

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 09, 2024

Decomposing the Verification of Interlocking Systems

Haxthausen, Anne E.; Fantechi, Alessandro; Gori, Gloria

Published in:
Applicable Formal Methods for Safe Industrial Products

Link to article, DOI:
10.1007/978-3-031-40132-9_7

Publication date:
2023

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Haxthausen, A. E., Fantechi, A., & Gori, G. (2023). Decomposing the Verification of Interlocking Systems. In
Applicable Formal Methods for Safe Industrial Products (pp. 96-113). Springer. https://doi.org/10.1007/978-3-
031-40132-9_7

https://doi.org/10.1007/978-3-031-40132-9_7
https://orbit.dtu.dk/en/publications/3580e18d-ba4f-48bf-b765-ad0073e5d9d7
https://doi.org/10.1007/978-3-031-40132-9_7
https://doi.org/10.1007/978-3-031-40132-9_7

Decomposing the Veri�cation of Interlocking

Systems

Anne E. Haxthausen1[0000−0001−7349−8872], Alessandro
Fantechi2[0000−0002−4648−4667], and Gloria Gori2[0000−0002−8482−2612]

1 DTU Compute, Technical University of Denmark, Lyngby, Denmark
aeha@dtu.dk

2 University of Florence, Firenze, Italy
{alessandro.fantechi,gloria.gori}@unifi.it

Abstract. This paper considers model checking the safety for mem-
bers of a product line of railway interlocking systems, where an actual
interlocking system is modelled as an instance of a generic model con�g-
ured over the network under its control. For models over large networks
it is a well-known problem that model checking may fail due to state
space explosion. The RobustRailS tools that combine inductive reason-
ing with SMT solving using Jan Peleska's powerful RT-Tester tool suite
have pushed considerably the limits of the size of networks that can be
handled. To further push these limits, we have proposed a compositional
method that can be combined with RobustRailS to reduce the size of net-
works to be model checked: the idea is to divide the network of the system
to be veri�ed into two sub-networks and then model check the model in-
stances for these sub-networks instead of that for the full network. In
this paper we propose a strategy for applying such network divisions re-
peatedly to achieve a �ne granularity decomposition of a given network
into a number of small sub-networks. Under certain conditions, these
sub-networks all belong to a library of pre-veri�ed elementary networks,
so model checking of the sub-networks is no longer needed.

Keywords: Formal Methods · Model Checking · Compositional Veri�cation ·

Interlocking Systems.

1 Introduction

Formal methods have successfully been applied to development and veri�cation
of railway systems [3, 6, 5]. In particular, it has been popular to use model check-
ing techniques for formal veri�cation of interlocking systems (controlling train
movements inside a railway network) as these are fully automated. Interlocking
systems are con�gured with application data that re�ect the elements and topol-
ogy of the railway network layout. Hence, formal veri�cation aims to verify both
the generic application with its algorithms for safe allocation of routes to trains,
and the speci�c application produced by the con�guration with application data
for the network under control.

2 A. E. Haxthausen et al.

Model checking is subject to state space explosion, which limits scalability
of the approach so that automatic veri�cation of interlocking systems for large
networks is demanding in terms of computing resources, and may even fail [4].

Abstraction techniques have typically been adopted to limit state space ex-
plosion in model checking: abstraction should preserve the desired properties,
hence the adopted abstraction technique should be de�ned speci�cally for the
kind of system and properties under examination. For interlocking systems, a
convenient abstraction can be based on the locality principle: properties con-
cerning the allocation of a route to a train are typically not in�uenced by train
movements over networks elements that are distant from, and not interfering
with, the considered route. Locality of a safety property can be used to limit the
state space by abstracting away such �distant movements�. In [26] this principle
supports domain-oriented optimisation of the variable ordering in a BDD-based
veri�cation; it also enables property-directed model slicing, ([4, 11, 10]), in which
veri�cation is performed only over the portion of the model that concerns the
property of interest (cone of in�uence), allowing for an e�cient veri�cation of
a property, but requiring to perform slicing and veri�cation for every property
(plus checking that that slicing preserves the related property).

It has also been suggested to use bounded model checking to perform k-

induction proofs of safety properties expressed as state invariants to avoid ex-
ploring the whole state space. In the RobustRailS veri�cation tools [25] for inter-
locking systems this technique was implemented using the powerful SMT-based
bounded model checker of Jan Peleska's RT-Tester tool3; this made it possible
to considerably push the bounds of the size of networks that can be veri�ed
without state space explosion [25].

Locality has also enabled our proposal of a compositional approach for ad-
dressing veri�cation for very large networks: the idea is to divide the network
to be veri�ed into two (or more) sub-networks and then model check the model
instances for these sub-networks instead of model checking the model instance
of the full network [8, 15, 16, 2]. For model checking, we use the RobustRailS ver-
i�cation tools. The soundness result for compositional safety veri�cation given
in [8] guarantees that, when properly cutting a network, proving safety for the
sub-networks su�ces to prove safety for the full network. In this way, the task of
proving safety for a large network can be reduced to the task of verifying safety
for sub-networks of a size manageable by the model checker.

The idea of compositional veri�cation is also shared by the approach de-
scribed in [12�14]. This approach that is based on the criteria of functional
decomposition of interlocking systems de�ned by the Belgian railways in order
to deal with the control of large networks by dividing the network into sub-
networks, each possibly controlled by separate interlocking systems. A compari-
son of this approach with ours is presented in [1]. Indeed, it appears that decom-
position of a network in this approach is grounded on pragmatic domain-related
criteria, while our approach is more general. Furthermore, this approach uses an

3 https://www.verified.de/products/rt-tester/

Decomposing the Veri�cation of Interlocking Systems 3

assume-guarantee approach for veri�cation which requires not only veri�cation
for the sub-networks as in our approach, but also veri�cation of contracts.

The question of where to divide a network during compositional veri�cation
has triggered the contribution of this paper: an iterative decomposition strategy
to achieve a �ne granularity decomposition of a network into a number of small
sub-networks, that under certain conditions belong to a library of pre-veri�ed
elementary networks. The soundness result for compositional safety veri�cation
guarantees that safety for the full network is given by the pre-veri�ed safety of
sub-networks. Therefore, to verify a network, it is in principle no more needed to
run a model checker, independently of the size of the network, if speci�c network
conditions are met.

The paper is structured as follows: First, in Sections 2 and 3, short descrip-
tions of the RT-Tester tool suite and of the RobustRailS veri�cation method,
built on top of RT-Tester, are given. Then, in Sect. 4, our compositional method
using the RobustRailS tools is presented and a strategy for performing decom-
position is discussed. The latter is the main, novel contribution of this paper.
Section 5 draws some conclusions and ideas for future work.

2 The RT-Tester Tool Suite

In 1998 Jan Peleska and Cornelia Zahlten founded the company Veri�ed Sys-

tems International GmbH, and Jan has been head of Research & Development
in the company since then. The company provides tools and services in the �eld
of safety-critical system development, veri�cation, validation and test, and has a
wide variety of customers including Siemens, Airbus and its suppliers. Veri�ed's
�agship product is RT-Tester4, a very comprehensive model-based test automa-
tion tool suite for automatic test generation, test execution and real-time test
evaluation. RT-Tester can not only be used for testing (see e.g. [19]), but also
for bounded model checking (BMC) of which we will give an example in next
section. RT-Tester's automation capabilities are discussed in [18], and special
test case generation strategies implemented in RT-Tester are described in [9].
In 2015, the company was awarded the runner-up trophy of the EU Innova-
tion Radar Prize due to the special testing strategy that was developed by Jan
Peleska and Wen-ling Huang.

3 The RobustRailS Veri�cation Method and Tools

In the RobustRailS research project5 that was accompanying the Danish re-
signalling programme on a scienti�c level in 2012�2017, a formal method with
tools support for automated, formal veri�cation of railway interlocking systems
was developed [25, 23, 24, 22] by Linh Hong Vu under supervision of Jan Peleska
and Anne Haxthausen. This section gives a short description of the RobustRailS
method and tools.
4 https://www.verified.de/products/rt-tester/
5 http://robustrails.man.dtu.dk

4 A. E. Haxthausen et al.

S: l #�,G<aRnN0

`�CIs�w M3jsRaGcY � a�CIs�w N3jsRaG CN 2i+b H3q3I l ,RNcCcjc R8 � NnL$3a R8
ja�,GcC03 3I3L3Njc R8 0C{3a3Nj jwU3cȽ- V�W ICN3�a c3,jCRNc. V$W URCNjc. �N0 V,W L�aG3a
$R�a0cY

7C<na3 lYl c@Rsc �N 3u�LUI3 I�wRnj R8 � a�CIs�w N3jsRaG @�qCN< cCu ICN3�a c3,A
jCRNc V#Ry-iRy-iRk-iR9-iky-#R9W. jsR URCNjc ViRR-iRjW. �N0 3C<@j L�aG3a $R�a0c
VK#RyXXK#kRWY

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

7C<na3 lYl- � a�CIs�w N3jsRaG I�wRnj 3u�LUI3

/C{3a3Nj jwU3c R8 ja�,GcC03 3I3L3Njc �a3 03c,aC$30 CN 03j�CI CN j@3 8RIIRsCN<Y

V�W HCN3�a c3,jCRNcY � ICN3�a c3,jCRN Cc � c3,jCRN Vja�,G c3<L3NjW sCj@ nU jR jsR
N3C<@$Rnac- RN3 CN j@3 nU 3N0. �N0 RN3 CN j@3 0RsN 3N0Y 7Ra 3u�LUI3. j@3
ICN3�a c3,jCRN iRk CN 7C<na3 lYl @�c iRj �N0 iRR �c N3C<@$Rnac �j Cjc nU 3N0 �N0
0RsN 3N0. a3cU3,jCq3IwY BN /�NCc@ a�CIs�wȕc j3aLCNRIR<w. nU �N0 0RsN 03NRj3
j@3 0Ca3,jCRNc CN s@C,@ j@3 0Ccj�N,3 8aRL � a383a3N,3 IR,�jCRN Cc CN,a3�cCN< �N0
03,a3�cCN<. a3cU3,jCq3IwY i@3 a383a3N,3 IR,�jCRN Cc j@3 c�L3 8Ra $Rj@ nU �N0 0RsN.
3Y<Y. �N 3N0 R8 � a�CIs�w ICN3Y 7Ra cCLUIC,Cjw. CN j@3 3u�LUI3c �N0 ~<na3c CN j@3
a3cj R8 j@Cc 0Ccc3aj�jCRN. j@3 nU V0RsNW 0Ca3,jCRN Cc �ccnL30 jR $3 j@3 I38jAjRAaC<@j
VaC<@jAjRAI38jW 0Ca3,jCRN. C8 Cj Cc NRj CN0C,�j30 Rj@3asCc3Y

V$W TRCNjcY � URCNj ,�N @�q3 nU jR j@a33 N3C<@$Rnac- RN3 �j j@3 cj3L. RN3 �j j@3 UInc
3N0. �N0 RN3 �j j@3 LCNnc 3N0. 3Y<Y. URCNj iRR CN 7C<na3 lYl @�c iRy. iRk. �N0 iky
�c N3C<@$Rnac �j Cjc cj3L. UInc. �N0 LCNnc 3N0c. a3cU3,jCq3IwY i@3 3N0c R8 � URCNj
�a3 N�L30 cR j@�j j@3 cj3L �N0 UInc 3N0c 8RaL j@3 cja�C<@j VL�CNW U�j@ j@aRn<@
j@3 URCNj. �N0 j@3 cj3L �N0LCNnc 3N0c 8RaL j@3 $a�N,@CN< VcC0CN<W U�j@ j@aRn<@
j@3 URCNjY � URCNj ,�N $3 csCj,@30 $3js33N jsR URcCjCRNc- THmb �N0 KBMmbY
r@3N � URCNj Cc CN j@3 THmb VKBMmbW URcCjCRN. Cjc cj3L 3N0 Cc ,RNN3,j30 jR Cjc
UInc VLCNncW 3N0. j@nc ja�|, ,�N anN 8aRL Cjc cj3L 3N0 jR Cjc UInc VLCNncW 3N0 �N0
qC,3 q3ac�Y Bj Cc NRj URccC$I3 8Ra ja�|, jR anN 8aRL UInc 3N0 jRLCNnc 3N0 �N0 qC,3
q3ac�Y
HCN3�a c3,jCRNc �N0 URCNjc �a3 ,RII3,jCq3Iw ,�II30 Vja�CN 03j3,jCRNW c3,jCRNc. �c j@3w
�a3 UaRqC030 sCj@ ja�CN 03j3,jCRN 3\nCUL3Njc nc30 $w j@3 CNj3aIR,GCN< cwcj3L jR
03j3,j j@3 Ua3c3N,3 R8 ja�CNc RN j@3 c3,jCRNcY MRj3 j@�j c3,jCRNc �a3 $C0Ca3,jCRN�I
$w 038�nIj. CY3Y. ja�CNc �a3 �IIRs30 jR ja�q3I CN $Rj@ 0Ca3,jCRNc VNRj �j j@3 c�L3

Ƚ?3a3 s3 RNIw c@Rs jwU3c j@�j �a3 a3I3q�Nj jR j@3 sRaG Ua3c3Nj30 CN j@Cc 0Ccc3aj�jCRNY 7naj@3aLRa3.
8Ra cCLUIC,Cjw. s3 0R NRj ,RNcC03a I3q3I ,aRccCN<c. 03a�CI3ac. LRq3�$I3 $aC0<3cY

Fig. 1: A railway network layout example. From [23].

The considered interlocking systems. An interlocking system is a signalling
system component that is responsible for safe routing of trains through (a frac-
tion of) a railway network under its control. An interlocking system is tradition-
ally speci�ed by a layout of the railway network that it controls and a so-called
interlocking table that speci�es allowed routes through the network and condi-
tions for these routes to be exclusively reserved by a train. In Fig. 1 an example
of a railway network layout for a small station is given. As it can be seen it
consists of (1) train detection sections that are either linear sections (like t10)
or switchable points (like t11) having a stem side and two branching sides (e.g.
t11 has its stem next to t10 and its branches next to t20 and t12, respectively)
and (2) markerboards6 (like mb10) placed at the ends of linear sections and only
visible in one direction (e.g. mb10 is visible in direction UP). As a general rule for
the networks considered in this paper, there is at most one markerboard in each
end of a linear section and it can only be seen when leaving the section. Fur-
thermore, at the borders of a network, there are always two linear sections (like
b10 and t10) with a signal con�guration having an entry signal on the border
section and an exit signal on the section next to the border section. Furthermore,
networks are assumed to be loop-free7.

The tools and method. The RobustRailS tools are centred around two inter-
related DSLs (domain-speci�c languages):

� IDL: a DSL [23] for specifying (1) a generic, behavioural, formal model of a
product line of interlocking systems and their environment and (2) generic
safety properties in the form of state invariants, and

� ICL: a DSL [22] for specifying con�guration data (a railway network layout
and an interlocking table) that can be used to instantiate generic models
and properties.

The RobustRailS tools can be used to formally verify the design of an inter-
locking system in the following steps, summarised in Fig. 2:

6 We are considering modern ERTMS level 2 based interlocking systems for which
there are no physical signals. They are replaced by markerboards, and in the control
system there are virtual signals associated with the markerboards. Throughout the
paper we use the term signal as a synonym for markerboard.

7 A network is loop-free, if there are no physically possible path through the network
containing the same section more than once.

Decomposing the Veri�cation of Interlocking Systems 5

(2) ICL specification
of configuration data

Network

generator

Interlocking
Table

(3) static
checker

Well-formed?

(4) model
instantiator

(4) property
instantiator

Generic
Behavioural

Model

(1) IDL specification

Generic
Properties

(1) IDL specification

Behavioural
Model

Properties

(5) model
checker

×
Counterexamples

X

Fig. 2: The RobustRailS tool suite. From [23].

1. A generic model and generic properties are speci�ed in IDL.
2. A railway network layout and its corresponding interlocking table are spec-

i�ed in ICL in the following order: �rst the network layout, and then the
interlocking table. The creation of the latter is either done manually or gen-
erated automatically from the network layout.

3. A static checker veri�es whether the con�guration data is statically well-
formed [7] according to the static semantics [24] of ICL.

4. Generators instantiate a generic behavioural model and generic safety prop-
erties with the well-formed con�guration data to generate a model and safety
properties for the network and routes described in the con�guration data.

5. The generated model instance is then checked against the generated proper-
ties by a bounded model checker performing a k-induction proof.

The static checking in step (3) is intended to catch errors in the network layout
and interlocking table, while the model checking in step (5) is intended to catch
safety violations in the control algorithm of the instantiated model.

The tool chain associated with the method has been implemented using Jan
Peleska's RT-Tester framework [18, 21]. The bounded model checker in RT-Tester
uses the SONOLAR SMT solver [20] to compute counterexamples showing the
violations of the base case or induction step.

Applications. The RobustRailS method and tools have been used to success-
fully verify the safety of several interlocking systems. The �rst application was
the Danish interlocking system for EDL, the �rst regional line in Denmark com-
missioned in the Danish Signalling Programme. First, the IDL language was

6 A. E. Haxthausen et al.

used to specify a generic model for the novel family of Danish interlocking sys-
tems and generic safety conditions expressing that there are no train collisions

(i.e. there must at most be one train on each section at the same time) and no

derailments (i.e. when a train traverses a point, the point must be switched in
the right direction for the train to pass). Then the network for the complete
EDL line consisting of eight stations of various complexity was speci�ed in the
ICL language and an interlocking table was automatically generated from this.
Then method steps 3-5 were performed. The veri�cation metrics can be found
in Table 1. For more details on this case study, see [25]. Other applications are
mentioned in Sec. 4.2.

This achievement of model checking an interlocking system for such a big
railway network was quite remarkable. A key reason for that was the use of
RT-Tester's SMT based bounded model checker to perform an induction proof.
That pushed considerably the limits of the size of networks for which interlocking
systems can be veri�ed.

4 Compositional Veri�cation

However, networks of very large stations still exceed the model checking capacity.
Therefore, to be able to perform veri�cation for any size of networks, we have
previously [8, 15, 16, 2] suggested to use a compositional veri�cation method on
top of the RobustRailS veri�cation method.

The idea of our compositional method is as follows: Assume given a generic
model and generic safety properties for no collisions and no derailments. To ver-
ify an interlocking system instance for a speci�c network N , divide the network
into two parts (sub-networks) N1 and N2, and then verify the interlocking sys-
tem instances for these two networks using the RobustRailS method and tools.
This division process can be applied repeatedly until all sub-networks are small
enough to be veri�ed.

In Sec. 4.1, we explain the compositional method in more detail, and in
Sec. 4.2 we report on some case studies applying the method. Using our com-
positional method rises the question: which decomposition of a given network
should be made? In Sec. 4.3 we explain an idea for that.

4.1 A Method for Compositional Veri�cation

To introduce the compositional method, we �rst need to de�ne what is a cut of
a network, and how the sub-networks should be generated by the cut.

Cut speci�cations. A single cut is a cut that can be performed between any
two neighbouring, non-border sections t1 and t2 in a network N . An example
of a single cut is shown in Fig. 3. The speci�cation of that single cut is the pair
(t1, t2). To divide a network into two parts, it is not always enough to perform a
single cut, but a cluster cut consisting of several single cuts may be needed. An
example of a cluster cut is shown in Fig. 4. The speci�cation of a cluster cut is

Decomposing the Veri�cation of Interlocking Systems 7

Fig. 3: An example of a single cut. From [8].

t2 t9t8t7

t5

t3b1 b10

t4

t6

Cut 1

Cut 2

Cluster Cut

Fig. 4: An example of a cluster cut. From [8].

the set of speci�cations of each of its single cuts. A cut is legal, if it divides the
network into exactly two parts, no route is cut by more than one single cut, and
no �ank/front protecting elements8 are separated by the cut from the sections
they protect. In this paper we assume that �ank/front protecting is not adopted.

Decomposing a network according to a cut speci�cation. Given a net
N and a legal cut speci�cation, the network is decomposed into two networks as
follows:

� if a single cut is between linear sections t1 and t2, �rst divide the network N
between t1 and t2, obtaining two sub-networks N−1 and N−2, and then add
to N−1 and N−2 at the respective cut a border section and also an entry and
an exit signal at that border, if there were not already signals placed around
the cut. By doing so, two well-formed networks are obtained: N1 and N2.
Figure 5 shows how a network is decomposed into two networks by a single
cut (t1, t2). It can be seen how N1 is obtained from the sub-network N−1

on the left-hand side of the cut by adding a border section b1 and border
signals sentry1 and sexit1 . N2 is obtained in a similar way. When it is clear
from the context, sometimes we also call the resulting networks N1 and N2

sub-networks;
� if a single cut is between a linear section t1 and a point p, the decomposition
is treated as if there was an additional linear section t2 between t1 and p,
and the cut speci�cation was (t1, t2);

� if a single cut is between two points p1 and p2, the decomposition is treated
as if there were two additional linear sections t1 and t2 between p1 and p2,
and the cut speci�cation was (t1, t2).

� if the cut is a cluster cut, the above rules are simultaneously applied to each
of its single cuts.

8 In the end of Sec. 4.3 the notion of �ank protection is explained.

8 A. E. Haxthausen et al.

Fig. 5: An example of a decomposition of a network into two networks. From [8].

A tool that takes a network and a cut speci�cation as arguments and returns
the two networks obtained by decomposing the network according to the cut
speci�cation has been developed [17]. This tool is called the RobustRailS Network

Cutter.

Method steps. Using a legal cut allows to perform compositional veri�cation
in the following steps:

1. Decompose a network N according to a legal cut speci�cation, achieving two
networks N1 and N2.

2. For i = 1, 2, apply the interlocking table generator to Ni, check the resulting
speci�cation by the static checker, and generate a model mi and properties
ϕi from that.

3. For i = 1, 2, verify that mi satis�es ϕi.

In [8] it is proved that this method is sound. This means that in order to prove
safety of the model generated from the whole network, it is su�cient to verify
safety for each of the models generated from the two sub-networks formed by a
legal cut.

4.2 Case Studies

A number of case studies applying the presented compositional veri�cation ap-
proach to di�erent networks with di�erent characteristics and layouts have been
carried out. Table 1 shows the savings in veri�cation time and needed memory
obtained applying the compositional method to non-trivial cases. For each case,

Decomposing the Veri�cation of Interlocking Systems 9

Table 1: Veri�cation statistics for the compositional veri�cation method applied
to some interlocking examples.

Example Linears Points Signals Routes Time (s) Memory (MB)

NFM2017 [16]
Gadstrup 14 3 16 21 62 567
Havdrup 10 2 12 14 19 264
L. Skensved 15 3 16 21 72 616
Køge 58 23 62 75 5170 9243
Herfølge 6 2 10 14 13 210
Tureby 6 2 10 14 11 203
Haslev 10 2 12 14 14 256
Holme-Ol 12 2 16 20 22 352
Compositional 5383 9243
Full EDL 110 39 126 179 14352 22476
Reduction % 72.49% 68.88%

SEFM2017 [2]
Low 28 13 26 56 12895.35 12176.6
High 25 10 24 66 8052.92 9517.9
Compositional 20948.27 12176.6
Full Fismn 49 23 46 124 51770.64 42483.7
Reduction % 59.54% 71.34%

RSSRail22 [1]
LVR7A Left 20 7 31 30 670 2083
LVR7B Right 15 5 23 18 108 846
Compositional 778 2083
Full LVR7 26 12 42 48 2387 5467
Reduction % 67.41% 61.90%

Tramway line

Down 12 5 12 12 81.42 462.8
Middle 9 4 8 12 55.77 392.2
Up 8 3 8 10 22.40 266.7
Compositional 159.59 462.8
Full line 22 12 20 62 28206.00 22762.7
Reduction % 99.43% 97.97%

Flying junction

Each of 4 subnetworks 12 4 12 20 108.47 max 600.2 max

Compositional 369.69 600.2
Full junction 24 16 16 40 55853.76 23587.2
Reduction % 99.34% 97.45%

the statistics are shown �rst for each sub-network, then the global consumption
of time and memory of the compositional approach and its reduction are shown
in comparison with that of a monolithic veri�cation for the full network. The
�rst three examples have been presented at international conferences [1, 2, 16];
in particular the �rst one is the already mentioned EDL line, which has been
decomposed in sub-networks related to each station of the line, among which the
Køge station maintains its own high complexity. The second example is a single
cut of a large network whose layout has been extracted from a portion of the
main Florence station, while the third is a Belgian station on which a cluster cut
has been applied, with the aim to compare the method with the decompositional
approach of [14]. The remaining two have been purposedly de�ned to explore
di�erent layout characteristics: one is inspired by a tramway network, that is,
a single track tramway line with several branches and passing loops; the other

10 A. E. Haxthausen et al.

is a complex �ying junction, that allows grade-separated crossing of two double
track lines, as well as full interconnection among the tracks of the two lines.

The highest savings are obtained when, in the full network, several routes
do not con�ict and therefore can be used concurrently, contributing to the state
space explosion, due to interleaving of concurrent train movements over such
routes: if the cut is made such that the number of independent routes inside
a sub-network is low, the concurrency degree is dramatically decreased. This
is the case of the tramway line example, divided into three sub-networks, and
of the �ying junction example, where the cut produces four almost isomorphic
sub-networks of far lower complexity.

A deeper study on the correlation between full network topology, cut strategy,
and veri�cation savings by decomposition is planned as future work.

4.3 A Decomposition Strategy

Using the presented compositional veri�cation method leaves the question: which
cuts should be made in order to decompose a network into small networks that
are fast to verify? In this section we will exploit the idea of providing a library
of pre-veri�ed, elementary networks and a strategy for dividing a given network
into sub-networks of which as many as possible are elementary.

Elementary networks. As elementary networks we allow one of the network
patterns shown in Figure 6: an elementary network can be a sequence of linear
sections having only the required signals at the two borders (see a) and b)). It can
alternatively (see c) and d)) be a network containing just one point surrounded
by at least two linear sections on each of its three sides. There are only the
required signals at the three borders and optionally zero, one, two or three of
the signals shown directly facing the point. All patterns admit an unbounded
number of linear elements at speci�c positions. In c) there is only one linear
section between the the point and each of the three border sections, while in d),
there are two (or more) linear sections between the point and the border section
on the stem side. In a similar way it is allowed to have two (or more) linear
sections between the point and the border sections on the branching sides of the
point.

Model instances of the networks of Fig. 6 have been model checked to be
safe, for all the admitted combinations of presence of markerboards, but without
the presence of the admitted extra linear sections. Moreover, a result from [8]
allows us to add an unbounded number of linear sections at the indicated speci�c
positions without impacting safety. Hence, we can conclude that model instances

for all elementary networks are safe.

Decomposing a network. Given a network, now the idea is to search for
places to make legal cuts, one by one, such that the network can be divided into
parts that are either elementary networks or non decomposable networks (that
is, they cannot be cut without breaking the rules for legal cuts). In the ideal

Decomposing the Veri�cation of Interlocking Systems 11

Fig. 6: Patterns for elementary networks.

case that the decomposition leads to networks that are all elementary, no model
checking is needed.

As an example, consider the network shown in Fig. 7. By making the three
cuts (two single cuts (083, PM02U) and (PM02U,PM03U) and the cluster cut
{(802, PM04U), (801, PM04U)}) shown by green lines, one by one, one achieves
the four elementary networks N1

1 , N
2
1 , N

3
1 , and N3

2 shown in Fig. 8.

Fig. 7: Cuts shown on a network (LVR1).

In practice, a possible process of �nding such cuts for a loop-free network N
is as follows, provided that there are no �ank/front protecting elements:

1. Start searching from the neighbour (linear section) l of some border section
b of N . The search direction is from l towards the next adjacent element in
the direction opposite to b.

2. Follow the sections from l one by one as long as they are linear and do not
have any signals attached until one of the following happens:
(a) If a linear section having an exit signal is found, we have reached a border

and no cut should be made, as the considered network is an elementary
linear network.

12 A. E. Haxthausen et al.

(a) Networks N1
1+N1

2 resulting from decomposing the LVR1 network by cut1.

(b) Networks N2
1+N2

2 resulting from decomposing N1
2 by cut2.

(c) Networks N3
1+N3

2 resulting from decomposing N2
2 by cut3.

Fig. 8: Decomposition of the LVR1 network in three steps according to the three
cuts shown in Fig. 7. The four resulting green sub-networks N1

1 , N
2
1 , N

3
1 , and

N3
2 are elementary.

(b) If two consecutive, linear sections l1 and l2 are found, and at least one of
them has a signal facing the other, then a decomposition using the cut
(l1, l2) should be made. By this the generated sub-network containing
l1 will by construction be an elementary linear network. The search for
further cuts should then continue from l2 in the other sub-network.

(c) If a point p is found, then we should continue to search for cuts on
the two other sides of p. This search depends on from which side p was
found: the stem or one of the branching sides. In both cases the search
also depends on whether the two other sides are connected or not.9

i. If coming from the stem of p, and the two branching sides are not
connected, then we should search for cuts in each of the two branches.
The search here is similar to the search starting from a border, ex-
cept that if a second point is found, a single cut must be made just
before that point. The two searches may hence lead to totally zero,

9 By connected we mean that by navigating the graph of the not yet visited part of
the network starting from the two sides we eventually reach a common point.

Decomposing the Veri�cation of Interlocking Systems 13

one or two single cuts, dividing the network into (1) an elementary
point network containing p and (2) zero, one or two additional sub-
networks in which a search for cuts must be performed. For instance,
when searching for a cut in network N1

2 in Fig. 8 (a), starting from
PM02U_ex_stem, a single cut, cut2 : (PM02U,PM03U), will be
found in the lower branch, while no cuts are found in the upper
branch (as a border is met before any further points or non-border
signals), so it results in two sub-networks.

ii. If coming from the stem, and the two branching sides are connected,
then a similar search is made in each of the branches. In this case
two single cuts (one in each branch) will be found and these must be
combined in a cluster cut (in order to divide the network into two
parts) leading to an elementary point network containing p and one
additional sub-network to which search for cuts must be recursively
applied. That is e.g. the case when searching for a cut (cut3) in
network N2

2 in Fig. 8 (b), starting from PM03U_ex_stem.
iii. If coming from a branching side of p, and the stem and the other

branching side are not connected, searches for cuts in the other
branch and on the stem side must be performed in a similar way
to case i) above. That happens e.g. when searching for the �rst cut
in Fig. 7 starting from linear section 533.

iv. If coming from a branching side of p, and the stem and the other
branching side are connected, the search to be performed is similar
to case ii), except that in some cases it is not possible to �nd a legal
cluster cut: that happens if a potential cluster cut divides a route
into three parts10, as shown in Fig. 9, where the cluster cut shown
by a red, dotted line is found when searching from L1 on the upper
branching side of point P1. In such a case we should then start a
search from another border to see if a cut can be found from there. It
is our conjecture that it is always possible to �nd a border from which
it is possible to �nd a legal cluster cut through the connected sub-
component, provided that the network is loop-free. For instance, in
Fig. 9, the legal cluster cut {(P2, P1), (L24, P4)} shown by a dashed,
green line can be found when searching from L2. Figure 10 gives an
example of a network that cannot be decomposed into elementary
networks as the network is not loop-free.

In railway interlocking systems, speci�c additional mechanisms may be in-
cluded to enforce safety also in the case in which trains do not strictly respect
signals, due to a driver's misbehaviour or accidental inability to brake. In the
Flank Protection mechanism points and signals not belonging to the route are
properly set in order to avoid hostile train movements into the route at an in-
cident point. In the example of Fig. 11 locking of route r requires the point t20
to be in the straight position in order to protect the �ank of route r by a train

10 Note that when coming from the stem, we do not have such a problem, as a route
cannot pass through a point via its two branches.

14 A. E. Haxthausen et al.

Fig. 9: The cluster cut {(P1, P2), (L13, P3)} shown by a red, dotted line is illegal
as it divides the route shown as a blue, solid arrow in three parts. The cluster
cut {(P2, P1), (L24, P4)} shown by a green, dashed line is legal.

Fig. 10: An example of a non-loop-free, non-decomposable network.

accidentally missing the closed mb20 signal. If both point t20 and route r lie in
the same sub-network when a cut is operated, the extra condition on the point
position has no impact on compositionality: but this is not the case for the drawn
cut, which separates the protecting and the protected points. As discussed in [8],
in this case compositional veri�cation results do not fully hold, so we consider
such a cut as not legal: both elements should instead be in the same sub-network,
which is therefore not elementary, since it contains two points. In the presen-
tation of our approach, we have assumed that there is no �ank protection. If
�ank protection was adopted, legal cuts would not be allowed to separate the
protecting and the protected points. However, then we would no longer be able
to decompose a loop-free network into networks that are all elementary.

5 Conclusions and Future Work

In this paper we have presented a compositional method for model checking
the safety of interlocking systems. The idea of the compositional method is to
divide the network under control into some sub-networks and then model check
the model instances for these networks instead of model checking the model
instance of the full network. The paper suggests a novel strategy for decomposing
a network into a number of small sub-networks that, under certain conditions,
all belong to a library of pre-veri�ed elementary networks, so no model checking
is actually needed for the speci�c application.

Decomposing the Veri�cation of Interlocking Systems 15

Fig. 11: Cut through a �ank protection.

This strategy will be the subject of further work, including its implementation
in a tool for the automatic decomposition of a network: this will be accompa-
nied by a deeper assessment of its soundness and completeness, as well as of its
tractability, and on the other end will enable experimenting it on several com-
plex layout examples. Also, this study will address a consolidated de�nition of
the conditions under which the conjecture of full decomposition in elementary
networks holds, and the impact of �ank protection or other analogous protection
mechanisms on the applicability of the decomposition algorithm.

Dedication and Acknowledgements

We dedicate this paper to Jan Peleska who we admire so much for his brilliant
research in applicable formal methods for safe industrial products. The �rst
author (Anne Haxthausen) would like to express her gratitude to Jan for more
than 25 years of the most enjoyable, inspiring, and fruitful collaboration.

The RobustRailS tools used in the work presented in this paper were de-
veloped by her PhD student, Linh H. Vu, under co-supervision by Jan Peleska
who came with brilliant ideas and generously provided the possibility of using
RT-Tester as backend. All three authors are very indebted to Peleska and Vu.
Furthermore, the authors would like to thank Hugo D. Macedo, who contributed
to the initial work on the compositional method used in this paper, and to thank
Anna Nam Anh Nguyen and Ole Eilgaard for their network cutter tool which
we have also used in this paper.

References

1. Fantechi, A., Gori, G., Haxthausen, A.E., Limbrée, C.: Compositional veri�ca-
tion of railway interlockings: comparison of two methods. In: Dutilleul, S.C., Hax-
thausen, A.E., Lecomte, T. (eds.) Reliability, Safety, and Security of Railway Sys-
tems. Modelling, Analysis, Veri�cation, and Certi�cation: Fifth International Con-
ference, RSSRail 2022, Paris, France, June 1-2, 2022, Proceedings. Lecture Notes
in Computer Science, vol. 13294, pp. 3�19. Springer Nature Switzerland AG (2022)

16 A. E. Haxthausen et al.

2. Fantechi, A., Haxthausen, A.E., Macedo, H.D.: Compositional veri�cation of in-
terlocking systems for large stations. In: Cimatti, A., Sirjani, M. (eds.) Software
Engineering and Formal Methods - 15th International Conference on Software En-
gineering and Formal Methods, Trento, Italy, September 4-8, 2017. Lecture Notes
in Computer Science, vol. 10469, pp. 236�252. Springer (2017)

3. Ferrari, A., ter Beek, M.H.: Formal methods in railways: A systematic mapping
study. ACM Comput. Surv. 55(4), 1�37 (nov 2022)

4. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model Checking Interlocking
Control Tables. In: FORMS/FORMAT 2010 � Formal Methods for Automation
and Safety in Railway and Automotive Systems. pp. 107�115. Springer (2010)

5. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H.: Systematic evaluation and
usability analysis of formal methods tools for railway signaling system design. IEEE
Transactions on Software Engineering 48(11), 4675�4691 (2022)

6. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing for-
mal tools for system design: A judgment study. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. pp. 62�74. ICSE '20, As-
sociation for Computing Machinery, New York, NY, USA (2020)

7. Haxthausen, A.E., Østergaard, P.H.: On the use of static checking in the veri-
�cation of interlocking systems. In: Margaria, T., Ste�en, B. (eds.) Leveraging
Applications of Formal Methods, Veri�cation and Validation: Discussion, Dissem-
ination, Applications, Part II. Lectures Notes in Computer Science, vol. 9953, pp.
266�278. Springer (2016)

8. Haxthausen, A.E., Fantechi, A.: Compositional veri�cation of railway interlocking
systems. Form. Asp. Comput. 35(1) (2023). https://doi.org/10.1145/3549736

9. Huang, W., Peleska, J.: Complete model-based equivalence class testing. Interna-
tional Journal on Software Tools for Technology Transfer 18(3), 265�383 (2016)

10. James, P., Möller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
Decomposing scheme plans to manage veri�cation complexity. In: Schnieder, E.,
Tarnai, G. (eds.) FORMS/FORMAT 2014 - 10th Symposium on Formal Meth-
ods for Automation and Safety in Railway and Automotive Systems. pp. 210�220.
Institute for Tra�c Safety and Automation Engineering, Technische Univ. Braun-
schweig (2014)

11. James, P., Lawrence, A., Möller, F., Roggenbach, M., Seisenberger, M., Setzer,
A., Kanso, K., Chadwick, S.: Veri�cation of Solid State Interlocking Programs.
In: Counsell, S., Núñez, M. (eds.) Software Engineering and Formal Methods -
SEFM 2013 Collocated Workshops. Revised Selected Papers. vol. 8368, pp. 253�
268. Springer (2014)

12. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Veri�cation of Railway In-
terlocking - Compositional Approach with OCRA. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) Reliability, Safety, and Security of Railway Systems. Mod-
elling, Analysis, Veri�cation, and Certi�cation: Second International Conference,
RSSRail 2016, Paris, France, June 28-30, 2016, Proceedings. Lecture Notes in Com-
puter Science, vol. 9707, pp. 134�149. Springer Cham. (2016)

13. Limbrée, C., Pecheur, C.: A Framework for the Formal Veri�cation of Networks
of Railway Interlockings - Application to the Belgian Railway. Electronic Commu-
nication of the European Association for the Study Science and Technology 76

(2018)

14. Limbrée, C.: Formal veri�cation of railway interlocking systems. Ph.D. thesis, UCL
Louvain (2019)

Decomposing the Veri�cation of Interlocking Systems 17

15. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional veri�cation of multi-
station interlocking systems. In: Margaria, T., Ste�en, B. (eds.) Leveraging Appli-
cations of Formal Methods, Veri�cation and Validation, Part II. Lecture Notes in
Computer Science, vol. 9953, pp. 279�293. Springer International Publishing AG
(2016)

16. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional Model Checking
of Interlocking Systems for Lines with Multiple Stations. In: Barrett, C., Davies,
M., Kahsai, T. (eds.) NASA Formal Methods: 9th International Symposium, NFM
2017, Proceedings. pp. 146�162. Springer International Publishing (2017)

17. Nguyen, A.N.A., Eilgaard, O.B.: Development and Use of a Tool Supporting Com-
positional Veri�cation of Railway Interlocking Systems. Master's thesis, Technical
University of Denmark, DTU Compute (2020)

18. Peleska, J.: Industrial-Strength Model-Based Testing - State of the Art and Current
Challenges. In: Petrenko, A.K., Schlinglo�, H. (eds.) 8thWorkshop on Model-Based
Testing, Rome, Italy. vol. 111, pp. 3�28. Open Publishing Association (2013)

19. Peleska, J., Honisch, A., Lapschies, F., Löding, H., Schmid, H., Smuda, P., Vorobev,
E., Zahlten, C.: A real-world benchmark model for testing concurrent real-time sys-
tems in the automotive domain. In: Wol�, B., Zaidi, F. (eds.) Testing Software and
Systems. Proceedings of the 23rd IFIP WG 6.1 International Conference, ICTSS
2011. Lecture Notes in Computer Science, vol. 7019, pp. 146�161. IFIP WG 6.1,
Springer, Heidelberg Dordrecht London New York (November 2011)

20. Peleska, J., Vorobev, E., Lapschies, F.: Automated Test Case Generation with
SMT-Solving and Abstract Interpretation. In: Bobaru, M., Havelund, K., Holz-
mann, G.J., Joshi, R. (eds.) NASA Formal Methods. pp. 298�312. Springer Berlin
Heidelberg (2011)

21. Veri�ed Systems International GmbH: RT-Tester Model-Based Test Case and Test
Data Generator - RTT-MBT - User Manual (2013), req. at http://www.verified.
de

22. Vu, L.H., Haxthausen, A.E., Peleska, J.: A Domain-Speci�c Language for Railway
Interlocking Systems. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2014
- 10th Symposium on Formal Methods for Automation and Safety in Railway and
Automotive Systems. pp. 200�209. Institute for Tra�c Safety and Automation
Engineering, Technische Universität Braunschweig (2014)

23. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-speci�c language for generic in-
terlocking models and their properties. In: Fantechi, A., Lecomte, T., Romanovsky,
A. (eds.) Reliability, Safety, and Security of Railway Systems. Modelling, Analy-
sis, Veri�cation, and Certi�cation: Second International Conference, RSSRail 2017,
Pistoia, Italy, November 14-16, 2017, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 10598, pp. 99�115. Springer Cham (2017)

24. Vu, L.H.: Formal Development and Veri�cation of Railway Control Systems - In the
context of ERTMS/ETCS Level 2. Ph.D. thesis, Technical University of Denmark,
DTU Compute (2015)

25. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and veri�cation of in-
terlocking systems featuring sequential release. Science of Computer Programming
133, Part 2, 91�115 (2017)

26. Winter, K.: Optimising Ordering Strategies for Symbolic Model Checking of Rail-
way Interlockings. In: Margaria, T., Ste�en, B. (eds.) Leveraging Applications of
Formal Methods, Veri�cation and Validation. Applications and Case Studies. pp.
246�260. No. 7610 in Lecture Notes in Computer Science, Springer Berlin Heidel-
berg (2012)

