

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 14, 2024

Automated Compositional Verification of Interlocking Systems

Haxthausen, Anne E.; Fantechi, Alessandro; Gori, Gloria; Mikkelsen, Óli Kárason; Petersen, Sofie Amalie

Published in:
Proceedings of 5

th
 International Conference Reliability, Safety, and Security of Railway Systems

Link to article, DOI:
10.1007/978-3-031-43366-5_9

Publication date:
2023

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Haxthausen, A. E., Fantechi, A., Gori, G., Mikkelsen, Ó. K., & Petersen, S. A. (2023). Automated Compositional
Verification of Interlocking Systems. In Proceedings of 5

th
 International Conference Reliability, Safety, and

Security of Railway Systems (pp. 146-164). Springer. https://doi.org/10.1007/978-3-031-43366-5_9

https://doi.org/10.1007/978-3-031-43366-5_9
https://orbit.dtu.dk/en/publications/5ffb7ac6-b4c7-466c-83e9-3369d861ba1d
https://doi.org/10.1007/978-3-031-43366-5_9

Automated Compositional Veri�cation of

Interlocking Systems

Anne E. Haxthausen1[0000−0001−7349−8872], Alessandro
Fantechi2[0000−0002−4648−4667], Gloria Gori2[0000−0002−8482−2612], Óli Kárason

Mikkelsen1, and So�e-Amalie Petersen1

1 DTU Compute, Technical University of Denmark, Lyngby, Denmark
aeha@dtu.dk

2 University of Florence, Firenze, Italy
{alessandro.fantechi,gloria.gori}@unifi.it

Abstract. Model checking techniques have often been applied to the
veri�cation of railway interlocking systems. However, these techniques
may fail to scale to interlockings controlling large railway networks, com-
posed by hundreds of controlled entities, due to the state space explosion
problem. We have previously proposed a compositional method to reduce
the size of networks to be model checked: the idea is to divide the net-
work of the system to be veri�ed into two sub-networks and then model
check the model instances for these sub-networks instead of that for the
full network. If given well-formedness conditions are satis�ed by the net-
work and the kind of division performed, it is proved that model checking
safety properties of all such sub-networks guarantees safety properties of
the full network. In this paper we observe that such a network division
can be repeated, so that in the end, the full network has been divided
into a number of sub-networks of minimal size, each being an instance
of one of a limited set of "elementary networks", for which safety proofs
have easily been given by model checking once for all. The paper de�nes
a division algorithm, and shows how, applying it to some examples of
di�erent complexity, a network can be automatically decomposed into a
set of elementary networks, hence proving its safety. The execution time
for such a veri�cation turns out to be a very small fraction of the time
needed for a model checker to verify safety of the full network.

Keywords: Formal Methods · Model Checking · Compositional Veri�cation ·

Interlocking Systems.

1 Introduction

Formal methods have successfully been applied to development and veri�cation
of railway systems [3, 6, 5]. In particular, model checking techniques have often
been applied to the veri�cation of railway interlocking systems. However, model
checking is subject to state space explosion, which limits scalability of the ap-
proach, so that automatic veri�cation of interlocking systems for large networks
is demanding in terms of computing resources, and may even fail [4].

2 A. E. Haxthausen et al.

Abstraction techniques have typically been adopted to limit state space ex-
plosion in model checking. Abstraction should preserve the desired properties
and the adopted abstraction technique should be de�ned speci�cally for the
kind of system and properties under examination. For interlocking systems, a
convenient abstraction can be based on the locality principle [21, 9]: properties
concerning the safe allocation of a route to a train are typically not in�uenced
by other train movements over networks elements that are distant from, and not
interfering with, the considered route. Locality of a safety property can be used
to limit the state space by abstracting away such �distant movements�.

In our previous work, the locality principle is at the base of a compositional

approach to the veri�cation of interlockings for large networks: the network is
divided into two (or more) sub-networks, to which model checking is applied,
with a substantial reduction of state space explosion [8, 13, 14, 2]. The soundness
result for compositional safety veri�cation given in [8] guarantees that, when
properly cutting a network, proving safety for the sub-networks su�ces to prove
safety for the full network. In this way, the task of proving safety for a large
network can be reduced to the task of verifying safety for sub-networks of a size
manageable by the model checker.

We have based our compositional approach on the RobustRailS veri�ca-
tion framework [20], that exploits the powerful SMT-based RT-Tester bounded
model checker3, although it can be adapted to other veri�cation frameworks:
the idea of compositional veri�cation is also shared by the approach described
in [10�12]. The two approaches are compared in [1], where it turns out that the
latter is grounded on pragmatic domain-related criteria for the de�nition of how
and where to perform the cut into two sub-networks.

The discussion about criteria for localisation of cuts has actually triggered
the contribution of this paper, in which a novel iterative decomposition strategy
is proposed, to achieve a �ne granularity decomposition of a network into a num-
ber of small sub-networks, that under certain conditions belong to a library of
pre-veri�ed elementary networks. The soundness result for compositional safety
veri�cation guarantees that safety for the full network is given by the pre-veri�ed
safety of sub-networks. Therefore, to verify a network, it is in principle no more
needed to run a model checker, independently of the size of the network, if spe-
ci�c network conditions are met. To the best of our knowledge, we are the �rst
to propose and explore this idea.

The paper formally speci�es and implements a division algorithm, and re-
ports on some experiments in which the executable speci�cation as well as the
implementation have been applied to some networks of di�erent complexity. In
all these experiments, the considered networks were automatically divided into a
set of elementary sub-networks, hence proving their safety. In each experiment,
the execution time for the algorithm turned out to be a very small fraction of
the time needed for a model checker to verify safety of the full network.

After a short description of the RobustRailS veri�cation method in Sect. 2
and a summary of the compositional veri�cation method in Sect. 3, Sect. 4

3 https://www.veri�ed.de/products/rt-tester/

Automated Compositional Veri�cation of Interlocking Systems 3

introduces the possible types of elementary networks, and describes the proposed
strategy for performing decomposition into elementary networks. The strategy
had been preliminarily sketched in [7]: we now fully formalise it using RSL in
Sect. 5, and the executable RSL speci�cation of the division algorithm and its
C++ implementation are then applied to some case studies, for which the gains
in veri�cation time are shown (Sect. 6). Section 7 draws conclusions and states
ideas for future work.

2 The RobustRailS Veri�cation Method and Tools

In the RobustRailS research project4 that was accompanying the Danish re-
signalling programme on a scienti�c level in 2012�2017, a formal method with
tools support for automated, formal veri�cation of railway interlocking systems
was developed [20, 18, 19, 17].

About the considered interlocking systems. An interlocking system is a
signalling system component that is responsible for safe routing of trains through
(a fraction of) a railway network under its control.

S: l #�,G<aRnN0

`�CIs�w M3jsRaGcY � a�CIs�w N3jsRaG CN 2i+b H3q3I l ,RNcCcjc R8 � NnL$3a R8
ja�,GcC03 3I3L3Njc R8 0C{3a3Nj jwU3cȽ- V�W ICN3�a c3,jCRNc. V$W URCNjc. �N0 V,W L�aG3a
$R�a0cY

7C<na3 lYl c@Rsc �N 3u�LUI3 I�wRnj R8 � a�CIs�w N3jsRaG @�qCN< cCu ICN3�a c3,A
jCRNc V#Ry-iRy-iRk-iR9-iky-#R9W. jsR URCNjc ViRR-iRjW. �N0 3C<@j L�aG3a $R�a0c
VK#RyXXK#kRWY

t10 t14t13t12
mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

7C<na3 lYl- � a�CIs�w N3jsRaG I�wRnj 3u�LUI3

/C{3a3Nj jwU3c R8 ja�,GcC03 3I3L3Njc �a3 03c,aC$30 CN 03j�CI CN j@3 8RIIRsCN<Y

V�W HCN3�a c3,jCRNcY � ICN3�a c3,jCRN Cc � c3,jCRN Vja�,G c3<L3NjW sCj@ nU jR jsR
N3C<@$Rnac- RN3 CN j@3 nU 3N0. �N0 RN3 CN j@3 0RsN 3N0Y 7Ra 3u�LUI3. j@3
ICN3�a c3,jCRN iRk CN 7C<na3 lYl @�c iRj �N0 iRR �c N3C<@$Rnac �j Cjc nU 3N0 �N0
0RsN 3N0. a3cU3,jCq3IwY BN /�NCc@ a�CIs�wȕc j3aLCNRIR<w. nU �N0 0RsN 03NRj3
j@3 0Ca3,jCRNc CN s@C,@ j@3 0Ccj�N,3 8aRL � a383a3N,3 IR,�jCRN Cc CN,a3�cCN< �N0
03,a3�cCN<. a3cU3,jCq3IwY i@3 a383a3N,3 IR,�jCRN Cc j@3 c�L3 8Ra $Rj@ nU �N0 0RsN.
3Y<Y. �N 3N0 R8 � a�CIs�w ICN3Y 7Ra cCLUIC,Cjw. CN j@3 3u�LUI3c �N0 ~<na3c CN j@3
a3cj R8 j@Cc 0Ccc3aj�jCRN. j@3 nU V0RsNW 0Ca3,jCRN Cc �ccnL30 jR $3 j@3 I38jAjRAaC<@j
VaC<@jAjRAI38jW 0Ca3,jCRN. C8 Cj Cc NRj CN0C,�j30 Rj@3asCc3Y

V$W TRCNjcY � URCNj ,�N @�q3 nU jR j@a33 N3C<@$Rnac- RN3 �j j@3 cj3L. RN3 �j j@3 UInc
3N0. �N0 RN3 �j j@3 LCNnc 3N0. 3Y<Y. URCNj iRR CN 7C<na3 lYl @�c iRy. iRk. �N0 iky
�c N3C<@$Rnac �j Cjc cj3L. UInc. �N0 LCNnc 3N0c. a3cU3,jCq3IwY i@3 3N0c R8 � URCNj
�a3 N�L30 cR j@�j j@3 cj3L �N0 UInc 3N0c 8RaL j@3 cja�C<@j VL�CNW U�j@ j@aRn<@
j@3 URCNj. �N0 j@3 cj3L �N0LCNnc 3N0c 8RaL j@3 $a�N,@CN< VcC0CN<W U�j@ j@aRn<@
j@3 URCNjY � URCNj ,�N $3 csCj,@30 $3js33N jsR URcCjCRNc- THmb �N0 KBMmbY
r@3N � URCNj Cc CN j@3 THmb VKBMmbW URcCjCRN. Cjc cj3L 3N0 Cc ,RNN3,j30 jR Cjc
UInc VLCNncW 3N0. j@nc ja�|, ,�N anN 8aRL Cjc cj3L 3N0 jR Cjc UInc VLCNncW 3N0 �N0
qC,3 q3ac�Y Bj Cc NRj URccC$I3 8Ra ja�|, jR anN 8aRL UInc 3N0 jRLCNnc 3N0 �N0 qC,3
q3ac�Y
HCN3�a c3,jCRNc �N0 URCNjc �a3 ,RII3,jCq3Iw ,�II30 Vja�CN 03j3,jCRNW c3,jCRNc. �c j@3w
�a3 UaRqC030 sCj@ ja�CN 03j3,jCRN 3\nCUL3Njc nc30 $w j@3 CNj3aIR,GCN< cwcj3L jR
03j3,j j@3 Ua3c3N,3 R8 ja�CNc RN j@3 c3,jCRNcY MRj3 j@�j c3,jCRNc �a3 $C0Ca3,jCRN�I
$w 038�nIj. CY3Y. ja�CNc �a3 �IIRs30 jR ja�q3I CN $Rj@ 0Ca3,jCRNc VNRj �j j@3 c�L3

Ƚ?3a3 s3 RNIw c@Rs jwU3c j@�j �a3 a3I3q�Nj jR j@3 sRaG Ua3c3Nj30 CN j@Cc 0Ccc3aj�jCRNY 7naj@3aLRa3.
8Ra cCLUIC,Cjw. s3 0R NRj ,RNcC03a I3q3I ,aRccCN<c. 03a�CI3ac. LRq3�$I3 $aC0<3cY

Fig. 1: A railway network layout example. From [18].

In Fig. 1 an example of a railway network layout for a small station is given.
As it can be seen, it consists of (1) train detection sections that are either linear
sections (like t10) or switchable points (like t11) having a stem side and two
branching sides (e.g. t11 has its stem next to t10 and its branches next to t20

and t12, respectively); (2) markerboards5 (like mb10) placed at the ends of linear
sections and only visible in one direction (e.g. mb10 is visible in direction UP).
As general rules for the networks considered in this paper, (1) there is at most
one markerboard in each end of a linear section, that can only be seen when
leaving the section; (2) at the borders of a network, there are always two linear
sections (like b10 and t10) with a signal con�guration having an entry signal on

4 http://robustrails.man.dtu.dk
5 We are considering modern ERTMS level 2 based interlocking systems for which
there are no physical signals. They are replaced by markerboards, and in the control
system there are virtual signals associated with the markerboards. Throughout the
paper we use the term signal as a synonym for markerboard.

4 A. E. Haxthausen et al.

the border section and an exit signal on the section next to the border section.
Furthermore, networks are assumed to be loop-free6.

About the tool. The RobustRailS tool, RR-T, can be used to verify that an
interlocking system instance controlling a certain railway network is safe by giv-
ing the tool the following as input: (1) a generic, formal, behavioural model of
the interlocking system and generic safety properties, as well as (2) a speci�ca-
tion of the network under its control.7 The tool then checks that the input is
wellformed, it instantiates the generic model and generic safety properties with
the network description, and �nally it veri�es that the instantiated model sat-
is�es the instantiated safety properties, by means of a bounded model checker
performing a k-induction proof.

3 A Method for Compositional Veri�cation

To introduce the compositional method, we �rst need to de�ne what is a cut of
a network, and how the sub-networks should be generated by the cut.

3.1 Cut speci�cations.

Fig. 2: An example of a single cut. From [8].

A single cut is a cut that can be performed between any two neighbouring,
non-border sections t1 and t2 in a network N . An example of a single cut is
shown in Fig. 2. The speci�cation of that single cut is the pair (t1, t2). To divide
a network into two parts, it is not always enough to perform a single cut, but
a cluster cut consisting of several single cuts may be needed. An example of a
cluster cut is shown in Fig. 3. The speci�cation of a cluster cut is the set of
speci�cations of each of its single cuts. A cut is legal, if it divides the network
into exactly two parts, no route is cut by more than one single cut, and no
�ank/front protecting elements8 are separated by the cut from the sections they
protect. In this paper we assume that �ank/front protecting is not adopted.

6 A network is loop-free, if there are no physically possible path through the network
containing the same section more than once.

7 Throughout this paper, as generic model and safety properties, we are using those
from [20]. The properties are the no collision and no derailment properties, shared
by the vast literature on interlocking veri�cation.

8 The notion of �ank protection is explained in the end of Sect. 4.2.

Automated Compositional Veri�cation of Interlocking Systems 5

t2 t9t8t7

t5

t3b1 b10

t4

t6

Cut 1

Cut 2

Cluster Cut

Fig. 3: An example of a cluster cut. From [8].

3.2 Decomposing a network according to a cut speci�cation.

Fig. 4: An example of a decomposition of a network into two networks. From [8].

Given a net N and a legal cut speci�cation, the network can be decomposed
into two networks as follows:

� if a single cut is between linear sections t1 and t2, �rst divide the network N
between t1 and t2, obtaining two sub-networks N−1 and N−2, and then add
to N−1 and N−2 at the respective cut a border section, and also an entry and
an exit signal at that border, if there were not already signals placed around
the cut. By doing so, two well-formed networks are obtained: N1 and N2.
Figure 4 shows how a network is decomposed into two networks by a single
cut (t1, t2). It can be seen how N1 is obtained from the sub-network N−1

on the left-hand side of the cut by adding a border section b1 and border
signals sentry1

and sexit1 . N2 is obtained in a similar way. When it is clear

6 A. E. Haxthausen et al.

from the context, sometimes we also call the resulting networks N1 and N2

sub-networks;
� if a single cut is between a linear section t1 and a point p, the decomposition
is treated as if there was an additional linear section t2 between t1 and p,
and the cut speci�cation was (t1, t2);

� if a single cut is between two points p1 and p2, the decomposition is treated
as if there were two additional linear sections t1 and t2 between p1 and p2,
and the cut speci�cation was (t1, t2).

� if the cut is a cluster cut, the above rules are simultaneously applied to each
of its single cuts.

3.3 Method steps.

Using a legal cut allows to perform compositional veri�cation in these steps:

1. Decompose a network N according to a legal cut speci�cation, achieving two
networks N1 and N2.

2. For i = 1, 2, apply the RobustRailS tool (RR-T) to Ni to instantiate the
chosen generic model and generic safety properties and verify that the in-
stantiated model satis�es the instantiated safety properties.

In [8] it is proved that this method is sound and complete. Soundness means,
that in order to prove safety of the model instance for the whole network, it
is su�cient to verify safety for the model instances for the two sub-networks
formed by a legal cut. Completeness means, that if the safety proof for one of
the sub-networks fails, then one can conclude that safety also fails for the full
network.

4 A Decomposition Strategy

Using the presented compositional veri�cation method leaves the question: which
cuts should be made in order to decompose a network into small networks that
are fast to verify? In this section we will exploit the idea of providing a library
of pre-veri�ed, elementary networks and a strategy for dividing a given network
into sub-networks of which as many as possible are elementary.

4.1 Elementary Networks

As elementary networks we allow the network patterns shown in Fig. 5: (a)− (b)
an elementary linear network, that is, a sequence of linear sections having only
the required signals at the two borders; (c) − (d) an elementary point network,
that is, one point surrounded by at least two linear sections on each of its three
sides, the required signals at the three borders and optionally zero, one, two or
three signals directly facing the point. All patterns admit an unbounded number
of linear elements at speci�c positions. In (c) there is only one linear section

Automated Compositional Veri�cation of Interlocking Systems 7

t3t2t1 t4t1

t2 t4

t6

p1 t3

t5

t1

These marker boards are all optional

A sequence of any number of intermediate
linears can be added here, with no marker boards

t4p1 t3t1 t2

a)

A sequence of any number of intermediate
linears can be added here, with no marker boards

t6t5

t2 t3

c)

d)

b)

These marker boards are all optional

Fig. 5: Patterns for elementary networks.

between the point and each of the three border sections, while in (d), there are
two (or more) linear sections between the point and each of the three border
sections.

Model instances of the networks of Fig. 5 have been model checked to be
safe, for all the admitted combinations of presence of markerboards, but without
the presence of the admitted extra linear sections. Moreover, a result from [8]
allows us to add an unbounded number of linear sections at the indicated speci�c
positions without impacting safety. Hence, we can conclude that model instances

for all elementary networks are safe.

4.2 Decomposing a network

Given a network, now the idea is to search for places to make legal cuts, one by
one, such that the network can be divided into parts that are either elementary

networks or non-decomposable networks (that is, non-elementary networks that
cannot be decomposed by any cut(s) without breaking the rules for legal cuts). In
the ideal case that the decomposition leads to networks that are all elementary,
no additional model checking is needed for verifying the safety of the whole
network.

8 A. E. Haxthausen et al.

As an example, consider the network shown in Fig. 6. By making the three
cuts (two single cuts (083, PM02U) and (PM02U,PM03U) and the cluster cut
{(802, PM04U), (801, PM04U)}) shown by green lines, one by one, one achieves
the four elementary networks N1

1 , N
2
1 , N

3
1 , and N3

2 shown in Fig. 7.

Fig. 6: Cuts shown on a network (LVR1).

In practice, a possible process of �nding such cuts for a loop-free network N
is as follows, provided that there are no �ank/front protecting elements:

1. Start searching from the neighbour (linear section) l of some border section
b of N . The search direction is from l towards the next adjacent element in
the direction opposite to b.

2. Follow the sections from l one by one as long as they are linear and do not
have any signals attached until one of the following happens:
(a) If a linear section next to a border is reached, no cut should be made,

as the considered network is an elementary linear network.
(b) If two consecutive, linear sections l1 and l2 are found, and at least one of

them has a signal facing the other, then a decomposition using the cut
(l1, l2) should be made. As a consequence, the generated sub-network
containing l1 will by construction be an elementary linear network. The
search for further cuts should then continue from l2 in the other sub-
network.

(c) If a point p is found, then we should continue to search for cuts on
the two other sides of p. This search depends on from which side p was
found: the stem or one of the branching sides. In both cases the search
also depends on whether the two other sides are connected or not.9

i. If coming from the stem side of p, and the two other sides are not
connected, then we should search for cuts in each of the two other
sides. The search here is similar to the search starting from a border,
except that if a second point is found, a single cut must be made just
before that point. The two searches may hence lead to totally zero,
one or two single cuts, dividing the network into (1) an elementary

9 By connected we mean that by navigating the graph of the not yet visited part of
the network starting from the two sides we eventually reach a common point.

Automated Compositional Veri�cation of Interlocking Systems 9

(a) Networks N1
1+N1

2 resulting from decomposing the LVR1 network by cut1.

(b) Networks N2
1+N2

2 resulting from decomposing N1
2 by cut2.

(c) Networks N3
1+N3

2 resulting from decomposing N2
2 by cut3.

Fig. 7: Decomposition of the LVR1 network in three steps according to the three
cuts shown in Fig. 6. The four resulting green sub-networks N1

1 , N
2
1 , N

3
1 , and

N3
2 are elementary.

point network containing p and (2) zero, one or two additional sub-
networks in which a search for cuts must be performed. For instance,
when searching for a cut in network N1

2 in Fig. 7 (a), starting from
PM02U_ex_stem, a single cut, cut2 = (PM02U,PM03U), will
be found in the lower branch, while no cuts are found in the upper
branch (as a border is met before any further points or non-border
signals), so it results in two sub-networks.

ii. If coming from the stem, and the two branching sides are connected,
then a similar search is made in each of the branches. In this case
two single cuts (one in each branch) will be found and these must
be combined in a cluster cut (in order to divide the network into
two parts) leading to an elementary point network containing p and
one additional sub-network to which the search for cuts must be
recursively applied. That is e.g. the case when searching for a cut
(cut3) in network N2

2 in Fig. 7 (b), starting from PM03U_ex_stem.

10 A. E. Haxthausen et al.

iii. If coming from a branching side of p, and the stem and the other
branching side are not connected, searches for cuts in the other
branch and on the stem side must be performed in a similar way
to case i above. That happens e.g. when searching for the �rst cut
in Fig. 6 starting from linear section 533.

iv. If coming from a branching side of p, and the stem and the other
branching side are connected, the search to be performed is similar
to case ii, except that in some cases it is not possible to �nd a legal
cluster cut: that happens if a potential cluster cut divides a route
into three parts10, as shown in Fig. 8, where the cluster cut shown
by a red, dotted line is found when searching from L1 on the upper
branching side of point P1. In such a case we say that N is un-

breakable from the border b from where the search started, and we
should then start a search from another border to see if a cut can
be found from there. If N is unbreakable from all borders, it is non-
decomposable. It is our conjecture that it is always possible to �nd a
border from which it is possible to �nd a legal cluster cut through the
connected sub-component, provided that the network is loop-free.
For instance, in Fig. 8, the legal cluster cut {(P2, P1), (L24, P4)}
shown by a dashed, green line can be found when searching from L2.
Figure 9 gives an example of a network that cannot be decomposed
into elementary networks as the network is not loop-free.

Fig. 8: The cluster cut {(P1, P2), (L13, P3)} shown by a red, dotted line is illegal
as it divides the route shown as a blue, solid arrow in three parts. The cluster
cut {(P2, P1), (L24, P4)} shown by a green, dashed line is legal.

In railway interlocking systems, speci�c additional mechanisms may be in-
cluded to enforce safety also in the case in which trains do not strictly respect
signals, due to a driver's misbehaviour or accidental inability to brake. In the
Flank Protection mechanism, points and signals not belonging to the route are
properly set in order to avoid hostile train movements into the route at an in-
cident point. In the example of Fig. 10 locking of route r requires the point t20
to be in the straight position in order to protect the �ank of route r by a train

10 Note that when coming from the stem, we do not have such a problem, as a route
cannot pass through a point via its two branches.

Automated Compositional Veri�cation of Interlocking Systems 11

Fig. 9: An example of a non-decomposable network containing a loop.

accidentally missing the closed mb20 signal. If both point t20 and route r lie in
the same sub-network when a cut is operated, the extra condition on the point
position has no impact on compositionality: but this is not the case for the drawn
cut, which separates the protecting and the protected points. As discussed in [8],
in this case compositional veri�cation results do not fully hold, so we consider
such a cut as not legal: both elements should instead be in the same sub-network,
which is therefore not elementary, since it contains two points. In the presen-
tation of our approach, we have assumed that there is no �ank protection. If
�ank protection was adopted, legal cuts would not be allowed to separate the
protecting and the protected points. However, then we would no longer be able
to decompose a loop-free network into networks that are all elementary. This
also holds for similar protection mechanisms like front protection that we do not
consider here.

Fig. 10: Cut through a �ank protection.

5 Formalisation

The decomposing strategy informally explained in Sect. 4.2 has been formalised
as a collection of functions in the formal RAISE Speci�cation Language (RSL) [16].
Below we show sketches of selected parts of that speci�cation.

12 A. E. Haxthausen et al.

The speci�cation consists of de�nitions of the functions and needed data
types. There are e.g. data types for representing entities like network layouts
and cluster cuts:

1 type

2 NetworkLayout = ..., == network layouts composed of sections and markerboards
3 SecId = Text, == unique ids for network sections
4 MarkerboardId = Text, == unique ids for markerboards
5 ClusterCut = SingleCut-set, == a cluster cut is a set of single cuts
6 SingleCut = SecId × SecId, == a single cut is a pair of SecIds
7 Direction = UP | DOWN, == two possible search directions
8 ...

1 decompose : NetworkLayout × SecId × SecId-set →
2 NetworkLayout-set × NetworkLayout-set
3 decompose(N, b, bs) ≡
4 let cutset = �nd_cuts(N,b) in
5 if cutset = { {} } == means N is elementary
6 then ({N}, {})
7 elsif cutset = {} == means N is unbreakable from b
8 then == try to search from another border
9 if bs = {} then ({}, {N}) == no other borders to search from
10 else let b2 • b2 ∈ bs in
11 decompose(N, b2, bs \ {b2}) == search from border b2
12 end

13 end

14 elsif card cutset = 1 == found one non=empty cluster cut
15 then

16 let

17 ccut • ccut ∈ cutset , == ccut is the found cluster set
18 (N1, N2) = divide(N, ccut) == divide N into two nets N1 and N2
19 == ccut is de�ned s . t . N1 becomes elementary
20 added_borders = ..., == set of borders added to N2 during division
21 b2 • b2 ∈ added_borders,
22 (e_ns, u_ns) =
23 decompose(N2, b2, (bs ∩ borders(N2)) ∪ added_borders\{b2})
24 in

25 ({N1} ∪ e_ns, u_ns)
26 end

27 else == found two cluster cuts having one single cut each
28 == see text for explanation of what is then done
29 ...
30 end

31 end

Fig. 11: Speci�cation of the decompose function.

Automated Compositional Veri�cation of Interlocking Systems 13

The decomposer has been speci�ed as a recursive function named decompose
listed in Fig. 11. This function takes as input a networkN , a border section b inN
(from where a search for cuts should start), and a subset bs of the border sections
in N , b /∈ bs. The set bs is the (current) subset of border sections of N from
where there has not yet been made a search. In the �rst invocation of decompose,
bs should be the set of all borders, except b. The function returns the set of
elementary sub-networks and the set of non-decomposable sub-networks that
N can be divided into by following the stepwise process described in Sect. 4.2.
Below we will explain the chosen division algorithm for that.

The overall idea of the division algorithm is as follows: in each recursive call of
decompose, the current network N is divided into two (or three) sub-networks,
if possible, of which one is elementary, and then it makes recursive call(s) of
decompose on the one or two other obtained sub-networks. It will not divide N ,
if N is already elementary or N is unbreakable from b. In the latter case it will
make a recursive call decompose(N, b2, bs \ {b2}), where it starts from another
border b2 ∈ bs, if bs is not empty.

The decompose function uses an auxiliary function named find_cuts (listed
in Fig. 12 and explained further below) to �nd the cluster cut(s) that decompose
should use (in the current iteration) for cutting the network into some sub-
networks. Furthermore, it uses another auxiliary function divide(N, ccut) (see [15],
where it is named decompose) to divide a network N into two sub-networks N1
and N2, according to a found cluster cut ccut. This division is done as informally
explained in Sect. 3.2.

When decompose(N, b, bs) is invoked, (in line 4) it invokes find_cuts(N, b)
to �nd a set cutset of next cluster cuts that should be used for cutting the
network into sub-networks. Then, depending on the returned set (which by con-
struction will contain zero, one, or two cluster cuts), it will take various actions:
(1) If cutset contains one cluster cut which is empty (line 5), it is because N
is elementary and the function will (in line 6) return N as the only elementary
network and it will return no non-decomposable networks.
(2) If cutset is empty (line 7), it is because N is unbreakable from b. In that
case, (in line 11) a new search (made by a recursive call of decompose) is started
from one of the other borders b2 of N , from where there has not yet been made
a search, and b2 is removed from bs. If there was no such other border b2, it
means that N was unbreakable from any border of N , and the function will (in
line 9) return N as the only non-decomposable network and it will return no
elementary networks.
(3) If cutset contains one non-empty cluster cut ccut, it will use divide(N, ccut)
(in line 18) to divide N into two networks N1 and N2, where N1 will be el-
ementary due to the de�nition of findcuts and divide. Then, (in line 23), it
will continue making a recursive call of decompose on N2 from one of N2's
added borders b2, obtaining a set of elementary networks e_ns and set of non-
decomposable networks u_ns. Finally (in line 25), it will add N1 to e_ns.
(4) In a similar way, if cutset contains two cluster cuts (line 26), it will make
two consecutive calls of divide using these cluster cuts to divide N into three

14 A. E. Haxthausen et al.

networks N1, N2, and N3, of which N1 will, by construction, be elementary.
Then it will make two recursive calls of decompose on N2 and N3, respec-
tively, obtaining two sets of elementary networks, e_ns2 and e_ns3, and two
sets of non-decomposable networks, u_ns2 and u_ns3. Finally, it will return
({N1} ∪ e_ns2 ∪ e_ns3, u_ns2 ∪ u_ns3).

The termination of decompose is guaranteed by the fact that each time it is
invoked in cases (3) and (4), it is called with smaller networks, and in case (2)
the bs parameter becomes smaller.

1 �nd_cuts : NetworkLayout × SecId → ClusterCut-set
2 �nd_cuts(N, b) ≡
3 let

4 dir = �nd_direction_towards_neighbor_of_border(b, N),
5 l = next_from_linear(b, dir, N) == l is the neighbor of b
6 in

7 �nd_cuts_from_linear(l, dir, N)
8 end,
9
10 �nd_cuts_from_linear : SecId × Direction × NetworkLayout → ClusterCut-set
11 �nd_cuts_from_linear(l, dir, N) ≡
12 let next = next_from_linear(l, dir, N) in == next section to visit
13 if is_linear(next, N)
14 then

15 if is_border(next, N) then {{}} == case 2(a)
16 elsif has_signal(l, dir , N) ∨ has_signal(next, opposite_direction(dir), N)
17 then { { (l , next) } } == case 2(b)
18 else == no signals between l and next
19 �nd_cuts_from_linear(next, dir, N) == continue search from next
20 end

21 else == is_point(next, N), i.e. case 2(c)
22 == further search depends on from which side the point is met:
23 case get_pointend_entry_given_neighbor(next, l, N) of
24 STEM → �nd_cuts_from_stem(next, dir, N),
25 PLUS → �nd_cuts_from_branch(next, dir, PLUS, N),
26 MINUS → �nd_cuts_from_branch(next, dir, MINUS, N)
27 end

28 end == if
29 end == let

Fig. 12: Speci�cation of the find_cuts function.

find_cuts(N, b) (listed in Fig. 12) takes as input a network N and a border
section b of N (from where the search should start) and searches for cuts that
can be used to divide the network such that one of the resulting sub-networks
is an elementary network containing b. This search is done by invoking (in line
7) another auxiliary function find_cuts_from_linear(l, dir,N) (also listed in

Automated Compositional Veri�cation of Interlocking Systems 15

Fig. 12) to search for cuts from the linear section l next to b in the search
direction dir going from b towards l. This formalises step 1 in Sect. 4.2.

find_cuts_from_linear(l, dir,N) (listed in Fig. 12) takes as input a net-
work N , a linear section l of N (from where the search should start), and a
search direction dir. It returns a set of "next" cluster cuts that can be found
when searching from l in direction dir. This set will by construction contain
zero, one, or two cluster cuts. The search is made as described under step 2 in
Sect. 4.2, and the returned set of cluster cuts, will contain the cuts found as
explained informally for each of the cases 2(a), 2(b), 2(c)i - 2(c)iv in Sect. 4.2.

The function uses two auxiliary functions, find_cuts_from_stem and
find_cuts_from_branch, to specify the search for case 2(c). They are de�ned
in a similar way as find_cuts_from_linear, but not shown here due to space
limitations.

6 Experiments

The formal RSL speci�cation of the decompose function is executable and has
hence been used as an early prototype for a decomposer tool. It has been thor-
oughly tested to be functionally correct. After that the speci�cation was trans-
lated to C++ achieving a second prototype which was also tested. The tests have
shown a full agreement between the two prototypes, and have therefore given
some con�dence in the correctness of the algorithm and of its implementation,
although we have not attempted a formal proof thereof.

Furthermore, we have used �rst the RSL executable and later the C++ ex-
ecutable for making some experiments: for networks of various complexity, we
measured the time it takes to automatically decompose a network into elemen-
tary networks and we compared this with the time it takes to verify the full
network using the RobustRails Tool (RR-T).

Table 1: Veri�cation metrics for the RobustRails Tool (RR-T) and the decom-
poser prototypes (in RSL and C++) applied to some interlocking examples.
Time is measured in seconds.
Example Linears Points Signals Routes RR-T Time RSL Time C++ Time Sub-networks

EDL 111 39 126 179 22863 219 1,5 68
LVR1 11 4 18 18 91 7 0,5 4
LVR7 26 12 42 48 49813 9 0,5 13
Tramway line 22 12 20 62 43184 8 0,5 12
Flying junction 24 16 16 40 62172 9 0,7 16

Table 1 shows the metrics for these experiments using the RobustRails Tool
(RR-T) and the decomposer prototypes (both the RSL speci�cation and the
C++ implementation). The tools have been applied on a benchmark of network
layouts considered in some other, past experiments (using the RobustRailS Tool
only), some of which were published in previous conference papers [1, 2, 14, 12].

16 A. E. Haxthausen et al.

The EDL network is a line in Denmark comprising 8 stations, LVR1 is Binche
station in Belgium, LVR7 is Piéton station in Belgium, and the two last net-
works are inspired by real networks [7]. In the table, columns 2-5 give for each
network example its number of linear sections, points, signals, and routes, re-
spectively. Column 6 shows for each network the veri�cation time using the
RobustRails Tool and columns 7 and 8 show the average time11 needed to di-
vide the network into sub-networks using the decomposer prototypes. The last
column contains the number of elementary sub-networks obtained. In all cases
no non-decomposable sub-networks were obtained. All the experiments were ex-
ecuted on an Intel Core i5 CPU 750 (-MPC-) at 1.20GHz, 16GB RAM, Ubuntu
14.04, Linux 3.19.0-25-generic x86 64 (64 bit, gcc: 4.8.2) kernel.

The experiments show a dramatic reduction of the time needed for the veri-
�cation of a network using our decomposer prototypes compared to time needed
when using the traditional monolithic veri�cation by the RobustRails Tool. The
considered networks have all been successfully decomposed into elementary net-
works, in most cases in as many as there were points in the network, that is, in
elementary point networks of type (c) or (d) in Fig. 5.

7 Conclusions and Future Work

In this paper, we have exploited a previously de�ned compositional method for
model checking the safety of interlocking systems, by pushing it to the �nest
granularity level. The said compositional method guarantees that, under given
conditions, dividing into two parts a network expressing the interlocking over
a complex network layout and then proving safety of the two parts equates to
proving safety of the whole network. This provides signi�cant advantages in
terms of reduction of state space explosion.

In this paper, we have formally speci�ed in RSL and implemented in C++ an
algorithm which automatically divides a network into a number of sub-networks
of minimal size by repeatedly applying the above mentioned network division.
In the ideal case each of the resulting sub-networks is an instance of one of a
limited set of "elementary networks", for which safety proofs have already been
given (in less than 3 seconds) by model checking, once for all. That means,
in such a case no model checking is needed. We have successfully applied �rst
the fully automated RSL executable and later also the C++ implementation
to decompose into elementary networks several network examples of di�erent
complexity, hence proving their safety. In all cases the execution time was a very
small fraction of the time needed by a model checker to verify the full network.

11 The decompose function was repeatedly invoked with each of the network's borders
as the border parameter b of decompose, and then the average execution time was
computed. Note that the invocations with di�erent b on the same network sometimes
produce slightly di�erent sets of networks: the cardinalities of the sets of networks
returned by two di�erent invocations are the same and networks are usually the same,
except that sometimes a linear section may be included in a di�erent sub-network.

Automated Compositional Veri�cation of Interlocking Systems 17

Our suggested veri�cation approach will be the subject of further work: For
all the case studies, the algorithm succeeded to divide the network into sub-
networks that were all elementary. In principle, the algorithm could return one
or more sub-networks that cannot be decomposed into elementary networks, but
we have not found any loop-free networks for which this is the case, provided that
there is no �ank/front protecting elements. We conjecture that the algorithm
is always capable to divide any loop-free network into elementary networks,
provided that there is no �ank/front protecting elements, but we need to formally
prove this conjecture.

A proof of correctness of the algorithm could be a topic for future work: if
the conjecture above is proved to hold, the algorithm should be demonstrated
to produce a consistent set of elementary networks.

For future work, it could also be interesting to investigate how the topology
and the choice of the border from where the search should start impact the
execution time of the decomposer prototypes.

We conjecture that the proposed decomposition method can be instantiated
with similar bene�ts in other compositional frameworks, as the one described in
[1]: this is another future research direction.

Acknowledgements

The authors would like to thank (1) Jan Peleska and Linh H. Vu together with
whom Anne Haxthausen developed the RobustRailS veri�cation method and
tools, (2) Hugo D. Macedo, who contributed to the initial work on the applied
compositional method, and to (3) Anna Nam Anh Nguyen and Ole Eilgaard for
their network cutter tool which we have integrated in our decomposer tool.

The contribution by the second and third author was carried out within the
MOST � Sustainable Mobility National Research Center and received funding
from the European Union Next-GenerationEU (Piano Nazionale di Ripresa e
Resilienza (PNRR) � Missione 4 Componente 2, Investimento 1.4 � D.D. 1033
17/06/2022, CN00000023). This manuscript re�ects only the authors' views and
opinions, neither the European Union nor the European Commission can be
considered responsible for them.

References

1. Fantechi, A., Gori, G., Haxthausen, A.E., Limbrée, C.: Compositional veri�ca-
tion of railway interlockings: comparison of two methods. In: Dutilleul, S.C., Hax-
thausen, A.E., Lecomte, T. (eds.) Reliability, Safety, and Security of Railway Sys-
tems. Modelling, Analysis, Veri�cation, and Certi�cation: Fifth International Con-
ference, RSSRail 2022, Paris, France, June 1-2, 2022, Proceedings. Lecture Notes
in Computer Science, vol. 13294, pp. 3�19. Springer Nature Switzerland AG (2022)

2. Fantechi, A., Haxthausen, A.E., Macedo, H.D.: Compositional veri�cation of in-
terlocking systems for large stations. In: Cimatti, A., Sirjani, M. (eds.) Software
Engineering and Formal Methods - 15th International Conference on Software En-
gineering and Formal Methods, Trento, Italy, September 4-8, 2017. Lecture Notes
in Computer Science, vol. 10469, pp. 236�252. Springer (2017)

18 A. E. Haxthausen et al.

3. Ferrari, A., ter Beek, M.H.: Formal methods in railways: A systematic mapping
study. ACM Comput. Surv. 55(4), 1�37 (nov 2022)

4. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model Checking Interlocking
Control Tables. In: FORMS/FORMAT 2010 � Formal Methods for Automation
and Safety in Railway and Automotive Systems. pp. 107�115. Springer (2010)

5. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H.: Systematic evaluation and
usability analysis of formal methods tools for railway signaling system design. IEEE
Transactions on Software Engineering 48(11), 4675�4691 (2022)

6. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing for-
mal tools for system design: A judgment study. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. pp. 62�74. ICSE '20, As-
sociation for Computing Machinery, New York, NY, USA (2020)

7. Haxthausen, A.E., Fantechi, A., Gori, G.: Decomposing the veri�cation of interlock-
ing system. In: Haxthausen, A.E., Huang, W., Roggenbach, M. (eds.) Applicable
Formal Methods for Safe Industrial Products - Essays Dedicated to Jan Peleska on
the Occasion of His 65th Birthday. Lecture Notes in Computer Science, vol. 14165
(Accepted for publication in 2023)

8. Haxthausen, A.E., Fantechi, A.: Compositional veri�cation of railway interlocking
systems. Form. Asp. Comput. 35(1) (2023). https://doi.org/10.1145/3549736

9. James, P., Möller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
Decomposing scheme plans to manage veri�cation complexity. In: Schnieder, E.,
Tarnai, G. (eds.) FORMS/FORMAT 2014 - 10th Symposium on Formal Meth-
ods for Automation and Safety in Railway and Automotive Systems. pp. 210�220.
Institute for Tra�c Safety and Automation Engineering, Technische Univ. Braun-
schweig (2014)

10. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Veri�cation of Railway In-
terlocking - Compositional Approach with OCRA. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) Reliability, Safety, and Security of Railway Systems. Mod-
elling, Analysis, Veri�cation, and Certi�cation: Second International Conference,
RSSRail 2016, Paris, France, June 28-30, 2016, Proceedings. Lecture Notes in Com-
puter Science, vol. 9707, pp. 134�149. Springer Cham. (2016)

11. Limbrée, C., Pecheur, C.: A Framework for the Formal Veri�cation of Networks
of Railway Interlockings - Application to the Belgian Railway. Electronic Commu-
nication of the European Association for the Study Science and Technology 76

(2018)
12. Limbrée, C.: Formal veri�cation of railway interlocking systems. Ph.D. thesis, UCL

Louvain (2019)
13. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional veri�cation of multi-

station interlocking systems. In: Margaria, T., Ste�en, B. (eds.) Leveraging Appli-
cations of Formal Methods, Veri�cation and Validation, Part II. Lecture Notes in
Computer Science, vol. 9953, pp. 279�293. Springer International Publishing AG
(2016)

14. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional Model Checking
of Interlocking Systems for Lines with Multiple Stations. In: Barrett, C., Davies,
M., Kahsai, T. (eds.) NASA Formal Methods: 9th International Symposium, NFM
2017, Proceedings. pp. 146�162. Springer International Publishing (2017)

15. Nguyen, A.N.A., Eilgaard, O.B.: Development and use of a tool supporting com-
positional veri�cation of railway interlocking systems. Tech. rep., DTU Compute,
Technical University of Denmark (2020), https://findit.dtu.dk/en/catalog/
5f181f35d9001d016b4e1f3b

Automated Compositional Veri�cation of Interlocking Systems 19

16. The RAISE Language Group: Chris George, Peter Ha�, Klaus Havelund, Anne E.
Haxthausen, Robert Milne, Claus Bendix Nielsen, Søren Prehn, Kim Ritter Wag-
ner: The RAISE Speci�cation Language. The BCS Practitioners Series, Prentice
Hall Int. (1992)

17. Vu, L.H., Haxthausen, A.E., Peleska, J.: A Domain-Speci�c Language for Railway
Interlocking Systems. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2014
- 10th Symposium on Formal Methods for Automation and Safety in Railway and
Automotive Systems. pp. 200�209. Institute for Tra�c Safety and Automation
Engineering, Technische Universität Braunschweig (2014)

18. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-speci�c language for generic in-
terlocking models and their properties. In: Fantechi, A., Lecomte, T., Romanovsky,
A. (eds.) Reliability, Safety, and Security of Railway Systems. Modelling, Analy-
sis, Veri�cation, and Certi�cation: Second International Conference, RSSRail 2017,
Pistoia, Italy, November 14-16, 2017, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 10598, pp. 99�115. Springer Cham (2017)

19. Vu, L.H.: Formal Development and Veri�cation of Railway Control Systems - In the
context of ERTMS/ETCS Level 2. Ph.D. thesis, Technical University of Denmark,
DTU Compute (2015)

20. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and veri�cation of in-
terlocking systems featuring sequential release. Science of Computer Programming
133, Part 2, 91�115 (2017)

21. Winter, K.: Optimising Ordering Strategies for Symbolic Model Checking of Rail-
way Interlockings. In: Margaria, T., Ste�en, B. (eds.) Leveraging Applications of
Formal Methods, Veri�cation and Validation. Applications and Case Studies. Lec-
ture Notes in Computer Science, vol. 7610, pp. 246�260. Springer Berlin Heidelberg
(2012)

