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A B S T R A C T

Microphones that utilize externally biased capacitive transduction (condenser microphones) are typically being modeled in lumped parameter networks where the 
mechanical, acoustical, and electrical elements are all represented as passive electronic circuit components. Those models have been shown to be insufficient to 
fully describe crucial aspects of this type of transducer, such as the pull-in phenomenon in which, after a certain distance and for a certain bias voltage, the moving 
electrode, typically a flexible membrane, attaches itself to the stationary. In this paper, we account for several non-linearities present in an extended simplified model 
of such a transducer in the time domain and identify the different factors related to its nonlinear response. We derive a time-domain non-linear non-dimensional 
system of equations for the coupled lumped model where we also take into account parasitic capacitances that are usually present and can significantly affect the 
overall electroacoustic performance as well as the fringing fields due to the nonhomogeneous electric field between the electrodes and nonlinearities related to 
damping due to the thin-film of air between the electrodes. We present the nondimensionalization method we used that allows for the identification of a novel 
set of nondimensional parameters that characterize the non-linear behavior of our system in the time-domain. A designer can use these parameters to optimize for 
linearity in the voltage response of the transducer. We post-process our time-domain solution to calculate the response to the fundamental excitation frequency 
and discuss the harmonic distortion. It is shown that coupling the electrical nonlinearities to the mechanical can significantly contribute to the nonlinear voltage 
response of the transducer. Our model agrees well with nonlinear measurements of analog microelectromechanical (MEMS) microphones for a set of physical values 
of the nondimensional parameters.
1. Introduction

Microphones that incorporate externally biased microelectrome-

chanical (MEMS) sensors, commonly known as MEMS microphones 
(MEMSM), are complex System-in-Package (SiP) devices that consist of 
a transduction element, the sensor, along with dedicated circuitry re-

sponsible for charging the electrodes of the transducer that also afford 
signal conditioning and read-out capability mounted on a printed circuit 
board (PCB) that is covered by a metallic lid attached to it. Tradition-

ally, such a complex system is modeled using analog mechanoelectroa-

coustic networks where the total behavior is described as the interplay 
of all the related physical domains, i.e., the mechanical, electrical, and 
acoustical [22]. Depending on the analogy, each domain consists of the 
relevant elements represented by passive electrical components, such 
as resistors, capacitors, and inductors. The energy transfer from one do-

main to another is modeled by transformers or gyrators with adequate 
turn ratios.

* Corresponding author.

The type of modeling described in the preceding paragraph can be 
very efficient in calculating the total response of the system for a limited 
frequency range and can provide a systems-level physical overview of 
the device operation. These models can also be used in combination 
with other modeling techniques where the response of the transducer 
is simulated by such a network and other parts of the system, such 
as gaskets and vents that form the acoustical path to the device, are 
simulated in more elaborate ones, utilizing methods such as the finite 
element (FEM) and boundary element (BEM).

Capacitive Micromachined Ultrasonic Transducers (CMUTs) are an-

other type of capacitive transducers frequently mentioned in the liter-

ature [21,18,15]. While CMUTs may share some similarities in design 
with typical MEMS microphones, they operate at significantly higher 
frequencies and have much smaller dimensions. CMUTs and capacitive 
microphones exhibit distinct specifications in terms of sensitivity, fre-

quency and dynamic range.
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Fig. 1. Analog electromechanical network of a parallel plate capacitive transducer. The circle with the adjacent arrows represents the point mass of the moving 
electrode. The parasitic capacitance (𝐶p) is placed in parallel to the capacitance formed by the electrodes of the transducer (𝐶m). The DC source (𝑉bias) and the 
resistor in series to the latter (𝑅 ) charge both parallel capacitances.
bias

In this paper, we derive a time domain lumped model of capacitive 
microphones that also takes into account the charging and discharg-

ing of electrodes when biased with a DC voltage source and a resistor. 
The use of such a basic charging network aims for a conceptual un-

derstanding of the charging operation in relation to the electroacoustic 
performance of the device. Previous research on a similar time-domain 
model [10] indicates that such models can describe additional aspects 
and phenomena that cannot be modeled with network models. A phe-

nomenon that is being neglected in the circuit models is that of the 
pull-in instability [13], namely a physical phenomenon by which when 
a certain voltage is applied at a certain distance of the electrodes the 
electrostatic forces become so large that the elastic forces in the sys-

tem are no longer capable of keeping the two electrodes apart as they 
rapidly collapse into one another. We expand upon such a model by also 
including parasitic capacitances usually present in such devices that are 
a combination of regions in the sensor element that do not respond to 
acoustic pressure and can also include the input capacitance of the fol-

lowing amplification stage [17,16]. We also take into account the thin 
film of air between the electrodes to the device’s operation, the fringing 
fields due to the nonhomogeneous electric field between the electrodes, 
and the amount and number of perforations. We do not use FEM and 
BEM methods as these methods are more useful for specific geometries 
and materials which are not the subject of this work. The assumptions 
made in this paper are the ones made in most lumped models of con-

denser microphones.

We finally go a step further by performing a technique called nondi-

mensionalization that is used in modeling MEMS devices which is a 
process by which we transform a system of equations into one that 
has normalized nondimensional variables [9,12]. With it, the various 
variable quantities of the system are combined and related to its ba-

sic elements. This allows us to identify the parameters that relate to 
the different sources of nonlinearity, i.e. sources that are directly re-

lated to the nonlinear voltage response of the transducer, and enables 
the characterization of the system in terms of these parameters that de-

scribe sets of systems with relatively equal behavior. Computationally, 
the non-dimensional systems can be much more well-posed and less 
prone to divergence due to numerical errors. Finally, and most impor-

tantly, nondimensionalization reduces the parameter space allowing for 
a more concise representation of the system.

2. The nondimensional dynamical system

Here we present the nondimensionalization method we used that al-

lows for the identification of a novel set of nondimensional parameters. 
We use the method to nondimensionalize the equation that describes 
the forces acting on the moving electrode and the equation that de-
2

scribes the charging. This allows us to identify a novel set of parameters 
that relate to the nonlinear response of the system. The main factors 
identified are 𝜆 which was related to the nonlinearities due to the soft-

ening of the elastic force and couples the charging to the mechanical 
behavior of the moving electrode, the nondimensional parasitic capaci-

tance, 𝑐p, which was related to the uneven distribution of charge to the 
electrodes and the parasitics, the impedance factor, 𝜏0, which acts as 
damping to the fluctuation of the total charge stored in the transducer, 
and 𝜎 which acts as a factor to the nonlinear thin-film damping. Finally, 
the fringing field factor 𝜒 , and the perforated area ratio 𝐴 were found 
to contribute to the nonlinear response.

Making a number of assumptions with regard to the operation of a 
miniature microphone, the authors in [10] make a comparison between 
a dynamic model of the transducer to an equivalent circuit model. 
Doing a frequency domain analysis on both representations and by com-

parison they identify the relationship between the physical parameters 
in them. The mechanical compliance of the diaphragm is identified as 
being the reverse of its lumped stiffness. The total damping factor is 
identified as being the sum of the radiation resistance and the resis-

tances that correspond to the viscous losses in the air gap between the 
electrodes and backplate holes. Finally, the equivalent mass is identified 
as being the sum of air radiation and diaphragm mass. The air compli-

ance between the two electrodes is considered as being negligible due to 
the highly perforated backplate. In their analysis they observed that the 
pull-in instability is not represented in the case of the equivalent circuit. 
Extending upon such a model we derive the time-domain nondimen-

sional ordinary differential system of equations that completely describe 
its response to an impinging pressure force to the moving electrode.

As shown in Fig. 1 the electrodes are charged using a resistor (𝑅bias) 
in series to the electrodes and the DC bias voltage (𝑉bias). The parasitic 
capacitance which includes the capacitance formed by the conductive 
elements in an actual transducer as well as the input capacitance of the 
following amplification stage (𝐶p) is placed in parallel to the electrodes. 
The moving electrode that has a mass 𝑚 and area 𝐴 is at a distance 𝑠
from the stationary of the same area and together they form the capac-

itance 𝐶m. The damping in the displacement of the moving electrode 
is assumed to be mostly related to the energy dissipation due to the 
air movement between the electrodes and through the backplate holes 
with viscous damping coefficient 𝜂2 and due to radiation of air with 
viscous damping coefficient 𝜂1. The elastic forces acting on the mov-

ing electrode are due to the air in the backchamber of the transducer 
with mechanical stiffness 𝑘2 and its mechanical support with mechani-

cal stiffness 𝑘1.

Taking into account all the forces acting on the moving electrode, 
namely the acoustic force, the electrostatic force, the viscous force, the 
elastic force, and the charging of the electrodes, as well as capacitances 
that do not respond to acoustic pressure [17] (which from now on we 

will be referring to as parasitic), we built a nonlinear nondimensional 
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Table 1

Dimensional Quantities.

Symbol Expression Unit (S.I.) Definition

𝑡′ - s time

𝑚 - Kg mass of moving electrode

𝑔 - m/s2 gravitational acceleration

𝑘 - N/m linear stiffness due to the mechanical support of the moving electrode

𝑠 - m instantaneous distance between the electrodes

𝑠0 - m initial distance between the electrodes

𝑠e - m distance between the electrodes at equilibrium

𝑆 - m2 total electrode area

𝑉 - V instantaneous voltage across the moving and the stationary electrode

𝑉bias - V bias DC voltage

𝑓 - 1/s frequency of impinging pressure

𝜔 2 ⋅ 𝜋 ⋅ 𝑓 1/s angular frequency of impinging pressure force

𝜔n

√
𝑘∕𝑚 1/s natural frequency of undamped mass-spring oscillator

𝜌air - kg/m3 density of medium (air)

𝑅 - m radius of the moving electrode

𝑡bp - m thickness of stationary electrode

𝑐snd - m/s speed of sound

𝜇 - kg/m s viscosity of medium (air)

𝑉bc - m3 volume of air in the backchamber

𝜀 - F/m electrical permittivity of air

𝐹p - N pressure force acting on the moving electrode

𝐿bc 𝑉bc∕𝑆 m length of air in the backchamber

𝐶0 𝜀 ⋅𝑆∕𝑠0 F initial capacitance formed by the electrodes without taking into account 
the perforations

𝑄0 𝑉bias ⋅ (𝜒0 ⋅ (1 −𝐴) ⋅𝐶0 +𝐶p) C initial charge stored on both the electrodes taking into account the 
perforations, the parasitics, and the fringing fields
system of ordinary equations that describes the dynamical operation 
of the biased mass-spring system. The equations are presented in the 
most economical and physically meaningful way. Detailed derivation 
and discussion will be given in subsequent sections.

The nondimensional force equation:

𝑤̈ = 𝜌− 2 ⋅
(
𝜎 ⋅ 𝜁film ⋅

1
𝑤3

)
⋅ 𝑤̇+ 𝜅bc ⋅ (𝑤e −𝑤) + (1 −𝑤)

+ 𝜆 ⋅ 𝑣2 ⋅
𝑑𝑐m

𝑑𝑤
,

(1)

The nondimensional current equation:

𝜏 ⋅ 𝑞̇ = −(𝑣− 1) (2)

The nondimensional voltage equation:

𝑣 = 𝑞 ⋅𝑤 ⋅
𝜒0 ⋅ (1 −𝐴) + 𝑐p

𝜒 ⋅ (1 −𝐴) + 𝑐p ⋅𝑤
(3)

The nondimensional impedance factor:

𝜏 = 𝜏0 ⋅ (𝜒0 ⋅ (1 −𝐴) + 𝑐p) (4)

In the preceding equations, the following substitutions have been 
made,

𝜔n =
√

𝑘

𝑚
, 𝑡 = 𝜔n ⋅ 𝑡

′, 𝑤 = 𝑠

𝑠0
, 𝜆 =

(
1
2
⋅
𝜀 ⋅𝑆 ⋅ 𝑉 2

bias

𝑠20

)
⋅
(

1
𝑘 ⋅ 𝑠0

)
,

Ω= 𝜔

𝜔n

, 𝜁film = 3 ⋅ 𝜇 ⋅𝑆2

4 ⋅ 𝜋 ⋅
√
𝑚 ⋅ 𝑘 ⋅ 𝑠30

, 𝐺(𝐴) = 𝐴

2
− 𝐴2

8
− ln𝐴

4
− 3

8
,

𝜃 = 8 ⋅𝐺(𝐴)
𝑁

, 𝜎 = 𝜃

1 + 𝜃
, 𝐿bc =

𝑉bc

𝑆
, 𝜅bc =

𝜌air ⋅ 𝑐
2
air

⋅ 𝑆

𝑘 ⋅𝐿bc

,

𝜀 ⋅𝑆 𝐶m
𝐹p
3

𝐶0 =
𝑠0

, 𝑐m =
𝐶0

, 𝜌 =
𝑘 ⋅ 𝑠0

,

𝑣 = 𝑉

𝑉bias

, 𝑄0 = 𝑉bias ⋅
(
𝜒0 ⋅ (1 −𝐴) ⋅𝐶0 +𝐶p

)
, 𝑞 = 𝑄

𝑄0
,

𝑐p =
𝐶p

𝐶0
, 𝜏0 = 𝜔n ⋅𝑅bias ⋅𝐶0,

where 𝑘 (N/m) is the mechanical stiffness of the linear elastic force act-

ing on the moving electrode, 𝑡′ (s) is the dimensional time, 𝑠0 (m) is the 
initial distance of the electrodes in the absence of electrostatic force, 
𝜔 is the frequency of the impinging pressure force, 𝜌air (kg/m3) is the 
density of air, 𝑅 is the radius of the moving electrode, 𝑡bp is the thick-

ness of the backplate, 𝑐snd (m/s) is the speed of sound, 𝜇 (kg/m s) is the 
viscosity of air, 𝐴 is the fraction of the perforated area, 𝑁 is the num-

ber of perforations, 𝑉bc (m3) is the volume of air in the backchamber, 
𝜀 (F/m) is the electrical permittivity of air, 𝐹p (N) is the pressure force 
acting on the moving electrode, 𝑉 (V) is the voltage across the moving 
and the stationary electrode, and 𝜒 is the correction factor to the ca-

pacitance formed by the electrodes due to the fringing fields [6], and 
𝜒0 is the fringing field correction at distance 𝑠0. For convenience we 
present the dimensional and nondimensional quantities in Tables 1 and 
2 respectively.

In our model we are assuming that,

𝑚<<
𝑘 ⋅ 𝑠0
𝑔

(5)

where 𝑚 (kg) is the mass of the moving electrode, and 𝑔 (m/s2) is the 
gravitational acceleration. This means that we are assuming that the 
weight of the moving electrode, and thus the system’s orientation, does 
not contribute significantly to the total force acting on it. We should 
also point out that a fundamental assumption made in the model is that 
𝜔 ⋅𝑅 << 𝑐snd which for the dimensions of small capacitive transducers 
means roughly that for the excitation frequency

𝑓 < 10 kHz (6)

Finally, our model does not take into account any deformation in 
the moving electrode due to the impinging pressure force. This can be 
viewed as a more direct representation of a very stiff diaphragm with 

spring support. What we show in this paper is that there can be other 
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Table 2

Nondimensional Quantities.

Symbol Expression Definition

𝑡 𝜔n ⋅ 𝑡
′ time

𝑤 𝑠∕𝑠0 instantaneous distance between the electrodes

𝑤e 𝑠e∕𝑠0 distance between the electrodes at equilibrium

𝜆 𝜀 ⋅𝑆 ⋅ 𝑉 2
bias

∕2 ⋅ 𝑘 ⋅ 𝑠30 factor that couples the mechanical nonlinear response to the charging

Ω 𝜔∕𝜔n frequency of impining pressure force

𝑟 8 ⋅ 𝜌air ⋅ (𝜔n ⋅𝑅)3∕3 ⋅ 𝑘 radiation mass component

𝜁rad 𝜌air ⋅𝜔
2
n
⋅𝑆2∕4 ⋅ 𝜋 ⋅

√
𝑚 ⋅ 𝑘 ⋅ 𝑐snd radiation damping ratio

𝜁film 3 ⋅ 𝜇 ⋅𝑆2∕4 ⋅ 𝜋 ⋅
√
𝑚 ⋅ 𝑘 ⋅ 𝑠30 thin-film damping ratio

𝐴 - ratio of the perforated area over the total area of the electrode

𝐺(𝐴) 𝐴∕2 −𝐴2∕8 − (ln𝐴)∕4 − 3∕8 -

𝑁 - number of perforations (holes)

𝜃 8 ⋅𝐺(𝐴)∕𝑁 -

𝜎 𝜃∕(1 + 𝜃) thin-film damping factor

𝜅bc 𝜌air ⋅ 𝑐
2
air

⋅ 𝑆∕𝑘 ⋅𝐿bc stiffness factor due to the volume of air in the backchamber of the device

𝑐m 𝐶m∕𝐶0 capacitance formed by the two electrodes

𝜌 𝐹p∕𝑘 ⋅ 𝑠0 pressure force impinging on the moving electrode

𝑣 𝑉 ∕𝑉bias voltage across the moving and the stationary electrode

𝑞 𝑄∕𝑄0 charge stored in the electrodes and the parasitics

𝑐p 𝐶p∕𝐶0 parasitic capacitance

𝜏0 𝜔n ⋅𝑅bias ⋅𝐶0 impedance factor

𝜒 - correction factor to the capacitance formed between the two electrodes 
due to the fringing fields

𝜒0 - correction factor due to the fringing fields at the initial distance 𝑠0
𝜒e - correction factor due to the fringing fields at the equilibrium distance 𝑠𝑒
Fig. 2. Circuit equivalent linear system in the impedance analogy of the me-

chanical force acting on the moving electrode. The circuit fully describes the 
small-signal response of the mass-spring system in Fig. 1. 𝐶d should not be con-

fused with 𝐶m which is the instantaneous electrical capacitance formed by the 
electrodes.

sources of nonlinearities other than those related to mechanical defor-

mation.

Fig. 2 represents the proposed equivalent linear system in the 
impedance analogy of the mechanical force acting on the moving elec-

trode similarly to [7,8]. We omit the mass and compliance of the vol-

ume of air between the electrodes assuming that the number and rate 
of the perforations are large enough. Since we model the movement of 
the membrane for a rigid backplate the velocity (v) induced by the pres-

sure force (𝐹p) that flows through all the mechanical components is the 
same and thus is placed in series. 𝑅rad is the mechanical radiation re-

sistance, and 𝐿rad is the mass of the radiating air, i.e., when the device 
is operated in reverse as a loudspeaker. 𝐶d = 𝐶 ′

d
∕𝜈 is the compliance of 

the moving electrode, where 𝐶 ′
d

is the compliance due to the mechani-

cal support of the moving electrode and 𝜈 is the spring softening factor 
explained in section 2.4. 𝐿d is the mass of the moving electrode. 𝑅gap

is the mechanical resistance caused by air streaming through slits and 
holes in the narrow air gap between the diaphragm and the backplate, 
and 𝐿gap is the respective air mass that is considered negligible in our 
calculations. 𝐶bc is the compliance of the volume of air enclosed in the 
backchamber of the device. 𝐶d should not be confused with 𝐶m which 
is the instantaneous electrical capacitance formed by the electrodes. We 
should also mention that we assume that there is only one moving elec-

trode thus assuming that the compliance and mass of the rigid, i.e. the 
4

backplate, is large enough.
A more extensive mechanical impedance lumped element represen-

tation of a parallel plate capacitive microelectromechanical (MEMS) 
microphone is proposed in Fig. 3. Here we are taking into account the 
viscous damping (𝑅in) and mechanical air mass (𝐿in) of the inlet as 
well as the mechanical compliance (𝐶fc) of the front chamber, the me-

chanical mass of the air between the electrodes (𝐿gap), the mechanical 
mass (𝐿bp) and compliance (𝐶bp) of the backplate, and the mechanical 
viscous damping (𝑅vent) and air mass (𝐿vent) in the pressure equaliza-

tion path. The force acting on the diaphragm is the force across the 
volume of air in the front chamber, and thus it is represented grounded. 
The mass and compliance are placed in parallel to the viscous damping 
and mass of air in the airgap as the force that squeezes the air between 
the electrodes is exerted on the backplate. The pressure force across 
the compliance of the front chamber is the pressure force acting on the 
moving electrode. That force is impeded at the lower frequencies as the 
fluctuation of the density of air becomes so slow that gradually becomes 
identical on both sides of the moving electrode as the vibrating mass in 
the ventilation path becomes lower. A steady state and dynamic anal-

ysis of this complete circuit is beyond our scope of investigation. We 
assume that the frequencies we are interested in are high enough so 
that ventilation does not affect our system, and the resonator formed by 
the mass, compliance, and damping of the inlet and the front chamber 
is decoupled from the movement of the electrode.

2.1. Nondimensional force equation

In Fig. 1 the stiffness between the electrodes, 𝑘2, represents mainly 
the compliance of the volume of air enclosed in the backchamber, the 
air space between the transduction element, and the rigid walls of the 
metallic lid. The mechanical stiffness due to the electrode’s support is 
represented as a linear elastic force with stiffness 𝑘. Additionally, the 
total viscous force between the electrodes with damping coefficient 𝜂2
is assumed to be mainly due to the thin-film damping. In the nondimen-

sionalization process that follows the capital 𝐹 refers to dimensional 
force whereas small 𝑓 refers to nondimensional force component. The 
time-derivatives are taken with respect to the dimensional time for the 
equations that give the dimensional force, and the non-dimensional 
time for the equations that give the nondimensional force.

According to Newton’s second law, the rate of change of the mo-

mentum in an inertial system must be equal to the total sum of the 

forces,
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Fig. 3. Mechanical impedance lumped element representation of a parallel plate capacitive microelectromechanical (MEMS) microphone that includes the front 
chamber and the ventilation path. The circuit should be regarded as a physical extension of Fig. 2, which includes the effect of additional geometrical entities in the 

path to the sensor element on the input pressure force.

𝐹tot = 𝑀̇, (7)

where 𝑀 (kg m/s) is the momentum of the system. We formulate our 
system in terms of the relative distance between the electrodes as in 
this way we are able to refer to the relative contraction and expansion 
of that distance instead of relying on a system of reference. The max-

imum linear elastic force towards the stationary electrode due to the 
mechanical support of the moving electrode is

𝐹el,max = 𝑘 ⋅ 𝑠0, (8)

where 𝑠0 is the initial distance of the electrodes in the absence of the 
electrostatic force, and 𝑘 (N/m) is the stiffness of the linear elastic force 
due to the mechanical support of the moving electrode. Also, the time 
variable, 𝑡′ (s), is nondimensionalized by the natural frequency of the 
mass-spring oscillator, 𝜔n (1/s),

𝑡 = 𝜔n ⋅ 𝑡
′. (9)

Nondimensionalizing equation (7) with (8) and (9) we obtain,

𝑓tot = 𝑤̈ (10)

where 𝑓tot = 𝑓p + 𝑓visc + 𝑓el + 𝑓es, where 𝑓p, 𝑓es, 𝑓visc, and 𝑓el, are the 
nondimensional pressure, electrostatic, viscous, and elastic forces.

The motivation for nondimensionalizing using equation (8) comes 
from the fact that the transducer is meant to be operated far below its 
resonance in a region that is commonly termed as stiffness controlled 
for a mass-spring oscillator. Nondimensionalizing with the maximum 
elastic force appears quite natural in that sense as the nondimensional 
parameters will be scaled with a characterizing quantity. In the follow-

ing sections, the nondimensionalization of the forces will be shown in 
more detail.

2.1.1. Nondimensional elastic force

The volume of air behind the transducer that is enclosed in the 
backchamber can be used as a control parameter to the stiffness of the 
elastic force acting on the moving electrode. In Fig. 1 the compliance of 
the air between the electrodes is assumed insignificant and so the contri-

bution of the air in the backchamber to the total compliance dominates 
the operation. We should note that in our model we are assuming that 
the pressure force is impinging only on one side of the moving elec-

trode. This is in part realized by the existence of the backchamber that 
keeps the other side of the transducer insulated from sound field prop-

agation in higher frequencies. For an ideal gas, an approximation to 
the mechanical stiffness associated with the volume of air (𝑉air) in the 
5

backchamber can be calculated by the following formula [8,14],
𝑘bc =
𝜌air ⋅ 𝑐

2
snd

⋅𝑆2

𝑉bc

. (11)

We can define the length of the air as 𝐿bc = 𝑉bc∕𝑆 , and the previous 
equation can be written with respect to it instead of the volume,

𝑘bc =
𝜌air ⋅ 𝑐

2
snd

⋅𝑆

𝐿bc

(12)

In our dynamical model, we assume that any displacement of the 
electrodes is much smaller than 𝐿bc, i.e.

𝑠0 <<𝐿bc (13)

The total elastic force acting on the moving electrode will be,

𝐹el = 𝑘bc ⋅ (𝑠e − 𝑠) + 𝑘 ⋅ (𝑠0 − 𝑠). (14)

The elastic force acting on the moving electrode due to the volume 
of air in the backchamber is responding to the electrode displacement 
from the equilibrium distance due to pressure equalization.

Nondimensionalizing with equation (8) we obtain,

𝑓el = 𝜅bc ⋅ (𝑤e −𝑤) + 1 −𝑤, (15)

where

𝜅bc =
𝜌air ⋅ 𝑐

2
snd

⋅ 𝑆

𝑘 ⋅𝐿bc

, (16)

2.1.2. Nondimensional damping force

The viscous damping acting on a moving mass varies proportionally 
to its instantaneous velocity, 𝑠̇,

𝐹visc = −𝜂 ⋅ 𝑠̇. (17)

The minus sign indicates that for positive velocities for the relative 
distance between the electrodes, the viscous force has a contracting 
action. As already discussed 𝜂 represents the damping coefficient which 
is mostly due to effects related to the contraction of the volume of air 
between the electrodes, 𝜂2.

The mechanical viscous damping due to the thin film of air between 
two disc electrodes with no walls on the sides can be approximated by 
[3,5],

𝜂film = 3 ⋅ 𝜇 ⋅𝑆2

2 ⋅ 𝜋
⋅
1
𝑠3

, (18)

where 𝜇 (kg/ms) is the medium’s viscosity.

If either the moving or the stationary electrode is perforated the 

damping can be reduced as the air that is getting squeezed between them 
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Fig. 4. Mechanical resistance of the airgap between the electrodes is approxi-

mated by mechanical resistance of the thin film damping due to the streaming 
of the air from the sides of two parallel disk elements (𝑅film = 𝜂film) in paral-

lel to the mechanical resistance related to the streaming of the air through the 
perforations (𝑅perf = 𝜂perf) [5].

will be able to escape exclusively through the holes. The mechanical 
viscous coefficient in this case is approximated by [2,4,5,7],

𝜂perf =
12 ⋅ 𝜇 ⋅𝑆2 ⋅𝐺(𝐴)

𝑁 ⋅ 𝜋
⋅
1
𝑠3

, (19)

in which

𝐺(𝐴) = 𝐴

2
− 𝐴2

8
− ln𝐴

4
− 3

8
, (20)

where 𝑁 is the number of holes on the perforated electrode and 𝐴 is 
the ratio of the perforated over the total area. The damping between 
two discs becomes more important when the perforation area and the 
number of holes is small as the air flows through a limited area from the 
sides of the electrodes. The ratio representing the relative importance 
of the two is defined as,

𝜃 =
𝜂perf

𝜂film

= 8 ⋅𝐺(𝐴)
𝑁

. (21)

An approximate expression that gives the total damping between 
the electrodes for when sound can propagate either through the perfo-

rations or through side slits in a realistic setting can be mechanically 
represented as two dampers in series [5]. Eventually, the damping co-

efficient between the electrodes is approximated by (see Fig. 4),

1
𝜂
= 1

𝜂film

+ 1
𝜂perf

. (22)

Nondimensionalizing the viscous damping force in equation (17) us-

ing equations (8) and (9) we obtain,

𝑓visc = −2 ⋅ 𝜎 ⋅ 𝜁film ⋅
1
𝑤3 ⋅ 𝑤̇, (23)

where 𝜁film = 3 ⋅𝜇 ⋅𝑆2∕4 ⋅𝜋 ⋅
√
𝑚 ⋅ 𝑘 ⋅ 𝑠30. In the equation, we have intro-

duced the 𝜎 parameter which acts as a factor to the nonlinear damping 
related to the thin film of air between the electrodes,

𝜎 = 𝜃

1 + 𝜃
. (24)

In Fig. 5, 𝜃 is given in a contour diagram with respect to the num-

ber of perforations (𝑁) and the ratio of the perforated over the total 
area (𝐴). In the same figure, a logarithmic graph of 𝜎 with respect to 
𝜃 is presented. We observe depending on the desired performance not 
only does the perforated area need to be large enough but the number 
of perforations also needs to be significant. The desired amount of per-

forations and perforated area to obtain a specified 𝜎 parameter value 
can be extracted from these graphs.

We should mention here that more elaborate lumped models of dis-

sipation for perforated microelectromechanical systems already exist in 
the literature [11,19] but dealing with them would defeat the purpose 
of practical conceptual understanding of the nonlinear dissipating ef-
6

fects to the response of our system.
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Fig. 5. On the top plot a contour graph of the ratio of damping coefficients due 
to the thin-film damping (𝜃) with respect to the number of perforations (𝑁) 
and the ratio of the perforated area (𝐴) is presented from equation (21). On the 
bottom plot, the factor to the thin-film damping (𝜎) is shown with respect to 
𝜃 from equation (24). The smaller the value of 𝜎 the better in relation to the 
nonlinear response as 𝜎 is a factor to the nonlinear thin-film damping term.

On a final note when the pressure force seizes to impinge on the 
moving electrode it is reasonable to expect that no further oscillation 
should be occurring and the dynamical system should directly obtain its 
equilibrium. This is true in a mass-spring oscillator for constant values 
of 𝜁 over unity. As we will be discussing in a later section the relative 
distance between the electrodes can only be over 2/3 of the total ini-

tial distance in the absence of electrostatic force. Imposing both of the 
preceding bounds we obtain the following expression for the values of 
𝜃,

1
27
8 ⋅ 𝜁film − 1

< 𝜃 <
1

𝜁film − 1
. (25)

At the same time as we can observe in equation (23) large values 
for the thin-film damping factor increase the nonlinear effects related 
to it. Thus, around an equilibrium distance 𝜁 should be close to the 
critical value for an optimal response minimizing nonlinearities. For 
critical damping at lower frequencies near the operation distance, i.e. 
the relative distance at equilibrium,

𝑤3
e

𝜎 ≈
𝜁film

(26)
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Thus, for a given relative distance at equilibrium the value of 𝜃 for 
near critical damping in lower frequencies is given by,

𝜃 ≈
𝑤3

e

𝜁film −𝑤3
e

. (27)

2.1.3. Nondimensional electrostatic force

The electrostatic force exerted on the electrodes of the transducer 
due to the induced charge from the biasing network is given by [22],

𝐹es =
1
2
⋅ 𝑉 2 ⋅

𝑑𝐶m

𝑑𝑠
, (28)

where 𝐶m is the capacitance formed by the electrodes having a distance 
𝑠 from each other.

Nondimensionalizing with equation (8) we obtain,

𝑓es = 𝜆 ⋅ 𝑣2 ⋅
𝑑𝑐m

𝑑𝑤
. (29)

In the preceding equation, we have introduced the following param-

eter [9],

𝜆 =

(
1
2
⋅
𝜀 ⋅ 𝑆 ⋅ 𝑉 2

bias

𝑠20

)
⋅
(

1
𝑘 ⋅ 𝑠0

)
, (30)

where 𝜀, and 𝑆 are the permittivity of air, and the area of the moving 
electrode respectively. This parameter represents the ratio of the elec-

trostatic force acting on the moving electrode if the initial distance from 
the stationary in the absence of the electrostatic force is retained, over 
the maximum linear elastic force that would be acting on the moving 
electrode towards the stationary. For given dimensional characteristics 
this factor can be controlled by applying the appropriate biasing volt-

age. In our model, the parameter functions as a factor to the nonlinear 
electrostatic force acting on the moving electrode.

Observing that 𝑐m = 𝜒 ⋅ (1 −𝐴) ∕𝑤, where 𝜒 is the correction factor 
due to fringing fields,

𝑓es = −𝜆 ⋅ 𝑣2 ⋅
𝜒 ⋅ (1 −𝐴)

𝑤2 . (31)

Notice that since 𝜒 > 1 for any separation of the electrodes, the 
fringing fields increase the amount of contribution of the electrostatic 
force and essentially the nonlinearities related to it.

2.1.4. Nondimensional pressure force

The sound pressure impinging on the moving electrode is modeled 
here as a pressure load exerted on the area of the latter,

𝐹p = 𝑆 ⋅ 𝑝. (32)

Nondimensionalizing with equation (8) we obtain,

𝜌 = 𝑆

𝑘 ⋅ 𝑠0
⋅ 𝑝. (33)

For a periodic signal, we can write

𝑝 =
∑
𝑖

𝑃𝑖 ⋅ sin (Ω𝑖 ⋅ 𝑡+ 𝜙𝑖), (34)

where 𝑃𝑖 is the amplitude of the impinging acoustic pressure compo-

nent.

2.2. Nondimensional current equation

The charge on the electrodes is induced by a DC voltage source, 
𝑉bias, in series with a resistor, 𝑅bias. The readout is assumed to be tak-

ing place across and through the electrodes of the transducer with the 
biasing scheme in Fig. 6. According to Kirchhoff’s Voltage Law (KVL) the 
equation that describes the flow of charge from the electrodes can be 
written as, ( )
7

𝑅bias ⋅ 𝑄̇ =𝑅bias ⋅ 𝑄̇m + 𝑄̇p = −(𝑉 − 𝑉bias), (35)
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Fig. 6. Charging Circuit to the transducer. The circuit corresponds to the charg-

ing of the mass spring system in Fig. 1.

where 𝑉 , 𝑄̇m, and 𝑄̇p, are the voltage across, and the current through 
the electrodes and the parasitic capacitance parallel to them. Since the 
voltage across the electrodes fluctuates around the biasing voltage the 
minus sign indicates that a positive flow of charge is related to a voltage 
that is lower than the bias.

Nondimensionalizing with the bias voltage and equation (9) we ob-

tain equation (2), restated here for convenience,

𝜏 ⋅ 𝑞̇ = −(𝑣− 1),

where as stated in equation (4),

𝜏 = 𝜏0 ⋅ (𝜒0 ⋅ (1 −𝐴) + 𝑐p).

It can be observed that as 𝜏 becomes very small the voltage across 
the electrodes remains relatively constant for any relative displacement 
induced by an impinging pressure. Conversely, as 𝜏 becomes larger the 
fluctuation of charge is dampened and the induced charge on the elec-

trodes remains relatively constant for any relative displacement.

2.3. Nondimensional voltage equation

The voltage applied across the electrodes is also applied across the 
parasitics formed in parallel to them (see Fig. 6). So, the voltage is 
obtained as,

𝑉 =
𝑄m +𝑄p

𝐶m +𝐶p

.

Nondimensionalizing with the bias voltage we obtain equation (3),

𝑣 = 𝑞 ⋅𝑤 ⋅
𝜒0 ⋅ (1 −𝐴) + 𝑐p

𝜒 ⋅ (1 −𝐴) + 𝑐p ⋅𝑤
,

where 𝜒 is the correction factor due to the fringing fields [6], and 𝐴
the perforation ratio [2].

It can be shown that the relative total positive charge concentration 
can be written as the addition of the relative positive charge stored in 
the transducer and the relative positive charge stored in the parasitic 
capacitance normalized by the total charge,

𝑞 = 𝑞m + 𝑞p, (36)

where the nondimensional charge concentration on the positively 
charged electrode is,

𝑞m = 𝑣

𝑤
⋅

𝜒 ⋅ (1 −𝐴)
𝜒0 ⋅ (1 −𝐴) + 𝑐p

, (37)

and the nondimensional charged concentration on the positively 
charged parasitic capacitance is,

𝑞p = 𝑣 ⋅
𝑐p

𝜒0 ⋅ (1 −𝐴) + 𝑐p

. (38)

From these equations, we can observe that increasing the parasitic 

capacitance increases the charge on it which is only dynamically related 
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to the voltage across the electrodes, and decreases the charge on the lat-

ter. We can also see that as the parasitic capacitance becomes relatively 
larger and larger the fluctuation of voltage as well as the fluctuation of 
charge are diminishing and any relative displacement of the electrodes 
will not induce any output. Finally, we can observe that increasing 𝐴
increases the charge on the parasitics.

2.4. Equilibrium state analysis & the pull-in phenomenon

An equation that relates the 𝜆 parameter, to the nondimensional 
equilibrium distance, 𝑤e, can be derived from equations (1) and (31),

𝜆 =
𝑤2

e

𝜒e ⋅ (1 −𝐴)
⋅ (1 −𝑤e), (39)

where 𝜒e is the correction factor due to the fringing fields [6] at equi-

librium, and 𝐴 is the perforation ratio [2].

Note that at equilibrium the voltage across the electrodes will be 
the same as the bias, meaning that 𝑣e = 1. We can now identify that the 
maximum value for 𝜆 is,

𝜆PI =
1

𝜒e ⋅ (1 −𝐴)
⋅
4
27

, (40)

at which point the distance between the electrodes is

𝑤PI =
2
3
. (41)

Notice that the fringing fields decrease the maximum value of this 
factor for the same pull-in distance as has been observed previously. This 
means that not taking into account the fringing fields 𝜆 and essentially 
the pull-in voltage are overestimated. The same happens when 𝐴 is in-

creased. To show that this maximum point has a physical meaning and 
that it is effectively the point under which no equilibrium can be estab-

lished we can take a closer look at these equilibrium states. Near such 
a state the potential of the system will be at its minimum and thus its 
dynamic behavior can be approximated by an equivalent stiffness; a lin-

ear force to the displacement of the electrodes. Eventually, the factor to 
that stiffness can straightforwardly be obtained by our nondimensional 
equations at, or close enough, an equilibrium distance. It can be shown 
that the factor by which the linear elastic force acting on the moving 
electrode is reduced, or softened, at equilibrium is,

𝜈 = 3 − 2
𝑤e

, (42)

where 𝑤e represents the normalized ratio of the total distance at equi-

librium over the initial distance of the electrodes in the absence of 
electrostatic force. What this factor represents is mainly that the restor-

ing force in the system is a combination of the elastic and electrostatic 
forces. Since the device being modeled is meant to be operated far be-

low its resonance, in a region that is mainly stiffness controlled, in terms 
of a mass-spring oscillator, the biasing voltage allows control over its 
performance. The evident trade-off is the one we are trying to quantify, 
which is the nonlinearities related to this tuning.

From equations (30) and (42) it can be shown that,

𝜆 = 4
𝜒e ⋅ (1 −𝐴)

⋅
1 − 𝜈

(3 − 𝜈)3
(43)

In Fig. 7 we observe that for negative values of 𝜈, i.e. when 𝑤e <𝑤PI, 
the “effective” elastic force becomes negative, meaning that the total 
force is now exerted to the moving electrode towards the stationary, 
and the pull-in phenomenon occurs, as the electrodes rapidly attach 
to one another. From equation (42) we observe that for the pull-in 
nondimensional distance, 𝑤PI, 𝜈 = 0. In a mass-spring system with a 
dissipation mechanism like the one we are dealing with, random ther-

mal agitation of air molecules near the surface of the moving electrode 
[1,5] will create a form of broadband input noise. This can be rep-

resented in our system as a time-dependent forcing term that would 
8

depend on the damping coefficient, 𝐹n = 𝐹n(𝑡′; 𝜂). When our system is 
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Fig. 7. The graph shows the 𝜆 factor normalized by its maximum value 𝜆0 with 
respect to the softening factor, 𝜈. The solid line represents operational region, i.e. 
the region in which 𝜈 > 0. In the graph we are assuming that the effect of the 
fringing fields is negligible, i.e. 𝜒∕𝜒0 ≈ 1.

at a metastable state any amount of force can cause the electrodes to 
collapse into one another as the pull-in phenomenon will occur. This 
means that any equilibrium point will be larger than the precedingly 
calculated pull-in distance,

𝑤e >𝑤PI ⟹ 𝜈 > 0. (44)

2.5. Readout and amplification stage

To prevent the output signal of the transducer from being affected 
by the load impedance an amplifying stage that acts as an impedance 
converter is necessary. Depending on the readout quantity a charge am-

plifier or voltage amplifier can be used (see Fig. 8). In both cases the 
open-circuit output signal, i.e. the output signal when the transducer is 
not connected to any load, is a voltage.

In the next section, we obtain the response of the system in terms of 
the output voltage 𝑉oc for both amplification schemes and calculate the 
total harmonic distortion (THD) as follows,

𝑇𝐻𝐷𝑥 =

√
𝑉 2

oc,2
+ 𝑉 2

oc,3
+ 𝑉 2

oc,4
+ ...|𝑉oc,1| , (45)

where 𝑉oc,1 is the output signal amplitude at the fundamental fre-

quency, 𝑉oc,i is the output signal amplitude of the 𝑖th harmonic, and 
𝑥 can be either of 𝑉 or 𝑄 depending on the amplification scheme used 
at the output stage of the system. Nonlinear transient effects related to 
the operation of the amplification stage are not taken into account in 
our model.

3. Comparing with an axisymmetric numerical model

A lumped model construct with similar geometric properties and as-

sumptions is compared with a similar axisymmetric model in COMSOL 
Multiphysics. Fig. 9 shows the construct and its equivalent mechanical 
impedance network with nondimensional parameters 𝜆 = .02, 𝜎 = .12, 
𝑁 = 1, 𝑐p = 1.2, 𝜏0 = 5000, that is simulated for 𝜌 = .0002, .0015, .0154
and Ω = .0005, .005, .05, and assuming that the mechanical stiffness of 
the backchamber is negligible.

The mixed simulation takes place in the frequency domain with 

a lumped representation of the charging network using the Electri-



Applied Acoustics 216 (2024) 109758G. Printezis, N. Aage and F. Lucklum

Fig. 8. Voltage (left) and charge (right) amplifiers and their respective voltage output. The charge amplifier acts as an integrator of the input current.

Fig. 9. Mixed model sketch simulated in COMSOL Multiphysics (left), and its equivalent mechanical impedance network (right).
Fig. 10. Calculated sensitivities for the lumped model and the mixed model 
that combined FEM with lumped model representation for the charging circuit. 
The sensitivities are calculated for an excitation frequency at 20Hz, 200Hz, and 
2kHz. There were no observable differences in sensitivity for different pressure 
levels of excitation up to 120dB SPL.

cal Circuit Interface. The Membrane interface controls the diaphragm’s 
structural behavior, i.e., as a pre-stressed membrane. The material pre-

scribed for the Membrane is Polysilicon from the built-in library of 
COMSOL. The electrostatic force is provided by the Electrostatic in-

terface. Finally, the Thermoviscous Acoustics interface is used to de-

scribe the movement of the air as the vibrating membrane acts on it 
(utilizing the Thermoviscous Acoustic-Structure Boundary multiphysics 
interface). Air is assumed in the space between the electrodes and the 
perforations (as chosen from the built-in materials library in COMSOL). 
The sensitivity of the FEM model is fitted to the calculated sensitivity 
of the lumped model at 20 Hz, applying the appropriate initial stress on 
the diaphragm. See Fig. 10.

The results show that the calculated sensitivities of the lumped 
model are in very good agreement with the ones of the finite element 
model for the same frequencies and pressure levels. The deviation can 
be attributed to the more elaborate models of the diaphragm and the 
acoustics in the structure used in COMSOL Multiphysics. More specifi-

cally, in the lumped model, the diaphragm is assumed to be a moving 
piston with a prescribed linear mechanical stiffness, and the Thermovis-

cous Losses are considered to be only viscous in nature, excluding any 
9

inertial or compressibility effects.
4. Comparing with measurements & discussion

To show that our system of equations represents a valid model of a 
miniature microphone device, such as a MEMS microphone, we use non-

linear measurements on such a device from literature [20] and show 
that for a set of physical parameters, our model agrees well with those 
measurements. The authors in [20] use a setup that consists of a loud-

speaker, the device under test, and a reference microphone enclosed 
in a box. They implement a method of harmonic correction to ensure 
that a pure harmonic acoustic pressure is reproduced in the loudspeaker 
during the measurements aiming at measuring the nonlinear response 
occurring when the system is excited with a single harmonic pressure 
signal.

They excite the measurement system at three frequencies (20 Hz, 
200 Hz, 2 kHz) and at twenty sound levels (linear intervals from 90 to 
128 dB SPL). They later post-process their measurements, and present 
their results in the form of graphs of applied sound pressure level and 
measured for the first three harmonics occurring in the measured signal 
from the device under test, i.e. the fundamental, the 2nd, and 3rd har-

monic (shown in Figs. 11, 12, and 13 respectively for each excitation 
frequency).

In the figures, the measurements from the literature are shown along 
with the results from the model. The model was fitted to the response 
of the fundamental at 90 dB, and a set of physical values to the parame-

ters shows that the nonlinear response of such a system can describe the 
nonlinear response of the measured device at a certain excitation level 
range. In our model and since the excitation frequencies are much lower 
than the natural frequency of the mass-spring system we assume that 
the effects due to radiation are not significant. The higher the impinging 
pressure force on the moving electrode the higher its relative displace-

ment and as it comes closer to the stationary electrode the electrostatic 
forces increase. Thus, the average distance is reduced causing additional 
mean charging to the electrodes. Additionally, initially, the system is in 
equilibrium and requires some time until it obtains its steady transient, 
i.e. time-dependent, state. Those transient effects are discarded in post-

processing. We also assume that the electrodes are sufficiently close 
and thin so that the correction factor to the capacitance due to fring-

ing fields is very close to unity (𝜒 ≈ 1). For low acoustic pressure levels 
the higher harmonics responses are below the noise level of the mea-

surement system and since we are not modeling the noise a good much 
those low levels is not observed. Finally, in our fitting, we assume that 

𝜅bc << 1 and that the backchamber mainly functions as an insulator to 
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Fig. 11. Pressure response of the model (y-axis) with respect to the applied 
pressure (x-axis) compared with the response of the measurements presented in 
[20] at 20 Hz.

Fig. 12. Pressure response of the model (y-axis) with respect to the applied 
pressure (x-axis) compared with the response of the measurements presented in 
[20] at 200 Hz.

the sound field. In all of the figures 𝜆 = .041, 𝜁film = 24.8, 𝜏0 = 5000, 
𝑐p = 1.2, 𝜎 = .036, and 𝑁 = 46.

At 20 Hz (Ω = 5.4e−4) a good match can be observed for the fun-

damental and the second harmonic but the measured third harmonic is 
excited at higher levels than predicted by the model. This can be due to 
the model not taking into account the effects related to acoustic wave 
propagation on both sides of the membrane.

At 200 Hz (Ω = 5.4e−3) a relatively good match can be observed be-

tween the levels of 105 dB to 120 dB SPL. Over 120 dB SPL an increased 
response to the higher harmonics can be observed indicating the pres-

ence of other nonlinear effects in the measurement system that are not 
described in this model.

At 2 kHz (Ω = 5.4e−2) the response is relatively similar to the one 
at 200 Hz. An even better match can be observed between 105 and 120 
dB SPL. Over that range, an increased response in the higher harmonics 
10

is observed, as in the other frequencies. This relative increase in the 
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Fig. 13. Pressure response of the model (y-axis) with respect to the applied 
pressure (x-axis) compared with the response of the measurements presented in 
[20] at 2 kHz.

higher harmonics seems to be accompanied by a relative decrease in 
the fundamental over 120 dB SPL which is common in all measured 
frequencies.

As already mentioned in a previous section the electrostatic force 
controls the effective elastic force acting on the moving electrode. The 
factor 𝜈 associated with this was defined in equation (42) and was re-

lated to the 𝜆 parameter which acts as a nonlinear coefficient in the 
force equation that describes the response of the moving electrode to 
an impinging pressure force and is related to the electrical biasing of 
the system. The nonlinearities related to this parameter will be referred 
to as mechanical nonlinearities although clearly, the dynamic operation 
of the system transcends the purely mechanical nature of these nonlin-

earities as was shown in equation (31).

A second source of nonlinearities described in the equations comes 
from the non-dimensional parasitic capacitance in equation (3) with the 
main factor being the normalized parasitic capacitance, 𝑐p. As the volt-

age across the terminals of the transducer fluctuates in response to the 
impinging acoustic pressure, part of the charge stored in the transducer 
is “consumed” by the parasitic capacitance and causes an uneven distri-

bution of charge between the transducer electrodes and the acoustically 
“inactive” capacitances. This is illustrated in equations (36), (37), and 
(38). This causes a nonlinear electrostatic force between the electrodes 
when the system is dynamically excited. The nonlinearities related to 
this will be referred to as electrical although as in the previous case, 
the dynamic operation of the system transcends their purely electrical 
nature.

To evaluate the significance of these sources of nonlinearities the 
total harmonic distortion of the fitted model is calculated (Fig. 14) in 
the absence of the non-linear term in equation (1) by setting 𝑤e = 1, in 
which case 𝜅 = 1, and 𝜆 = 0, and of the nonlinear term in equation (3)

by setting 𝑐p = 0, separately. In Fig. 14 we observe that the coupling of 
both nonlinear sources can significantly affect the voltage response of 
the device.

A third source of nonlinearity comes from the fluctuation of charge 
during the dynamical relative displacement of the electrodes. In Figs. 16

and 17 we show the total harmonic distortion as calculated from the 
response of the fitted model when excited at 2 kHz for different values 
of the nondimensional time-constant, 𝜏0. There we observe that for the 
whole range of excitation the lower the 𝜏0 the higher the calculated 
total harmonic distortion. So, 𝜏0, which acts as a electrical damping to 

the fluctuation of charge concentrated on the electrodes, is related to 



G. Printezis, N. Aage and F. Lucklum

Fig. 14. Total Harmonic Distortion as calculated from the response of the fit-

ted model at 2 kHz, excluding either the mechanical nonlinear component in 
the non-dimensional force equation (setting 𝜆 = 0), or the parasitic nonlinear 
component in the nondimensional current equation (setting 𝑐p = 0).

Fig. 15. Total Harmonic Distortion as calculated from the response of the fitted 
model at 2 kHz, for increasing values of the perforated area ratio (𝐴).

the nonlinearities occurring due to the latter. This parameter can be 
used to evaluate the desired amount of the biasing resistance needed 
when the amount of the parasitic capacitance is known, as to minimize 
the total harmonic distortion. We can also observe that if the final stage 
is a charge amplifier it appears that ideally and for proper selection 
of integrating capacitance (𝐶f) the calculated harmonic distortion is 
improved compared to a voltage follower.

Finally, a fourth source of nonlinearity comes from the perforated 
area ratio (𝐴). As can be observed in Fig. 15 increasing this ratio results 
in increasing the total harmonic distortion. This can be attributed to 
the increase of charge concentrated on the parasitics and at the same 
time the decrease of the charge concentrated on the electrodes of the 
mass-spring system (equations (37) and (38)) as well as the increase 
of the electrical coupling to the mechanical relative movement of the 
11

electrodes (equation (39)).
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Fig. 16. Total harmonic distortion (𝑇𝐻𝐷𝑉 ) calculated from the response of the 
fitted model when excited at 2 kHz for different values of 𝜏0 setting 𝑐p = 0.

Fig. 17. Total harmonic distortion (𝑇𝐻𝐷𝑄) calculated from the response of the 
fitted model when excited at 2 kHz for different values of 𝜏0 setting 𝑐p = 0.

5. Conclusion

In this paper we model capacitive microphones biased with a DC 
voltage source and a resistor (condenser microphones) as parallel plate 
constructs with varying distance responding to an impinging acoustic 
pressure. A system of nondimensional ordinary differential equations 
is derived that fully describes the operation of such a construct. We 
use these equations to account for several nonlinearities present in the 
time-domain voltage response by calculating the total harmonic distor-

tion for different excitation levels and frequencies. We show that for a 
set of physical parameters such a model can describe the nonlinear be-

havior of an actual MEMS transducer. We describe the several factors 
to the physical quantities that relate to our model’s nonlinear response 
and show how they affect the calculated harmonic distortion relative to 
the extracted parameters from the fitted model. The main factors iden-

tified are 𝜆 which is related to the nonlinearities due to the softening
of the elastic force and which couples the charging to the mechanical 
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behavior of the moving electrode, the nondimensional parasitic capac-

itance, 𝑐p, which is related to the uneven distribution of charge to the 
electrodes and the parasitics, the impedance factor, 𝜏0, which acts as 
damping to the fluctuation of the total charge stored in the transducer, 
and 𝜎 which acts as a factor to the nonlinear thin-film damping, as well 
as the fringing field factor 𝜒 related to the non-homogeneous electric 
field between the electrodes, and the perforated area 𝐴 which are found 
to contribute to the nonlinear response. The effect of those parameters 
is described analytically through the derivations found in the text and 
numerically in the figures where we use the fitted model as a basis to 
observe the effect of changing those parameters to the nonlinear voltage 
response. A designer can use these parameters to optimize for linearity 
in the voltage response of the transducer. We show that the coupling 
of the electrical nonlinearities to the mechanical can significantly con-

tribute to the nonlinear voltage response of the transducer. Future work 
will focus on revealing other sources of nonlinearities such as those re-

lated to the stretching of the membrane at higher levels of excitation as 
well as the dynamical movement of the backplate, and evaluating their 
relevance to the device’s voltage response to that of double backplate 
and diaphragm models.
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