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Abstract
Shallow quantum circuits are believed to be the most promising candidates for
achieving early practical quantum advantage—this has motivated the devel-
opment of a broad range of error mitigation techniques whose performance
generally improves when the quantum state is well approximated by a global
depolarising (white) noise model. While it has been crucial for demonstrat-
ing quantum supremacy that random circuits scramble local noise into global
white noise—a property that has been proved rigorously—we investigate to
what degree practical shallow quantum circuits scramble local noise into global
white noise. We define two key metrics as (a) density matrix eigenvalue uni-
formity and (b) commutator norm that quantifies stability of the dominant
eigenvector. While the former determines the distance from white noise, the
latter determines the performance of purification based error mitigation. We
derive analytical approximate bounds on their scaling and find in most cases
they nicely match numerical results. On the other hand, we simulate a broad
class of practical quantum circuits and find that white noise is in certain cases
a bad approximation posing significant limitations on the performance of some
of the simpler error mitigation schemes. On a positive note, we find in all cases
that the commutator norm is sufficiently small guaranteeing a very good per-
formance of purification-based error mitigation. Lastly, we identify techniques
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that may decrease both metrics, such as increasing the dimensionality of the
dynamical Lie algebra by gate insertions or randomised compiling.

Keywords: noisy quantum circuits, quantum error mitigation,
quantum computing

1. Introduction

Current generations of quantum hardware can already significantly outperform classical com-
puters in random sampling tasks [1, 2] and hopefully future hardware developments will enable
powerful applications in quantum machine learning [3], fundamental physics [4, 5] and in
developing novel drugs and materials [6–9]. The scale and precision of the technology today
is, however, still below what is required for fully fault-tolerant quantum computation: Due to
noise accumulation in the noisy intermediate-scale quantum (NISQ) era [10], one is thus lim-
ited to only shallow-depth quantum circuits which led to the development of a broad range of
hybrid quantum–classical protocols and quantum machine learning algorithms [11–13].

The aim in this paradigm is to prevent excessive error buildup via a parameterised, shallow-
depth quantum circuit and then perform a series of repeated measurements in order to extract
expected values. These expected values are then post processed on a classical computer in order
to update the parameters of the circuits, e.g. as part of a training procedure. A major challenge
is the potential need for an excessive number of circuit repetitions which, however, can be
significantly suppressed by the use of advanced training algorithms [14–16] or via classical-
shadows-based protocols [17–20]. As such, the primary limitation of near-term applications is
the damaging effect of gate noise on the estimated expected values which can only be reduced
by advanced error mitigation techniques [12, 21].

Error mitigation comprises a broad collection of diverse techniques that generally aim to
estimate precise expected values by suppressing the effect of hardware imperfections [12, 21].
Due to the diversity of techniques and due to the significant differences in the range of applic-
ability, the need for performance metrics was recently emphasised [21]. This motivates the
present work to characterise noise in typical practical circuits, e.g. in quantum simulation or
in quantum machine learning, and define two key metrics that determine the performance of a
broad class of error mitigation techniques: (a) eigenvalue uniformityW as a closeness to global
depolarising (white) noise and (b) norm of the commutator C between the ideal and noisy
quantum states. While (b) quantifies the stability of the quantum state’s dominant eigenvector
and thus determines the performance of purification based error mitigation techniques [22,
23], (a) implies a good performance of all error mitigation techniques.

Our primary motivation is that gate errors in complex quantum circuits are scrambled into
global white noise [1, 24]. This property has been proved for random circuits by establishing
exponentially decreasing error bounds; surprisingly, in our numerical simulations we find that
in many practical scenarios the same bounds apply relatively well. In particular, we find that
both our metrics, (a) the distance from global-depolarising noise and (b) the commutator norm,
are approximated with a model function as

f(ν) = α
e−ξξ

(1− e−ξ)
√
ν
=

α√
ν
+O(ξ) , (1)

where ν is the number of gates in the quantum circuit, ξ is the number of expected errors in the
entire circuit and α is a constant. As such, if one keeps the error rate small ξ ≪ 1 but increases
the number of gates in a circuit then both (a) and (b) are expected to decrease. This is a highly
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desirable property in practice, e.g. white noise does not introduce a bias to the expected-value
measurement but only a trivial, global scaling as we detail in the rest of this introduction.

Main contributions of the present work include the following.

(a) We simulate a broad range of quantum circuits often used in practice and numerically
analyse the above two key metrics, W and C, that determine the performance of different
error mitigation techniques.

(b) We identify scenarios where the above white-noise approximation holds well (i.e. small
W), e.g. when gate parameters and circuit structures are sufficiently random.

(c) We identify strategies to reduce W, e.g. by improving scrambling local gate noise into
global white noise through inserting additional gates into a circuit to increase the dimen-
sionality of its Lie algebra [25].

(d) In most cases, however, we conclude that white noise is not necessarily a good approx-
imation due to the large prefactor α in equation (1). Thus the performance of some error
mitigation techniques that rely on a global-depolarising noise assumption is limited.

(e) On the other hand, we find that in all cases the commutator normC, our other key metric, is
smaller thanW by at least 1-2 orders of magnitude guaranteeing a very good performance
of purification-based error mitigation techniques even in the worst practical scenarios.

Our work is structured as follows. In the rest of this introduction we briefly review global
depolarising noise and how it can be exploited in error mitigation, and then briefly review
purification-based error mitigation techniques and their performance. In section 2we introduce
theoretical notions and finally in section 3 we present our simulation results.

1.1. Global depolarisation and error mitigation

In the NISQ-era, we do not have comprehensive solutions to error correction, which has led the
field to develop error mitigation techniques. These techniques aim to extract expected values
⟨O⟩ideal := tr[Oρid] of observables—typically some Hamiltonian of interest—with respect to
an ideal noiseless quantum state ρid.

A very simple error model, the global depolarising noise channel, has been very often con-
sidered as a relatively good approximation to complex quantum circuits. For qubit states, the
channel mixes the ideal, noise-free state with the maximally mixed state Id/d of dimension
d= 2N as

ρwn := ηρid+(1− η) Id/d. (2)

Here η ≈ F is a probability that approximates the fidelity as F= η+(1− η)/d. The white
noise channel has been commonly used in the literature for modelling errors in near-term
quantum computers [26] and, in particular, it has been shown to be a very good approximation
to noise in random circuits [1, 24]. White noise is extremely convenient as it lets the user
extract, after rescaling by η, the ideal expected value of any traceless Hermitian observable
O via

⟨O⟩ideal = tr [Oρwn]/η. (3)

Of course, for small fidelities η≪ 1 the expected value tr[Oρwn] requires a significantly
increased sampling to suppress shot noise. In this model, the scaling factor η is a global prop-
erty and can be estimated experimentally [27], e.g. via randomised measurements [26], via
extrapolation [28] or via learning-based techniques [29].
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Global depolarisation, however, may not be a sufficiently accurate model to capture more
subtle effects of gate noise and thus rescaling an experimentally estimated expected value
yields a biased estimate of the ideal one as ⟨O⟩bias := tr[Oρ]/η−⟨O⟩ideal. The bias here ⟨O⟩bias
is not a global property, i.e. it is specific to each observable, and requires the use of more
advanced error mitigation techniques to suppress.

Intuitively, one expects the bias is small for quantum states that are well approximated by
a global depolarising model as ρ≈ ρwn and, indeed, we find a general upper bound in terms
of the trace distance as

|⟨O⟩bias|=
|tr [Oρ]− tr [Oρwn] |

η
⩽ ||O||∞||ρ− ρwn||1

η
. (4)

Here || · ||1 is the trace norm while ||O||∞ is the operator norm as the absolute largest eigen-
value of the observable O, which we above assumed to be traceless, refer to [30] for a proof.
As such, a small trace distance guarantees a small bias and thus indirectly determines the per-
formance of all error mitigation techniques—and further protocols [19, 31].

In this work, we characterise how close noisy quantum states ρ in practical applications
approach white noise states ρwn and consider various types of variational quantum circuits that
are typical for NISQ applications. When the above trace distance is small then it guarantees
a small bias in expected values which allows us to nearly trivially mitigate the effect of gate
noise, i.e. via a simple rescaling.

1.2. Purification-based error mitigation and the commutator norm

Another core metric we will consider is the commutator norm between the ideal and noisy
quantum states as EC := ||[ρid,ρ]||1, which determines the performance of purification based
error mitigation techniques [30]—a small commutator norm has significant practical implica-
tions as it guarantees that one can accurately determine expected values using the ESD/VD [22,
23] error mitigation techniques. In particular, independently preparing n copies of the noisy
quantum state and applying a derangement circuit to entangle the copies, allows one to estimate
the expected value

tr [ρnO]
tr [ρn]

= ⟨O⟩ideal + EESD.

The approach is very NISQ-friendly [32, 33] and its approximation error EESD approaches in
exponential order a noise floor as we increase the number of copies n [22]; This noise floor
is determined generally by the commutator norm EC but in the most typical applications of
preparing eigenstates, the noise floor is quadratically smaller as E2

C [30].
Note that this commutator can vanish even if the quantum state is very far from a white

noise state, in fact it generally vanishes when ρid approximates an eigenvector of ρ. When a
state is close to the white noise approximation then a small commutator norm is guaranteed,
however, we demonstrate that the latter is a much less stringent condition and a much better
approximation in practice than the former: in all instances we find that the commutator norm
is significantly smaller than the trace distance from white noise states.

2. Theoretical background

In this section we introduce the main theoretical notations and recapitulate the most relevant
results from the literature.
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2.1. General properties of noisy quantum states

Recall that any quantum state of dimension d can be represented via its density matrix ρ that
generally admits the spectral decomposition as

ρ=
d∑

k=1

λk|ψk⟩⟨ψk|, (5)

wherewe focus onN-qubit systems of dimension d= 2N. Hereλk are non-negative eigenvalues
and |ψk⟩ are eigenvectors. Since

∑
kλk = 1, the spectrum λ is also interpreted as a probability

distribution.
If ρ is prepared by a perfect, noise-free unitary circuit, only one eigenvalue is different

from zero and the corresponding eigenvector is the ideal quantum state as |ψid⟩. In contrast, an
imperfect circuit prepares a ρ that has more than one non-zero eigenvalues and is thus a prob-
abilistic mixture of the pure quantum states |ψk⟩, e.g. due to interactions with a surrounding
environment. In fact, noisy quantum circuits that we typically encounter in practice produce
quite particular structure of the eigenvalue distribution: one dominant component that approx-
imates the ideal quantum state |ψ1⟩ ≈ |ψid⟩ mixed with an exponentially growing number of
‘error’ eigenvectors that have small eigenvalues. White noise is the limiting case where non-
dominant eigenvalues are exponentially small∝ 1/d and the dominant eigenvector is identical
to the noise-free state as |ψ1⟩= |ψid⟩.

The quality of the noisy quantum state is then defined by the probability of the ideal quantum
state as the fidelity F := ⟨ψid|ρ|ψid⟩; We show in appendix A that for any quantum state it
approaches the dominant eigenvalue λ1 as

λ1 = F+O(EC) , (6)

where we compute the error term analytically in terms of the commutator norm EC =
||[ρid,ρ]||1 from section 1.1. This property is actually completely general and applies to any
density matrix.

2.2. Practically motivated noise models

Most typical noise models used in practice, such as local depolarising or dephasing noise,
admit the following probabilistic interpretation: a noisy gate operationΦ(ρ) can be interpreted
as a mixture of the noise-free operation U that happens with probability 1− ϵ and an error
contribution as

Φk (ρ) = (1− ϵ)UkρU
†
k + ϵΦerr

(
UkρU

†
k

)
. (7)

Here Uk is the kth ideal quantum gate and the completely positive trace-preserving map Φerr

happens with probability ϵ and accounts for all error events during the execution of a gate. A
quantum circuit is then a composition of a series of ν such quantum gates which prepares the
convex combination as

ρ= ηρid+(1− η)ρerr. (8)

Here ρid := |ψid⟩⟨ψid| is the ideal noise-free state, ρerr is an error density matrix and η =
(1− ϵ)ν is the probability that none of the gates have undergone errors. This probabil-
ity actually [24, 30] approximates the fidelity F := ⟨ψid|ρ|ψid⟩ given the noise model in
equation (7) as

F= (1− ϵ)
ν
+ EF = e−ξ + EF+O

(
ϵ2/ν

)
. (9)
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Here we approximate (1− ξ/ν)ν = e−ξ +O(ϵ2/ν) for small ϵ and large ν where ξ := ϵν is
the circuit error rate as the expected number of errors in a circuit. The approximation error can
be defined as EF = ⟨ψid|ρerr|ψid⟩ and in practice it is typically small while in the limiting case
of white noise it decreases exponentially as EF = 1/d due to ρerr = Id/d.

Assuming sufficiently deep, complex circuits, [30] obtained an approximate bound for the
commutator between the ideal and noisy quantum states as

|| [ρid,ρ] ||1 ⪅ const× e−ξ ξ /
√
ν. (10)

This bound confirms that as we increase the number of quantum gates ν in a circuit but keeping
the circuit error rate ξ constant, the commutator norm decreases as∝ 1/

√
ν [30]. Furthermore,

this function closely resembles to equation (1) which is a central aim of this work to explore.

2.3. White noise in random circuits

Random circuits have enabled quantum supremacy experiments using noisy quantum com-
puters for two primary reasons: (a) the outputs of these circuits are hard to simulate classically
and (b) they render local noise into global white noise [1], hence introducing only a trivial bias
to the ideal probability distribution similarly as in section 1.1.

Dalzell et al [24] considered random circuits consisting of s two-qubit gates, each of which
undergoes two single qubit (depolarising) errors each with probability ϵ̃ (assuming single-
qubit gates are noiseless). We can relate this to our model by identifying the local noise after
each two-qubit gate with the error event in equation (7) via the probability ϵ= 1− (1− ϵ̃)2 =
2ϵ̃− ϵ̃2. Dalzell et al [24] then established the fidelity F̃ of the quantum state which one obtains
from a noisy cross-entropy score as

F̃= e−2sϵ̃±O(sϵ̃2) = e−ξ±O(ϵξ).

This coincides with our approximation from equation (9) up to an additive error in the exponent
which, however, diminishes for low gate error rates. In the following we will thus assume
F≡ F̃.

Measuring these noisy states in the standard measurement basis {|j⟩}dj=1 produces a noisy
probability distribution p̃noisy( j) = ⟨j |ρ|j⟩. Dalzell et al [24] established that this probability
distribution rapidly approaches thewhite noise approximation p̃wn = Fp̃id+(1−F)p̃unif where
p̃id( j) = ⟨j |ρid|j⟩ is the ideal probability distributionwhile we define p̃unif( j) = 1/d and d= 2N.
In particular, the total variation distance (via the l1 norm ||x||1 =

∑
i |xi|) between the two

probability distributions is upper bounded as

1
2
||p̃noisy − p̃wn||1 ⩽ O

(
Fϵ

√
ν
)
= O

(
e−ξξ/

√
ν
)
. (11)

This expression is formally identical to the bound on the commutator norm in equation (10);
Indeed if the noise in the quantum state approaches a white noise approximation, it implies
that the commutator norm must also vanish in the same order.

On the other hand, the reverse is not necessarily true as equation (11) is a stronger condi-
tion than equation (10) as the latter only guarantees that the dominant eigenvector approaches
|ψ1⟩ ≈ |ψid⟩ but does not imply anything about the eigenvalue distribution of ρ or ρerr.

6
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3. Numerical simulations

3.1. Target metrics

In the NISQ-era comprehensive error correction will not be feasible and thus hope is primarily
based on variational quantum algorithms [11–13, 35, 36]. In this paradigm a shallow, paramet-
rised quantum circuit is used to prepare a parametrised quantum state that aims to approximate
the solution to a given problem, typically the ground state of a problemHamiltonian. Due to its
shallow depth the ansatz circuit is believed to be error robust and its tractable parametrisation
allows to explore the Hilbert space near the solution. On the other hand, such circuits are struc-
turally quite different than random quantum circuits and it was already raised in [24] whether
error bounds on the white noise approximation extend to these shallow quantum circuits.

We simulate such quantum circuits under the effect of local depolarising noise—while note
that a broad class of local coherent and incoherent error models can effectively be transformed
into local depolarising noise using, e.g. twirling techniques or randomised compiling [37–40].
We analyse the resulting noisy density matrix ρ by calculating the following two quantities.
First, we quantify ‘closeness’ to a white noise state from equation (2) by computing the uni-
formity measureW as the l1-distance between the uniform distribution and the non-dominant
eigenvalues of the output state as

W :=
1
2
||perr − punif||1 =

1
2

d∑
k=2

∣∣∣∣∣ λk
1−λ1

− 1
d− 1

∣∣∣∣∣, (12)

where || · ||1 refers to the l1-norm of the vector as in equation (11). In analogy to section 2.3,
here we consider the probability distribution when measuring the density matrix in its eigen-
basis, rather than in the standard basis, and thus define perr := (λ2,λ3, . . . ,λd)/(1−λ1) via
the non-dominant eigenvalues of the density matrix in statement 2 while punif( j) = 1/(d− 1).
Thus, W depends only on spectral properties of the quantum state and can be computed
straightforwardly in numerical simulations. We show in statement 2 that W is proportional
to the trace distance from a white noise quantum state as

||ρ− ρwn||1 = (1−λ1)W+ Ew, (13)

uo to a bounded error Ew. The uniformity measure W thus determines the bias in estimating
any traceless expected value as discussed in section 1.1.

Second, we calculate the commutator norm EC from section 1.1 relative to 1−λ1 as

C :=
|| [ρid,ρ] ||1
1−λ1

= || [ρid,ρerr] ||1 +O (Eq) , (14)

which we relate to the commutator norm between the ‘error part’ of the state ρerr and the ideal
quantum state ρid in lemma 1. In the following, we will refer to C as the commutator norm –
and recall that it determines the ultimate performance of purification-based error mitigation as
discussed in section 1.1.

While both metrics W and C have clear practical meaning as they determine the efficacy
of error mitigation techniques, they carry rather orthogonal information about the nature of
noise in the quantum state. Specifically, W informs about the distribution of eigenvalues of
the density matrix while C quantifies the overlap between the ideal state and the noise in the
density matrix. This difference is best illustrated via the following family of extremal states:
there exist quantum states for which C vanishes but W is large, i.e. low-rank errors where

7
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Figure 1. Simulating families of 10-qubit Strong entangling layer (SEL) ansatz circuits
[34] at random gate parameters for an increasing number ν of gates and per-gate depol-
arising error rates ϵ. (a) the uniformity measure W(ν) of the error eigenvalues of the
density matrix from equation (12) closely match the theoretical model (dashed lines)
for random circuits and confirm that increasing the number of gates in random cir-
cuits scrambles local noise into global white noise. (b) the commutator norm C(ν) from
equation (14) is significantly smaller in absolute value and decreases with a larger poly-
nomial degree (steeper slope of the dashed lines) than the uniformity measure—this
suggests that the dominant eigenvector of the density matrix ρ approximately commutes
with ρ evenwhen noise is not well described bywhite noise. The ϵ→ 0 simulations were
approximated using ϵ= 10−8 (ϵ= 10−7) when calculating W (C).

ρ= ηρid+(1− η)|ψerr⟩⟨ψerr| via an orthogonal noise component ⟨ψerr|ψid⟩= 0. These states
are indeed states for which purification-based techniques are expected to outperform white-
noise based ones most significantly. Conversely, families of worst-case scenario states have
been explicitly constructed in [30], highlighting that states exist for which C is maximal while
W may be small. Furthermore, the relation between W and C is non-trivial and we leave a
detailed analysis to future work.

3.2. Random states via Strong Entangling ansätze

We first consider a Strong Entangling Ansatz (SEA): it is built of alternating layers of paramet-
rised single-qubit rotations followed by a series of nearest-neighbour CNOT gates as illustrated
in figure A1—and assume a local depolarising noise with probability ϵ. We simulate random
quantum circuits by randomly generating parameters |θk|⩽ 2π—note that these circuits are not
necessarily Haar-random distributed and thus results in section 2.3 do not necessarily apply.

We simulate 10-qubit circuits and in figure 1(a) we plot the eigenvalue uniformity W(ν)
while in figure 1(b) we plot the commutator normC(ν) for an increasing number ν of quantum
gates—all datapoints are averages over ten random seeds. These results surprisingly well
recover the expected behaviour of random quantum circuits as for small error rates ϵ→ 0 both
quantitiesW(ν) and C(ν) can be approximated using the model function from equation (1) as
we now discuss.

In section 2.3 we stated bounds of [24] on the distance between p̃noisy and p̃wn. Based on
the assumption that these bounds can be extended beyond the standard basis and also apply to

8
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the probability distributions pnoisy = ⟨ψk|ρ|ψk⟩ and pwn := ⟨ψk|ρwn|ψk⟩ we derive in statement
4 the approximate bound on the eigenvalue uniformity as

W(ν) = O

(
e−ξξ/

√
ν

1− e−ξ

)
.

Furthermore, by combining equation (14) and the bound in equation (10) we find that the
commutator norm C is similarly bounded by the same function. On the other hand, figure 1(b)
suggests that the commutator norm decreases in a higher polynomial order and thus we approx-
imate both W(ν) and C(ν) using the function

f(ν) = α
ξ e−ξ

νβ (1− e−ξ)
= α/νβ +O (ξ) (15)

where we fit the two parameters α and β to our simulated dataset. The second equation
above is an expansion for small circuit error rates ξ as detailed in appendix A.2.1. Indeed,
in figure 1(blue circles) for small ϵ→ 0 we observe a nearly linear function in the log-log plot
in figure 1 and thus remarkably well recover the theoretical bounds with the polynomial power
approaching b→ 1/2.

Furthermore, comparing figure 1((b), blue circles) and figure 1((a), blue circles) suggest that
the commutator norm has both a significantly smaller absolute value (smaller α) and decreases
at a faster polynomial rate (larger beta) than the uniformity measure. In fact, the commutator
norm is more than two orders of magnitude smaller than the uniformity measure which sug-
gests that even when ρerr is not approximated well by a white noise state it, nevertheless, almost
commutes with the ideal pure state ρid.

We finally consider how the absolute factor α depends on the number of qubits: we per-
form simulations at a small error rate ϵ→ 0 and fit our model function ανβ to extract α(N)
for an increasing number of qubits. The results are plotted in figure A3(e) and suggest that the
prefactor α(N) initially grows slowly but then saturates — this is consistent with a polylogar-
ithmic depth being sufficient to reach anticoncentration [24].

3.3. Variational Hamiltonian Ansatz

Theoretical results guarantee that the SEL ansatz initialised at random parameters approach
for an increasing depth unitary 2-designs thereby reproducing properties of random quantum
circuits [41, 42]. It is thus not surprising that the model introduced in section 2.3 gives a
remarkably good agreement between the SEL ansatz (dots on in figure 1) and genuine random
circuits (fits as continuous lines in figure 1).

Here we consider the Hamiltonian Variational Ansatz (HVA) [43, 44] at more practical
parameter settings: The HVA has the advantage that we can efficiently obtain parameters that
increasingly better (as we increase the ansatz depth) approximate the ground state of a problem
Hamiltonian—we will refer to these as VQE parameters. We also want to compare this circuit
against random circuits and thus also simulate the HVA such that every gate receives a random
parameter as detailed in appendix B.1.

While the VQE parameter settings capture the relevant behaviour in practice as one
approaches a solution, the random parameters are more relevant, e.g. at the early stages of
a VQE parameter optimisation. Furthermore, as the circuit is entirely composed of the Pauli
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terms of the problem Hamiltonian, the dimensionality of its dynamical Lie algebra is entirely
determined by the problem Hamiltonian in contrast to an exponentially growing algebra of the
SEL ansatz [25].

3.4. Heisenberg XXX spin model

We first consider a VQE problem of finding the ground state of the 1-dimensional XXX spin-
chain model. We construct the HVA ansatz from section 3.3 for this problem Hamiltonian as
a sum HXXX =H0 +H1 as

H0 =
N∑
k=1

∆kZk, H1 =
N∑
k=1

[XkXk+1+YkYk+1+ZkZk+1] .

The Pauli operators XX, YY and ZZ determine couplings between nearest neighbour spins
in a 1D chain and we choose them to be of unit strength. Furthermore, Zk are local on-site
interactions |∆k|⩽ 1 that were generated uniformly randomly such that the Hamiltonian has
a non-trivial ground state.

First, we simulate the HVA ansatz for N= 10 qubits with randomly generated circuit para-
meters as |θk|⩽ 2π and plot results for an increasing number of quantum gates in figures 2(a)
and (c). We find a similar behaviour for the eigenvalue uniformity W(ν) as with random SEL
circuits in figure 1(a) and obtain a reasonably good fit for ϵ→ 0 using our model function from
equation (15). The commutator norm in figure 2(c) is again significantly smaller in magnitude
than the uniformity measure and decreases faster, in a higher polynomial order similarly to the
random SEL ansatz in figure 1(b) .

Second, in figures 2(b) and (d) we simulate the ansatz at the VQE parameters that approx-
imate the ground state. Since the ansatz parameters become very small as one approaches an
adiabatic evolution, it is not surprising that the output density matrix is not well-approximated
by a white noise state: the uniformity measure is very large in figure 2(b). The commutator
norm in figure 2(d) again, is significantly smaller thanW(ν) and although it appears to slowly
grow with ν, it appears to decrease for ν→∞. This agrees with observations of [30] that the
circuits need not be random for the commutator to be sufficiently small in practice.

Furthermore, in figures A3(a) and (b) we investigate the dependence on N and find that the
prefactor α grows slowly and appears to saturate for N⩾ 10.

3.5. TFI

In the next example we consider the transverse-field Ising (TFI) modelHTFI =H0 +H1 using
constant on-site interactions hi = 1 and randomly generated coupling strengths |Ji|⩽ 1 as

H0 =−
∑
i

hiXi, H1 =−
∑
i

JiZiZi+1. (16)

We first simulate the HVA ansatz with random variational parameters in figures 3(a) and
(c). While at small error rates ϵ→ 0 figure 3((a), blue) can be fitted well with our polyno-
mial approximation form equation (15), we observe that the eigenvalue uniformity W(ν) in
figure 3((a), blue) decreases in a small polynomial degree.

Indeed, as the HVA ansatz is specific to a particular Hamiltonian, its dynamical Lie algebra
may have a low dimensionality [25] resulting in a limited ability to scramble local noise into

10
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Figure 2. XXX Hamiltonian: same simulations as in figure 1 but using 10-qubit HVA
quantum circuits constructed for the XXX spin problem Hamiltonian. (a), (c) at ran-
domly chosen circuit parameters of the HVA we find the same conclusions as for ran-
dom circuits in figure 1. (b) when the HVA circuit approximates the ground state of the
Hamiltonian (VQE parameters) we find the noise in the circuit is not approximated well
by white noise, i.e. the uniformity measure W(ν) is large and does not decrease as we
increase ν. (d) On the other hand, the commutator norm C(ν) is significantly smaller
than W(ν) confirming that the ideal quantum state approximately commutes with the
noisy one. The ϵ→ 0 simulations were approximated using ϵ= 10−8 (ϵ= 10−7) when
calculating W (C).

white noise; this explains why in figure 3(a) the uniformity measure decreases more slowly,
i.e. in a smaller polynomial order, than random circuits. For this reason, we additionally sim-
ulate in figure A2 the TFI-HVA ansatz but with adding Rz gates in each layer whose generator
is not contained in the problem Hamiltonian. The increased dimensionality of the dynamic
Lie algebra, indeed, improves scrambling as the white noise approximation is clearly better
in figure A2–while note that the increased dimensionality may also lead to exponential ineffi-
ciencies in training the circuit [25].

In stark contrast to the case of the uniformity measure W(ν), we find that the commutator
norm in figure 3((c), blue) decreases substantially for an increasing ν despite the low dimen-
sionality of the Lie algebra. This nicely demonstrates that a small commutator norm is a much
more relaxed condition than white noise as the latter requires that the noise is fully scrambled
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Figure 3. TFI same simulations as in figure 1 but using 10-qubit HVA quantum cir-
cuits constructed for the TFI spin problem Hamiltonian. (a), (c) at randomly chosen
circuit parameters W(ν) decreases more slowly, in smaller polynomial order than ran-
dom circuits—see text and see simulations with added layers of Rz gates in figure A2. (b)
at the VQE parameters white noise is again not a good approximation, i.e. the uniform-
ity measure W(ν) is large and does not decrease as we increase ν. (d) the commutator
norm C(ν) is smaller thanW(ν) in absolute value by an order of magnitude. The ϵ→ 0
simulations were approximated using ϵ= 10−8 (ϵ= 10−7) when calculating W (C).

in the entirety of the exponentially large Hilbert space. Finally, we simulate the TFI circuits at
VQE parameters and find qualitatively the same behaviour as in the case of the XXX problem.

3.6. Quantum Chemistry: LiH

We consider a 6-qubit Lithium Hydride (LiH) Hamiltonian in the Jordan-Wigner encoding as
a linear combination of non-local Pauli strings Pk ∈ {Id,X,Y,Z}⊗N as

HLiH =

rh∑
k=1

hkPk. (17)

We construct the HVA ansatz by splitting this Hamiltonian into two parts withH0 being com-
posed of the diagonal Pauli terms in equation (17) while H1 composed of non-diagonal Pauli
strings.

Such chemical Hamiltonians typically have a very large number of terms with rh ≫ 1 but
a significant fraction only have small weights hk thus the HVA would have a large number
of gates with only very small rotation angles [47]. For these reasons we construct a more
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Figure 4. LiH same simulations as in figure 1 but using 6-qubit HVA quantum circuits
constructed for a LiH molecular Hamiltonian. (a), (c) at randomly chosen circuit para-
meters both W(ν) and C(ν) decrease as expected for random circuits due our random-
ised compiling strategy [45, 46]. (b) at the VQE parameters white noise is an increas-
ingly bad approximation, i.e. the uniformity measure W(ν) increases as we increase
ν. (d) the commutator norm C(ν) is smaller thanW(ν) in absolute value by 2 orders of
magnitude. The ϵ→ 0 simulations were approximated using ϵ= 10−8 (ϵ= 10−7) when
calculating W (C).

efficient circuit whose basic building blocks are constructed using sparse compilation tech-
niques [45, 46]: Each single layer in the HVA ansatz consists of gates that correspond to 100
randomly selected terms of the Hamiltonian with sampling probabilities pk ∝ |hk| proportional
to the Pauli coefficients. This approach has the added benefit that it makes the circuit structure
random as opposed to the fixed structures in sections 3.4 and 3.5.

Results shown in figures 4(a) and (c) agree with our findings from the previous sections:
at randomly chosen circuit parameters the uniformity measure decreases according to
equation (15); the commutator norm similarly decreases but in a higher polynomial order while
its absolute value is smaller by at least an order of magnitude. In contrast, figure 4(b) sug-
gests that the errors are not well approximated by white noise with a large and non-decreasing
W(ν)≈ 0.5. Furthermore, figure 4(b) again confirms that despite white noise is not a good
approximation, the commutator norm is small in absolute value, i.e. ≈ 10−3 in the practically
relevant region. This guarantees a very good performance of the ESD/VD error mitigation
techniques sufficient for nearly all practical purposes.

13
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4. Discussion

Random quantum circuits—instrumental for demonstrating quantum advantage—are known
to scramble local gate noise into global white noise for sufficiently long circuit depths [1]:
general bounds have been proved on the approximation error which decrease as ν−1/2 as we
increase the number ν of gates in the random circuit [24].

In this workwe consider shallow-depth, variational quantum circuits that are typical in prac-
tical applications of near-term quantum computers and answer the question: can variational
quantum circuits scramble local gate noise into global depolarising noise? While the answer
to this question is relevant for the fundamental understanding of noise processes in near-term
quantum devices, it has significant implications in practice: the degree to which local noise
is scrambled into white noise determines the performance of a broad class of error mitiga-
tion techniques that are of key importance to achieving value with near-term devices [21]. Our
approach in this work is to analytically derive key metrics and numerically explore them in cir-
cuits most relevant in practical applications of quantum computers which are, however, beyond
the reach of analytical techniques. In particular, we derive two simple metrics that bound per-
formance guarantees: first, the uniformity measure W characterises the performance of error
mitigation techniques that assume global depolarising (white) noise [26]; second, the norm C
of the commutator between the ideal and noisy quantum states determines the performance of
purification-based error mitigation techniques [22, 23] via bounds of [30].

We perform a comprehensive set of numerical experiments to simulate typical applica-
tions of near-term quantum computers and analyse characteristics of noise based on the afore-
mentioned two metrics. In all experiments in which we randomly initialise parameters of the
variational circuits we semiquantitatively find the same conclusions. First, both metrics, the
eigenvalue uniformity W and the commutator norm C are well described by our polynomial
approximation from equation (15) for small gate error rates. Second, this confirms that, sim-
ilarly to genuine random circuits, local errors get scrambled into global white noise with a
polynomially decreasing approximation error as we increase the number of gates. Third, the
commutator C decreases at a higher polynomial rate and has a significantly, by 1–2 orders of
magnitude, smaller absolute value in the practically relevant region than the eigenvalue uni-
formity W. This confirms that purification based techniques are expected to have a superior
performance compared to error mitigation techniques that, e.g. assume a global depolarising
noise.

We then investigate the practically more relevant case when the ansatz circuits are initial-
ised near the ground state of a problem Hamiltonian; in all cases we semiquantitatively find
the same conclusions. First, the errors do not get scrambled into white noise and the approx-
imation errors are large thus effectively prohibiting or at least significantly limiting the use of
error mitigation techniques that assume global depolarising noise. We identify reasons why
the white noise approximation may fail, i.e. when the dimensionality of the Lie algebra gen-
erated by the problem Hamiltonian is not sufficiently (exponentially) large. In such scenarios
the circuit structure built out of Hamiltonian terms is not computationally universal and can-
not reproduce Haar-random circuits, not even in the limit of infinite-depth. Thus, analysing in
detail the relationship between the Lie algebra generated by the problem Hamiltonian and the
ability of the circuit to scramble local noise motivates future research. Second, the commut-
ator norm is quite small in absolute value, i.e. ≈10−2–10−4 in the practically relevant region;
Since the ansatz circuit prepares the ground state, the square of the commutator norm determ-
ines the performance of ESD/VD thus for all applications we simulated we expect a very good
performance of the ESD/VD approach. Third, we identify strategies to improve scrambling of
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local noise into global white noise as we increase circuit depth: We find that inserting addi-
tional gates to a HVA that is otherwise not contained in the problem Hamiltonian increases the
dimensionality of the dynamic Lie algebra and thus leads to a reduction of both metrics. We
find that applying randomised compiling to these non-random, practical circuits also reduces
both metrics.

While purification-based techniques [22, 23] have been shown to perform well on specific
examples, the present systematic analysis of circuit noise puts these results into perspective and
demonstrates the following: First, the superior performance of the ESD/VD technique is not
necessarily due to randomness in the quantum circuits—albeit, in deep and random circuits its
performance is further improved. Second, while some errormitigation techniques performwell
on quantum circuits well-described by white noise [26, 28, 29], we identify various practical
scenarios where a limited performance is expected.

The present work advances our understanding of the nature of noise in near-term quantum
computers and helps making progress towards achieving value with noisy quantum machines
in practical applications. As such, results of the present work will be instrumental for
identifying design principles that lead to robust, error-tolerant quantum circuits in practical
applications.
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Appendix A. Derivation of equation (6)

Recall that any quantum state can be transformed into a non-negative arrowhead matrix fol-
lowing Statement 1 from [30] as ρ̃= F|ψ̃id⟩⟨ψ̃id|+D+C with

ρ̃=


F C2 C3 . . . Cd
C2 D2

C3 D3
...

. . .
...

Cd . . . Dd

 . (A.1)
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Figure A1. A single layer of the Strong Entangling Layers ansatz for three qubits: it first
applies single-qubit gates Ry, Rz and Ry on all qubits which is then followed by nearest
neighbour CNOT gates.

We obtain the above matrix by applying a suitable unitary transformation ρ̃ := UρU† such
that |ψ̃id⟩ := U|ψid⟩= (1,0, . . .0) while F,Ck,Dk ⩾ 0 with k ∈ {2,3, . . . ,d} with d denoting
the dimension, and all other matrix entries are zero. Given the above arrowhead representation
of a quantum state, one can analytically compute eigenvalues of the density matrix as roots of
the following secular equation [30, 50]

P(x) = x−F+
d∑

k=2

C2
k

(Dk− x)
= 0. (A.2)

With this we compute the deviation between dominant eigenvalue λ1 and the fidelity as

λ1 −F=
d∑

k=2

C2
k

(λ1 −Dk)

⩽max
k

(λ1 −Dk)
−1

d∑
k=2

C2
k

⩽ || [ρid,ρ] ||2 (2λ1 − 1)−1
,

where we have used that Dk ⩽ λ1 and that all summands are non-negative as Dk,Ck,λ1 ⩾ 0,
and in the second inequality we have used the series of matrix norms

∑
k=2C

2
k = ||C||2HS/2=

||[ρid,ρ]||2∞ as established in [30]. We have also introduced the abbreviation ||[ρid,ρ]|| given all
p-norms of the matrix [ρid,ρ] are equivalent up to a constant factor. In particular, any p-norm
of the commutator can be computed as ||[ρid,ρ]||p = 21/p

√
Var[ρ]where we used the quantum

mechanical variance Var[ρ] := ⟨ψid|ρ2|ψid⟩−F 2 as established in [30]. Furthermore, in the
second inequality in equation (A.2) we have used that maxk(λ1 −Dk)

−1 = (λ1 −D2)
−1 ⩽

(λ1 −λ2)
−1 ⩽ (2λ1 − 1)−1 by substituting the general inequality λ2 ⩽ (1−λ1) due to the

fact that tr[ρ] = 1.
By denoting the commutator norm as EC, we can thus finally conclude that λ1 −F ∈ O(EC)

as stated in equation (6).

A.1. Trace distance from white noise states

In this section we evaluate analytically the trace distance of any quantum state ρ from the
corresponding white noise state in equation (2) in terms of a distance between probability
distributions.
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Figure A2. (left) TFI-HVA ansatz: same simulations as in figure 3(a) but with added
parametrised Rz gates after each layer. The additional gates increase the dimensionality
of the dynamic Lie algebra which leads to a faster scrambling of local gate noise into
white noise, e.g. the ϵ→ 0 curve is steeper than in figure 3(a). See appendix B for more
details. (right) the dependence on the number of qubits shows a very similar trend as
without the Rz gates, i.e. compare to figure A3(c).

Statement 1. We can approximate the white noise-state in equation (2) in terms of the dom-
inant eigengvalue λ1 and the dominant eigenvector |ψ1⟩ of the quantum state as

ρwn = λ|ψ1⟩⟨ψ1|+(1−λ1) Id/d+ Ew, (A.3)

up to an approximation error Ew that is bounded via equation (A.6).

Proof. We start by approximating the weight η in equation (2) as η ≈ F≈ λ1 via equation (9)
as well as we approximate the dominant eigenvalue using equation (6) and then collect the
approximation errors as

ρwn = λ|ψid⟩⟨ψid|+(1−λ1) Id/d+ EF+ EC+O
(
ϵ2/ν

)
.

We now use results in [30] for bounding the distance between the ideal and noisy quantum
states as

|||ψid⟩⟨ψid| − |ψ1⟩⟨ψ1|||1 =
√

1−⟨ψid|ψ1⟩= 1−O

(
EC

λ1 −λ2

)
, (A.4)

where EC is the commutator norm from equation (6). We thus establish the approximation

ρwn = λ|ψ1⟩⟨ψ1|+(1−λ1) Id/d+ Ew, (A.5)

where we collect all approximation errors as

|Ew|⩽ |EF|+O
(
ϵ2/ν

)
+O

[
EC

(
1+

1
1−λ2/λ1

)]
. (A.6)
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Statement 2. We define the eigenvalue uniformity as W := 1
2 ||perr − punif||1 via the non-

dominant eigenvalues of the density matrix perr := (λ2,λ3, . . . ,λd)/(1−λ1). This metric is
related to the trace distance from a white noise state (as in equation (4)) as

||ρ− ρwn||1 = (1−λ1)W+ Ew, (A.7)

where the approximation error Ew is stated in statement 1.

Proof. We substitute the approximation of ρwn from equation (A.3) including the error term
Ew and then we use the spectral decomposition of ρ to obtain the trace distance as

||ρ− ρwn||1 = ||
d∑

k=2

λk|ψk⟩⟨ψk| − (1−λ1) Id/d||1 + Ew

=
1
2

d∑
k=2

∣∣∣∣∣λk− 1−λ1

d

∣∣∣∣∣+ Ew

=
1−λ1

2
||perr − punif||1 + Ew.

In the second equation we analytically evaluated the trace distance and thus in the third
equation we rewrite the result in terms of perr which is our ‘error probability’ distribution
as perr := (λ2,λ3, . . . ,λd)/(1−λ1).

Statement 3. Alternatively to statement 2, if a quantum state admits the decomposition in
equation (8) then we can state the trace distance without approximation as

||ρ− ρwn||1 =
(1− η)

2
||pµ − punif||1. (A.8)

This is directly analogous to the uniformity measure of the non-dominant eigenvalues of ρ in
statement 2, however, this expression quantifies the uniformity of the probability distribution
pµ which are eigenvalues of the error density matrix ρerr.

Let us assume the decomposition in equation (8). We find the following result via a direct
calculation as

||ρ− ρwn||1 = (1− η) ||ρerr − Id/d||1

= (1− η) ||
d∑

k=1

µk|ϕk⟩⟨ϕk| − Id/d||1

=
(1− η)

2
||

d∑
k=1

|µk− 1/d|

=
(1− η)

2
||pµ − punif||1

where we have used the spectral resolution of the error density matrix and then analytically
evaluated the trace distance. Given ρerr is a positive-semidefinite matrix with unit trace, its
eigenvalues µk form a probability distribution that we denote as pµ.

A.2. Upper bounding the uniformity measure

In this section we upper bound the uniformity measure based on the number of gates and error
rates in a quantum circuit.
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Statement 4. We adopt the bounds of [24] in equation (11) for the distance between probabil-
ity distributions measured in the standard basis 1

2 ||p̃noisy − p̃wn||1 and assume the same bounds
approximately apply to any measurement basis. Then, it follows that the uniformity measure
from statement 2 is approximately bounded by the same bounds as

W= O

(
e−ξξ/

√
ν

1− e−ξ

)
+O

(
Ew

1−λ1

)
,

where the approximation error Ew is stated in statement 1.

Proof. Let us consider measurements performed in the basis as the eigenvectors of the density
matrix which yield probabilities as the eigenvalues as

pnoisy = ⟨ψk|ρ|ψk⟩= (λ1,λ2 . . . ,λd) .

Measuring the white noise state in the same basis yields the following approximation of the
probabilities using the error term from equation (A.3) as

pwn := ⟨ψk|ρwn|ψk⟩=
(
λ1,

1−λ1

d
. . . ,

1−λ1

d

)
+ Ew. (A.9)

The distance of the above two measurement probability distributions is then

1
2
||pnoisy − pwn||1 = (1−λ1)W+ Ew,

where W= 1
2 ||perr − punif||1 is our eigenvalue uniformity from statement 2. Under the

assumption that the upper bound on the measurement probabilities 1
2 ||p̃noisy − p̃wn||1 from

equation (11) approximately holds for any measurement basis we can bound the eigenvalue
uniformity as

W=
1

2(1−λ1)
||pnoisy − pwn||1 +

Ew
1−λ1

⩽ O

(
F

1−λ1
ϵ
√
ν

)
+

Ew
1−λ1

= O

(
e−ξξ/

√
ν

1− e−ξ

)
+O

(
Ew

1−λ1

)
.

In the last equation we introduced the approximation of F from equation (9) as well as the
approximate dominant eigenvalue from equation (6).

A.2.1. Expanding the upper bound. We now expand the upper bound from statement 4 for
small ξ a.s. More specifically, we consider the parametrised fit function from equation (15)
and substitute the Taylor expansion e−ξ = 1− ξ + ξ2 + . . . as

α
e−ξξ/

√
ν
β

1− e−ξ
= α

e−ξ

νβ
ξ

ξ − ξ2/2+ . . .

= α
e−ξ

νβ
1

1− ξ/2+ . . .

= α
1
νβ

1− ξ + . . .

1− ξ/2+ . . .
=

α

νβ
+O(ξ) .
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Figure A3. Fit parameters α from equation (15) for an increasing number of qubits: The
circuits in figures 1–4 at ϵ→ 0 were simulated for an increasing number of qubits and
the curve from equation (15) was fitted.

A.3. Commutator norm

Lemma 1. The commutators norms are approximately related as

|| [ρid,ρ] ||1
1−λ1

= || [ρid,ρerr] ||1 + Eq, (A.10)

up to the approximation error Eq.

Proof. Using the decomposition from equation (8) we obtain

|| [ρid,ρ] ||1 = || [ρid,ηρid] + [ρid,(1− η)ρerr] ||1 = (1− η) || [ρid,ρerr] ||1 (A.11)

We can approximate η = λ1 +O(EF)+O(EC) via equations (6) and (9) obtain that

|| [ρid,ρ] ||1
1−λ1

= || [ρid,ρerr] ||1 + Eq. (A.12)

The error term can be obtained via the triangle inequality as

|Eq|⩽
[
O (EFEC)+O

(
E2
C

)]
/(1−λ1) .

Appendix B. Further details of numerical simulations

B.1. The SEL and HVA ansätze

The circuit structure of the SEL ansatz used in figure 1 is illustrated in figure A1: it consists
of alternating layers of parametrised single-qubit rotations and a ladder of nearest-neighbour
CNOT gates.
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Let us now define the HVA ansatz. In particular, recall that the HVA ansatz is a discretisation
of the adiabatic evolution

U
(
β,γ

)
=

ν∏
k=1

e−iγkH1e−iβkH0 ,

which is applied to the initial state as the ground state of the trivial Hamiltonian H0.
The individual evolutions are then trotterised such that a piece of time evolution e−iγkH1 is

broken up into products of evolution operators under the individual Hamiltonian terms as

e−iγkH1 →
rh∏
l=1

e−iγkhlPl .

Abovewe utilised the decomposition of the non-trivial part of theHamiltonianH1 =
∑rh

l=1 hlPl
into Pauli strings Pl ∈ {Id,X,Y,Z}⊗N.

We set the circuit parameter as γk = k/ν and βk = 1− k/ν, such that the circuit approxim-
ates a discretised adiabatic evolution between H0 and H1 – and we will refer to these as VQE
parameters.

In the case of random parametrisation of the HVA ansatz, every gate implementing the
evolution under a single Pauli string e−iγkhlPl is assigned a random parameter as e−iθqPl with
|θq|⩽ 2π.

B.2. Inserting additional gates to the TFI ansatz

In figure A2 we repeated the same simulation as in figure 3(a), i.e. using a HVA ansatz for
the TFI spin model at random circuit parameters, but we appended to each layer a series of
parametrised Rz gates on each qubit. This guarantees that the dynamic Lie algebra generated
by the Pauli terms of the TFI problem in equation (16) is expanded by the inclusion of Pauli
Z operators. Increasing the circuit depth of the HVA ansatz thus leads to a faster increase of
the dimensionality of the Lie algebra which demonstrably leads to a faster scrambling of local
noise into global white noise, e.g. steeper slope of the ϵ→ 0 fit in figure A2 than in figure 3.

B.3. Scaling with the number of qubits

In figure A3 we simulate the same circuits as in figures 1–4 at error rates ϵ→ 0 and plot the
fit parameter α—which is the prefactor in equation (15)—for an increasing number of qubits.
The results appear to confirm an asymptotically non-increasing trend confirming theoretical
expectations of [24] for random circuits whereby α is constant bounded in terms of the number
of qubits.
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