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Abstract— The increasing penetration of electric vehicles 

(EVs) in the power system has raised concerns regarding the 

management of charging sessions to prevent systems from 

overloading. This paper proposes a distributed control method 

of EV clusters that enables controllers to make decisions 

independently, using only commonly broadcasted signals. 

Additionally, the method also includes a user-based power 

scheduling mechanism that prioritizes EVs based on their 

respective energy needs and time availability. A power-

constrained system is considered for the case studies, where the 

system is only capable of charging one EV with maximum 

power. Simulation results demonstrate that the system 

effectively accommodates and schedules multiple EVs to charge 

simultaneously in a restricted environment without 

compromising user satisfaction. In instances of communication 

loss, the system demonstrates the capability to sustain the 

charging process through resource reallocation. The method is 

characterized by its distributed and autonomous nature, which 

ensures both robustness and effective operation. 

Keywords— electric vehicles, distributed charging, power 

management 

I. INTRODUCTION 

Electric vehicles (EVs) have gained much attention in 
recent years due to the urgent need to reduce carbon emissions 
from the transportation sector [1]. However, high EV 
penetration in the power system may cause overloading 
phenomena that can endanger the security of the system [2], 
[3]. Therefore, suitable coordination control approaches are 
needed to ensure the satisfaction of users while keeping the 
aggregated charging power within the system capability [4].  

Compared to the commonly used centralized control [5], 

distributed charging control is gaining more attention in 

recent years since it localizes the decision-making process 

into each charging entity. Hence, system robustness and 

security can be improved [6], while user information privacy 

can also be protected [7]. On the other hand, distributed 

charging control mechanisms also bring some drawbacks due 

to the limited information being shared. Since each local 

entity only receives the common signal without the 

information of other local entities, the charging process 

usually suffers from reduced fairness and sub-optimal 

conditions in terms of charging power levels. Wang et al. [8] 

propose a distributed scheduling strategy for EV clusters, 

where each cluster only receives a common signal from 

distribution system operator (DSO). However, the decision is 

still made in a centralized manner inside each cluster. Yan et 

al. [9] focus on distribution system with multiple EV clusters 

and develop a distributed coordination method where each 

cluster only exchanges the information of aggregated 

charging power. However, the method proposed assumes that 

the aggregated charging power is always within the cluster 

limit, and all connecting EVs can receive the requested 

power, which is uncommon for EV clusters. Other research 

works concentrate on limited EV charging cluster including 

a semi-distributed charging approach introduced in [10], 

where the authors eliminate the existence of the central 

control entity by enabling one local controller to make 

charging decisions for all EVs, whereas the power allocation 

process is still settled in a centralized manner. An 

autonomously distributed control approach for EV parking 

lots management is described in [11], [12], where each 

charger controller operates independently with the common 

signal, yet only one plug of each charger controller can be 

activated, then forcing the rest EVs to cease charging. In 

practice, it is challenging for some EVs to restart the charging 

process once being interrupted. Therefore, reliable charging 

service cannot be guaranteed for them.  

The current research work on distributed charging control 

methods presents different limitations: some exhibit a certain 

degree of centralization in the decision-making process. 

Others either assume a sufficient charging cluster limit or fail 

to provide reliable charging power to users under limited 

scenarios, which results in less applicability in terms of 

system robustness and user satisfaction in realistic charging 

cases. Furthermore, practical EV batteries commonly 

experience ongoing charging power limitations due to high 

state of charge (SOC). However, the current body of research 

rarely accounts for this aspect. To tackle the above concerns, 

this paper proposes a fully distributed charging control 

strategy that allows power to be scheduled among EVs 

according to user-based priorities inside a cluster. Charging 

power limitation is also included as part of the smart charging 

algorithm based on experimentally tested results. In this case, 

the system is aligned with real-world charging situations that 

can be applied to public charging places. 

This paper is organized as follows: The charging system 

functionality, user-based scheduling logics and EV charging 

power limitation nature are explained in Section II. The 



results and EV behaviors analysis of case studies are 

presented in Section III, and Section IV concludes the paper. 

II. METHODOLOGY 

A. Distributed Charging System 

Fig. 1 shows the developed distributed charging system. It 
allows four EVs to charge simultaneously with two charger 
controllers. Each controller contains two plugs, which enable 
two EVs to connect separately. There is a virtual aggregator 
(VA) assigned to every plug, acting as the local intelligence 
that determines the charging power for the corresponding EV.  

The system point of common coupling (PCC) is the 
connection point between the charging system and external 
grid. Measurement at PCC will be sent out as common signals, 
including the reference power level PRef and the total charging 
power Pcharging of the system. In this paper, the reference power 
level is set as the fuse limit of the PCC transformer, implying 
the available charging power for the whole system. User 
inputs indicate the charging need specified by EV owners. The 
external input from PCC measurements and users is all 
transferred to a cloud aggregator (CA) that broadcasts the 
corresponding information to individual controllers. 
Consequently, the VA determines the specific charging power 
using the received information. 

CA

PCC

VA1 VA2 VA3 VA4

PEV1 PEV2 PEV3 PEV4

Charger controller 1 Charger controller 2

PCharging

PCharging

PRef

PCharging

PRef

CH 1

User inputs

Users

PCharging

PRef

User 
inputs

Legend

Communication

Power

CH 2

User inputs

 

Fig. 1 The proposed distributed charging system – CA distributes the 

common information to controllers, and charger controllers make decisions 

individually. 

In this system, CA, as the central operator, only collects 
and delivers the common information without any decision-
making process. Each controller only receives the user data 
related to itself for power determination, while the information 
of other charger controllers is not provided. Therefore, this 
system is working in a distributed manner where charging 
power is settled locally. In situations where communication 
between the CA and charger controllers fails, unaffected 
controllers continue to operate normally. This method 
improves the robustness of the system by ensuring that the 
malfunction of one charger controller does not impact the 
operation of the others. 

B. User-based Power Scheduling and Priorities  

Due to the PCC fuse limit, it is challenging to allow four 
EVs to charge at the maximum level. Therefore, power 
allocation is essential to ensure that the collective charging 
power does not trip the whole system. Additionally, the 
charging need varies among different users, thus charging all 
connected EVs at equal power level cannot guarantee fairness 
in the cluster. Hence, the available charging power needs to be 

allocated within the system according to the charging 
priorities based on user information. In this system, each 
charger controller enables power scheduling between the two 
connected EVs.  

Fig. 2 depicts the power scheduling mechanism within 
charger controller 1 as an illustration, while charger controller 
2 employs the same pattern. Before each individual VA, the 
charger controller calculates the system power error and feeds 
the error into a PI controller to reserve the amount of power 
PCH for connected EVs. Then the reserved power is scheduled 
to each of the two EVs according to their priority factor β.  
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Fig. 2 Power scheduling mechanism for charger controller 1 – priority 

calculation and EV power signal are calculated inside each VA. 

Eq. (1) shows how priority is calculated. The user input 
consists of the requested energy Er and charging time tr 
specified by the users. Ec and tc denote the charged energy and 
corresponding time. Therefore, priorities also represent the 
average power each EV needs to achieve the energy goal. In 
this study, energy and charging time are specified in the units 
of kWh and seconds, respectively. The priority is dynamically 
adjusted as the charging session runs.  

� =  
�� − ��

�� − ��

 (1) 

Priority factor indicates the weighted priority between the 
two EVs inside the same charger controller. Eq. (2) presents 
the determination of the priority factor, where i and j indicate 
the plug number, and k indicates the charger controller 
number, in this paper i, j, k ∈[1,2] ∩ Z. 

��,� =  
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(2) 

Since priority factor varies while charging, the scheduled 
power also constantly changes. Finally, a minimum charging 
power lock logic is implemented in the VA to guarantee a 
minimum charging power for each EV in case the assigned 
power is too low to initiate the charging process. 

C. Charging Power Limitation 

This system also considers the charging power limitation 
of the EVs. It is common for EVs to reduce the charging power 
when SOC is high enough, to protect the battery [13], [14]. To 
truly reveal the functionality of the distributed charging 
method, an experimental test was carried out at Technical 
University of Denmark Risø campus, for capturing the 
realistic charging curve of an EV. The test took place on 25th 
May 2023 with the ambient temperature at around 15 °C. 

Fig. 3 shows the charging curve of a Renault Zoe with 42-
kWh battery capacity. The starting SOC is 7%, and the 
charging power reaches the maximum saturation immediately. 
Hence it can be assumed that the charging power is also kept 
at the highest level with a lower SOC. The maximum observed 
charging power remains at around 21 kW even though the 
rated power is 22 kW. More importantly, the charging power 
starts to significantly decrease when SOC is above 83%, and 



eventually reaches 0 kW when the battery is full. This 
characteristic is also accounted for in the case study. 

Power saturates at around 21 kW

Power starts to drop from 83% SOC

 

Fig. 3 Charging curve of a Renault Zoe with a 42-kWh battery. 

D. Case Studies 

Two case studies are conducted in MATLAB/Simulink 
environment to investigate the distributed charging method. 
The first case study lasts for one hour, with three Renault Zoes 
from above, the information is presented in table INote that 
EV1 and EV2 are both connected to the first charger 
controller, while EV3 is separately connected to another one. 
The fourth VA stays idle for simplicity.  

The PCC fuse limit is input as power reference, which is 
set at 22 kW, thus the system can only afford one EV to charge 
with maximum power. Likewise, each charger controller is 
also limited with a maximum power of 22 kW. Therefore, a 
power scheduling strategy is needed to accommodate multiple 
EVs both in each charger controller and the system. 

TABLE I.  EV INFORMATION 

 
Attach 
time (s) 

Detach 
time (s) 

Desired 
energy 
(kWh) 

Max/min 
power 
(kW) 

VA 
Initial 
SOC 

EV1 400 3600 8 22/4.14 VA1 80% 

EV2 200 2500 7 22/4.14 VA2 20% 

EV3 1200 3600 5 22/4.14 VA3 70% 

 

The second case study, on the other hand, investigates the 
robustness of the system by adding a communication failure 

scenario to charger controller 1 at 1800 seconds，shown in 

Fig. 4. As charger controllers are constantly receiving Pcharging 

and PRef from CA for making scheduling decisions, the loss of 
communication affects its charging behaviors and the overall 
charging resource, thus bringing an impact to the decision-
making process of each participant. 
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Fig. 4 System communication failure – charger controller 1 loses input from 
cloud aggregator, while charger controller 2 operates normally. 

III. RESULTS 

A. Case Study 1 

Fig. 5 shows the simulated charging power, priorities and 
priority factors of the three EVs, where the EVs are connected 
consecutively. EV2 is the one firstly connected, and the power 
reaches observed maximum level according to the charging 
curve in Fig. 3. Afterwards, EV2 starts to reduce the power 
from 400 seconds, thereby creating the space for the charging 
of EV1. The difference in charging power allocation between 
EV1 and EV2 highlights the power scheduling capability of 
the charger controller via user-based priorities, which is also 
reflected in Fig. 5 (b), (c).  

The charger controller dynamically adjusts the priorities 
during the charging process, leading to a gradual increase in 
the priority factor of EV1. Consequently, from 2000 seconds 
onwards, EV1 surpasses EV2 in terms of priority, resulting in 
a higher charging power allocation for EV1. 

 

EV3 gains minimum charging power

EV1 , EV2 vary power 
by scheduling

EV1 power 
reduces due to 

high SOC

EV3 increases 
power

EV2 disconnected 
by the user

EV1 and EV3 
complete 

charging goal 
prior to user 
expectation

EV1, EV2 reduce power due to 
demand spike

 

(a) Charging power  
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(b) Priorities 

 

(c) Priority factors 

Fig. 5 Simulated performance of EVs - case study 1. (a) shows the charging power levels of EVs; (b) shows the priority of EVs; (c) shows the normalized 

priority of EVs

From 1200 seconds, EV3 commences its charging 
process when there is no available power in the system, 
hence it charges at minimum charging power as guaranteed. 
However, the charging power from EV3 induces a demand 
spike in the system, prompting a negative power error. The 
error indicates all EVs to reduce the power, in this case EV1 
and EV2 take the responsibility. 

EV2 is plugged out by the user at 2500 seconds, which 
makes the priority factor of EV1 to be 1 pu. Therefore, EV1 
increases the power to full reserved power PCH1. Notably, 
from 2700 seconds onward, the charging power of EV1 
experiences limitations due to its high SOC, leading to a 
reduction in power. This reduction contributes to a positive 
power error within the system, subsequently prompting an 
increase in the reserved power PCH2 of charger controller 2. 
As a result, EV3 power starts to rise accordingly.  

Finally, after EV1 disconnects, charger controller 2 
becomes the sole recipient of the system power reference, 
enabling EV3 to fully utilize it. Consequently, EV3 
experiences an immediate surge in charging power, 
reaching its maximum level. 

It is noteworthy to mention that both EV1 and EV3 cease 
the charging operations before reaching the designated 
plug-out time. This discontinuation is attributed to the 
fulfillment of the desired energy levels, as visually depicted 
in Fig. 6. 

Fig. 6 demonstrates the charged energy of each EV 
throughout the simulation, the dash lines represent the 
requested energy that is initially input by each user. EV1 
and EV3 achieve a 100% fulfillment of energy request, 
while EV2 reaches a fulfillment rate of 97.08%. The reason 
is that EV2 is competing with other two EVs during the 
charging session because the low fuse limit can only afford 
one EV to charge at the maximum level. Besides, as the 
charging progresses, EV1 overtakes EV2 regarding the 
priority, and forces EV2 to reduce the charging power. 
Therefore, the distributed charging system manages to 
satisfy all participants with significantly limited resources.  

 

Fig. 6 Simulated charged energy of EVs – case study 1. Energy requests 
are fulfilled for 3 EVs. 
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B. Case Study 2 

The charging power levels of EVs in case study 2 are 
presented in Fig. 7, where charger controller 1 loses 
communication with CA from 1800 seconds. In such case, 

power scheduling is no longer offered to the connecting €
ones (EV1 and EV2) due to the absence of Pcharging and PRef 

in the decision-making process. Instead, the minimum 
charging power is provided for the continuation of charging 
process. As a result, the power drop from the two EVs 
creates a gap between Pcharging and PRef, which is captured by 
the neighboring charger controller. Hence, EV3 starts 
increasing its charging level correspondingly. 

It's important to highlight that EV3 halts its charging 
procedure at 2861 seconds, preceding the termination 
observed in case study 1. This is caused by the increased 
charging power of EV3 as the available power is shifted 
from charger controller 1 to charger controller 2 when 
facing communication failure. This feature is beneficial for 
the overall charging process as the early completion of EV3 
allows the impacted EVs to be moved to undisturbed 
charger controllers in practice. 

Fig. 8 and table II shows the charged energy and energy 
fulfillment rate of the three EVs. Since only minimum 

charging power is offered to EV1 and EV2, the energy 
variation rate significantly reduces from 1800 seconds, 
resulting in a limited scenario for user satisfaction. 
However, table II presents that the energy fulfillment rate of 
EV1 and EV2 still reaches 71.76% and 84.82% even in a 
faulty situation. The system provides an additional 25.89% 
and 11.52% energy fulfillment rate for EV1 and EV2 after 
the loss of communication, and accordingly expedites the 
charging process of EV3. The model demonstrates its ability 
to counteract occurring errors to satisfy the charging needs. 
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Fig. 7 Simulated charged energy of EVs – case study 2. EV1 and EV2 
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Fig. 8 Simulated performance of EVs - case study 2. EV1 and EV2 are provided with minimum charging power when charger controller 1 loses communication 
with CA, and the power gap is captured and filled by EV3, resulting in an early completion of charging.

TABLE II.  EV ENGERGY FULFILLMENT RATE – CASE STUDY 2 

 Energy fulfillment rate at 
1800 s 

Energy fulfillment rate in 
the end 

EV1 45.87% 71.76% 

EV2 73.30% 84.82% 

EV3 13.71% 100% 

 

C. Overall assessment 

The system is working in a fully distributed manner, 
where each charger controller only has the information of 
its own connected EVs. The behaviors of EVs present the 
characteristics of the system: 

1) User-based power scheduling: as the 
charging progresses, the charging power varies 
based on priority factors. 

2) Minimum power guarantee: all EVs get at 
least minimum charging power in all cases. 

3) System protection: when facing a demand 
spike that exceeds the fuse limit, all EVs reduce 
the charging power if possible. 

4) System robustness: the charger controller is 
able to keep the charging process when 
encountering communication failure and to 
shift the resource to the unaffected ones.  



Overall, the system is more resilient compared to 
centralized control, as no information is communicated 
among charger controllers. The distribution of decision-
making process is capable of scheduling charging power 
and ensuring fairness among users, while keeping the 
system within the limit. 

IV. CONCLUSION 

This paper introduces a distributed charging method that 
allows charger controllers to independently make decisions 
without relying on central intelligence instructions. The 
method incorporates user-based power scheduling 
functionality to prioritize EVs with higher energy needs, 
while also accounting for EV charging power limitations 
due to high SOC. To validate the approach, a constrained 
system with three connected EVs is investigated in two case 
studies. The results demonstrate that the method ensures 
user satisfaction even under significant restrictions. When 
coming across loss of communication, the two affected EVs 
still achieve the energy fulfillment rate of 71.76% and 
84.82%. By implementing a distributed control architecture, 
the method enhances system robustness when charger 
controllers face loss of communication, while the user-
based scheduling of charging processes adds smartness. 
This showcases the practicality and applicability of the 
approach in real-life scenarios. Experimental testing of the 
system will be conducted in future work. 
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