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System and method for automatic detection of clinical deterioration events

The present disclosure relates to a computer-implemented method configured for
automatic real-time detection of clinical deterioration events in a patient. The disclosure

further relates to a system for carrying out the disclosed method.

Background of invention

Clinical practice relies on manual recording of physiological patient data every 12 hours
to manually calculate an Early Warning Score (EWS) or similar “risk-scores” for
detection of patients at need. Selected physiological patient data (blood pressure,
respiratory rate, heart/pulse rate, and body temperature) are traditionally described as
vital signs. The term vital sign is, however, historically based on those biomarkers for
physical status that have been possible to measure (starting with pulse rate and
temperature centuries ago). Because peripheral monitoring of blood-pressure and
oxygen saturation became reliable and commercially available, this is commonly also
included as vital signs. Some hospitals also include parameters such as mental status,
pain, urine output, blood glucose and end-tidal CO2 as vital signs and in the EWS.

A problem with the EWS approach and similar “track-and-trigger” systems, is that a
number of critical events occur between the fixed measurements without being
detected. The EWS has a mandatory requirement for more frequent registration
depending on the severity of the latest measured values, but EWS has not proved any
effect on complications or survival despite intense resource allocation. For example, it
has been shown that manual routine EWS measurements detects only 5% of the
serious cases of severe oxygen desaturation, when compared to continuous 24/7
automatic measurements. In layman's terms, the main cause for low and late detection
rate despite large resource allocation is two-fold: Manual and infrequent collection of
patient data is insufficient to detect clinical deterioration prior to the event. Manual,
clinical interpretation of threshold values for individual parameters is not sensitive or
sophisticated enough to capture events in a timely manner. Trends and combination of
physiological parameters of vital signs are too complex to be manually assessed, and
vulnerable to the experience or alertness of the individual assessor (e.g. nurse,
physician). Nowadays, it is furthermore possible to measure a variety of other
biomarkers for physical status, including advanced analyses of heart rate and heart
rhythm and peripheral perfusion to describe circulatory function. It is therefore very

plausible that new biomarkers for physical status will be added to the traditional list of
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vital signs introduced above. |n the sections below, the term ‘vital signs’ will refer to this

indefinite list of biomarkers for the assessment of the physical status of a patient.

In general, clinical decision support systems (CDSS) are focused on using knowledge
management in such a way to achieve clinical advice for patient care based on multiple
claims of patient data. A problem encountered within many clinical support systems is
that the alarm generations are based on simple threshold alerts, which consequently
results in too many alarms, many of them being false alarms, whereby the medical staff
(nurses, doctors, etc.) is exhausted. This phenomenon is also known as alarm fatigue,
which is a well-known and hugely recognized challenge related to monitoring of
patients, where alarms will typically be either muted, or threshold values disregarded —

or simply ignored.

Therefore, there is a need of a system and method that provides an alternative to
simple threshold monitoring for predicting adverse patient events. Specifically, there is
a need of a clinical decision support system, wherein the alarm generation is based on
intelligent algorithms such that true alarms are maximized and false alarms are

reduced, while still providing vital sign alarms, which are clinically actionable.

Summary of invention

Currently, the monitoring of post-operative patients relies on intermittent bedside
monitoring and simple models of Early Warning Scores (EWS) in the hospital. There is
a need of a system that facilitates continuous and predictive monitoring and therefore

improves the monitoring of patients.

The present disclosure addresses the above-mentioned challenges by providing a
system and method for automatic and continuous detection of clinical deterioration
events in a patient. An advantage of the presently disclosed system and method, is that
it provides a continuous real-time monitoring of a patient (ideally 24/7), wherein an
alarm is generated in case the patient has a deterioration event. The method
comprises the step of executing one or more computer-implemented clinically validated
automatic deterioration event subroutines, wherein each subroutine is configured to

determine a specific clinical deterioration event in the patient.
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In particular, the present disclosure relates to a computer-implemented method
configured for automatic real-time detection of clinical deterioration events in a patient,
the method comprising the steps of:

— continuously receiving a plurality of different vital sign data from a plurality of
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sensors worn by the patient, the vital sign data selected from the group of:
electrocardiogram (ECG), photoplethysmogram (PPG), heart rate (HR),
respiration rate (RR), blood pressure (e.g. systolic blood pressure, SBP), heart
rhythm, ischemic electrocardiographic response, peripheral temperature,
peripheral skin conductance, 3D body position and acceleration, pulse rate,
peripheral perfusion index, peripheral oxygen saturation (SpO;), and
subcutaneous glucose concentration; optionally /alternatively vital sign data like
blood pressure can be estimated from other measured vital sign data, for
example heart rate (HR), respiration rate (RR), blood oxygen saturation (SpO2)
and pulse rate (PR) as disclosed herein, as these vital sign data are easier to
measure than blood pressure,
analyzing the vital sign data to identify artefacts;
discarding one or more data samples associated with the identified artefacts in
the vital sign data in order to continuously obtain validated patient vital sign
parameters;
executing one or more computer-implemented clinically validated deterioration
event subroutines, each subroutine configured to receive one or more of the
validated vital sign parameters and determine a specific clinical deterioration
event in the patient, said clinical deterioration event selected from the group of:
— bradypnea/apnea based on validated heart rate and respiration rate
parameters,
— tachypnea based on validated respiration rate,
— hypoventilation based on validated respiration rate and peripheral arterial
oxygen saturation,
— desaturation based on validated peripheral arterial oxygen saturation,
— sinus tachycardia based on validated heart rate,
— bradycardia based on validated heart rate,
— hypotension based on validated systolic blood pressure, or estimated
systolic blood pressure
— circulatory collapse based on validated heart rate and validated systolic

blood pressure or estimated systolic blood pressure,
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— asystole based on validated heart rhythm and pulse rate,
— hypertension based on validated systolic blood pressure or estimated
systolic blood pressure,
— atrial fibrillation based on validated heart rhythm,
— ventricular extrasystoles based on validated heart rhythm, and
— ventricular tachycardia/-fibrillation based on validated heart rhythm,
— providing an alarm when at least one of said deterioration events has been
detected by one of said clinically validated automatic deterioration event

subroutines.

Optionally and/or alternatively the one or more computer-implemented clinically
validated deterioration event subroutines can be executed based on forecasted vital
signs, as for example shown in example 5, where the vital sign parameters heart rate
and respiration rate are forecasted based on modelling, e.g. machine learning, in
particular Multivariate Auto-Regressive (MAR) models, of the validated vital sign
parameters HR and RR. Any vital sign parameters can be forecasted based on this
approach, i.e. forecasted for at least 5, 10, 15, 30, 45 or even 60 minutes. Each
subroutine based on forecasted vital signs can then be configured to receive one or
more of the forecasted vital sign parameters and determine a specific forecasted
clinical deterioration event in the patient, said clinical deterioration event selected from
the group of clinical deterioration events listed above. In that way alarms can be
generated based on forecasted data, i.e. before the deterioration event actually
happens and/or predicting whether the deterioration event is likely to occur in the near

future.

Preferably, all vital signs are received continuously. The data may be transmitted with
different sampling frequencies and it may be transmitted blockwise (sampling). As also
described in Example 3 herein blood pressure (both systolic and diastolic) can be
estimated on other measured vital signs, for example HR, RR, SpOzand PR, such that
blood pressure can be measured both cuffless and non-invasively, and possibly be
validated because it can be based on validated vital signs data, and thereby possibly
replace the validated systolic blood pressure measurement used in the subroutines as

described herein.
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Each clinically validated deterioration event subroutine is associated with one or more
criterions, which determine whether an alarm should be generated. The criterions
comprise thresholds and time duration(s), which have been clinically determined and
evaluated by medical doctors, such that the amount of alarms generated are reduced
and more important alarms are generated. Hence, the presently disclosed system and
method provides much more predictive value than existing systems, since it provides
alarms of events that require clinical action from the medical staff, while simultaneously
greatly reducing the amount of false alarms. This has been achieved by engineering a
plurality of deterioration event subroutines, also referred to as predictive computer

algorithms.

The present disclosure further relates to a system for automatic detection of a clinical
deterioration event in a patient, said system comprising:

— one or more sensors configured for automatically monitoring vital sign
data (such as heart rate, respiration rate, heart rate variability,
temperature, oxygen saturation and blood pressure) of the patient, the
one or more sensors further configured for transmitting the vital sign
data wirelessly to a server and/or to a gateway;

— afirst server for receiving and storing the vital sign data, the first server
having a computer program thereon, said computer program configured
for executing the presently disclosed method thereby providing
automatic detection of a clinical deterioration event in a patient; and

— one or more gateways configured to provide a wireless communication

link between the sensor(s) and the first server.

The system described herein is configured for executing the presently disclosed
method thereby providing automatic detection of a clinical deterioration eventin a
patient. The disclosed system and its functionality is shown in figures 1-3 and further

described in the detailed description of the invention.

The disclosure further relates to a computer program having instructions thereon
which, when executed by a computing device or system, causes the computing device
or system to execute the method disclosed herein, thereby providing automatic real-

time detection of clinical deterioration events in a patient.
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Accordingly, the presently disclosed system and method provides continuous 24/7
monitoring of patients, wherein clinical deterioration events in the patient is
automatically detected and reported through intelligent alarm generation. Specifically,
this is achieved by executing a plurality of deterioration event subroutines, which
receives input from one or more sensors associated with the patient, wherein said
subroutines are configured to provide an alarm in case of a clinical deterioration event

in the patient.

Accordingly, the presently disclosed system and method provides a significant
improvement to existing clinical support systems, which typically rely heavily on simple

thresholds for generating alarms.

The present disclosure further relates to a system for identifying unauthorized access
of an account of an online service, comprising a non-transitive, computer-readable
storage device for storing instructions that, when executed by a processor, performs a
method for identifying unauthorized access of an account of an online service
according to the described method. The system may comprise a mobile device
comprising a processor and a memory and being adapted to perform the method but it
can also by a stationary system or a system operating from a centralized location,
and/or a remote system, involving e.g. cloud computing. The invention further relates to
a computer program having instructions which when executed by a computing device
or system cause the computing device or system to identify an unauthorized access of
an account of an online service according to the described method. Computer program
in this context shall be construed broadly and include e.g. programs to be run on a PC
or software designed to run on smartphones, tablet computers or other mobile devices.
Computer programs and mobile applications include software that is free and software
that has to be bought, and also include software that is distributed over distribution

software platforms such as Apple App Store, Google Play and Windows Phone Store.

Description of drawings

Fig. 1 shows an embodiment of a system for automatic detection of a clinical

deterioration event in a patient according to the present disclosure.

Fig. 2 shows a block diagram, which illustrates the overall functionality of the system

and method as disclosed herein.
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Fig. 3 shows another representation of an embodiment of a system according to the

present disclosure.

Fig. 4 shows an embodiment of the ECG preprocessing subroutine according to the

present disclosure.

Fig. 5 shows an embodiment of the SpO. preprocessing subroutine configured to

assess the quality of the SpO. values from a pulse oximeter worn by the patient.

Fig. 6 shows a block diagram of the bradypnea subroutine according to one

embodiment.

Fig. 7 shows a block diagram of the tachypnea subroutine according to one

embodiment.

Fig. 8 shows a block diagram of the hypoventilation subroutine according to one

embodiment.

Fig. 9 shows a block diagram of the desaturation subroutine according to one

embodiment.

Fig. 10 shows a block diagram of the desaturation subroutine according to one

embodiment.

Fig. 11 shows a block diagram of the desaturation subroutine according to one

embodiment.

Fig. 12 shows a block diagram of the desaturation subroutine according to one

embodiment.

Fig. 13 shows a block diagram of the sinus tachycardia subroutine according to one

embodiment.

Fig. 14 shows a block diagram of the sinus tachycardia subroutine according to one

embodiment.
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Fig. 15 shows a block diagram of the bradycardia subroutine according to one

embodiment.

Fig. 16 shows a block diagram of the bradycardia subroutine according to one

embodiment.

Fig. 17 shows a block diagram of the hypotension subroutine according to one

embodiment.

Fig. 18 shows a block diagram of the hypertension subroutine according to one

embodiment.

Fig. 19 shows a block diagram of the hypotension subroutine according to one

embodiment.

Fig. 20 shows a block diagram of the hypertension subroutine according to one

embodiment.

Fig. 21 shows a block diagram of the circulatory collapse subroutine according to one

embodiment.

Fig. 22 shows a block diagram of the atrial fibrillation subroutine according to one

embodiment.

Fig. 23 shows a block diagram, which illustrates the overall functionality of the

presently disclosed system and method.

Fig. 24 shows a block diagram, which illustrates how the electrocardiogram (ECG) data

and photoplethysmogram (PPG) data is handled.

Fig. 25 shows a diagram of the deep generative model (DGM) used in example 1.

Fig. 26 shows a diagram of (a) the inference model and (b) the generative model of the

proposed network used in example 1.



10

15

20

25

30

WO 2023/281116 PCT/EP2022/069262

9

Fig. 28 shows the input segment and corresponding reconstruction of chosen samples

used in example 1.

Fig. 29 shows the distribution of the samples for the test set in the latent space used in

example 1.

Fig. 30 shows depicts the steps of the algorithm used in example 2.

Fig. 31A shows the relation between prediction window and overlap window used in

example 2.

Fig. 31B illustrates the extraction of control samples as used in example 2.

Fig. 32 shows the patient inclusion process applied in example 4.

Figs. 33-34 are visualizations of the night extraction process. In fig. 33 the patient has
an SAE on day 2 (red line), therefore the night before (in green) gets selected. The
others night (in gray) are discarded. Fig. 34 shows a patient without SAEs, therefore all

nights get included (in cyan).

Fig. 35 shows time series vital signs for the patients used to fit the MAR model used in

example 5.

Fig. 36 shows a probabilistic graphical model of the implemented pooled MAR model

used in example 5.

Fig. 37 illustrates the setup used for evaluating the model in example 5 on new
patients. For each step a forecast (right box) is performed based on the data available
in the model window (left box). The windows are then moved 10 minutes forward and

the process is repeated.

Fig. 38 shows a visualization of the response of the hierarchical AR-model fitted to the

HR and RR data as used in example 5.
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Detailed description of the invention

The present disclosure relates to a computer-implemented method configured for

automatic real-time detection of clinical deterioration events in a patient.

Vital sign data

In a preferred embodiment, the first step of the method is receiving a plurality of
different vital sign data from a plurality of sensors worn by the patient. The vital sign
data may be selected from the group of: electrocardiogram (ECG),
photoplethysmogram (PPG), heart rate (HR), respiration rate (RR), blood pressure
(e.g. systolic blood pressure, SBP), heart rhythm, ischemic electrocardiographic
response, peripheral temperature, peripheral skin conductance, 3D body position and
acceleration, pulse rate (PR), peripheral perfusion index, peripheral oxygen saturation
(Sp0Oy>) (e.g. derived from PPG), and subcutaneous glucose concentration. The vital
sign data may be received continuously or it may be received at predefined time
intervals, such as every minute. The vital signs may have fixed sampling frequencies
and some may have block-wise sampling. As an example, ECG may be delivered
every first 10 seconds per minute i.e. the next package of 10 seconds of samples are

then sent after 50 seconds and so on.

Removal of artefacts

In a preferred embodiment, the next step of the method is analyzing the vital sign data
to identify artefacts in the data. Artefacts and noise are preferably taken care of for
each vital sign whenever needed. Artefacts should be understood as erroneous data
displaying unphysical values arising from external factors, which influences the
measurement (of the sensors) such that the measurement is disturbed or altered from
its true value. An example is motion-related artefacts, e.g. if the patient makes sudden
movements, this may influence some of the measured vital sign data. Another example
is if one of the sensors is placed incorrectly, it may be unable to measure the intended
vital sign. As an example, if the pulse oximeter measures a negative value or more
than 100 % SpO-, such data points will be considered artefacts and consequently
removed. Therefore, a next step of the method is preferably to discard one or more
data samples (i.e. sets of data points) associated with the identified artefacts in the vital
sign data in order to obtain validated patient vital sign parameters. Artefacts and noise
are estimated by the overall approach to look for abnormal deviation as a function of

time, amplitude and frequency content.
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ECG preprocessing

In a preferred embodiment, the method further comprises the step of executing an
ECG preprocessing subroutine configured to assess the quality of the ECG data from
an ECG sensor worn by the patient. Some vital sign data, such as RR interval (RRI),
PP interval (PPI), HR, heart rhythm and RR are estimated/calculated based on R peak
detection in the ECG data, i.e. validated heart rate and validated heart rhythm are
typically based on ECG data. The RR interval (RRI) and PP interval (PPI) represent
cardiac beat-to-beat interval extracted from ECG and PPG signals, respectively. R
peak is understood to have its common meaning, i.e. the maximum amplitude in the R
wave in the QRS complex of an electrocardiogram. The system associated with the
disclosed method is preferably configured to provide such vital sign data automatically,
i.e. automatically perform the R peak detection in the ECG data. However, if the ECG
data is noisy or distorted, the detection of the R peak(s) can be faulty, leading to
erroneous estimations of RRI, HR, and RR. Therefore, the system is preferably further
configured to stream parts of ECG data. The purpose of the ECG preprocessing
subroutine is to evaluate whether the streamed parts of ECG data (also referred to as
ECG samples) have an acceptable quality. The output of the ECG preprocessing
subroutine is a plurality of parameters (goodForHR, goodForAF, goodForRR,
goodForMorph), which can obtain a value of either 1 or 0. A value of 1 indicates that
the ECG sample is good enough to be used for deriving vital sign data (HR, RR, and/or
RRI), which can be used as input to the clinically validated deterioration event
subroutines. In that case, the vital sign data is referred to as validated vital sign data.
Conversely, a value of 0 indicates that the concerned ECG sample and/or derived vital
sign data should be discarded and not applied in the deterioration event subroutines.
The parameters goodForHR and goodForRR means that the concerned ECG sample
is of good enough quality (in case of a value of 1) to be used to estimate the heart rate
(HR), the heart rhythm and respiratory rate (RR) of the patient based on the ECG
sample, respectively. Similarly, the parameter goodForAF means that the concerned
ECG sample is of good enough quality to be used in the atrial fibrillation (AF)
subroutine. The parameter goodForMorph indicates that the ECG sample is good
enough (in terms of noise, e.g. quantified by signal-to-noise ratio) for calculating other
values from the ECG morphology. In one embodiment, the ECG preprocessing

subroutine comprises the steps of:
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— receiving ECG values from an ECG sensor, the ECG values comprising ECG
time stamp, ECG samples, heart beat time stamp, R-R interval, and/or QRS
amplitude;

— discarding ECG values that are outside predefined thresholds, such as ECG<0
or ECG>4000 (representing 12 bit resolution i.e. the number representing
realistic heart values), and/or discarding ECG values that are duplicate;

— performing a linear interpolation of ECG missing values;

— determining QRS index (i.e. the major heart peak sample number within a
predefined time window such as a 10 seconds window) in ECG using QRS time
stamp;

— comparing the number of heart beats and/or the QRS amplitude and/or the ratio
between a sub selection of the QRS amplitudes and the number of heartbeats
to one or more predefined thresholds, and in case said thresholds are
exceeded, discarding one or more of the ECG values;

— performing a bandpass filtering of the ECG values;

— correcting R peak(s) from the ECG values and/or normalizing each heart beat
from the ECG values based on heuristic rules;

— calculating ecgTemplate (i.e. an average ECG heart cycle calculated from the
first heart cycles in a heart signal) or previously received ecgTemplate;

— calculating correlation coefficients (cc);

— comparing the average of cc and/or the number of cc to one or more
predetermined thresholds, and in case said thresholds are exceeded,
discarding one or more of the ECG values;

— calculating the deviation between the corrected R peak(s) and the non-
corrected R peak(s) and storing said deviation as HBdev value(s); and

— comparing the HBdev value(s) to one or more predefined thresholds and
discarding the ECG values that are associated with HBdev value(s) that exceed

the one or more predefined thresholds.

SpO: preprocessing

In a preferred embodiment, the method further comprises the step of executing a SpO.
preprocessing subroutine configured to assess the quality of the SpO. data from a
pulse oximeter worn by the patient in order to obtain validated SpO- data. The system
associated with the presently disclosed method is preferably configured to receive

SpO: data from the pulse oximeter with a given sampling frequency, e.g. 1 Hz. A given
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time segment (e.g. length of 1 minute) of data comprising a number of SpO; values, is
represented by an average SpO, sample (i.e. one value representing the oxygen level
for a one minute interval), may be transferred e.g. every minute, to the one or more
servers storing the computer program for executing the disclosed method. In one
embodiment, the SpO. preprocessing subroutine comprises the steps of:
— receiving SpO; data (such as SpO, data samples) from a pulse oximeter worn
by the patient;
— removing SpO; data values in the SpO., data or SpO, data samples that exceed
one or more predefined thresholds such as SpO2 < 0 and/or SpO; > 100;
— removing duplicate SpO; data;
— removing SpO; data that has a difference per second greater than 4;
— extrapolating missing SpO; data; and

— optionally calculating the average SpO; value from the SpO; data.

Deterioration event subroutines

In a preferred embodiment, the next step of the method is executing one or more
computer-implemented clinically validated deterioration event subroutines. Preferably,
each subroutine is configured to receive one or more of the validated vital sign
parameters and determine a specific clinical deterioration event in the patient. The
clinical deterioration event may be selected from the group of. bradypnea/apnea,
tachypnea, hypoventilation, desaturation, sinus tachycardia, bradycardia, hypotension,
circulatory collapse, hypertension, atrial fibrillation, ventricular extrasystoles, ventricular
tachycardia/-fibrillation (VT/VF), asystole, cardiac ischemia, low perfusion index, and
acute stress. Each deterioration event subroutine is described in further details in the

following.

Bradypnea subroutine

The disclosed method may comprise a bradypnea subroutine configured to determine
bradypnea/apnea. According to one embodiment, the bradypnea subroutine comprises
the steps of:
— receiving validated HR and RR values;
— comparing the validated HR and RR values to one or more predefined
bradypnea thresholds, and
— providing an alarm in case the HR and RR values exceed said predefined

bradypnea thresholds for a predefined time duration.
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The one or more bradypnea thresholds may be selected from the group of: HR > 10
bpm, HR > 15 bpm, HR > 20 bpm, HR > 25 bpm, RR = 3 bpm, RR <5 bpm, RR =10
bpm, RR = 15 bpm, and/or combinations thereof. In a preferred embodiment, the
bradypnea subroutine comprises the bradypnea thresholds HR > 20 and RR < 5. The
predefined time duration may be selected from the group of: = 1 min, = 2 min, = 3 min,
= 5 min, or = 10 min. In a preferred embodiment, the bradypnea subroutine provides an

alarm in case HR > 20 and RR £ 5 for more than 1 minute.

Tachypnea subroutine

The disclosed method may comprise a tachypnea subroutine configured to determine
tachypnea. According to one embodiment, the tachypnea subroutine comprises the
steps of:

— receiving validated RR value(s);

— comparing the validated RR value(s) to a predefined tachypnea threshold; and

— providing an alarm in case the RR value(s) exceed the tachypnea threshold for

a predetermined time duration.

The predefined tachypnea threshold may be selected from the group of: RR = 20 bpm,
RR = 24 bpm, RR = 28 bpm, and/or combinations thereof. In a preferred embodiment,
the tachypnea subroutine comprises the tachypnea threshold: RR = 24 bpm. The
predefined time duration may be selected from the group of: = 1 min, = 2 min, = 3 min,
= 5 min, = 10 min. A time duration of = 5 min is preferred. In a preferred embodiment,
the tachypnea subroutine provides an alarm in case RR = 24 bpm for more than 5

minutes.

Hypoventilation subroutine

The disclosed method may comprise a hypoventilation subroutine configured to
determine hypoventilation. According to one embodiment, the hypoventilation
subroutine comprises the steps of:
— receiving validated RR and SpO: value(s);
— comparing each of the validated RR and SpO; values to one or more
hypoventilation thresholds; and
— providing an alarm in case in case the RR and SpO; values exceed the

hypoventilation threshold(s) for a predefined time duration.

The hypoventilation thresholds may be selected from the group of: RR<15 bpm, RR<13
bpm, RR<11 bpm, RR<9 bpm, Sp02<92 %, Sp02<90 %, Sp0»<88 %, SpO,<86 %,
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and/or combinations thereof. In a preferred embodiment, the hypoventilation thresholds
comprise RR<11 bpm and Sp0,<88 %. The predefined time duration may be selected

from the group of: = 1 min, = 2 min, = 3 min, = 5 min, or = 10 min. A time duration of = 5
min is preferred. In a preferred embodiment, the hypoventilation subroutine provides an

alarm in case RR<11 bpm and Sp0.<88 % for more than 5 minutes.

Desaturation subroutine

The disclosed method may comprise a desaturation subroutine configured to determine
desaturation. According to one embodiment, the desaturation subroutine comprises the
steps of:
— receiving validated SpO; values;
— comparing the validated SpO. values to one or more predefined SpO-
thresholds; and
— providing an alarm in case the SpO- values exceed the SpO- threshold(s) for a

predefined time duration £.

The predefined SpO, thresholds may comprise any of: SpO. < 92 %, SpO; < 88 %,
SpO2 < 85 %, SpO: < 80 %, and/or combinations thereof. The predefined time duration
may be selected from the group of: = 1 min, = 5 min, = 10 min, = 30 min, or = 60 min. In
a preferred embodiment, the desaturation subroutine provides an alarm in case:

Sp0O2 < 92 % for t = 60 min, or

- Sp02 <88 % fort= 10 min, or

SpO2 < 85 % fort =5 min, or

Sp0O2 < 80 % fort =1 min.

Sinus tachycardia

The disclosed method may comprise a sinus tachycardia subroutine configured to
determine sinus tachycardia, said subroutine comprising the steps of:
— receiving validated HR value(s);
— comparing the validated HR values to one or more predefined sinus tachycardia
thresholds; and
— providing an alarm in case the HR values exceed the sinus tachycardia

threshold(s) for a predefined time duration .

The one or more predefined sinus tachycardia thresholds may be selected from the
group of: HR = 100 bpm, HR = 111 bpm, HR = 120 bpm, or HR > 130 bpm. The

predefined time duration may be selected from the group of: = 5 min, = 10 min, = 30
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min, = 60 min, or = 80 min. In a preferred embodiment, the sinus tachycardia
subroutine provides an alarm in case: HR > 130 bpm for { = 30 min, or in case HR =
111 bpm for £ 2 60 min.

Bradycardia subroutine

The disclosed method may comprise a bradycardia subroutine configured to determine
bradycardia, said subroutine comprising the steps of:
— receiving validated HR value(s);
— comparing the validated HR values to one or more predefined bradycardia
thresholds and/or ranges; and
— providing an alarm in case the HR values exceed the bradycardia threshold(s)

and/or ranges for a predefined time duration ¢.

The bradycardia thresholds/ranges may be selected from the group of: HR < 40 bpm,
HR < 30 bpm, HR < 25 bpm, 25 bpm < HR <45 bpm, or 30 bpm < HR <40 bpm. The
predefined time duration may be selected from the group of: = 1 min, = 2 min, = 3 min,
= 5 min, or 2 10 min. In a preferred embodiment, the bradycardia subroutine provides
an alarm in case HR < 30 bpm for £ = 1 min, orin case 30 bpm < HR <40 bpmfort=5

min. Preferably, the alarm is only provided if the parameter goodForHR is equal to 1.

Hypotension subroutine

The disclosed method may comprise a hypotension subroutine configured to determine
hypotension, said subroutine comprising the steps of:
— receiving validated SBP value(s);
— comparing the validated SBP values to one or more predefined hypotension
thresholds; and
— providing an alarm in case the SBP values exceed the hypotension threshold(s)
for one or more consecutive measurements and/or for a predefined time

duration .

The hypotension thresholds may be selected from the group of: SBP < 91 mmHg, SBP
< 80 mmHg, SBP < 70 mmHg, SBP < 60 mmHg, and/or combinations thereof. In a
preferred embodiment, the hypotension subroutine provides an alarm in case SBP < 91

mmHg for two consecutive measurements, or in case SBP < 70 mmHg.
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Circulatory collapse

The disclosed method may comprise a circulatory collapse subroutine configured to
determine circulatory collapse, said subroutine comprising the steps of:
— receiving validated SBP and HR value(s);
— comparing the validated SBP and HR values to one or more predefined SBP
thresholds and HR thresholds; and
— providing an alarm in case the SBP threshold(s) and at least one of the HR

thresholds is exceeded for a predefined time duration £.

The predefined SBP threshold(s) may be selected from the group of: SBP < 110
mmHg, SBP < 100 mmHg, and/or SBP < 90 mmHg. The predefined HR thresholds
may be selected from the group of: HR > 110 bpm, HR > 120 bpm, HR > 130 bpm, HR
< 60 bpm, HR < 50 bpm, HR < 40 bpm, and/or combinations thereof. The predefined
time duration may be selected from the group of: = 1 min, = 5 min, = 10 min, = 30 min,
or = 60 min. In a preferred embodiment, the circulatory collapse subroutine provides an
alarm in case:

— S8SBP < 100 mmHg and HR > 110 bpm for { = 30 min, or

—  SBP <100 mmHg and HR > 130 bpm for t = 5 min, or

—  SBP < 100 mmHg and HR < 50 bpm for { = 30 min.

Asystole subroutine

The disclosed method may comprise an asystole subroutine configured to determine
asystole, said subroutine comprising the steps of:
— receiving ECG data samples;
— detecting QRS-complexes in the ECG data samples;
— providing an alarm in case there are no QRS-complexes detected for a
predefined time duration t1, and/or in case there is no pulse detected for a

predefined time duration t2.

The predefined time durations t1 and t2 may be more than 10 seconds, or more than
15 seconds, or more than 20 seconds, or more than 25 seconds, or more than 30

seconds.

Hypertension subroutine

The disclosed method may comprise a hypertension subroutine configured to
determine hypertension, said subroutine comprising the steps of:

— receiving validated SBP value(s);
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— comparing the validated SBP values to one or more predefined hypertension
thresholds; and

— providing an alarm in case the SBP values exceed the hypertension
threshold(s) for one or more consecutive measurements and/or for a predefined

time duration t.

The hypertension threshold(s) may be selected from the group of: SBP = 180 mmHg,
SBP = 190 mmHg, SBP = 200 mmHg, SBP = 210 mmHg, SBP = 220 mmHg, and/or
combinations thereof. The predefined time duration may be selected from the group of:
=1 min, = 5 min, = 10 min, = 30 min, or = 60 min. In a preferred embodiment, the
hypertension subroutine provides an alarm in case SBP = 180 mmHg for { = 60 min, or

in case SBP = 220 mmHg for at least one measurement.

Atrial fibrillation subroutine

The disclosed method may comprise an atrial fibrillation subroutine configured to
determine atrial fibrillation, said subroutine comprising the steps of:
— receiving validated RRI values and/or RRI samples;
— comparing the validated RRI values to one or more predefined RRI
threshold(s);
— removing RRI values that exceed the predefined RRI threshold(s);
— optionally comparing the amount of RRI values (e.g. the length of an array
storing RRI values) to a second RRI threshold;
— computing the normalized difference (NDR) of the RRI and storing these as
NDR values;
— optionally removing the NDR values that fall outside predefined percentiles;
— providing the NDR values to a supervised learning model, e.g. a Support Vector
Machine (SVM) model, trained and configured to determine atrial fibrillation
(AF) based on the NDR values; and

— providing an alarm in case of atrial fibrillation.

The predefined RRI threshold(s) may be selected from the group of: RRI<300,
RRI<200, RRI<150, RRI>2500, RRI>3000, or RRI>3500. The second RRI threshold
may be that the size of the RRI array storing the RRI values is greater than 15, or
greater than 20, or greater than 25, or greater than 30. The atrial fibrillation subroutine
preferably comprises the step of computing the normalized difference of the validated

RRI values and storing the computed normalized difference values in a stored set of
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NDR values. The atrial fibrillation subroutine may further comprise the step of removing
the NDR values that fall outside predefined percentiles of the values. Said predefined
percentiles may comprise the 10" percentile and the 90 percentile, such that NDR
values that are below the 10" percentile and/or above the 90" percentile are removed
from the stored set of NDR values. The atrial fibrillation subroutine may further
comprise the step of providing the stored set of NDR values to a Support Vector
Machine (SVM) model configured to determine the presence of atrial fibrillation. In one
embodiment, an SVM model was separately trained for binary classification (of atrial
fibrillation) using a radial basis function (RBF) kernel. The misclassification costs were
set to be proportional to the number of the training samples for each class. The feature
NDR was extracted from a plurality of RRI samples, each sample comprising RRI
values from a timespan of one minute. These RRI samples were fed into the SVM

model for AF detection.

The disclosed method may comprise yet another atrial fibrillation subroutine configured
to determine atrial fibrillation, said subroutine comprising the steps of:

— receiving ECG data;

— optionally executing a ECG preprocessing subroutine to obtain validated ECG
data based on the received ECG data, preferably the ECG preprocessing as
disclosed herein;

— providing the (validated) ECG data to a semi-supervised learning model, e.g. a
deep generative model based on neural networks, trained and configured to
determine atrial fibrillation (AF) based on (validated) ECG data (as exemplified
in example 1); and

— providing an alarm in case of atrial fibrillation.

The semi-supervised learning model may have been trained on less than 50% labelled
data, preferably less than 40% labelled data, more preferably less than 30% labelled
data, even more preferably less than 20% labelled data, most preferably less than 10%
labelled data.

VT/VF subroutine

A reference subroutine for ventricular fibrillation (VF) detection can be found in Ibtehaz
et al., “VFPred: A fusion of signal processing and machine learning techniques in
detecting ventricular fibrillation from ECG signals”, Biomedical Signal Processing and
Control 49 (2019), pp. 349-359. The VFPred algorithm can detect VF, which contains
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the classes VF and non-VF, and can be expanded with the classes VT/VF and non-
VT/VF such that both VF and ventricular tachycardia (VT) can be detected.

Serious adverse events

Conventional bedside monitoring system has demonstrated the difficulty in long term
monitoring of post-operative patients because the majority of them are ambulatory.
With the presently disclosed approach employing wearable sensors and advanced data
analytics, those patients will benefit greatly from continuous and predictive monitoring.
A Serious Adverse Event (SAE) is any untoward medical occurrence or effect at any
dose, any undesirable or unintentional effect that:
o results in death (regardless of cause)
o s life threatening
o results in hospitalization or prolongation of existing hospitalization,
e results in persistent or significant disability or incapacity of the subject
e is associated with a congenital anomaly or birth defect
e is qualified as “other” important medically significant event or condition e.g. the
event may jeopardize the subject or may require intervention to prevent one of
the outcome listed above (e.g. intensive treatment in an emergency room or at

home).

Examples of SAEs are Pneumonia, wound infection. anastomosis leakage,
pneumothorax, bleeding, myocardial infarction, pulmonary embolism, delirium,
syncope, stroke, transient ischaemic attack, respiratory failure, atelectasis,
pneumothorax, pleural effusion, pulmonary embolism, heart failure, deep vein
thrombosis, non-fatal cardiac arrest, troponin elevation, myocardial infarction, atrial
fibrillation, atrial flutter, ventricular tachycardia, other supraventricular tachyarrhytmias,
second-degree atrio-ventricular block, third-degree atrio-ventricular block, urinary tract
infection, sepsis, septic shock, surgical site infection, major bleeding, drain, acute renal
failure, hypoglycemia, diabetic ketoacidosis, intestinal obstruction, fracture, opiod

intoxication, re-operation, and death.

SAEs like atrial fibrillation, atrial flutter, ventricular tachycardia, other supraventricular
tachyarrhytmias, second-degree atrio-ventricular block, and third-degree atrio-
ventricular block are examples deterioration events that both can be termed clinical

deterioration events, and thereby be detected according to the presently disclosed
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approach, and be termed SAE because they also fall within the definition of SAE as

stated above.

Example 2 discloses detection of serious adverse events (SAE) based on machine
learning, where a support vector machine model has been trained on validated data.
The feature input to the model was extracted from time series of four vital sign
parameters HR, RR, SpO2 and sysBP, from where clinical deterioration events were
extracted as trends in the data time series. However, the model could equally well have
been trained based on features selected from one or more of the specific clinical
deterioration events disclosed herein. |.e. once the model is trained as described in
example 2, the input to the prediction of SAE will be vital sign data and detection of one

or more clinical deterioration events as disclosed herein.

Application of the approach disclosed in example also 2 applies to clinical deterioration
events detected in accordance with the presently disclosed approach, i.e. clinical
deterioration events and/or SAEs can be detected, and thereby also possibly predicted
and preferably prevented, with detection of clinical deterioration events as disclosed
herein, i.e. by application of machine learning and continuous vital sign monitoring of

(post-operative) patients.

Nighttime monitoring

As disclosed in example 4 nighttime monitoring of patient can improve prediction of
SAE’s, in particular patients having an increased heart rate and breathing rate as well
as a slightly lower oxygen saturation during sleep during the nighttime, e.g. from
midnight to 6 AM, compared to their normal vital sign parameters, have an increased
risk of developing a SAE during the following day. This can be improved by combining
the monitoring with a sleep stage detector, for example based on EEG measurements,
such that it is known when the patient sleeps such that only sleep vital sign data is
used in the nighttime analysis. The observation of an abnormal nighttime period of a
patient may trigger an alarm, or a pre-alarm, such that the patient is surveyed more
closely the following day and/or by adjusting one or more of the subroutine thresholds

such that an alarm is generated earlier.

Alarm generation

The presently disclosed method is configured for providing an alarm when at least one

deterioration event has been detected by one of the described deterioration event
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subroutines. Each subroutine receives one or more validated vital sign parameters
(such as RR, HR, SpO;, and SBP) and provides an alarm in case the monitored
parameter(s) exceed one or more predefined thresholds for a predefined time duration
as explained in further detail in relation to each subroutine. The preferred values of the
different thresholds and durations for alarm generation associated with the different

subroutines are summarized in the table below.

Subroutine Threshold Duration
Bradypnea RR =5 bpm and HR > 20 bpm =1 min
Tachypnea RR =z 24 bpm =5 min
Hypoventilation RR < 11 bpm and SpO, < 88 % =5 min
Desaturation 1. SpO2 < 80% 1. 21 min
2. Sp02<85% 2. 25 min
3. Sp0.<88 % 3. =210 min
4. Sp02<92 % 4. =60 min
5. (optional) > 10 % reduction from a 5. 260 min
dynamic set point, which in example can
be defined as a rolling average of SpO2
values for = 6 hours.
Sinus 1. HR > 130 bpm 1. =30 min
tachycardia 2. HR =111 bpm 2. 260 min
Bradycardia 1. HR <30 bpm 1. 21 min
2. 30 bpm <HR =40 bpm 2. 25min
Hypotension 1. SBP <91 mmHg 1. Two consecu-
2. SBP <70 mmHg tive measure-
ments
2. Atleastone
measurement
Circulatory 1. SBP <100 mmHg and HR > 110 bpm 1. =30 min
collapse 2. SBP <100 mmHg and HR > 130 bpm 2. 25min
3. SBP <100 mmHg and HR < 50 bpm 3. =230 min
4. (Optional) SBP < 100 mmHg and (SpO. < |4. 210 minor=
92 % or > 5 % reduction in SpO_ from the 60 min
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rolling average as defined in relation to
the desaturation subroutine)
Asystole No QRS complexes in the ECG data and =20s
no pulse
Hypertension SBP = 180 mmHg =60 min
SBP = 220 mmHg At least one
measurement
Atrial fibrillation Irregular R-R intervals (i.e. different length > 30 min
of R-R intervals): Atrial Fibrillation
Regular R-R intervals: Atrial Flutter
Ventricular = 7 occurrences per minute of =1 min
Extrasystoles extrasystoles (n: = 7), with or without When occur-
normal sinus rhythm interpolated or ring
2. =3 consecutive occurrences of
extrasystoles, without interpolated sinus
rhythm
VT/VF Unique VT/VF features as detected on =230s
ECG morphology

System

The present disclosure further relates to a system for automatic detection of a clinical
deterioration event in a patient, said system comprising:
— one or more sensors configured for automatically monitoring vital sign data
5 (such as heart rate, respiration rate, heart rate variability, temperature, oxygen
saturation and blood pressure) of the patient, the one or more sensors further
configured for transmitting the vital sign data wirelessly to a server and/or to a
gateway;
— afirst server for receiving and storing the vital sign data, the first server having
10 a computer program thereon, said computer program configured for executing
the presently disclosed method thereby providing automatic detection of a
clinical deterioration event in a patient; and
— one or more gateways configured to provide a wireless communication link

between the sensor(s) and the first server.
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Sensors

The sensors to be worn by the patient are preferably selected from the group of:
electrocardiography (ECG) sensors, pulse oximeters, oscillometric blood pressure
monitors, peripheral skin conductance sensors, 3D accelerometers, peripheral
thermometers, and continuous glucose monitors. The sensors are preferably wireless
wearable sensors configured for wireless communication with one or more gateways or
servers. Data from the sensors may be streamed at a predefined streaming interval in
order to save battery consumption and data storage. The streaming interval may be
different from sensor to sensor. As an example, the streaming interval for the ECG
sensor may be every two minutes, every minute, or every 30 seconds. Furthermore,
different time intervals data from each sensor may be selected to be streamed. For
example, ECG data may be collected continuously, whereas only 10 seconds of the
ECG data may be selected to be streamed each minute. Preferably, the heart rate and
temperature of the patient is received continuously. The respiratory rate is preferably
received as a 10 second average, which may be streamed continuously or at a
predefined interval such as every 10 seconds. The peripheral oxygen saturation and
perfusion index is preferably measured (and streamed) every second, and the blood

pressure is preferably measured (and streamed) every 15 or every 30 minutes.

Patient gateway

A patient gateway should be understood herein as an electronic device configured for
communication with one or more sensors and/or servers. An example of a patient
gateway is a tablet computer. The gateway is preferably located near the patient, e.g.
at the bedside of the patient, such that the wireless signals from the sensors can reach
the gateway. The system preferably comprises a patient gateway for each patient. The
wireless communication between the sensors and the patient gateway(s) may be any
suitable wireless standard such as Bluetooth, Bluetooth Low Energy (BLE), Ultra
Wideband (UWB), Wi-Fi, IEEE 802.11ah (Wi-Fi HaLow), GSM, 4G, 5G, or other similar

technologies.

Servers

A server should be understood as a computer or computer program that provides
services (e.g. computation) for other programs or devices. The servers of the presently
disclosed system is preferably cloud servers, i.e. located remotely from the rest of the
system, and accessible through the internet. The presently disclosed subroutines

preferably form part of a computer program stored on one or more servers, such as
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cloud servers. In a preferred embodiment, the computer program comprising the one or
more subroutines is stored on the first server. The first server is preferably configured
for communication with the patient gateway. Preferably, the communication is
encrypted and may be wired or wireless. The wireless communication between the
patient gateway and the first server may be any suitable wireless standard as

mentioned in relation to the sensors and the patient gateway(s).

The system may further comprise a second server. Preferably, the second server is
configured to provide an alarm (e.g. in the form of a push notification) to a remote
device (such as a computer, a smartphone or a tablet computer) in case the system

has detected a clinical deterioration event or medical complication.

Detailed description of the drawings

Fig. 1 shows an embodiment of a system according to the present disclosure. In this
embodiment, the system comprises one or more wireless sensors, a patient gateway, a
first server configured for receiving data from the patient gateway and for executing the
disclosed method and subroutines hereof, and a second server for providing an alarm
(e.g. a push notification) in case a clinical deterioration event in the patient has been
identified. The alarm is preferably transmitted to an external device of the system, such

as a smartphone.

Fig. 2 shows a block diagram, which illustrates the overall functionality of the system
and method as disclosed herein. A plurality of vital signs (e.g. heart rate, respiration
rate, blood pressure, RR interval, oxygen saturation, etc.) of the patient is received
from one or more sensors. Here the system is exemplified with three sensors: A
Lifetouch Blue device (combined ECG sensor and accelerometer), a Nonin WristOx
sensor (wireless pulse oximeter), and a blood pressure cuff. Some of the vital sign
parameters is provided as direct input to the one or more subroutines configured for
event detection. Other parameters are provided as input to an ECG preprocessing
subroutine configured to assess the quality of the ECG data and/or to a SpO»
preprocessing subroutine configured to assess the quality of the SpO- values received
from the pulse oximeter. The ECG preprocessing subroutine assigns a value of either 1
or 0, which indicates the quality of the concerned parameter (e.g. AF, HR, RR, or
Morph). A value of 1 indicates that the parameter is good enough to be used in the

deterioration event subroutines.
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Fig. 3 shows another representation of an embodiment of a system according to the
present disclosure. In this embodiment, the system comprises one or more wireless
sensors, a patient gateway, a first server (here denoted a Lifeguard server) configured
for receiving data from the patient gateway and for executing the disclosed method and
subroutines hereof. In this embodiment, the sensors are configured for wireless
communication with the patient gateway using Bluetooth or Bluetooth low energy.
Furthermore, the patient gateway is configured for wireless communication with the first
server using WiFi and/or GSM. The first server may be configured for providing a
website, which can be accessed by one or more external devices, such as computers,

tablets, smartphones, or similar devices.

Fig. 4 shows an embodiment of the ECG preprocessing subroutine according to the
present disclosure. Generally, a number of vital sign parameters are derived from ECG
data received by an ECG sensor. The purpose of the ECG preprocessing subroutine is
to assess the quality of the ECG data, such that the derived values (e.g. RRI, HR, and
RR) can be validated and used as input in the deterioration event subroutines. The flow
diagram shows in detail how the ECG preprocessing subroutine decides whether or not
the derived values are good enough to be used as input to the deterioration event
subroutines. This is done by performing a series of calculations of the ECG data and by
comparing the ECG data and/or calculated values from the ECG data to one or more
thresholds, whereby the parameters goodForHR, goodForAF, goodForRR, and

godForMorph are assigned a value of O or 1.

Fig. 5 shows an embodiment of the SpO. preprocessing subroutine configured to
assess the quality of the SpO- values from a pulse oximeter worn by the patient. The
purpose of the SpO. preprocessing subroutine is to remove SpO. values, which are
considered unphysical. Examples of unphysical SpO. values are SpO, < 0 % and SpO:
> 100 %. Such values are preferably removed from the SpO; data. Another example is
that the difference of SpO- values per second should not exceed 4 percentage points.
The SpO: preprocessing subroutine is configured to remove such SpO: values before

calculating an average SpO: value.

Fig. 6 shows a block diagram of the bradypnea subroutine according to one
embodiment. In this embodiment, the bradypnea subroutine is configured for providing

an alarm in case HR > 20 bpm and RR < 5 bpm for more than 1 minute.



10

15

20

25

30

35

WO 2023/281116 PCT/EP2022/069262

27

Fig. 7 shows a block diagram of the tachypnea subroutine according to one
embodiment. In this embodiment, the tachypnea subroutine is configured for providing

an alarm in case RR = 24 for more than 5 minutes.

Fig. 8 shows a block diagram of the hypoventilation subroutine according to one
embodiment. In this embodiment, the hypoventilation subroutine is configured for

providing an alarm in case RR < 11 bpm and SpO, < 88 % for more than 5 minutes.

Fig. 9 shows a block diagram of the desaturation subroutine according to one
embodiment. In this embodiment, the desaturation subroutine is configured for

providing an alarm in case SpO. < 80 % for more than 1 minute.

Fig. 10 shows a block diagram of the desaturation subroutine according to one
embodiment. In this embodiment, the desaturation subroutine is configured for

providing an alarm in case SpO2 < 85 % for more than 5 minutes.

Fig. 11 shows a block diagram of the desaturation subroutine according to one
embodiment. In this embodiment, the desaturation subroutine is configured for

providing an alarm in case SpO. < 88 % for more than 10 minutes.

Fig. 12 shows a block diagram of the desaturation subroutine according to one
embodiment. In this embodiment, the desaturation subroutine is configured for

providing an alarm in case SpO. < 92 % for more than 60 minutes.

Fig. 13 shows a block diagram of the sinus tachycardia subroutine according to one
embodiment. In this embodiment, the sinus tachycardia subroutine is configured for

providing an alarm in case HR = 111 for more than 60 minutes.

Fig. 14 shows a block diagram of the sinus tachycardia subroutine according to one
embodiment. In this embodiment, the sinus tachycardia subroutine is configured for

providing an alarm in case HR > 130 for more than 30 minutes.

Fig. 15 shows a block diagram of the bradycardia subroutine according to one
embodiment. In this embodiment, the bradycardia subroutine is configured for providing

an alarm in case HR < 30 for more than 1 minute.
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Fig. 16 shows a block diagram of the bradycardia subroutine according to one
embodiment. In this embodiment, the bradycardia subroutine is configured for providing

an alarm in case 30 bpm < HR =< 40 bpm for more than 5 minutes.

Fig. 17 shows a block diagram of the hypotension subroutine according to one
embodiment. In this embodiment, the hypotension subroutine is configured for

providing an alarm in case SBP < 70 mmHag.

Fig. 18 shows a block diagram of the hypertension subroutine according to one
embodiment. In this embodiment, the hypertension subroutine is configured for

providing an alarm in case SBP = 220 mmHg.

Fig. 19 shows a block diagram of the hypotension subroutine according to one
embodiment. In this embodiment, the hypotension subroutine is configured for

providing an alarm in case SBP < 91 mmHg for two consecutive measurements.

Fig. 20 shows a block diagram of the hypertension subroutine according to one
embodiment. In this embodiment, the hypertension subroutine is configured for

providing an alarm in case SBP = 180 mmHg for two consecutive measurements.

Fig. 21 shows a block diagram of the circulatory collapse subroutine according to one
embodiment. In this embodiment, the circulatory collapse subroutine is configured for
providing an alarm in case SBP < 100 mmHg and HR > 110 bpm for t = 30 min, or in
case SBP < 100 mmHg and HR > 130 bpm for t = 5 min, or in case SBP < 100 mmHg
and HR < 50 bpm for t = 30 min.

Fig. 22 shows a block diagram of the atrial fibrillation subroutine according to one
embodiment. In this embodiment, the atrial fibrillation subroutine is configured for

providing an alarm in case of irregular R-R intervals.

Fig. 23 shows a block diagram, which illustrates the overall functionality of the
presently disclosed system and method. The block diagram shows what kind of
received data (heart beat data, respiration rate, SpO,, blood pressure) is used as input
to the different subroutines. The deterioration event subroutines are configured to

determine whether an alarm should be given based on the received input. The
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information on alarm (e.g. yes/no) may be saved in a database and subsequently

broadcasted to a server or one or more external electronic devices.

Fig. 24 shows a block diagram, which illustrates how the electrocardiogram (ECG) data
and photoplethysmogram (PPG) data is handled. Preferably, the ECG data and PPG
data is not streamed continuously as it would consume too much battery on the
wireless sensors. Rather, the ECG data and PPG data may be streamed in bundles of
data, wherein said stream of data may be started and stopped, e.g. by a timer, during
execution of the disclosed method. The streamed ECG/PPG data may be saved in a
cache (i.e. memory), which may also be cleared every once in a while, such as when

new heart beat data is received.

Example 1 - Detection of atrial fibrillation from ECG

Atrial fibrillation (AF) is the most common cardiac arrhythmia and associated with a six
times higher risk of stroke, and twice as high risk of death. According to the National
Health Service (NHS) AF is the most common heart rhythm disturbance affecting more
than 1 million people in the United Kingdom alone. Atrial fibrillation is classified as a
tachyarrhythmia, where the electrical impulse is not initiated in the sinus node, but
instead in fibrillatory waves in the atrias. Atrial fibrillation may also be characterized as
an irregular rhythm with loss of the P-waves in the ECG signal. Preliminary studies
have shown that atrial fibrillation is common in post-operative cancer patients. With the
presently disclosed approach ECG is available from continuous bedside monitoring
thereby providing a possibility of autonomous analysis of the ECG and thereby the

possibility to detect atrial fibrillation as demonstrated in this example.

Normally deep neural networks are trained fully supervised, and thus requiring a large
amount of labelled data. Vast amounts of medical data exist, but only a small amount
of it has been labeled. This can be utilized in semi-supervised learning, where an
unsupervised model is jointly trained on large amounts of unlabeled data with a
supervised model that is trained on a smaller amount of labelled data. The neural
network used in this example is therefore trained in a semi-supervised way where both
labelled and unlabelled data is used. This allows for the neural network to learn
features from a larger dataset, where the segments are not necessarily labelled. The

model is built as a convolutional neural network, utilizing the ResNet architecture.
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The input to the model is a 10 second segment from single lead ECG. The
classification model used after completed training of the model includes the encoder
(cf. fig. 25) and the classifier. The output of the classification model is the probability
that the ECG signal from the input segment is showing atrial fibrillation rhythm. The
Latent space and the Decoder (cf. fig. 25), is only used for training the unsupervised

part of the model

The data used in this project came from the publicly available MIT-BIH Atrial Fibrillation
database (AFDB). The AFDB includes 25 records from different subjects (two only
contains the location of the QRS-complexes and no waveform) each of 10 hours
length. The remaining 23 records contain the ECG signal obtained from two leads.
Each signal was digitized using a sampling frequency of 250 Hz and a 12-bit resolution
in the £10 mV range. Unaudited annotations of the QRS complexes are available along
with manual annotation of the into the following subcategories: Atrial Fibrillation, Atrial
Flutter, AV-Junctional rhythm and Sinus Rhythm (SR).

Each ECG record was split into 10 seconds non-overlapping segments to avoid the
parts of the same segment being present in both the labelled and unlabelled dataset.
The label was given based on the annotation files available with the data and was
divided into AF vs. Non-AF. In conditions where multiple labels were present in the
same segment, the label present for the majority of the segment was used for the
entire segment. For both the training and test set, the data was stratified by down-
sampling of the majority class. The dataset was split into a training set containing 90%
of the segments and a test set containing the remaining 10%. To remove the DC-offset
and any baseline wandering before normalization, a high-pass filter with cut off
frequency of 0:5Hz and a filter order of 5. All segments where down sampled to 100
Hz.

The variational autoencoder is a unsupervised generative model, that consists of two
neural networks, an inference model, the encoder and a generative model, the
decoder. The encoder maps the input sample into a lower dimensional latent variable,
which the decoder maps into a reconstruction of the input sample. The variational
autoencoder builds upon probability theory and Bayes’ rule. In the variational
autoencoder the inference model is defined as g-(zjx) and the generative model as

p(xjz). By including the label variable, y into the model, a semi-supervised generative
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probabilistic model can be achieved. In this model the inference model, Q, is defined as

g-(zjx; y)g-(yjx), with each term defined as:
qs(zlz,y) = N (z|pg(x,y), diag (m;}{r v)), (1)
ge(ylx) = Bernoulli (y|my(x)) , (2)

and the generative model, P, is defined as p(2)p0(x|z; y), with each term defined as:

p(z) = N(z|0,1), (3)

pelx|z,y) = flz:2,9.0), (4)
5
where q4 and pg are neural networks with parameters ¢ and 6, respectively. The
inference and generative model is shown in Figure 26.
The Gaussian distribution g (z|x; y) is achieved by splitting the last layer of the model
10 into two channels representing the mean, y,, and the log variance, log 0,42) of the
distributions, from which z is sampled using the reparameterization trick.
The reconstruction loss p(x|z; y) is defined as a Gaussian distribution with p4 being
the reconstruction and ¢¢ = 2.
15 The objective of optimizing the parameters, 8 and ¢, is to maximize the log-likelihood

log p(x). This is achieved by using Jensen’ inequality to obtain the evidence lower
bound function, which can be optimized. For the unlabeled case the lower bound is

given as

log p(x) = log / ZP(%;%L z)dz

Y (5)
polx,y, 2)
¢ {]m(w';g )

20 and the labeled case the lower bound is defined as

2 E{gd,{m?}é&*} log
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logp(z,y) = }f;}g] Zpﬁ%fﬁ}df?

(6)

" p@(%w i, 3) ‘
we(eten) |8 o Gl |

= —L(z,y).

In the lower bounds the contribution of z and y in the unlabeled case and z in the
labeled case is marginalized out. For the unlabeled case y is treated as latent variable
and is sampled by summing over the two classes, and for z the integral is
approximated by sampling from the Gaussian distribution in the latent space. In the

case of labeled data, optimization for the labels y is done using binary crossentropy.

Besides the lower bounds defined in equations (5) and (6), an extra loss was
introduced where the standard deviations of the input signal and the reconstructions
were subtracted and the absolute value was taken of the difference. This was
introduced to help the decoder to make better reconstructions. For the classifier, binary

cross-entropy loss was used.

To further help the training of the DGM two warmups were introduced, defined as delay
and a linear ramp up to a maximum value. One for the KL divergence, with a 25 epoch
delay, a max weight of 0.1 at 100 epochs, and a second for the classification loss, with
a delay of 0 and a max weight of 0.5 at 40 epochs. These were introduced to not
restrain the generative part of the network too much in the beginning, before pushing

towards classification and a standard normal distribution for z.

Fig. 25 shows a diagram of the deep generative model used in example 1. 1D Conv: 1-

dimensional convolutional layer. FC layer: Fully connected layer.

Fig. 26 shows a diagram of (a) the inference model and (b) the generative model of the
proposed network used in example 1. The grey color of the nodes denotes known data,
and the partly colored node labelled y emphasized the semi-supervised aspect of the

model.

The deep generative model (DGM) can be divided into three parts, the encoder, the
classifier and the decoder. The encoder was built with a residual network (ResNet)

architecture consisting of four blocks each containing three convolutional layers and a
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residual connection. ResNet has shown superiority in other image classification tasks,
when compared to classic convolutional networks. In order to increase the receptive
field of the network, dilation of 2, 4 and 8 was applied to the three layers within each
block respectively. Max-pooling was done in the end of each block using a kernel size
of 3 and a stride of 3, thus decreasing the signal size by a factor 3 per block. The
kernel size and stride were 3 and 1, respectively, for all convolutional layers, and the
number of output channels were fixed per block to 32, 32, 64, and 64 for the four
blocks respectively. Two fully connected layers was applied to the end of the blocks
with a size of 1,000 and 500. The decoder and the classifier were constructed as
simple fully connected neural networks (CNN). The decoder consisted of input layer,
four hidden layers each with 4,096 nodes and an output layer. The classifier consisted
of three layers with 500, 200 and 200 nodes respectively and a binary softmax function
as output. All layers except for output layers used Rectified Linear Unit as activation
function and had batch normalization and dropout (p = 0:3). mA diagram of the model

is show in figure 2.

In order to demonstrate the potential of using the semi-supervised approach, the
proposed DGM was tested against a conventional connected neural network (CNN),
identical to the encoder + classifier of the DGM. The setup is constructed using
different proportions of unlabeled and labeled data, were the labeled data was used to
train both the supervised part of the DGM and the CNN and the unlabeled part of the
data was used only to train the unsupervised part of the DGM. In this way a titration
curve” style setup was obtain mimicking cases were different amounts of labeled data
could be obtained data. The models was trained in setups using 1%, 5%, 10% and
50% of the data as labeled and the remaining as unlabeled. It was ensured that for
each setup, the data in the training and test set was the same for both the DGM and
CNN. Furthermore the random seed was fixed such that as much as possible was kept
alike between the runs. A total of 111,894 segments were available in the training set
after balancing the classes. The test set consisted of 12,434 segments that also were
balanced. Each training phase of the DGM consisted of 50 epoch, where labeled data
was cycled to correspond with the amount of unlabeled data. As the amount of data per
epoch is smaller when training the CNN and thus would lead to fewer updates of the
weights if it was only permitted to train for 50 epochs, these were allowed to train for

more epoch and instead until convergence.
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Results

The results of the training of the DGM and the CNN using different amounts of labeled

data is shown in the table below.

No. of labelled DGM CNN

data Acc Sen Spe Acc Sen Spe
1% (1,118) 94.0% 98.8% 89.3% 65.8% 93.6% 38.0%
5% (5,594) 98.7% 98.5% 98.9% 95.3% 98.5% 92.1%
10% (11,190) 98.7% 98.9% 98.5% 97.7% 96.2% 99.1%
50% (55,948) | 98.8% 98.9% 98.8% 98.2% 97.5% 99.0%

The best result is obtained by the DGM in the semi-supervised approach using 50% of
the data labeled. The input segment and corresponding reconstruction of chosen
samples is shown in fig. 28, and the distribution of the samples for the test set in the
latent space is shown in fig. 29. The results show a maximal performance of the model
on the stratified test set of 98.8% with a sensitivity of 98.9% and a specificity of 98.8%.
This was obtained using 50% of the training data as labelled data and 50% as
unlabeled data. The results in the table above show that the proposed semi-supervised
approach achieves higher performance in all test cases, with the most prominent
difference in the cases with lower amount of labeled data. Comparing the results at
different amounts of labeled data even shows, that the semi-supervised approach with
5% labeled data is superior to the highest obtained performance by the fully-supervised
approach in the 50% labeled data. Even in the case of 1% labeled data, the DGM

achieved an accuracy of 94.0%.

Example 2 - Prediction of serious adverse event (SAE) from vital signs

In general monitoring post-operative patients is important for preventing serious
adverse events (SAE), which increases morbidity and mortality, but currently
monitoring of post-operative patients relies on intermittent bedside monitoring. The
presently disclosed approach facilitates continuous and predictive monitoring and
therefore improves the management of patients. This example demonstrates machine
learning based prediction of SAE in post-operative patient based on vital signs
acquired by wearable sensors showing that SAEs can be predicated with high AUROC
of as high as 93% by monitoring only four common vital signs. Using descriptive

statistics extracted from trends as features and SVM based machine learning
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technique, as in this example, reduces algorithm complexity and thereby consume less

battery power, which is very important for wearable systems.

This example demonstrates classification of “SAE” versus “no SAE” in 2 hours
(prediction window) based on last 10 hours recordings (observation window). First, the
trends of time series of vital signs were extracted with moving average in order to
remove noises. Then the descriptive statistics were calculated from the trend of each
modality and concatenated into a feature vector. Finally, a machine learning based on

support vector machine was employed for prediction of SAE.

During the study the vital signs of heart rate, respiration rate, and blood oxygen
saturation, were continuously acquired by wearable devices and blood pressure was
measured intermittently from 453 post-operative patients. Data acquisition was

managed by the Isansys patient status engine.

The study took place at Rigshospitalet and Bispebjerg Hospital in Copenhagen,
Denmark from February 2018 to August 2020. 453 post-operative patients (278 males,
175 females) were included in the study. The average age was 71 years (range: 60—
93) and the average amount of monitoring hours was 79 hours (range: 0.73-168.8).
Patients in the study had a wide range of clinical SAEs ranging from neurologic,
respiratory, circulatory, infectious and other complications. Information about SAEs

were registered by medical doctors.

The vital signs HR, RR and SpO2 were acquired continuously by the wearable sensors
and BP was measured intermittently. The acquisition of vital signs was managed by
Isansys patient status engine (PSE) (Isansys Lifecare Ltd). The Isansys Lifetouch was
attached to the patients’ chest for acquiring single lead ECG with a sampling frequency
of 1000Hz, from which HR in beats per minute and RR in breaths per minute were
derived. Pulse Oximeter (Nonin Model 3150 WristOx2) was attached to the finger for
the acquisition of the photoplethysmogram (PPG) with sampling frequency of 75 Hz,
from which SpO2 as a percentage was derived. The wearable sensors’ data and
derived values were first transmitted via Bluetooth to a gateway of PSE, which was
located near the bed of the patient, and then to a hospital server for storing data in a

patient database via WIFI every minute. Systolic blood pressure (sysBP) in mmHg
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was measured intermittently by using Meditech BlueBP-05. These sysBP
measurements were entered into the gateway by medical staff and then automatically
transmitted to the patient database. HR, RR, SpO2 and sysBP were synchronized

through their timestamps.

Prediction of Serious adverse events

Prediction of SAE can be seen as a classification problem aiming to classify “SAE”
versus “no SAE” over a time period (prediction window), e.g. few hours, based on last
recordings (observation window). The prediction window was chosen to be two hours
and the observation window was chosen to be ten hours as shown in Fig. 31A. In this
study samples of SAEs resulting from neurologic, respiratory, circulatory, infectious and
other complications were extracted from the patients’ database. These extracted SAEs’
samples were regarded as “SAE class”. The control class’ samples were extracted
from patients who didn’t have SAEs during the monitoring period. A classifier for
prediction of SAE was trained from those two classes. The prediction of SAE was
based on the features extracted from trends of four time series HR, RR, SpO2 and
sysBP and on a classification carried out with a support vector machine (SVM) model.

Fig. 30 depicts the steps of the algorithm applied.

1) Extraction of SAE class and control class: The SAE class was identified based on
SAEs’ timestamps. To account for class imbalance, the SAE class was oversampled.
SAE class samples were extracted as eight hours’ time series of vital signs with
overlapping from two hours before to twelve hours before SAE timestamp. Four
samples were extracted for each SAE as illustrated in Fig. 31A. Control class samples
were extracted from patients who did not have SAEs during vital sign monitoring at the
hospital and the monitoring duration was at least eight hours. Fig. 31B illustrates the
extraction of control samples. The samples were extracted during the whole monitoring

period to cover all possible patients’ statues.

2) Feature extraction: Selection of discriminative features is normally important for the
prediction of SAE. One or more clinical deterioration events are often preceded with
SAE and can be extracted from vital signs as demonstrated in the presently disclosed
approach. In this example the trends of time series of HR, RR, SpO2 and sysBP were
extracted by using moving average with a sliding window of 60 minutes. In this
examples the trends were supposed to represent the deterioration. Then four

descriptive statistics (maximum, minimum, mean, and standard deviation) were
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calculated from the trend of each modality as features. The features from each
modality were concatenated into one feature vector. The size of each feature vector

was sixteen.

3) SVM classification: The SVM model used in this example is a supervised machine
learning algorithm for solving classification and regression problems. It has shown
good generalization property in many applications. The basic idea is to construct an
optimal hyperplane for linearly separable patterns. The optimal hyperplane is the one
that has maximal margin between two classes. For the non-linearly separable patterns
one solution is to transform original data into a higher or indefinite dimensional space
and then find a separating hyperplane in the transformed space by using a kernel
function. Given a training set(x; y), i=1,. . . ,Nwhere x; eR" and y; = {1}, x; is a data
point and y; indicates the class which the point x; belongs to. The output of the classifier

is defined as
R N an L
y(z;) = sign [wTp(x;) +b]
where the function’ maps x; into a higher dimensional space. w is the weight vector

and b is the bias of the hyperplane. The standard SVM requires the solution of the

following optimization problem:

min w ‘w-i—cz&

w,b,& 2
subject to
& >0, i=1,...,N

where ¢ is a slack variable and ¢ is a penalty parameter. They are introduced if the
training data cannot be separated without error. As a consequence, training samples
can be at a small distance & on the wrong side of the hyperplane. In practice, there is a
trade-off between a low training error and a large margin. This trade-off is controlled by
the penalty parameter c. A Gaussian kernel k was chosen for non-linear SVM classifier
in this study:

s — x| T
k(x;,z;) = exp (—J—%f—) = p(z;)" p(z;)
where o is the width of Gaussian kernel. Tuning of o is important for optimizing
classifier performance. Threefold cross-validation was applied to estimate the

classification performance. The misclassification cost (nsae + Neontror) / Nsae Was given to
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SAE data samples, whereas (nsae + Ncontrot) / Neontrol t0 cONtrol data samples. Here, nsae
and ncontror represent the number of data samples belonging to SAE class and control
class, respectively. The dataset was randomly partitioned into three subsets. One
subset (a testing set) was used to validate the classifier trained on the remaining two
subsets (a training set). This process was repeated three times such that each subset
was validated once. During training, the training set was further divided into subsets for
optimizing Gaussian kernel parameter o and boxconstraints (inner cross-validation).
The set of parameters, boxconstraints and o, were searched among positive values,
with a log-scale in the range [107; 10°%]. The optimal boxconstraints and o were then
applied to build classifier for the testing set. The performance of the classifier was
evaluated in terms of sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV) and the area under receiver operating characteristic curve
(AUROQC).

ACC. SEN. SPE. PPV NPV AUROC
Test 1 88.91% 80.00% 92.41% 80.56% | 92.16% | 92.47%
Test2 89.28% 82.75% 91.85% 80.00% | 93.11% | 91.96%
Test 3 90.25% 78.62% 94.84% 85.71% | 91.84% | 94.12%
Average 89.48% 80.46% 93.03% 82.08% | 92.37% | 92.86%

Table I: The performance of classifier from threefold cross validation (ACC = Accuracy;
SEN = Sensitivity; SPE = Specificity)

Results

The performance of the classifier with threefold cross validation was summarized in
Table |. The accuracy, sensitivity, specificity, PPV, NPV and area under receiver
operating characteristic curve (AUROC) are relatively close among three tests. The
classifier achieved an averaged accuracy of 89%, sensitivity of 80%, specificity of
93%, PPV of 82%, NPV of 92% and AUROC of 93%. Additionally, Fig. 29 shows the
receiver operating characteristic curves (ROC) for three tests. The averaged AUROC
of 93% indicates good discriminative power of the classifier. These findings are
promising and demonstrate the feasibility of predicting SAE from vital signs acquired

with wearable devices and intermittent measurement.
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Example 3 — Non-invasive blood pressure estimation based on vital signs

This example demonstrates a new non-invasive way of estimating blood pressure (BP)
of patients without the need for the normal cuff. It is based on measured vital signs, as
also disclosed herein, and application of artificial intelligence, in particular a trained
machine learning model. The new BP estimation doesn’t require the usual strict
synchronization between wearable devices. As vital signs can be acquired continuously
and in real-time, the presently disclosed BP estimation can also be provided in real

time, for example by the application of a trained machine learning model.

Blood pressure (BP) is a key hemodynamic variable for the evaluation and diagnosis of
conditions such as stroke and cardiovascular disease. BP can vary dramatically from
beat to beat, and minute to minute. It is crucial to monitor BP continuously on post-
operative patients. Currently BP is often monitored continuously with an invasive
arterial catheter, for example in critically ill patients in the ICU. This way has risk of
infection and need clinical operation. Outside ICU, BP is measured by a cuff-based
device, however only intermittently. The inflation/deflation often causes discomfort/pain
for the patients and disturbs their rest. The cuffless BP estimation is therefore favored.
Many cuffless BP estimations are based on features which require synchronization
between electrocardiogram (ECG) and photoplethysmogram (PPG). Since ECG and
PPG are recorded from two different devices, synchronization between ECG and PPG
often causes problem. In his study, we propose a new way to estimate BP based on
vital signs heart rate (HR), respiration rate (RR), blood oxygen saturation (SpO2) and
pulse rate (PR). The vital signs are calculated independently and not sensitive to the

synchronization.

Methods

498 post-operative patients participated in the study. After major abdominal cancer
surgery, they were re-admitted to the general ward where their vital signs were
monitored for up to four days, with the approach described herein. Severe adverse
events, resulting from a wide range of complications, were collected for up to 30 days.
Two wearable devices were attached to the patients for acquiring vital signs
continuously. One was the Isansys Lifetouch at chest for acquiring single lead ECG,
from which HR and RR were derived. Another was a Pulse Oximeter at the finger for
acquiring PPG, from which SpO2 and PR was derived. Systolic blood pressure (SBP)
and diastolic blood pressure (DBP) was measured intermittently by Meditech BlueBP-

05. The wireless acquisition and transmission of vital signs was managed by Isansys



10

15

20

25

30

WO 2023/281116 PCT/EP2022/069262

40

patient status engine (PSE) (Isansys Lifecare Ltd). HR, RR, SpO2, PR, SBP and DBP

were synchronized through their timestamps.

Random forest with 200 trees was applied for estimation of DBP and SBP, but other
models can be used. First, 3 hours’ time series of HR, RR, SpO: and PR before BP
measurements were extracted, from which descriptive statistics such as mean,
standard deviation and range were calculated as features. Then, the regression model
was trained with first day’s data of each patient. The trained model was tested by the
following days’ data. The mean absolute error (MAE) and standard deviation (STD) of

the error were used for evaluating estimation performance.

Results

Estimation performance is shown in the Table |. According to Association for the

Advancement of Medical Instrumentation (AAMI) standard, MAE should be less than or

equal to 5 mmHg and STD should be less than or equal to 8 mmHg for both DBP and

SDP. In this example STD of DBP met the standard and MAE was close to the

standard. STD of SBP is closer to the standard, while MAE is higher

498 patients | MAE (mmHg) | STD (mmHg)
DBP 6.01 498
SBP 10.53 8.44

Table: Blood pressure estimation

Example 4 — Prediction of SAE from Night-time Vital Signs

The period directly following surgery is critical for patients as they are volatile to
infections and other types of complications, i.e. severe adverse events (SAE).
Impending complications might alter the circadian rhythm and, therefore, be detectable
during the night before. This example provides a prediction model that can classify
nighttime vital signs depending on whether they precede a serious adverse event or
come from a patient that does not have a complication at all, based on data from 450
post-operative patients. The prediction model is compared to random classifiers to

demonstrate the applicability.

Circadian clocks, which are autonomous molecular mechanisms, are found in all
mammalian cells and regulate body functions, such as hormone secretion, immune
response and the sleep/wake phases. These normal changes in cardiovascular

function can be accompanied by adverse events, as, for example, the onset of
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myocardial infarctions or sudden cardiac death has been found to be elevated in the
early morning compared to nighttime. Antiarrhythmic mechanisms, such as increasing
heart rate variability, can be constrained by disease and, therefore, protection might not
be optimal. As demonstrated herein serious adverse events might be preceded by
changes in vital signs during the night, stemming from deactivation of the patients’
parasympathetic nervous system. Because heart rate and respiration rate reliably
reach their nadir during sleep, nighttime offers an opportunity to observe the
physiological baseline and make a comparison between patients that will have a
complication and patients that will not. This might cause an increase in heart rate,

respiratory rate and blood pressure.

Vital signs monitoring

Vital signs were obtained according to the procedure as described herein. In particular
systolic (SBP) and diastolic (DBP) blood pressure values in mmHg were automatically
recorded using the Meditech BlueBP-05. Heart rate (HR) and respiratory rate (RR)
were obtained once per minute from the Isansys Lifetouch single lead ECG using a
sampling rate of 1000Hz at the chest of the patient. The pulse rate measurements were
taken at the patient’s arm. Photoplethysmogram (PPG) was measured at a rate of
75Hz using a pulse oximeter (Nonin Model 3150 WristOx2). The SpO2 values were

determined from that.

Modelling

The problem was modelled as a binary classification task. The nights, which were
defined as ranging from midnight to 6 AM, were extracted from the continuous
measurements and either labelled as 1, if they preceded a SAE or 0, if they did not.
Figure 33 illustrates the extraction process, on the basis of an idealized four day heart
rate measurement. As shown, heart rate usually decreases during the night and rises
during the day. SAEs were always allocated to the day they were recorded and nights,
during which an SAE happened, were discarded. If data collection started or ended
during a night, it was also rejected. To ensure that a minimum of usable data was
present, at least 60 valid data points for heart rate values were required in a night. This
modality was chosen after consultation with clinicians as they were expected to have a

degree of predictive validity. The process is illustrated in Figure 32.
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Feature extraction

The procedures described in the previous sections provide one 360 minutes x 6
modalities vector for each night. For each modality with at least one recorded
datapoint, missing values are filled by performing first forward and then backward-
carry. In order to smooth the data and correct for measurement errors, the moving
average is computed using the nearest 10 values. For each night, 9 features are
calculated: mean, median, standard deviation (STD), maximum, minimum, kurtosis,
skewness, 10th and 90" percentile. The mean, median and standard deviation can

be useful to detect anomalous vital sign values such as an elevated heart rate or an
unstable respiration rate. The maximum and minimum measured during the night can
indicate unusual events such as hypoxemia episodes in case of SpO2. Kurtosis
measures the weight of a distribution’s tail relative to the center, skewness evaluates
its asymmetry. The 10th and 90th percentile provide information about the distribution.
At each time steps, the static variables age, gender, height, weight, whether the patient
smokes, number of packs smoked and units of alcohol consumed per week are added.
This results in a total of (9*6) + 7 = 61 features. Missing features, which arise if not a
single value was recorded for the respective modality during the whole night, are filled

by mean imputation.

Classification

After feature extraction, 5-fold cross validation is used to split the data into a training
set and a test set. Each fold is used once for testing while the four remaining folds
constitute the training set. This procedure is performed 10 times and from the
evaluation metrics the average is computed. To correct for the imbalance in the
dataset, the Synthetic minority Oversampling Technique (SMOTE) is applied to the
training but not the test set. The implementation used in this example was provided by
the imbalanced-learn library and brings both classes to equal size. XGBoost was
chosen as the classification algorithm, because XGBoost has shown to deliver state-of-
the-art performance while running faster than most other solutions. In short, the
algorithm works via gradient tree boosting. Given a dataset

D = {(ws,y)}(D| = n, 2 € R™,yi € R) iy examples and m features, the output is

predicted by adding over K functions
K

g = d(z:) = Y ful@), fi € F.

k=1
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In the formulation above

F :{f(az) = wq{w}}(q : Rél_ 7> T w € RT)

and represents the space of trees, q is the structure of the trees and T the number of
leaves per tree. From this representation, the regularized objective function can be

derived:
L(¢) =Y Ui yi) + > Q(fr)
7 k
with

1
Qf) =T+ Aol

where y; is the prediction, y; the true outcome and / the loss function. To prevent the
model from overfitting, a regularization function xan be included as a second term.
Because all the trees cannot be learned at once, the model parameters are learned in
an additive fashion. In the formula only the functions ft that optimize the model are

chosen.

This prediction approach can be compared to two implementations of a random
classifier as provided by scikit-learn’s Dummy classifier class. The first, uniform version
simple represents a coin flip and chooses the classes with equal probability. The
second, stratified version chooses the classes with the same probability as presented
to the classifier in the labelled training output sets, so the majority class if chosen more

frequently.

Results

To assess the effectiveness of this approach, standard performance measures were
calculated. The accuracy shows which percentage of the test data was predicted
correctly, recall, precision and F1-score provide information about the type of errors.
Additionally, the ROC-AUC value gets computed by integrating over the area below the

curve.

After the data was filtered as described in the previous section, 184 nights preceding
SAEs and 475 nights of patients without SAEs remained. In the table below, the mean
values per night for both classes are shown, with the standard deviation of the means
in brackets. On average, on nights preceding SAEs, patients have a higher heart and

breathing rate as well as a slightly lower oxygen saturation compared to the patients
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without complications. However, it is also evident that due to the large standard
deviation a simple threshold-based classifier is not sufficient to solve this task, which

reaffirms the presently disclosed machine learning based approach.

SpO2| HR RR PR DBP SBP
_ 92.06 | 79.00 | 1541 | 7960 | 64.38 | 121.28
SAE nights
(3.42) | (15.87) | (3.15) | (16.93) | (11.57) | (23.15)
9266 | 72.31 | 13.96 | 72.88 | 64.92 | 124.80
Non-SAE nights
(3.03) | (12.72) | (2.58) | (16.72) | (11.46) | (21.21)

Table: Mean night modality values for both groups

Comparing the average percentage of missing data in the table below, it can be seen
that the SAE group has many more values missing than the Non-SAE group. A reason
for that could be that very sick patients take off their measurement devices more
frequently, especially the oxygen saturation sensor at the finger.

SpO2 | HR |RR | PR DBP | SBP
SAE nights 4222 | 2.29|3.05|43.12 | 51.00 | 51.00
Non-SAE nights | 30.2 | 1.96 | 1.9 | 33.45 | 38.93 | 38.93

Table: Mean percentage of missing values for both groups

Performance of the complication prediction model

The table below present the performance of the classifier compared to the two random
baseline models. The model of this example achieved a F1-score of 0.49, a precision
of 0.58, an accuracy of 0.75 and a ROC-AUC score of 0.65, all better than baseline.
However, this classifier underperforms on the recall metric, which is due to the wide

standard deviations as presented earlier.

F1 Recall | Precision | Accuracy | ROC-AUC
XGBoost | 0.49 | 0.43 0.58 0.75 0.65
Uniform | 0.36 | 0.53 0.27 0.47 0.49
Stratified | 0.37 | 0.49 0.29 0.53 0.52

Table: Classifier performance from 5-fold cross-validation

Summary

The present example has some limitations: All the data used came from a single cohort
for both training and validation. A model trained on data from various institutions

will generalize better and be more valuable in clinical contexts. Additionally, the fact
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that the SAEs used as outcome measures in this study have different causes and
severities and might lead to changes in the vital signs at all, could explain the
heterogeneous results. There were also notable differences between the nights which
preceded an SAE and the nights which did not in terms of missing data. Nights before
a critical event had a higher percentage of data missing for all modalities. Another
issue is that it was assumed that patients were sleeping based on the time of day. If a
patient is awake during the night their vital signs could be altered and make prediction
more difficult. Combining the algorithm in this example with a sleep stage detector, for
example based on EEG measurements, could substantially improve its predictive
capabilities. In spite of these limitations this example further illustrates that monitoring
of vital signs is an important tool for prediction of SAEs, and that nighttime monitoring
can further improve the prediction of SAEs, possibly even hours before the SAE arises,
and the presently disclosed approach provided a significant step in the understanding

of disease progression during sleep.

Patient data

The data for this project was acquired at Rigshospitalet and Bispebjerg Hospital in
Copenhagen, Denmark from February 2018 to August 2020. The 450 patients (275
males, 175 females) had a mean age of 71 years (range 60-93). On average there
were 80 hours of data recorded (range 12 — 169). A serious adverse event (SAE) as
defined according to the guidelines as any medical occurrence that results in death,
results in in subject hospitalization, results in persistent or significant disability or
incapacity of the subject, is associated with a congenial anomaly or birth defect or is
qualified as “other important medically significant event or condition”. These events
were recorded by attending clinicians and entered into a database. Written informed

consent was obtained from all patients participating in the study.

Example 5 — Forecasting of Continuous Vital Signs

As disclosed herein continuous monitoring of vital signs improved the foundation for
data analysis with respect to standard care. The present example relates to prediction
of vital signs. l.e. not only providing an alarm when deterioration has occurred, but

actually predicting whether it is likely to occur in the near future.

The present example employs Multivariate Auto-Regressive (MAR) models to create a

forecast projection of vital signs parameters based on past measurements. Forecasting
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vital signs could help identify deviation of the normal physiology that is likely to occur in

the near future.

Multivariate auto-regressive (MAR) Model

Consider a set of variables y =y, ..., yn, where each element y; = [y, ..., yin] is the
response at time ¢, Nl is the signal length and m the number of modalities in the signal.

The response at time, {, as defined by the MAR model is given by

K
yt:a+25k'yt—k+€
k=1

where a is a vector of m elements, Bk is a matrix of size [m, m] from the array B = [Bx,
..., Bx]. Thus, in the auto regressive model the value of y;is given as a linear

combination of the previous K elements of y, the intercept a and the weights in 8.

Due to the nature of the vital signs signals, the physiological expectation of the
temporal evolution in the signals is that homeostasis will cause the value to return to
some patient specific baseline value. It can be advantageous to construct a model that
includes the ’pull’ towards a baseline value. This can be achieved by creating the MAR
model centred around the intercept parameter. A popular implementation is to center
the model around the mean of the signal, u,, where the response y;, computed in the

equation above, instead comes from

K
Yt = Hy + Zﬁk Yk — fiy)
k=1

As the value of u,, when computed from the time series available, does not necessarily

reflect the true baseline, this can be fixed globally or as a parameter fitted in the model.

Data

In this example data from an observational study with 500 postoperative cancer
patients monitored for up to 4 days after major abdominal surgery was used. The data
were obtained at Rigshospitalet and Bispebjerg Hospital in Copenhagen, Denmark
from February 2018 to August 2020. Patients were monitored with a single lead ECG
patch (Lifetouch Blue), a wrist-worn pulse oximeter (Nonin WristOx2), and a cuff-based
blood pressure monitor (TM-2441). From the sensors the following modalities were
available: Heart Rate (HR) (1/60 Hz), respiration rate (RR) (1/60 Hz), peripheral oxygen
saturation (SpO2) (1/60 Hz) and systolic and diastolic blood pressure (measured every

30 minutes). All data were transmitted to a central server by the Isansys Patient Status
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Engine. A subset of the measurements were selected from the cohort, to perform the
inference of the parameters in the model and evaluate the predictive accuracy. Only
measurements of HR and RR values were used. The data extracted was ensured to
not have any missing values for HR or RR in the time period. To fit the model, the
subset consisted of 150 minutes of simultaneous HR and RR measurements from eight
different patients chosen at random. This gave a total of 20 hours of data for inference.
The time series used are shown in figure 35 showing time series vital signs for the
patients used to fit the MAR model. To test the predictive accuracy of the model 400
minutes from five different patients were used. The patients in the subset used for

evaluation were ensured to be different from the subset used for inference.

Fitting the model

The MAR model was constructed as a pooled model. A pooled model defines a model,
where the same parameters are fitted across several different data sources, in this
case different patients vital signs signals. This results in a single set of model
parameters used for all future patients. In the case of the MAR model this means, that
the parameters q, B and X are kept equal for all patients, P. The probabilistic graphical

model of the implemented pooled MAR model is shown in the graph in figure 36.

For the model, the priors for the parameters were kept uninformative and given by
normal distributions. As the intercept, a, is used as a global baseline, values for this
were chosen to reflect common baseline values for the heart rate and respiration rate.
For heart rate the mean was set to 70 and for respiration rate it was set to 12. All
parameters in B had priors set to follow a standard normal distribution. The following

summarizes the model

Yt ~ N(Mts E)
K

b=+ S (G ek — )
k=1

with the priors for a and 8 being
OHR ™~ /\/’(707 10)
aARpRr ™~ N(lQ, 4)
By ~ N(0,1)
The lag-parameter, K, was set to K = 20, reflecting the past 20 minutes of vital signs

data.
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Inference of Model Parameters

The objective for fitting a model is to establish the parameters of the model, 6, to fit the
target distribution p(8ly). This is done by either exact of approximate inference,
depending on the dimensionality of the problem at hand. Due to the computational
complexity of exact inference the current problem would be intractable in an exact
approach. Fig. 37 illustrates the setup used for evaluating the model on new patients.
For each step a forecast (right box) is performed based on the data available in the
model window (left box). The windows are then moved 10 minutes forward and the

process is repeated.

Instead approximate inference in the form of Markov Chain Monte Carlo (MCMC)-
sampling is used. MCMC-sampling is a general method based on iteratively drawing
samples of 6 from approximate distributions and updating these to continuously
improve the approximation of the target distribution. The idea is as in Bayesian
simulation that the collection of the simulated draws from p(8|y) will summarize the
posterior density. Hence MCMC-sampling is useful for sampling from Bayesian
posterior distributions, where it is intractable to infer 8 exactly from p(8|y). Due to the
random initialization of the sampling algorithm, the samples will have a transition period
from initialization to the posterior distribution. To account for this, a warm-up period is
defined and the samples from this are rejected. To ensure that the sampling is
stabilized at the posterior distribution, sampling from multiple independent chains were
done such that convergence could be quantified by used of the diagnostic measure,
R», which compares the within-chain variance and the between-chains variance. The
idea is that while the individual chains have not mixed and thus not approached the
target distribution, the variance of all chains mixed should be larger than that of the
chains individually. As the individual chains converge, Rb —— 1 and Vehtari et al.
recommends R < b 1.01 before using the sample [10]. In the used setup, each model
was fitted using 4 chains with 2000 iterations in each. Each chain was given a warmup
period of 1000 iterations, thus leaving 1000 for sampling per chain. This provided 4000

posterior samples of the parameters.

Evaluating the Predictive Accuracy

To evaluate the model’'s predictive accuracy, the model was applied to data from 5
unseen patients. A window matching the lag parameter, K = 20, was provided to the
model to create a forecast of 15 minutes. The forecast segment was compared to the

true values within the window. For this, the root mean squared error (RMSE) was used
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to quantify the accuracy of the expected value in the forecast window with respect to
the original signal. The window was moved 10 minutes forward and the process was
repeated for the entirety of the time series. The setup for the first to steps is shown in

figure 3

Results

The results of the evaluation of the predictive accuracy of the forecasts are presented
in the table below. The parameters, a, 8 and Z, of the model showed proper
convergence with all values of R < b 1.01. The average RMSE for HR across all
patients was 11.4 bpm with the lowest and highest being 0.4 bpm and 32.1 bpm,
respectively. For RR the average RMSE was 3.3 brpm with the lowest and highest
being 0.9 brpm and 7.4 brpm, respectively. For HR the results in the table below show
a large difference between patients, where the lowest average RMSE for one patient
was 4.7 bpm and the highest 20.5 bpm. The resulting responses of the MAR model are
visualized in figure 4. For visual purposes, the plots show the last 50 minutes leading

up to the forecasting window and the 15 minutes within the forecasting window.

RMSE - mean # std

Patient | Heart Rate [bpm] | Respiration Rate [brpm]

#1 20.5+5.78 3.6+1.29

#2 47 +3.98 3.2+1.37

#3 6.7 +3.68 3.6+1.45

#4 14.0 £4.97 3.1+1.38

#5 11.1 £5.55 2.9+0.94
Average 11.4+£7.30 3.3+£1.30

Table: RMSE between the forecast and the true values

Summary

Predicting future deviations in vital signs, such as heart rate and respiration rate, is
challenging, as the nature of the signals may imply rapid changes not known in
advance. Sudden activation of the patients will lead to changes in their vital signs, that
will not be possible to predict before the activation occur. The difficulty to capture this
can be seen in figure 38, showing a visualization of the response of the hierarchical
AR-model fitted to the HR and RR data. The legend “*” is the time series of the original
signal, “—* is the expected value of the AR-model. (Grey area, to the left): Predictive
interval (95%) of the AR-model. (Green area, to the right): Predictive interval (95%) of
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the forecasts from the AR-model, i.e. where rapid changes within the forecast window

is not captured by the prediction.

The model proposed in this example demonstrates promising results when applied to
different patients. The range in the subset used for evaluation shows that both in low
and high values of HR and RR the model still provides a good forecast. Though, the
variation occurring over multiple days and under different circumstances has only
barely been assessed and there will most likely be rare events, that has not been
represented in the evaluation. In this example, the model was implemented in a pooled
construction which has advantages in a clinical setting. As the pooled model relies on a
single set of parameters to span all patients, there is no requirement to perform
inference of the parameters for each patient, which is resource demanding in
computational power when done in an iterative Bayesian approach. This can also be a
disadvantage of the pooled model compared to other constructions, such as the
separate or hierarchical model, where patient specific variations can be built into the
model. It could be advantageous if the model has difficulties in fitting to the diversity in
data that different patients will present. However, as there is no clear patient specific
deviation, use of these models must be held against the increased computational

requirements.

Another aspect of the natural representation of vital signs, not included in this example,
is the heteroscedasticity assumed to be present. The current model assumes the data
to be homoscedastic within each modality, i.e. the data has the same variance across
patients and temporal location. It becomes clear from the plots in figure 38, where plots
one, two and four from above have very little variance in the data, and the third and fifth
show a large variance, that the model assumption of homoscedasticity does not hold in
reality. Two solutions to achieve heteroscedasticity could be to model the variance in

1) an auto-regressive manner likewise to the current modelling of the mean, or 2) to
model the variance in a hierarchical way, where the parameters q, § and % relies on the

variance in the data.

The construction of a model that creates a forecast will lead to the question of how to
use the forecast. As the nature of the signals entails rapid changes, the conception that
it will be possible to predict far into the future does not resemble reality. Instead, it
could be advantageous to use the forecasts as baseline prediction and evaluate

deviation from this based on the true values in a practical setup. Quantifying rapid
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changes from the forecast values could be a way to use the model to detect deviations

in a real time setting.

The present example shows that it is possible to predict / forecast time series of the
vital signs HR and RR based on previous measurements, for example by employing a
pooled MAR model. Though there were large deviations in the predictive accuracy in
the forecast window between patients, an fairly low RMSE of 11.4 bpm for HR and 3.3
bpm for RR was achieved on average, see for example fig. 38. Hence, even though the
work is based on a small subset of patient data, this example demonstrates promising

results for forecasting vital signs in a clinical setting.
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A computer-implemented method configured for automatic real-time detection

of clinical deterioration events in a patient, the method comprising the steps of:

continuously receiving a plurality of different vital sign data from a
plurality of sensors worn by the patient, the vital sign data comprising:
electrocardiogram (ECG), photoplethysmogram (PPG), heart rate (HR),
respiration rate (RR), blood pressure (e.g. systolic blood pressure,
SBP), and peripheral oxygen saturation (SpQ),
analyzing the vital sign data to identify artefacts;
discarding one or more data samples associated with the identified
artefacts in the vital sign data in order to continuously obtain validated
patient vital sign parameters;
executing a plurality of computer-implemented clinically validated
deterioration event subroutines, each subroutine configured to receive
one or more of the validated vital sign parameters and determine a
specific clinical deterioration event in the patient, said deterioration
event subroutines comprising:
— bradypnea/apnea based on validated heart rate and respiration
rate parameters,
— tachypnea based on validated respiration rate,
— hypoventilation based on validated respiration rate and
peripheral arterial oxygen saturation,
— desaturation based on validated peripheral arterial oxygen
saturation,
— sinus tachycardia based on validated heart rate, and
— bradycardia based on validated heart rate,
— hypotension based on validated systolic blood pressure or
estimated systolic blood pressue,
— hypertension based on validated systolic blood pressure or
estimated systolic blood pressure,
providing an alarm when at least one of said deterioration events has
been detected by one of said clinically validated automatic deterioration

event subroutines.
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The method according to claim 1, wherein the vital sign data further comprises
heart rhythm and wherein the deterioration event subroutines further comprise
asystole based on validated heart rhythm and pulse rate, and atrial fibrillation
based on ECG and/or validated heart rhythm.

The method according to any of the preceding claims, wherein the deterioration
event subroutines comprise: circulatory collapse based on validated heart rate

and validated systolic blood pressure.

The method according to any of the preceding claims, wherein the vital sign
data is selected from the group of: electrocardiogram (ECG),
photoplethysmogram (PPG), heart rate (HR), respiration rate (RR), RR interval
(RRI), blood pressure (e.g. systolic blood pressure, SBP), heart rhythm,
ischemic ECG changes, peripheral temperature, peripheral skin conductance,
3D body position and acceleration, pulse rate, peripheral perfusion index,

peripheral oxygen saturation (SpO-), and subcutaneous glucose concentration.

The method according to any of the preceding claims, wherein the deterioration
event subroutines is selected from the group of:
— bradypnea/apnea based on validated heart rate and respiration
rate parameters,
— tachypnea based on validated respiration rate,
— hypoventilation based on validated respiration rate and
peripheral arterial oxygen saturation,
— desaturation based on validated peripheral arterial oxygen
saturation,
— sinus tachycardia based on validated heart rate,
— bradycardia based on validated heart rate,
— hypotension based on validated systolic blood pressure,
— circulatory collapse based on validated heart rate and systolic
blood pressure,
— asystole based on validated heart rhythm and pulse rate,
— hypertension based on validated systolic blood pressure,
— atrial fibrillation based on ECG and/or validated heart rhythm,

— ventricular extrasystoles based on validated heart rhythm, and
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— ventricular tachycardia/-fibrillation based on validated ECG

and/or validated heart rhythm,

The method according to any of the preceding claims, wherein the method
further comprises one or more clinically validated deterioration event
subroutines selected from the group of:
— cardiac ischemia based on validated ischemic electrocardiographic
response,
— low perfusion index based on validated peripheral perfusion index, and
— acute stress based on peripheral validated peripheral skin conductance

and peripheral temperature.

The method according to any of the preceding claims, wherein the sensors are
selected from the group of: electrocardiography (ECG) sensor, pulse oximeter,
oscillometric blood pressure monitor, peripheral skin conductance sensor, 3D

accelerometer, peripheral thermometer, and continuous glucose monitor.

The method according to any of the preceding claims, wherein the sensors are

wireless sensors.

The method according to claim 7, wherein data from the sensors are streamed

every minute or every 30 seconds.

The method according to any of the claims 7-9, wherein 10 seconds of ECG

data are streamed every minute.

The method according to any of the claims 7-10, wherein the method further
comprises an ECG preprocessing subroutine configured to assess the quality of
the ECG data from an ECG sensor worn by the patient in order to obtain
validated vital sign parameters such as validated HR, RR, heart rhythm and RRI

parameters.

The method according to claim 11, wherein the ECG preprocessing subroutine

comprises the steps of:
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receiving ECG values from the ECG sensor, the ECG values comprising
ECG time stamp, ECG samples, heart beat time stamp, R-R interval,
and/or QRS amplitude;
discarding ECG values that are outside predefined thresholds, such as
ECG<0 or ECG>4000 (the values referring to the amplitude of the R
peak in the QRS complex), and/or discarding ECG values that are
duplicate;
performing a linear interpolation of ECG missing values;
determining QRS index (i.e. the time associated with the location of the
R peak in the QRS complex) in ECG using heart beat time stamp
(hbTS);
comparing the number of heart beats and/or the QRS amplitude and/or
the ratio between a sub selection of the QRS amplitudes and the
number of heartbeats to one or more predefined thresholds, and in case
said thresholds are exceeded, discarding one or more of the ECG
values;
performing a bandpass filtering of the ECG values;
correcting R peak(s) in the QRS complexes from the ECG values and/or
normalizing each heart beat from the ECG values;
calculating ecgTemplate (i.e. an average ECG heart cycle) or previously
received ecgTemplate;
calculating correlation coefficients (cc);
comparing the average of cc and/or the number of cc to one or more
predetermined thresholds, and in case said thresholds are exceeded,
discarding one or more of the ECG values;
calculating the deviation between the corrected R peak(s) and the non-
corrected R peak(s) and storing said deviation as HBdev value(s); and
comparing the HBdev value(s) to one or more predefined thresholds and
discarding the ECG values that are associated with HBdev value(s) that

exceed the one or more predefined thresholds.

13. The method according to any of the preceding claims, wherein the method

further comprises an SpO- preprocessing subroutine configured to assess the

quality of the SpO; values from a pulse oximeter worn by the patient in order to

obtain validated SpO. values.
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The method according to claim 13, wherein the SpO. preprocessing subroutine
comprises the steps of:
— receiving SpO; values from the pulse oximeter;
— removing SpO:; values that exceed one or more predefined thresholds
such as Sp0,<0 and/or Sp0>>100;
— removing duplicate SpO; values;
— removing SpO; values that has a difference per second greater than 4;
— extrapolating missing SpO; values; and

— optionally calculating the average SpO. value from the SpO- values.

The method according to claim 14, wherein the one or more predefined
thresholds comprise SpO.<0 and/or SpO2>100.

The method according to any of the preceding claims, the method comprising a
bradypnea subroutine configured to determine bradypnea/apnea, said
subroutine comprising the steps of:
— receiving validated HR and RR values;
— comparing the validated HR and RR values to one or more predefined
bradypnea thresholds, and
— providing an alarm in case the HR and RR values exceed said

predefined bradypnea thresholds for a predefined time duration.

The method according to claim 16, wherein the bradypnea thresholds comprise
HR > 20 bpm and RR < 5 bpm.

The method according to any of the claims 16-17, wherein the predefined time

duration is = 1 min.

The method according to any of the preceding claims, the method further
comprising a tachypnea subroutine configured to determine tachypnea, said
subroutine comprising the steps of:
— receiving validated RR value(s);
— comparing the validated RR value(s) to a predefined tachypnea
threshold; and
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— providing an alarm in case the RR value(s) exceed the tachypnea

threshold for a predetermined time duration.

20. The method according to claim 19, wherein the tachypnea threshold is RR = 24
bpm.

21. The method according to any of the claims 19-20, wherein the predefined time

duration is = 5 min.

22. The method according to any of the preceding claims, the method further
comprising a hypoventilation subroutine configured to determine
hypoventilation, said subroutine comprising the steps of:

— receiving validated RR and SpO: value(s);

— comparing each of the validated RR and SpO; values to one or more
hypoventilation thresholds; and

— providing an alarm in case in case the RR and SpO; values exceed the

hypoventilation threshold(s) for a predefined time duration.

23. The method according to claim 22, wherein the hypoventilation thresholds
comprise RR<11 bpm and Sp0,<88 %.

24. The method according to any of the claims 22-23, wherein the predefined time

duration is = 5 min.

25. The method according to any of the preceding claims, the method further
comprising a desaturation subroutine configured to determine desaturation, said
subroutine comprising the steps of:

— receiving validated SpO; values;

— comparing the validated SpO. values to one or more predefined SpO-
thresholds; and

— providing an alarm in case the SpO. values exceed the SpO-

threshold(s) for a predefined time duration .
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26. The method according to claim 25, wherein the predefined SpO- thresholds
comprise any of: SpO2 < 92 %, or SpO2 < 88 %, or SpO2 < 85 %, or SpO2 < 80
%.

27. The method according to any of claims 25-26, wherein the desaturation
subroutine provides an alarm in case:
- 8Sp02 <92 % for t = 60 min, or
— 8p02 <88 % for t= 10 min, or
— Sp02 <85 % fort=5 min, or
- Sp02<80 % fort=1 min.

28. The method according to any of the preceding claims, the method further
comprising a sinus tachycardia subroutine configured to determine sinus
tachycardia, said subroutine comprising the steps of:

— receiving validated HR value(s);

— comparing the validated HR values to one or more predefined sinus
tachycardia thresholds; and

— providing an alarm in case the HR values exceed the sinus tachycardia

threshold(s) for a predefined time duration .

29. The method according to claim 28, wherein the one or more predefined sinus

tachycardia thresholds comprise HR = 111 bpm or HR > 130 bpm.

30. The method according to any of the claims 28-29, wherein the sinus
tachycardia subroutine provides an alarm in case: HR > 130 bpm for { = 30 min,

orin case HR = 111 bpm for { = 60 min.

31. The method according to any of the preceding claims, the method further
comprising a bradycardia subroutine configured to determine bradycardia, said
subroutine comprising the steps of:

— receiving validated HR value(s);

— comparing the validated HR values to one or more predefined
bradycardia thresholds and/or ranges; and

— providing an alarm in case the HR values exceed the bradycardia

threshold(s) and/or ranges for a predefined time duration ¢.
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32. The method according to claim 31, wherein the bradycardia threshold(s)
comprise HR < 30 bpm or 30 bpm < HR < 40 bpm.

33. The method according to any of the claims 31-32, wherein the bradycardia

subroutine provides an alarm in case: HR < 30 bpm for { = 1 min, or in case 30
bpm < HR <40 bpm for { = 5 min.

34. The method according to any of the preceding claims, the method further

comprising a hypotension subroutine configured to determine hypotension, said

subroutine comprising the steps of:

receiving validated SBP value(s);

comparing the validated SBP values to one or more predefined
hypotension thresholds; and

providing an alarm in case the SBP values exceed the hypotension
threshold(s) for one or more consecutive measurements and/or for a

predefined time duration £.

35. The method according to claim 34, wherein the hypotension thresholds

comprise any of: SBP<70 mmHg and/or SBP<91 mmHg.

36. The method according to any of the claims 34-35, wherein the hypotension

subroutine provides an alarm in case SBP < 91 mmHg for two consecutive

measurements, or in case SBP < 70 mmHag.

37. The method according to any of the preceding claims, the method further

comprising a circulatory collapse subroutine configured to determine circulatory

collapse, said subroutine comprising the steps of:

receiving validated SBP and HR value(s);

comparing the validated SBP and HR values to one or more predefined
SBP thresholds and HR thresholds; and

providing an alarm in case the SBP threshold(s) and at least one of the

HR thresholds is exceeded for a predefined time duration t.
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38. The method according to claim 37, wherein the predefined SBP threshold
comprise SBP < 100 mmHg and the predefined HR thresholds comprise any of
HR > 110 bpm, HR > 130 bpm, and/or HR < 50 bpm.

39. The method according to any of the claims 37-38, wherein the circulatory
collapse subroutine provides an alarm in case:
— S8SBP < 100 mmHg and HR > 110 bpm for { = 30 min, or
—  SBP <100 mmHg and HR > 130 bpm for t = 5 min, or
—  SBP < 100 mmHg and HR < 50 bpm for { = 30 min.

40. The method according to any of the preceding claims, the method further
comprising a asystole subroutine configured to determine asystole, said
subroutine comprising the steps of:

— receiving ECG data samples;

— detecting QRS-complexes in the ECG data samples;

— providing an alarm in case there are no QRS-complexes detected for a
predefined time duration t1, and/or in case there is no peripheral pulse

detected for a predefined time duration t2.

41. The method according to claim 40, wherein the predefined time durations t1
and 2 is selected from the list of: more than 10 seconds, more than 15
seconds, more than 20 seconds, more than 25 seconds, or more than 30

seconds.

42. The method according to any of the preceding claims, the method further
comprising a hypertension subroutine configured to determine hypertension,
said subroutine comprising the steps of:

— receiving validated SBP value(s);

— comparing the validated SBP values to one or more predefined
hypertension thresholds; and

— providing an alarm in case the SBP values exceed the hypertension
threshold(s) for one or more consecutive measurements and/or for a

predefined time duration £.
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43. The method according to claim 42, wherein the hypertension thresholds

comprise any of: SBP = 180 mmHg and/or SBP = 220 mmHg.

44 The method according to any of the claims 42-43, wherein the hypertension

subroutine provides an alarm in case SBP = 180 mmHg for { = 60 min, or in
case SBP = 220 mmHg.

45. The method according to any of the preceding claims, the method further

comprising an atrial fibrillation subroutine configured to determine atrial

fibrillation, said subroutine comprising the steps of:

receiving validated RRI values;

comparing the validated RRI values to one or more predefined first atrial
fibrillation criterions, said criterion(s) specifying the validated RRI to be
below or above one or more predefined threshold values;

optionally storing the validated values that fall within said first atrial
fibrillation criterion in an array;

optionally comparing the amount of stored values in said array to a
predefined second atrial fibrillation criterion relating to the size of said
array; and

providing an alarm in case the first and/or second atrial fibrillation

criterion is fulfilled.

46. The method according to claim 45, wherein the first atrial fibrillation criterion
comprises RRI<200 or RRI>3000.

47. The method according to any of the claims 45-46, wherein the second atrial

fibrillation criterion is that the size of the array is greater than 29.

48. The method according to any of the claims 45-47, wherein the atrial fibrillation

subroutine further comprises the step of computing the normalized difference of

the validated RRI values and storing the computed normalized difference

values in a stored set of NDR values.
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The method according to claim 48, wherein the atrial fibrillation subroutine
further comprises the step of removing the NDR values that fall outside

predefined percentiles of the values.

The method according to claim 49, wherein the predefined percentiles comprise
the 10" percentile and the 90" percentile, such that NDR values that are below
the 10™ percentile and/or above the 90" percentile are discarded from the

stored set of NDR values.

The method according to claim 50, wherein the atrial fibrillation subroutine
further comprises the step of providing the stored set of NDR values to a
Support Vector Machine (SVM) model configured for determining the presence

of atrial fibrillation or absence of atrial fibrillation based on the NDR values.

The method according to claim 47, wherein an alarm is generated in case atrial

fibrillation is present.

The method according to any of the preceding claims, further comprising the
step of detecting and/or predicting one or more serious adverse events based

on one or more of the determined clinical deterioration events.

A computer program having instructions which, when executed by a computing
device or system, causes the computing device or system to execute the
method according to any of the preceding claims, thereby providing automatic

real-time detection of clinical deterioration events in a patient.

. A system for automatic real-time detection of clinical deterioration events in a

patient, comprising a non-transitive, computer-readable storage device for
storing instructions that, when executed by a processor, performs the according

to any of the preceding method claims.

A system for automatic detection of a clinical deterioration event in a patient,

said system comprising:

- one or more sensors configured for automatically monitoring vital sign data
(such as heart rate, respiration rate, heart rate variability, temperature,

oxygen saturation and blood pressure) of the patient, the one or more
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sensors further configured for transmitting the vital sign data wirelessly to a
server and/or to a gateway;
- afirst server for receiving and storing the vital sign data, the first server
having a computer program thereon, said computer program configured for
5 executing the method according to any of the preceding method claims,
thereby providing automatic detection of a clinical deterioration event in a
patient, and
- one or more gateways configured to provide a wireless communication link
between the sensor(s) and the first server.
10
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International Application No. PCT/EP2022 /069262

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box II.1l

Claims Nos.: 1-53

Claim 1 relates to subject-matter considered by this authority to be
covered by the provisions of Rule 39.1(iv) PCT. The claim discloses a
computer implemented method for automatic real-time detection of clinical
deterioration events in a patient, comprising: (i) an examination phase
of a technical nature involving a collection of data ( continuously
receiving a plurality of different vital sign data from a plurality of
sensors worn on the body ), (ii) a comparison phase of said data with
standard values ( executing a clinically validated deterioration event
subroutine, wherein said subroutine compared the vital sign data to
thresholds ) and (iii) finding a significant deviation, and attributing
said deviation to a particular clinical picture ( executing a clinically
validated deterioration event subroutine, wherein said subroutine
determines, based on the thresholds, whether a specific clinical
deterioration is occurring in the patient; said specific clinical
deterioration event the determination of the nature of a medical
condition intended to identify or uncover a pathology, i.e. a particular
clinical picture. Alternatively, the step of providing an alarm amounts
to the indication that medical attention is necessary, also constituting
a clinical picture ). In particular, at least some of the determined
deteriorations, e.g. desaturation, constitutes the determination of the
nature of a medical condition intended to identify or uncover a
pathology, i.e. a particular clinical picture. In the alternative case,
where an alarm is considered to constitute a clinical picture, reference
is made to p.5, 1.1-10, which explicitly states that the alarms indicates
that clinical action from medical staff is required. As such, claim 1
constitutes a diagnostic method practised on the human or animal body, as
defined in Rule 39.1(iv) PCT (see EPO-PCT Guidelines G-II, 4.2 ).
Furthermore, as dependent claims of claim 1, claims 2-53 also fall under
the provisions of Rule 39.1(iv) PCT.




International application No.
PCT/EP2022/069262
INTERNATIONAL SEARCH REPORT
Box No.Ill Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. @ Claims Nos.: 1-53
because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210

2. D Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. D Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. D As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims;; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

D No protest accompanied the payment of additional search fees.
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