
formats.

The 32/24-bit formats, although the error is lower, do
not offer better audio quality than 16-bit formats, and they
consume significantly more power.

In contrast, 8-bit storage formats result in low quality audio
and they seem not suitable for high quality audio.
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[13] M. Schoeffler, F.-R. Stöter, B. Edler, and J. Herre, “Towards the next
generation of web-based experiments: A case study assessing basic audio
quality following the ITU-R recommendation BS. 1534 (MUSHRA),”
in 1st Web Audio Conference, 2015, pp. 1–6.

[14] R. La Cesa. (2023) “Tunable Floating Point (TFP) representation
webMUSHRA test”. Electronic Appendix. [Online]. Available: https:
//mushra.inglacesa.it/

[15] Analog Devices Inc. SHARC Audio Processors/SoCs.
[Online]. Available: https://www.analog.com/en/product-category/
sharc-audio-processors-socs.html

[16] A. Nannarelli, “Tunable Floating-Point Adder,” IEEE Transactions on
Computers, vol. 68, no. 10, pp. 1553–1560, Oct. 2019.

https://www.analog. com/ en/technical-articles/relationship- data-word-size-dynamic-range.html
https://www.analog. com/ en/technical-articles/relationship- data-word-size-dynamic-range.html
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://digitalassets.tesla.com/tesla-contents/image/upload/tesla-dojo-technology
https://digitalassets.tesla.com/tesla-contents/image/upload/tesla-dojo-technology
https://www.mathworks.com/help/signal/ref/thd.html
https://mushra.inglacesa.it/
https://mushra.inglacesa.it/
https://www.analog.com/en/product-category/sharc-audio-processors-socs.html
https://www.analog.com/en/product-category/sharc-audio-processors-socs.html

	Introduction
	Binary Floating-Point Formats
	Tunable Floating-Point
	The Experiments
	Total Harmonic Distortion (THD)
	Audio Track Played through an IIR Filter
	Psychoacoustics Tests for Several Audio Tracks

	Tunable Floating-Point Units
	TFP32 Unit
	TFP16 Unit
	Power Estimate

	Conclusions
	References

