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We describe a numerical time-domain approach for high-accuracy calculations of Casimir-Polder forces near
microstructured materials. The use of a time-domain formulation enables the investigation of a broad range
of materials described by advanced material models, including nonlocal response functions. We validate the
method by a number of example calculations for which we thoroughly investigate the convergence properties of
the method, and comparing to analytical reference calculations, we find average relative errors as low as a few
parts in a million. As an application example, we investigate the anisotropy-induced repulsive behavior of the
Casimir-Polder force near a sharp gold wedge described by a hydrodynamic Drude model.
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I. INTRODUCTION

The Casimir-Polder force [1] is a force that acts on po-
larizable particles due to scattering of quantum and thermal
electromagnetic fluctuations in the environment. In its non-
retarded limit, where it is known as the van der Waals
force, it was originally investigated by London to describe
the interaction between closely spaced neutral atoms or
molecules. The theory was subsequently extended to larger
separations by Casimir and Polder by including the effects
of retardation. Along with its associated potential, it plays
an important role in several areas of science ranging from
chemistry to physics. In modern quantum technologies, such
as atom-chips [2–6], atom-interferometers [7–9], and atom-
fiber systems [10,11], the Casimir-Polder force represents
both a challenge and a useful tool in the design of suit-
able trapping potentials. From a broader perspective, the
Casimir-Polder force effectively provides the leading order
approximation to the Casimir force between macroscopic
bodies, and it therefore serves as a convenient tool for esti-
mating the qualitative behavior of the latter for sufficiently
small objects. A general theoretical framework for the de-
scription of Casimir-type forces was developed by Lifshitz,
Dzyaloshinskii, and Pitaevskii [12–14]. The framework relies
on the theory of fluctuation-induced interactions and can be
applied, at least formally, to objects with arbitrary geome-
tries and comprised of a wide range of materials. For a long
time since its original development, however, the intrinsic
mathematical complexity of the approach meant that accu-
rate calculations were limited to simple geometries, such as
planar surfaces, for which analytical evaluations are possible.
Due to the increasing relevance for fundamental investigations
and technological applications, however, Casimir physics
has attracted and continues to attract interest [15,16], and
this has motivated the development of advanced theoretical

and numerical methods for high-accuracy calculations
[16,17].

Fluctuation-induced interactions, and Casimir-type force
calculations in particular, are historically treated in the fre-
quency domain, where quantum electrodynamic perturbation
theory or modal expansions [18] are possible for simple ge-
ometries. This was the approach followed by Casimir and
Polder to describe the interaction between an atom and a
perfectly reflecting surface [1] and by Casimir to derive
an analytical expression for the force between two infinite
and perfectly reflecting planes [19]. Similarly, the so-called
scattering approach [20–22] evaluates Casimir-type forces
by a broadband frequency integration over the scattering
amplitudes of all the objects in the system. The scattering
approach adds flexibility and generality to the evaluation of

FIG. 1. Example material system showing parts of the tetrahedral
mesh used for numerical calculations of the Casimir-Polder force
on a polarizable molecule next to a sharp metallic wedge. Quan-
tum fluctuations of the electromagnetic field, as indicated by blue
arrows, lead to a nontrivial repulsive z-component of the force in this
geometry.
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the interactions. Only recently, however, have semianalytical
calculations using this technique been optimized for specific
geometries to the point where it can handle the extreme aspect
ratios occurring in typical experiments [23–29]. For gen-
eral structures, a fully numerical boundary element method
implementation of the scattering formulation was presented
in Refs. [30–32]. In computational electromagnetism, time-
domain calculations offer interesting alternatives to frequency
domain formulations and typically show different behaviors in
terms of convergence, stability, and memory requirements. A
time-domain method for calculating Casimir forces based on
the popular Finite-Difference Time-Domain (FDTD) method
was developed and presented in Refs. [33–35], and its exten-
sion to finite temperatures was discussed in Ref. [36].

In this paper, we revisit the time-domain approach in order
to perform high-accuracy Casimir-Polder force calculations.
In comparison to Casimir force calculations, this necessi-
tates the development of a technique to properly treat the
dispersive polarizability of the particle. Furthermore, we
introduce several additional modifications with respect to pre-
vious time-domain approaches. In particular, we do not make
a Wick rotation by introduction of an imaginary component
to the time axis, but carry out all calculations in real time by
postprocessing of the numerical signal. For the numerical cal-
culations, we use the Discontinuous Galerkin Time-Domain
(DGTD) method, which offers a number of interesting pos-
sibilities compared to FDTD, such as the use of advanced
time-stepping schemes and unstructured calculation meshes
[37]. Moreover, DGTD provides an exponential convergence
with respect to the order of the polynomial basis functions,
which is of particular interest for high-accuracy calculations.
Apart from the relatively easy implementation, the strength
of the suggested time-domain approach lies in the immediate
availability of a vast catalog of material models developed for
simulations of nanophotonic structures. These include high-
accuracy fits to experimental material response data [38], the
critical point model to calculate the electromagnetic response
of graphene [39,40], and the hydrodynamic Drude model for
investigating effects of nonlocal material responses [41,42].
In particular, we note that there is a growing interest in the
literature for nonlocal material responses in connection with
various aspects of Casimir physics [43–48]. Previous work on
the influence of nonlocal material response in Casimir-type
force calculations has been limited to relatively simple ge-
ometries [49–54], however. In general, therefore, we believe
that the approach presented here will be particularly useful for
high-accuracy modeling of experiments or nanoscale devices
based on Casimir physics with advanced material models.

As a specific application, we consider a configuration
where a repulsive Casimir-Polder interaction can occur. The
possibilities for repulsive Casimir forces are particularly in-
triguing, and it was shown already in Refs. [13,14] by Lifshitz,
Dzyaloshinskii, and Pitaevskii that there can be a repulsive
force between objects or particles separated by a liquid, for
example. This effect was experimentally demonstrated in
Refs. [55–58]. Repulsion between objects in vacuum is harder
to achieve, and it was shown in Ref. [59] that for purely
dielectric or metallic objects in vacuum, there can be no stable
equilibria based on Casimir-type forces alone. Nevertheless,

repulsion along one specific direction is possible and has been
predicted for certain material configurations involving objects
with highly anisotropic optical responses, which include a
needle near a thin plate with a hole [60] and a wedge [61]. The
latter is illustrated in Fig. 1, which shows an example compu-
tational mesh for a wedge and a polarizable molecule oriented
along the z-direction. If, by other means, the molecule does
not rotate and is restricted to move only in the z-direction,
this geometry leads to a repulsive Casimir-Polder force for
positions close to the wedge. To the best of our knowledge,
all previous theoretical investigations addressing configura-
tions involving sharp edges have considered either perfect
conductors or local material models to describe the opti-
cal response of the materials involved [23–25,27,29,30,60–
62]. Local response-models, however, are known for giving
an inaccurate description of the field distributions in close
proximity of an interface and to break down for geometries
with sharp edges, where they lead to unphysical divergences
in typical scattering calculations [63]. Nonlocal response-
models introduce additional length scales, which effectively
round off the sharp corners, and for systems with sufficiently
small features, the effect can induce substantial changes in
the overall optical response. This raises the question to which
extent the repulsive forces are influenced by nonlocal material
models and this, in turn, calls for specialized high-accuracy
calculation methods, such as the one we present in this work.

The paper is organized as follows. In Sec. II, we briefly
review the computational framework of Casimir-Polder force
calculations along with details pertaining to our particular
numerical implementation by use of scattered fields in the
DGTD method. In Sec. III, we provide illustrative examples
along with detailed discussions of the convergence properties.
In Sec. IV, we apply the calculation method to the analysis
of the Casimir-Polder force in the vicinity of a sharp wedge
described by a nonlocal material response. Finally, we sum-
marize the conclusions of the work in Sec. V.

II. FORMULATION

We consider an electrically polarizable particle near a
generic arrangement of bodies made from linear and passive
materials, all embedded in vacuum. The whole system is
in thermal equilibrium. Fluctuations in the particle’s dipole
moment affect the surrounding electric field just as fluctu-
ations in the surrounding field affect the dipole moment of
the particle. Due to the fundamental quantum nature of both
particle and field, these fluctuations persist even at vanishing
temperature, and even if the fluctuations lead to no aver-
age dipole moment or electric field, there is a nonvanishing
average interaction energy of the coupled system. Although
corrections due to finite temperature can be implemented in
the numerical scheme presented in this work, we focus on the
case of zero temperature, where the Casimir-Polder force is
a pure quantum effect. As a result of electromagnetic scat-
tering from the surrounding bodies, the interaction energy –
which we refer to as the Casimir-Polder energy – depends on
the position of the particle. The interaction may be phrased
in terms of second-order correlation functions of the dipole
moment and the electric field. In thermal equilibrium the
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expectation values of these correlation functions are, in turn,
related through the fluctuation dissipation theorem [64,65] to
the imaginary parts of the polarizability tensor α(ω) and the
electric field Green tensor G(r, r′, ω), respectively. Conse-
quently, the Casimir-Polder energy may be calculated through
an integral over contributions at all angular frequencies as [65]

ECP(r) = − h̄μ0

2π
Im

∫ ∞

0
ω2Tr[α(ω)G(r, r, ω)]dω, (1)

in which h̄ is the reduced Planck constant, μ0 is the perme-
ability of free space, and “Tr” denotes the trace of the 3 × 3
matrices describing the tensors and their product.

The electric field Green tensor represents the full retarded
electromagnetic response at the position r due to an oscillating
point dipole source at r′ and, therefore, contains all informa-
tion about the scattering properties of the system. For local
and isotropic materials described by relative permittivities and
permeabilities εR(r, ω) and μR(r, ω), respectively, it solves
the equation[
∇ × 1

μR(r, ω)
∇ × −ω2

c2
εR(r, ω)

]
G(r, r′, ω) = δ(r − r′)I,

(2)

where I denotes the identity tensor and c is the speed of light
in vacuum. In addition to Eq. (2), each column of G(r, r′, ω)
obeys the same boundary conditions as the electric field at
material interfaces as well as a suitable radiation condition to
ensure light propagation away from the source region at large
distances [66]. We note that Green tensors can be defined also
for nonlocal media, despite the fact that Eq. (2) then takes
a more convoluted form involving integro-differential oper-
ators. In general, G(r, r′, ω) can be split into a background
contribution, which represents light emission in a homoge-
neous background medium, and a scattered part GS(r, r′, ω),
which accounts for all reflections due to the spatial distri-
bution of material in the surroundings. Since for r = r′ the
background contribution is independent of position, and since
the Casimir-Polder force is given as the negative gradient of
the Casimir-Polder energy,

FCP(r) = −∇ECP(r), (3)

the constant background leads to no net contribution to the
force. As a consequence, in practical calculations we can
replace the Green tensor in Eq. (1) with GS(r, r, ω).

A. Numerical implementation

Throughout the calculations, we consider a frame in which
the polarizability tensor is diagonal. For the method described
in the main text, this condition is not restrictive, but it can
simplify the evaluation and the computational cost. In general,
therefore, we set

[α(ω)]i j = αi(ω)δi j, (4)

where i, j ∈ {x, y, z}, and the detailed expression for αi(ω)
depends on the particular model used to describe the behav-
ior of the particle. Given its microscopic nature, the internal
dynamics of the particle can often be deduced analytically.
The scattering properties of the environment, on the other
hand, are described by the Green tensor, which is known

analytically only for simple geometries such as spheres or
half planes. From a computational point of view, therefore, the
most resource-intensive task in evaluating the Casimir-Polder
energy for arbitrary geometries is the numerical calculation
of GS(r, r, ω), which amounts to solving the Maxwell equa-
tions for the electric field with a point source. To this end, we
consider a point source current density of the form J(r, ω) =
δ(r − r′)J (ω)e j , where J (ω) denotes the frequency depen-
dence and e j is a unit vector in the j-direction. Comparing
Eq. (2) to the wave equation for the electric field with this
particular source,[

∇ × 1

μR(r, ω)
∇ × −ω2

c2
εR(r, ω)

]
E(r, ω) = iωμ0J(r, ω),

(5)

it follows that the i j’th component of the Green tensor can
be readily obtained from the i’th component of the electric
field as

[G(r, r′, ω)]i j = −i
Ei(r, ω; r′, e j )

ωμ0J (ω)
, (6)

where the dependence of the electric field on the source loca-
tion r′ and source dipole orientation e j is included explicitly.
In the practical calculations below, we will not include them,
since we always have r = r′ and i = j.

Comparing Eqs. (1) and (6), we are particularly interested
in the field at the source position. The electric field is known to
diverge at point sources, and this leads to a divergence of the
Green tensor in the limit r → r′. The divergence enters only
in the background Green tensor, and as a consequence it does
not affect the Casimir-Polder force. Nevertheless, the attempt
to resolve divergent fields in numerical calculations with a
finite number of nondivergent basis functions can negatively
impact the accuracy. In practical calculations, therefore, we
use a scattered-field formulation of Maxwell’s equations, as
discussed in Appendix A. This effectively removes the diver-
gence of the field altogether and enables a direct calculation
of GS(r, r, ω) by use of Eq. (6). With these elements in place,
we follow the elegant approach of Refs. [34,35] and rewrite
Eq. (1) in the form of a convolution as

ECP(r) = −
∑

i

h̄
∫ ∞

0
Im[gi(−t )]ES

i (r, t ) dt, (7)

in which ES
i (r, t ) denotes the i’th component of the scattered

electric field generated from a point source current density
located at r′ = r and orientated along the direction e j = ei,
which also defines the diagonal frame for the polarizability.
The function gi(t ) is the Fourier transform of the function

gi(ω) = −iαi(ω)
ω

J (ω)
�(ω), (8)

in which �(ω) denotes the Heaviside step function.
The freedom in temporal shape of the source field provides

interesting options for designing a suitable input field. In this
work, we use a source of the form

J (t ) = J0[4(γ t )3 − (γ t )4]e−γ t�(t ), (9)

which has zero integral and is sufficiently well behaved at
small times to be compatible with the scattered field for-
mulation, cf. Appendix A. The decay of the source acts to
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reduce the temporal extent of the effective driving field, which
substantially lowers the magnitude of the scattered field at
times larger than a certain cutoff time set by γ . For this par-
ticular choice of J (t ), the factor ω/J (ω) in Eq. (8) takes on a
polynomial form, which simplifies the transformation of gi(ω)
to the time-domain; in some cases of interest the calculation
can be handled analytically, as discussed in Appendix B. In
contrast to Refs. [33–35], we do not perform a Wick rotation
to artificially damp the oscillations in the electromagnetic
response of the source. Rather, we use the physical values
of ES

i (r, t ) and rely on the damping induced by the source
and the kernel function Im[gi(−t )] to perform the integral in
Eq. (7) for different particle positions. In a final step, we can
calculate the force on the particle by numerical evaluation of
the gradient in Eq. (3). Since the formulation is fundamentally
in terms of energy, however, for most of the examples in this
paper we shall focus on the numerical evaluation of Eq. (7).
As an additional remark to the formulation, we note that the
direct incorporation of material dispersion into time-domain
algorithms is rather inefficient, since frequency-dependent
permittivities or permeabilities lead to numerically demand-
ing integrodifferential equations for the temporal dynamics.
As discussed in Appendix A, this problem is circumvented by
encoding the material dynamics in separate time-dependent
auxiliary differential equations which are solved together with
the Maxwell equations [67].

For numerical calculations, we use the DGTD method,
which is a finite-element based method specifically designed
to solve partial differential equations in conservation form.
In terms of the spatial discretization, it has the advantage of
being able to use unstructured meshes partitioning space into
several, not necessarily equally sized elements. This is espe-
cially beneficial when modeling irregularly shaped objects,
which can only be poorly approximated by discretization on a
regular grid. In each of the elements, the electric and magnetic
field components are expanded in a local polynomial basis
of Lagrange polynomials, in which the expansion coefficients
immediately correspond to field values on local grid points
within one element. In contrast to classical finite-element
methods, there is no overlap between basis functions of ad-
jacent elements. Since this means that all elements can be
treated individually, the computation is easily parallelizable
and has relatively low memory requirements. The coupling
between adjacent elements is then recovered via the intro-
duction of a so-called numerical flux [37,68]. In addition to
refining the mesh, adjusting the polynomial order p of the
basis functions can be used to control the error connected
with spatial discretization. Letting h denote the average ele-
ment size, the discretization error can be shown to behave as
O(hp+1) [37] for sufficiently small h or large p, and assuming
piecewise planar interfaces. For curved interfaces, the error
will eventually be limited by the geometrical approximation of
the mesh, leading to an error that scales as O(h2) for spheres
represented by straight-sided elements, for example. In such
cases, p-adaptivity can be restored by the use of curvilinear
elements [37,69]. All together, the resulting spatial discretiza-
tion gives rise to a set of first order ordinary differential
equations in time, which can in principle be solved by one of
several advanced time stepping algorithms known in the lit-
erature. Here, we use a fourth-order low-storage Runge-Kutta

method with 14 stages [70]. The time-domain calculation then
provides the electric field at all discrete times and at specified
positions.

For practical calculations, we must choose a length scale,
and throughout this work we use L0 = 100 nm as a reference.
From Eq. (1), we can then define

E0 = h̄μ0c3

2π

α0

L4
0

, (10)

where α0 is a constant and scalar polarizability, as a conve-
nient unit of energy.

III. EXAMPLE CALCULATIONS

In this section, we illustrate the methodology in setting up
and carrying out the calculations in practice by considering
the general problem of an isotropic polarizable particle above
an infinite surface. This simple configuration enables a semi-
analytical description of the interaction which will be used as
reference to analyze the convergence behavior. For simplicity,
we neglect the magnetic properties of all involved objects.
In Sec. III A, we consider the case of a simple gold surface
and provide a detailed account of the numerical calculation
scheme as well as a thorough analysis of the convergence.
Next, in Sec. III B, we demonstrate the compatibility of the
method with advanced material models by extending the cal-
culations to the case of a nonlocal material model, thereby
setting the stage for the application example in Sec. IV.

A. Particle above a gold surface

We consider the Casimir-Polder energy of a polarizable
particle in vacuum at a distance z above an infinitely extended
gold surface described by the Drude model

εD(ω) = 1 − ω2
pl

ω2 + i	ω
, (11)

where ωpl is the plasma frequency and 	 the dissipation rate.
Throughout this paper, we use the values for gold reported
in Ref. [71] by setting ωpl = 8.39 eV and 	 = 0.0434 eV,
corresponding to ωpl = 1.2747 × 1016s−1 and 	 = 6.5936 ×
1013s−1. For the particle, we consider an isotropic dispersive
polarizability of the form α(ω) = α(ω)I, where

α(ω) = α0
ω2

a

ω2
a − ω2 − iγaω

, (12)

in which α0 is the static polarizability, ωa is the resonance
frequency, and γa is the damping rate. For the calculations in
this section, we use parameters corresponding to a Rubidium-
87 atom by choosing ωa = 1.6 eV as the resonance frequency
and γa = 2.5 · 10−8 eV as the linewidth of the relevant atomic
transition [72].

As detailed in Appendix B, the mathematical form of
the polarizability enables an analytical evaluation of the cor-
responding kernel function gi(t ) = g(t ), which in this case
is independent of direction because of the isotropic po-
larizability. From the analytical result, it follows that the
time-dependence of the source in combination with the ex-
pression for the polarizability gives rise to a temporal behavior
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FIG. 2. Left: Model setup of a polarizable particle at a distance
z above a gold surface. Right: Example calculation mesh consisting
of a circular disk of radius R = 400 nm embedded in vacuum. The
mesh is finer at positions close to the source position.

for Im[g(−t )] which diverges as O(t−4) at short times and
goes to zero as O(t−1) at long times.

To enable a numerical solution by the DGTD method, we
first set up a tetrahedral calculation mesh of the geometry. For
the example problem at hand, the mesh consists of a circular
disk of radius R much larger than the atom-surface separation
embedded in a background of vacuum, as shown in Fig. 2.
The thickness of the disk is Hdisk = 150 nm. The calculation
domain extends above the disk to a height of H = R, and
there is an additional padding layer of vacuum of thickness
Hpad = 50 nm surrounding the entire domain. In this way, the
radius of the disk defines the calculation domain size. Apart
from a fixed circular and flat mesh surface at the height of
z0 = 20 nm above the central part of the disk to help inter-
polation, the mesh is unstructured and consists of relatively
small elements of side length h ≈ 1 nm in the central region,
and elements with side length as large as h ≈ 100 nm near the
calculation domain boundary. Whereas the time-dependent
Maxwell equations are solved in the entire domain, the aux-
iliary differential equation describing the current density in
the Drude model, as discussed in Appendix A 2, is defined
and solved only inside the disk. In this particular example, the
translational symmetry of the system means that the Green
tensor depends only on the distance to the surface. Moreover,
the rotational symmetry in combination with the isotropic
polarizability means that only two unique contributions to
the trace remain. We can therefore write the Casimir-Polder
energy as

ECP(z) = 2E‖(z) + E⊥(z), (13)

in which the two contributions, denoted by “‖” and “⊥” and
corresponding to orientations parallel and perpendicular to the
surface, respectively, must be calculated individually. For the
calculations, we choose a source current with γ = 2.5c/L0, as
illustrated in panel (a) of Fig. 3, and using the scattered field
formulation, we evolve the scattered electromagnetic fields in
time and record ES

i (z, t ) at the source point position above the
center of the surface. The response to the source is generally
oscillatory with a frequency which depends on the details of
the source, the distance from the surface, and the surrounding
materials. The oscillations will be damped because of loss
in the material and radiative loss to the environment, but the

FIG. 3. Details of the elements entering the numerical calcu-
lation of the Casimir-Polder energy. (a): Temporal current profile
corresponding to Eq. (9) with γ = 2.5c/L0. (b): Resulting scattered
electric field components ES

i (z0, t ) in units of E0 = J0/ε0cL2
0 and

evaluated at the source position. For times t < 2z0/c, the signals
are identically zero because of the finite time required to travel
from the source to the surface and back. (c): The kernel func-
tion Im[g(−t )] in units of g0 = α0c3/J0L3

0 . (d): Integrand Ii(z0, t ) =
Im[g(−t )]ES

i (z0, t ) from Eq. (7) in units of I0 = E0c/h̄L0. The red
and blue curves in panels (b) and (d) correspond to i = x, y and i = z,
respectively. Dashed lines in panels (c) and (d) show as reference the
results using a constant polarizability of magnitude α0.

damping is relatively slow, as seen in panel (b) of Fig. 3. Next,
we multiply by the function Im[g(−t )], which enhances the
signal at short times and damps it at larger times, as illustrated
in panel (c). The integrand in Eq. (7) is therefore much more
well behaved than the original signal, as seen in panel (d).
To highlight the effects of the dispersive polarizability, the
results are shown also for the case of a constant polarizability
of magnitude α0. Importantly, the divergence of Im[g(−t )] at
short times is cured by the fact that the scattered field is zero
for times t < 2z/c as a consequence of retardation. Finally,
to calculate the Casimir-Polder energy, we use a trapezoidal
integration to approximate the integral in Eq. (7) from t = 0
to a given cutoff time tcut. Whereas the temporal current
profile and the resulting calculated fields are independent of
the particle’s properties, the specific functional form of the
polarizability affects the function Im[gi(−t )] and thereby the
resulting integrand. This effectively means that the details of
the particle are accounted for only in postprocessing, such that
a given numerical simulation of the electromagnetic fields –
which generally represents the resource-intensive part of the
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FIG. 4. Contributions to the Casimir-Polder energy as a function
of distance above a gold surface. The red and blue curves show E‖(z)
and E⊥(z), respectively, and light circular and dark square markers
show the numerical results obtained when using the same computa-
tional mesh, but first and second order polynomial basis functions.
Due to the exponential convergence, the differences between results
using second and third order basis functions are not visible on this
scale.

solution process – can be subsequently used to study the
Casimir-Polder energy for different particles or atom species
at practically no additional computational cost. Figure 4
shows the numerical results for the Casimir-Polder energy as
a function of distance from the surface along with the result
of a reference calculation obtained directly from Eq. (1) by
integrating the known expression of the Green tensor in the
frequency domain [73–75]. The numerical calculations repro-
duce the reference values, and the relative errors decrease with
higher polynomial order of the basis functions as expected. In
Fig. 4, this is especially noticeable at short distances where
the magnitude of the energy is largest.

1. Convergence

In addition to errors stemming from the time integration,
the quality of the numerical result is limited by the accuracy of
the space and time discretization in the DGTD method as well
as residual reflections from the numerical calculation domain
boundary. Below, we describe each of these sources of error
individually.

Time integration. As a practical way of estimating the true
value of the integral in Eq. (7), we calculate the trapezoidal
cumulative sum E
 (z, tcut ) corresponding to the trapezoidal
integration of Eq. (7) up to t = tcut. The cumulative sum
inherits the oscillatory behavior of the original field, but the
oscillations occur around the numerical estimate of the true
value, when disregarding other sources of error. For a given
end time, we obtain a numerical estimate of the true value by
calculating the zeroth-order term in the Fourier expansion of
E
 (z, tcut ) evaluated from the last few full periods of oscilla-
tions. The difference between the extrema and the estimated
true value can serve as a very conservative estimate of the
numerical error due to the time integration. This estimate
becomes better for larger values of tcut at the expense of
longer calculation times. In practice, however, the error can
be several orders of magnitude lower than this conservative
estimate. In the case of z = z0, Fig. 5 shows the cumulative
sum as a function of the end time, for which the oscillations
around the reference value are clearly visible.

FIG. 5. Trapezoidal cumulative sum E

‖ (z0, tcut ) as a function of

end time tcut and in units of E0. The cumulative sum is approximating
the i = x, y components of the integral in Eq. (7). The widths of
the colored areas represent the extrema of the curves as calculated
for 100 nominally identical positions with basis function polynomial
order p = 1 (red) and p = 5 (black).

Spatial discretization. As discussed in Sec. II A, the dis-
continuous nature of the DGTD method leads to an interesting
convergence behavior. The numerical flux enforces the correct
behavior of the fields across the boundaries between different
mesh elements, but this enforcement is in the weak sense only.
Indeed, for large mesh elements or low polynomial order,
this may lead to numerical errors in the calculated fields at
material interfaces or boundaries between different elements
within the same material. To assess the convergence, there-
fore, it is reasonable to look at the statistical properties of
the error in different, nominally identical calculations. The
red area in Fig. 5 represents the variation in 100 calculations,
each corresponding to different positions close to the center,
but all with the same distance to the surface, and calculated
using basis functions of order p = 1. The effect of increasing
the basis function order is to narrow the distance between the
curves, as illustrated by the black area, which corresponds
to the same positions in the same mesh, but calculated using
basis functions of order p = 5.

Reflections from the boundary. Because of the typical fast
decay of Casimir-type forces, the influence of the calculation
domain boundary on the evaluation of the Casimir-Polder
energy in Eq. (7) can be effectively controlled by varying the
size of the domain. This largely alleviates the need for more
sophisticated techniques to deal with unwanted reflections
from the boundary, such as perfectly matched layers, since the
physics of the problem itself leads to vanishing influence of
distant interfaces. This is very different from the calculation of
other physical quantities in nanophotonics, which can depend
dramatically on residual reflections from the domain bound-
aries. Still, given the accuracy of the evaluation, we do see an
influence of small reflections. Therefore, in practice we use
first-order Silver-Müller outgoing wave boundary conditions,
since they can be incorporated in the numerical scheme with
no additional calculation cost [37]. For the case of z = z0,
Fig. 6 shows the average relative error with respect to the
reference calculation for E‖(z) as a function of polynomial
order and for different calculation domain sizes. The average
was taken over 100 calculations performed on the same mesh
by varying the lateral source position through a matrix of
x, y-coordinates close to the center. As discussed in Sec. II A,

205424-6



HIGH-ACCURACY CASIMIR-POLDER FORCE … PHYSICAL REVIEW B 108, 205424 (2023)

1 2 3 4 5
−6

−4

−2

Polynomial order, p

E
rr

o
r,

lo
g
1
0
(Δ

E ‖
/
Er

e
f

‖
)

R=100 nm

R=200 nm

R=300 nm

R=400 nm

FIG. 6. Average relative error of the Casimir-Polder energy cal-
culations as a function of basis function polynomial order p and
for different calculation domain sizes R = H , where R is the ra-
dius of the disk and H is the distance from the surface to the
upper boundary of the mesh. The figure shows the parallel com-
ponent �E‖(z0) = E‖(z0) − E ref

‖ (z0) corresponding to i = x, y, and
the dashed and solid lines correspond to constant and dispersive
polarizabilities, respectively.

the error in the DGTD method itself is expected to vary expo-
nentially with polynomial order of the basis functions, and this
is visible in Fig. 6 in the curves corresponding to large calcula-
tion domain sizes. The apparent dip in the R = 100 nm curve
at p = 2 does not signify an improved performance with these
settings, but is likely due to addition of two independent errors
from limited discretization and reflections from the boundary
which incidentally add up to produce a final result closer to
the reference value than the results with larger calculation
domains.

B. Nonlocal material response

The simple description of materials in terms of a local
dielectric function is known to break down at short length
scales where additional physical phenomena become relevant
[76,77]. In this limit, local material models lead to unphysical
results, such as divergences at sharp corners and tips [63]. For
metals, the length scales characterizing nonlocal effects are
the electron mean free path � and the Thomas-Fermi screening
length λTF. For gold, � and λTF are on the order of a few tens
of nanometers and a few Angstrom, respectively. The former
gives the average length of the electrons’ ballistic motion
within the metal and mainly describes diffusive mechanisms
in the conductor, while the latter describes the size of the
screening effects due to a spatial reordering of the charge
density and sets the scale for the convective dynamics [77,78].
Both can modify the interaction with the electromagnetic
radiation and in principle must be taken into account in its
description.

In nonlocal materials, the bulk permittivity is described
in terms of a transverse and a longitudinal dielectric func-
tion, εt(ω, k) and εl(ω, k) respectively [79,80]. Of the many
models available to describe the general nonlocal response
of a metal [76,77], we consider here the so-called hydrody-
namic model of the charge and current density [41,42] as
discussed in Appendix A 3. Indeed, time-domain calculations
in general are well suited to handle hydrodynamic models,
and the conservation form description underlying the DGTD

calculation framework makes it particularly well suited for
this task [81,82]. We focus on the linearized version of the
hydrodynamic model, in which the transverse dielectric func-
tion is given by the Drude model in Eq. (11), and only
the longitudinal dielectric function is changed. Thus, we set
εt(ω, k) = εD(ω) and εl(ω, k) = εHD(ω, k), in which

εHD(ω, k) = 1 − ω2
pl

ω2 + i	ω − β2k2
, (14)

where β is the speed of sound in the electron continuum,
which is related to the compressibility of the electronic fluid
[83], and k is the magnitude of the electromagnetic field wave
vector. In metals, β is a function of the Fermi velocity vF

with the exact expression depending on the particular material
model [82]. In this work, we take the low-frequency limit
β = vF/

√
3, where the ratio β/c ranges from 1.5 × 10−3 to

6 × 10−3 in typical metals. For gold, in particular, we find
β/c ≈ 3 × 10−3 [84]. Comparing to Eq. (11), the nonlocal
effects are visible as a spatial dispersion governed by β. In
its simplicity, this model takes into account the convective
process of the electron gas in the metal but we note that it
neglects diffusion and other physical phenomena [76,77]. As
in the case of the local Drude model, the auxiliary differential
equations describing the hydrodynamic model are defined
only within the disk, where the material response is taken to
be that of the bulk material governed by Eq. (14). The model
describes the charge density as well as the current density, and
the introduction of additional dynamical variables are comple-
mented by extra boundary conditions [85,86]. Specifically, we
require the normal component of the current density to vanish
at the metal-vacuum interfaces. More details and discussions
about the treatment of material interfaces are presented in
Appendix A 3.

To assess the potential of the suggested calculation scheme
for use with nonlocal material responses, we consider again
the general setup from Sec. III A with a polarizable particle
modeled by a dispersive polarizability at a fixed distance of
z = z0 above a gold surface, but we now replace the Drude
model for the gold with the linearized hydrodynamic model,
as detailed in Appendix A 3. Figure 7 shows the numerical re-
sults along with independent reference calculations E ref

‖ (z0, β )
based on direct calculation of the Green tensor by taking into
account the change in reflection coefficients due to the spatial
dispersion of the permittivity [49,87]. Contrary to the case
of a local material response, the finite compressibility in the
hydrodynamic model describes a smearing out of the charge
density below the surface with a characteristic length gov-
erned by the Thomas-Fermi screening length. The connection
to the local material response is found in the limit β → 0,
where the normal gradient of the charge density diverges as
the charge density distribution ρ(z) collapses onto the bound-
ary in the form of a surface charge density, as discussed in
Appendix A 3. In general, therefore, the nonlocal material re-
sponse leads to a weaker interaction, which can be understood
in terms of an effectively larger particle-surface separation
due to the reconfiguration of charge carriers near the surface
[76,88], as illustrated in the inset.
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FIG. 7. Casimir-Polder energy E‖(z0) above a gold surface with
a nonlocal material model as a function of the speed of sound in
the electron continuum β. The solid line shows the high-precision
reference calculation E ref

‖ (z0), and red circles show the numerical
results obtained using a standard mesh as in Fig. 2. The dashed
horizontal line indicates the result using the local Drude model with
β = 0. The inset shows schematically the variation of the charge
density near the surface with a characteristic thickness of λTF. By
changing the mesh to introduce an extreme sampling close to the
surface, one can resolve the sharp rise in the charge density for small
values of β, as indicated by the black squares.

1. Convergence

Given the typical size of λTF, a description of the electro-
magnetic response near the interface can lead to difficulties
for many numerical calculation schemes, because of the need
to resolve the extreme gradients in the charge density. In the
present case, the problem is visible in Fig. 7 as a deviation be-
tween the reference curve and the numerical values indicated
by red circles. By locally changing the mesh to introduce a
very fine sampling close to the surface, it is possible to resolve
the extreme charge density gradient and recover the reference
values, as shown by the black squares. The numerical calcu-
lations corresponding to the red circles in Fig. 7 were all done
on the same mesh similar to that in Fig. 2 but with R = 300
nm. To assess the convergence in detail, Fig. 8 shows the
average relative error in the numerical results as a function of
basis function polynomial order and for two different values

FIG. 8. Average relative error in the calculations in Fig. 7 as a
function of basis function polynomial order p. Red and gray curves
correspond to β/c = 10−2.5 and β/c = 10−1. Solid lines with circu-
lar markers were calculated using a standard mesh similar to that in
Fig. 2, and the dashed lines with square markers were calculated by
extreme local refinement below the surface in the center of the mesh
to properly sample the charge density.

FIG. 9. Calculation mesh for the investigation of repulsive
Casimir-Polder forces near a metallic wedge. The zoom-in on the
right shows a side view of the mesh in the square surface used for the
Casimir-Polder energy map.

of β corresponding to the extremes in Fig. 7. The average
was taken over seven nominally identical positions close to
the center. The difference in exponential convergence rates
signifies the increasing difficulty in resolving the charge den-
sity distribution resulting from increasingly smaller values of
β. For sufficiently large polynomial order, the relative error is
expected to reach a floor set by reflections from the calculation
domain boundary as in Fig. 6. For relatively small values of
β, the steepness of the charge density and the resulting slow
convergence make it difficult to reach a satisfactory error level
with this particular mesh. To properly resolve the charge
density in the case of small values of β, we can change the
mesh locally by introducing small elements very close to the
interface. In this way we can effectively change the conver-
gence rate, as shown by the dashed curves in Fig. 8.

IV. REPULSIVE CASIMIR-POLDER FORCE
WITH A NONLOCAL MATERIAL RESPONSE

As a nontrivial example of the flexibility of the calculation
scheme, we now consider the Casimir-Polder force on a par-
ticle with anisotropic polarizability close to a sharp wedge,
as illustrated in Fig. 1. As noted in the introduction, previous
work has investigated a similar setup for a perfectly conduct-
ing wedge [61,89], and this setup is known for giving rise to a
repulsive force along the direction orthogonal to the plane of
the wedge. In this example, we revisit the wedge and examine
how the use of the local Drude model or the nonlocal hydro-
dynamic model for the permittivity influences the repulsive
component of the Casimir-Polder force. Figure 9 shows the
calculation mesh consisting of a wedge embedded in a back-
ground of vacuum. The wedge is cut with an opening angle of
15◦ from a block with cross section 100 nm × 100 nm. The
smallest side length of the unstructured mesh is h ≈ 2 nm,
and we note that the tetrahedra conform perfectly to the math-
ematically sharp edge of the wedge, so that we expect no
numerical error associated with the representation of the ge-
ometry. Building on the experience from Secs. III A and III B,
we consider both the case of a local Drude model in Eq. (11)
and compare to calculations with a nonlocal permittivity as
described by the hydrodynamic model in Eq. (14).
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FIG. 10. Top: Contour plot showing the Casimir-Polder energy
landscape in the xy-plane through the center of the wedge. The
contour lines are exponentially spaced corresponding to the values
log10{−Ez/E0} = −2, −1, 0. Bottom: Calculated Casimir-Polder
energy in units of E0 along lines parallel to the z-axis at x = 20 nm
(red), x = 30 nm (green), and x = 40 nm (blue). Solid and dashed
lines show results using local and nonlocal (β/c = 10−1.5) material
responses, respectively.

Physically, the particle polarizability can describe the re-
sponse of a microscopic anisotropic body [60,90] or the
dominant transition in an anisotropic molecule. In the fol-
lowing, we consider the molecule dibenzoterrylene, which
has recently attracted attention in the literature in connection
with nanophotonic systems [91–94]. In particular, we consider
the ground state to S1-state transition with the associated
transition dipole moment oriented along the main axis of the
molecule, which we take to be parallel to the z-axis. Further,
we substantially simplify the description by setting αi(ω) = 0
for i = x, y and αz(ω) = α(ω), where α(ω) has the same
form as in Eq. (12) but with ωa = 1.58 eV and γa = 7.3 ×
10−8 eV [91].

The top panel of Fig. 10 shows a contour plot of the cal-
culated Casimir-Polder energy as a function of position in the
xz-plane through the center of the wedge at y = 0 for the case
of the nonlocal hydrodynamic model. The cross section of the
wedge is superimposed on the picture to mark its position. It
is surrounded by a white spacing to block off the immediate
vicinity of the material surface, where additional physical
phenomena are expected to influence the particle. In this limit,
the model must ultimately be augmented with additional terms
to account for effects such as tunneling and charge-transfer as

FIG. 11. Calculated Casimir-Polder forces corresponding to the
energies in the bottom panel of Fig. 10. The expressions are nor-
malized with respect to F0 = E0/L0. At all three distances, the local
description (solid lines) leads to a stronger modulation of the force
than the nonlocal material response (dashed lines).

well as the granularity and atomic structure of the material.
The bending of the contour lines towards the tip of the wedge
signifies the interesting region of a repulsive component of the
Casimir-Polder force. To appreciate this effect more clearly,
the bottom panel of Fig. 10 shows the calculated energy along
three lines in the plane y = 0, parallel to the z-axis and for
different values of x, corresponding to different distances to
the wedge. The solid lines show the Casimir-Polder energy for
the case of a local material description, while the dashed lines
indicate the nonlocal response in Eq. (14) with β/c = 10−1.5.
In all curves, local minima along the z-direction are clearly
visible on either side of the wedge with deeper minima closer
to the tip. In the full three-dimensional map of the energy,
however, these minima correspond to saddle points prevent-
ing a stable equilibrium in accordance with the results of
Ref. [59]. These curves were calculated using polynomal basis
functions of order p = 4. To estimate the accuracy, we com-
pare to the same curves calculated with p = 3 (not shown) and
find a maximum relative deviation of max{�Ez/Ez} ≈ 0.03.
Combined with the convergence studies in Fig. 6, for which
the reflections from the boundary are expected to be larger
than in the present case, we consider this relative deviation to
be a very conservative estimate of the maximum error in the
calculations.

Although the Casimir-Polder energy is seen to be clearly
affected by the introduction of a nonlocal material response,
the effect is predominantly to shift the energy levels and to
smoothen the curves, resulting in somewhat shallower min-
ima. As a consequence, the curves look qualitatively the same,
although there is an associated reduction in the force. In order
to see this more clearly, Fig. 11 shows the z-component of
the Casimir-Polder force Fz = −∂zEz(r) along the same three
lines as in Fig. 10. The influence of the nonlocal material
response is especially visible for the line closest to the wedge.
In all cases the largest magnitude of the force becomes smaller
for a nonlocal material response as a result of the smearing out
of the charge density close to the sharp edge. For visualization
purposes, and to reduce the computational requirements, in
these calculations we used a value of β which is larger than
what can be found in realistic materials. A reduction of the
value of β will bring the curves closer to those corresponding
to the local Drude model. From Figs. 10 and 11, we conclude
therefore that the repulsive Casimir-Polder force component
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near the sharp edge is robust towards the modifications intro-
duced by the nonlocal material response.

V. CONCLUSION

Over the last decades, fluctuation-induced forces have at-
tracted growing attention for their relevance in fundamental
sciences and for the role they can play in many nanopho-
tonic and quantum technological devices. Accurate evaluation
of these forces in nontrivial geometries is therefore becom-
ing important. In this work, we have described a numerical
method to perform high-accuracy calculations of the Casimir-
Polder force on polarizable particles in arbitrary material
structures using advanced material models. The method builds
on the time-domain approach of Refs. [33–35], which we have
modified in several ways. In essence, it combines a scattered-
field formulation of Maxwell’s equations with a nontrivial
postprocessing of the numerical signal in time by means of
appropriately designed and analytically known kernel func-
tions. These modifications enable an easy implementation in
existing time-domain solvers, in particular the Discontinuous
Galerkin Time-Domain (DGTD) method, which we have used
in this work. Since changes in the particle polarizability tensor
affect only the kernel function, variations in the polarizability
can be easily implemented in postprocessing of the same
set of simulation data. The use of DGTD offers a number
of interesting possibilities in terms of unstructured meshing,
exponential convergence, and moderate memory usage. We
have presented a detailed discussion of the convergence prop-
erties in configurations involving local and nonlocal material
models. Specifically, we have considered the Drude model
and the linearized hydrodynamic model, respectively, and
we have argued that the accuracy is limited primarily by
numerical discretization and reflections from the calculation
domain boundary. By increasing the polynomial order of
the basis functions, we recovered the expected exponential
convergence, and owing to the notoriously fast reduction of
Casimir-type forces with distance, we have illustrated how
the reflections from the boundaries can be very effectively
controlled by increasing the calculation domain. Indeed, com-
paring to independent reference calculations, we have found
relative errors as low as a few parts in a million. As a practical
application example, we have demonstrated the flexibility of
the method by investigating the Casimir-Polder interaction
between an anisotropic particle and a sharp wedge in vacuum.
Similar structures with sharp edges have been investigated
before and are known to give rise to a repulsive component of
the Casimir-Polder force. Comparing the results using a Drude
model to that of a linearized hydrodynamic model, we found
the repulsive force prediction from the local response model to
be remarkably robust against introduction of nonlocal material
responses even when using parameters for the nonlocality that
are much larger than in realistic materials.

In closing, we remark on a number of different possibilities
for refinement and generalization of the calculation method.
For the practical calculations, one can likely improve the
performance by locally varying the polynomial order of the
basis functions. For the calculations with nonlocal materials,
in particular, this will provide an interesting alternative to
locally refining the mesh in order to accurately resolve charge

density gradients near the interfaces. Similarly, as already
discussed in the main text, the method as presented considers
only the case of zero temperature, but the effect of a finite tem-
perature can be implemented by a corresponding modification
of the kernel function. More complex geometries and more
involved material models [39,77,82,95–97] can be considered
to further investigate how the interplay of these factors im-
pacts the behavior of the Casimir-Polder force. Conversely, an
accurate comparison between measurements and theoretical
predictions can provide information about the physics of such
material systems. Also we note that if the particle features
a magnetic response, there will be an additional magnetic
Casimir-Polder interaction, which can be evaluated using a
modification of the scheme presented in this paper. See also
Refs. [46,98] for a discussion about the magnetic Casimir-
Polder interaction and its interplay with nonlocal material
responses. Last, we note that since the method in essence
follows the ideas of Refs. [33–35], it can be naturally extended
in order to exploit the advantages of the DGTD method for
evaluation of the Casimir force between macroscopic bod-
ies. Moreover, following previous work [99], we expect that
the scheme can be generalized to nonequilibrium configura-
tions and thereby enable calculations of a wider spectrum of
fluctuation-induced phenomena [96,100–103].
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APPENDIX A: SCATTERED FIELD FORMULATION
AND MATERIAL MODELS

The calculations presented in the main text rely on the
numerical evaluation of the electromagnetic field from a point
dipole. This field, in turn, can be conveniently calculated by
separating the total electromagnetic field in two parts corre-
sponding to the incoming and the scattered part of the field,
respectively, as

ET(r, t ) = EI(r, t ) + ES(r, t ), (A1)

HT(r, t ) = HI(r, t ) + HS(r, t ). (A2)

By linearity of the Maxwell equations, it follows that the scat-
tered part of the fields fullfill equations similar to the original
Maxwell curl equations, but with an artificial source term gov-
erned by the incoming field EI(r, t ) [37]. This reformulation
alleviates the need for an explicit numerical simulation of
the source by recasting the Maxwell equations in a form that
accounts only for the scattering due to materials embedded in
an otherwise homogeneous and nondispersive medium, which
we take to be vacuum in this work. The incoming part of the
field is taken to be the field from a point dipole, which is
known analytically [104]. In practice, the exact form of the
resulting equations depends on the particular material model.
Below, we list the explicit formulations used for the calcu-
lations in this work. For completeness, and as an illustrative
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starting point, we also include the artificial case of dispersion-
less media.

1. Dispersionless media

In dispersionless media, the scattered fields obey the equa-
tions

ε0εR(r)∂t ES(r, t ) = ∇ × HS(r, t ) − ε0�ε(r)∂t EI(r, t ),
(A3)

μ0μR(r)∂t HS(r, t ) = −∇ × ES(r, t ) − μ0�μ(r)∂t HI(r, t ),
(A4)

where �ε(r) = εR(r) − εB and �μ(r) = μR(r) − μB repre-
sent the changes in relative permittivity and permeability
defining the material in the otherwise homogeneous back-
ground defined by εB and μB. In order to ensure a numerically
sound implementation, we require the electric and magnetic
fields at the start of the simulation to vanish. Since the field of
a point dipole with a given current time dependence J (t ) al-
ready depends on the derivative of J (t ) [104], the appearance
of the time derivative of the incoming fields in Eq. (A3) puts
additional constraints on the source current at t = 0. For this
reason, the source in Eq. (9) has continuous first and second
derivatives, which both vanish at t = 0.

2. Drude model

Due to their widespread use in many experimental setups,
it is interesting to consider material models for metals, such
as the Drude model, for which the scattered fields obey the
equations

ε0∂t ES(r, t ) = ∇ × HS(r, t ) − J(r, t ), (A5)

μ0∂t HS(r, t ) = −∇ × ES(r, t ), (A6)

where J(r, t ) is the total current density. In the case of a local
Drude model corresponding to a frequency-dependent relative
permittivity of the form in Eq. (11), the current density is
governed by the auxiliary differential equation [38]

∂t J(r, t ) = ω2
plE

T(r, t ) − 	J(r, t ), (A7)

where now the incoming field EI(r, t ), which is included in
ET(r, t ) in accordance with Eq. (A1), acts as an additional
driving term for the current density for the purpose of cal-
culating the scattered fields. In the Drude model, the current
density is directly proportional to the electric field in the
frequency domain, so we do not need to specify additional
boundary conditions for J(r, t ) at the boundaries of the metal.

3. Linearized hydrodynamics

To investigate the impact of materials with nonlocal op-
tical responses on Casimir-Polder forces, we consider the
linearized hydrodynamic model [105], for which the longi-
tudinal part of the dielectric function is given by Eq. (14). In
this model, the current density is coupled to a charge density
ρ(r, t ) and the two fields are governed by the auxiliary differ-
ential equations

∂tρ(r, t ) = −∇ · J(r, t ), (A8)

∂t J(r, t ) = ω2
plE

T(r, t ) − 	J(r, t ) − β2∇ρ(r, t ), (A9)

where the parameter β is the speed of sound, which describes
the propagation of a density perturbation within the electronic
fluid. While Eq. (A8) is simply a continuity equation, Eq. (A9)
can be seen as a simplified version of more accurate descrip-
tions [77]. In the case of a Fermi fluid, it follows from these
more elaborate models that the parameter β scales linearly
with the Fermi velocity [82,96,105]. We note that since the
charge density couples only to the longitudinal part of the
current density, the transverse part of the equation reduces to
Eq. (A7). As a consequence, both the transverse and the lon-
gitudinal part of the dielectric function are correctly described
by Eqs. (A8) and (A9).

The hydrodynamic equations must be augmented by ad-
ditional boundary conditions (ABCs) at the metal-vacuum
interfaces, which must be inferred from physical arguments
[85,86]. Assuming specular reflection of the electrons at the
interface [46,77,79,106–108], the normal component of the
current density is required to vanish at the boundary. Since,
in principle, the tangential component may be finite this ABC
is also known as the slip boundary condition. This approach
implicitly assumes that the material-vacuum interface can be
treated as a sharp boundary and that the electron dynamics are
those of the bulk material at all positions inside but arbitrarily
close to the surface. We note that this is an idealization, and
that more advanced descriptions of the interface itself have
been developed to treat the electromagnetic field at surfaces
in detail [76,77]. If the root-mean-square roughness of the
surface becomes comparable to the mean free path of the
bulk electrons, for example, the conditions for specular re-
flection might no longer be applicable and diffusive scattering
processes or other approaches should be taken into account
[82,109,110]. Due to the pressure term in Eq. (A9), there can
be no surface charge density for finite values of β. As a result,
we must require the normal component of the electric field
to be continuous across the interface, which is very different
from the condition that one would find in the case of a local
material model. To investigate this limit, consider the equa-
tion for the normal component of the current density at the
boundary. Since J⊥(r, t ) = 0, it follows that ∂t J⊥(r, t ) = 0,
and just inside the boundary we find

∇⊥ρ(r, t ) = 1

λ2
E⊥(r, t ), (A10)

where ⊥ denotes the vector component in the direction normal
to the surface, and λ = β/ωpl describes the range of variation
of the charge density within the material and close to the
interface. Comparing the low-frequency limit of Eq. (14) to
the Thomas-Fermi dielectric function [84]

εTF(k) = 1 + 1

λ2
TFk2

, (A11)

we find that λ is exactly the Thomas-Fermi screening length
[96,103]. Given a finite electric field component E⊥(r, t ),
Eq. (A10) results in a sharp rise in the charge density near
the boundary. For numerical methods, this requires a very fine
sampling of the field near the surface in order to resolve the
large gradient.

In the limit β = 0, Eqs. (A8) and (A9) decouple and the
model reduces to the local Drude model. In this case, the
denominator in Eq. (A10) vanishes, which is consistent with
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the collapse of the volume charge density onto the boundary
as a surface charge density.

APPENDIX B: KERNEL FUNCTION

The function gi(t ) is defined from its Fourier transform in
Eq. (8) which, in turn, depends on the Fourier transform of the
source current variation J (t ). Given that the source is nonzero
only for t > 0, we can define the frequency dependence of the
source formally as J (ω) = limξ→0+ J (ζ ), where

J (ζ ) =
∫ ∞

0
J (t )eiζ t dt, ζ = ω + iξ, (B1)

with ξ > 0. For all choices of J (t ) for which it exists, this
limit defines J (ω) as the analytical continuation onto the real
frequency axis of the function J (ζ ) in the upper half of the
complex-frequency plane. This definition enables the use of
a large ensemble of source current variations, including in
principle an undamped sinusoidal behavior. Since J (t ) is real
and causal, it follows that J (ζ ) = J∗(−ζ ∗) and that J (ζ ) is
analytic in the upper half of the complex-frequency plane. The
same properties are true for the functions αi(ω). Integrating
Eq. (B1) by parts, we find that

J (ζ ) ∼ J (n)(0)

(−iζ )n+1
, |ζ | → ∞, (B2)

where J (n)(0) indicates the first nonzero n’th derivative eval-
uated at t = 0. For large values of |ζ |, the function 1/J (ζ )
behaves as 1/J (ξ ) ∼ (−iζ )n+1. Since J (ζ ) is analytic for ξ >

0, in the limit ζ → 0 it has a Taylor expansion, where the
derivative has to be evaluated in the limit of ξ = 0+. Having
defined and analyzed J (ζ ), we now turn to the properties of
gi(t ). Following the definition in Eq. (8) and after performing
a Wick rotation in the first quadrant of the complex-frequency
plane, we can write that

Im[gi(−t )] = 1

2π

∫ ∞

0

ξαi(iξ )

J (iξ )
e−ξ t dξ

+ Im

[∑
k

′
eiζkt Res

[
ζαi(ζ )

J (ζ )

]
ζ=ζk

]
, (B3)

where ζk �= 0 are the zeros of J (ζ ) in the upper half of the
complex plane, and for simplicity we have assumed that they
all have multiplicity one. The prime in the sum corresponds
to a prefactor 1/2 for real or purely imaginary zeros. Whereas
the sum in Eq. (B3) evidently leads to oscillations, which are
exponentially damped in general, the temporal behavior of the
integral depends on details of the current variation. Never-
theless, we can investigate the limiting behaviors for general
current variations as follows. For large times, integration by
parts shows that

∫ ∞

0

ξαi(iξ )

J (iξ )
e−ξ t dξ ∼ −

[
ξαi (iξ )
J (iξ )

](l )

|ξ→0+

(−t )l+1
, t → ∞, (B4)

where the symbol [· · · ](l )
|ξ→0+ indicates the first nonzero l’th

derivative of the function in parentheses evaluated in the limit
ξ → 0+. For small times, on the other hand, the relevant
behavior of the integral is determined by the behavior of the

integrand in the limit ξ → ∞. Assuming that αi(iξ ) ∼ α0/ξ
m

for ξ → ∞ and defining y = ξ t , we find that

∫ ∞

0

ξαi(iξ )

J (iξ )
e−ξ t dξ = 1

t2

∫ ∞

0

yαi(iy/t )

J (iy/t )
e−ydy (B5)

∼ (n + 2 − m)!

t n+3−m

α0

J (n)(0)
, t → 0. (B6)

1. Source-specific behavior

In this work, we use the source current variation given in
Eq. (9), for which the first nonzero derivative of J (t ) at t = 0
is J (3)(0) = 24γ 3J0, and for which the Fourier transform J (ω)
is given by

J (ω) = −24iJ0γ
3 ω

(γ − iω)5
. (B7)

Since J (ω) vanishes only for ω = 0, the temporal behavior
of the kernel function is determined entirely by the first term
on the right-hand side of Eq. (B3). The behavior at large times
is therefore given by Eq. (B4), and assuming αi(0) �= 0, we
find that

lim
ξ→0+

αi(ξ )ξ

J (ξ )
= αi(0)γ 2

24J0
, (B8)

from which we can identify l = 0 as the first nonzero deriva-
tive. For any nonvanishing static polarizability, therefore, the
kernel function always goes to zero as O(t−1) in the limit
t → ∞. Moreover, from the form of the polarizability in
Eq. (12), for which αi(iξ ) ∼ α0ω

2
aξ

−2 for ξ → ∞, we identify
m = 2, and by Eq. (B6) it follows that Im[gi(−t )] diverges as
O(t−4) for t → 0.

In the artificial case of a constant polarizability of the form
αi(ω) = α0, we identify m = 0, so that Im[gi(−t )] diverges as
O(t−6) for t → 0. In this case, the simplicity of the expression
in Eq. (B7) enables a direct analytical calculation of the kernel
function, for which we find

Im[gi(−t )] = α0

2π

∫ ∞

0
e−ξ t (γ + ξ )5

24J0γ 3
dξ

= α0γ
3

2πJ0

5∑
k=0

5
(5−k)!

(γ t )k+1
, (B9)

which is consistent with the general predictions above for the
limiting behavior at long and short times.

An analytical expression for the kernel function can be
calculated also for the dispersive polarizability in Eq. (12).
To this end, we make use of the fact that the polarizability is
analytic in the upper half of the complex plane and transform
the integral to the positive imaginary frequency axis on which
the polarizability takes the form

α(iξ ) = α0ω
2
a

(ξ + i�)(ξ − i�∗)
= −Im

[
α0ω

2
a

�R(ξ + i�)

]
, (B10)
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where � = √
ω2

a − γ 2
a /4 − iγa/2, in which ωa and γa are both

positive and �R = Re[�]. Inserting in Eq. (8) and carrying
out the integral, one finds that

Im[g(−t )] = − α0ω
2
a

48πJ0�Rγ 3
Im

[∫ ∞

0

(γ + ξ )5

ξ + i�
e−ξ t dξ

]

= − α0ω
2
a

48πJ0�Rγ 3
Im

[
(γ − i�)5

×
5∑

k=0

(
5

k

)
ei�t	[k, i�t]

[(γ − i�)t]k

]
, (B11)

where 	[s, z] is the upper incomplete gamma function,

	[s, z] =
∫ ∞

z
t s−1e−t dt . (B12)

For s ≡ k ∈ N+, the gamma function can be written as

	[k, z] = (k − 1)!e−z
k−1∑
j=0

z j

j!
, (B13)

so that we can rewrite Im[g(−t )] as

Im[g(−t )] = − α0ω
2
aγ

2

48πJ0�R
Im

[(
1 − i�

γ

)5

ei�t	[0, i�t]

−
5∑

j=1

∑5
k= j

5!
(

1− i�
γ

)5−k(
i�
γ

)k− j

k(k− j)!(5−k)!

(γ t ) j

]
. (B14)

As a consistency check we can inspect the asymptotic expres-
sion. Given that

	[0, i�t] ∼
{

e−it�

it� t → ∞,

it� − ln[i�t] − γE t → 0,
(B15)

where γE is the Euler-Mascheroni constant, we have that

Im[g(−t )] ∼
⎧⎨
⎩

α0γ
3

48πJ0

1
γ t t → ∞,

α0ω
2
a γ

8πJ0

1
(γ t )4 t → 0,

(B16)

which again is consistent with the general predictions for the
limiting behavior at long and short times.
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