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Abstract

Containerized shipping serves as the backbone of our interconnected global economy, enabling
low-cost and secure trade of goods between importers and exporters across long distances.
Each containerized trade journey begins with exporters loading freight into empty containers,
which are provided by a shipping company. It continues with the transportation of laden
containers to importers, and ends when the importers unload the freight. Shipping companies,
as the primary owners of containers, face the consequences of regional trade imbalances, where
empty containers accumulate when the demand for receiving freight from importers exceeds
the demand from exporters to ship their goods. Conversely, additional empty containers are
needed in regions with a higher number of exporters than importers. This thesis focuses on the
challenges shipping companies encounter as a result of these trade imbalances, better known as
the empty container repositioning problem. Our contributions are based on a comprehensive
problem description, that enables us to identify crucial elements of a decision system to support
container shipping companies in their efforts to reduce empty container repositioning costs.

First, wepropose a new inventorymodel for inland container depots, where empty containers
are storedwhen not being used for shipping. We identify the inventorymanagement problem as
a sequential decision process, forwhichwe obtain optimal decisions under realistic assumptions.
Specifically, we address lead times for transporting empty containers between ports and inland
depots, as well as the impact on depot operating costs when important aspects of container
deliveries to exporters and returns from importers are not appropriately modeled. A case study
using real-world data supports our findings and advises future inventory modeling to pay close
attention to the stochastic processes describing exporter and importer behavior.

Second, we develop a novel forecasting model for future empty container demand from
exporters and returns from importers. These forecasts inform shipping companies about con-
tainer shortages in advance, and are therefore crucial for repositioning decisions. Our proposal
extends the well-known state space modeling framework to direct multi-step ahead forecasting,
which is a strategy that is commonly applied in forecasting problems with non-stationary time
series. The models are derived under the theoretical properties of direct multi-step ahead fore-
casting and are therefore readily applicable to forecasting problems in other domains. Third,
we investigate the applicability of modern hybrid forecastingmodels in the context of the empty
container repositioning problem. We critically examine the practical usability of a recently pro-
posedmodel that aims to combine the strengths of neural networks and state spacemodels. Our
investigation reveals a critical assumption for the time series data that needs to be fulfilled by
a forecasting problem. Through simulation studies, we verify our claims and demonstrate the
negative effects on forecast accuracies when a forecasting problem does not meet the assump-
tions of the hybrid forecasting model. Our results are general and expected to guide future
developments in hybrid forecasting models.
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Dansk resumé

Containerskibsfart spiller en afgørende rolle i den globale økonomi ved at muliggøre billig
og sikker handel med varer mellem importører og eksportører over lange afstande. En con-
tainerrejse starter med, at eksportørerne laster fragt i tomme containere, som de modtager fra
et containerskibsfartselskab. De fyldte containere transporteres herefter til importørerne, og
endeligt afsluttes rejsen, når importørerne losser fragten. Skibsfartsselskaberne står over for
konsekvenserne af regionale handelsubalancer, hvor tomme containere akkumuleres, når efter-
spørgslen efter at modtage fragt fra importørerne overstiger efterspørgslen fra eksportørerne
for at sende deres varer. Omvendt er der behov for yderligere tomme containere i regioner med
flere eksportører end importører. Denne afhandling fokuserer på de udfordringer, som skib-
sfartsselskaber står over for som følge af disse handelsubalancer, kendt som Empty Container
Repositioning problemet. Vores bidrag er baseret på en omfattende problem beskrivelse, der
gør det muligt for os at identificere afgørende elementer i et beslutningssystem, der kan støtte
containerrederier i at reducere omkostningerne ved omplacering af tomme containers.

For det første foreslår vi en ny lager-model til containerdepoter, hvor tomme containere op-
bevares, når de ikke bruges til at sende fragt. Vi identificerer lagerstyringsproblemet som en
sekventiel beslutningsproces, hvor vi opnår optimale beslutninger under realistiske antagelser.
Specifikt håndterer vi leveringstider for transport af tomme containere mellem havne og ind-
landsdepoter. Vi illusterer også konsekvenserne på driftsomkostningerne, når vigtige aspekter
af containerleverancer til eksportører og tilbageleveringer fra importører ikke er korrekt mod-
elleret. Et case-studie understøtter vores resultater og anbefaler, at lagermodeller bør nøje tage
hensyn til de stokastiske modeller der beskriver eksportørernes og importørernes adfærd.

For det andet udvikler vi en ny og innovativ prognosemodel for fremtidige behov for tomme
containere fra eksportører og tilbageleveringer fra importører. Disse prognoser informerer con-
tainerskibsfartselskabet om containermangel på forhånd og er derfor afgørende for beslutninger
om omplacering. Vores forslag udvider den velkendte ramme for state space modeller til di-
rekte flertrinsprognoser, hvilket er en strategi, der ofte anvendes til prognoseproblemer med
ikke-stationære tidsrækker. Modellerne er udledt under de teoretiske egenskaber ved direkte
flertrinsprognoser og er derfor let anvendelige til prognoseproblemer inden for andre felter.

For det tredje undersøger vi anvendelsen af moderne hybrid-prognosemodeller i forbindelse
med prognosemodellering for omplacering af tomme containere. Vi undersøger kritisk an-
vendeligheden af en nyligt foreslået metode, der sigter mod at kombinere styrkerne ved neu-
rale netværk og state space modeller. Vores undersøgelse afslører, at hvis en afgørende an-
tagelse for tidsserie-data ikke er tilstede, kan det forventes at prognosemodellen forringes
væsentligt. Gennem simulationsstudier verificerer vi vores påstande og demonstrerer de nega-
tive påvirkninger på prognosepræcisionen, når et prognoseproblem ikke opfylder antagelserne
i hybrid-prognosemodellen. Vores resultater er generelle og forventes at vejlede fremtidige
udviklinger inden for hybrid-prognosemodeller.
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Introduction

1.1 Empty container repositioning
The usage of standardized steel containers revolutionized theway goods are transported around
theworld,making it faster andmore efficient tomove large quantities of cargoover longdistances
by sea. At the core of containerized trade is the delivery of empty containers to export customers.
Once the sender, or exporter, has loaded cargo into a container, a container shipping company
transports the container to its destination. Upon arrival at the location of the cargo receiver, or
importer, the freight is unloaded, and the container is returned back to the shipping company.
The empty container is typically delivered to a depot, where it is stored until it is needed for
a new export shipment request. One of the major challenges faced by global containerized
shipping is the mismatch between the availability of returned containers and the demand of
exporters. Regions that have a surplus of cargo exports, such as large parts of China and
South-East Asia, often experience a year-round deficit of empty containers. To address this
issue, shipping companies need to transport empty containers between regions to compensate
for trade imbalances of laden containers. Without such repositioning efforts, exporting regions
would suffer from a shortage of empty containers. Container deficits and surpluses may also
vary over time, such as in countries with harvesting seasons (high demand) and regular demand
periods. The task, that is known as empty container repositioning (ECR), requires at a global scale
the anticipation of demand and supply imbalances ahead of time due to the slow transportation
speed of large-scale container vessels.

The reliable provision of empty containers to exporters requires significant investments from
shipping companies, amounting to billions of US dollars for the management of their empty
container fleets. Modern fleets cover a diverse range of container specifications to cater for the
needs of customers to ship goods with different requirements. Standard 20ft or 40ft long steel
containers are the most frequently used types, of which refrigerated versions are available for
shipping perishable products. Notteboom et al. (2021) report that all global shipping companies
combined spend about $110 billion per year for the management of their container assets (pur-
chase, maintenance and repairs), of which $16 billion is attributed to ECR by sea. Addressing
inefficiencies in empty container management processes is not only financially beneficial for
shipping companies but also carries environmental and operational advantages. Trucks, the
primary mode of transportation for inland repositioning, cause emissions and congestions in
port areas (Jula et al., 2006; Boile et al., 2008; Lee and Song, 2017). Inefficient repositioning
decisions can further affect port operations due to the accumulation of empty containers (Song
and Dong, 2022). Reducing container movements by sea and on land can thus reduce emissions
and improve port operations.

The severe economical, environmental and societal impacts of ECR activities have led to
extensive research in this field. Improving decision-making for ECR of a shipping company
cannot be addressed in isolation, as it is interconnectedwith decisions within the broader empty
container management context. Increasing the container fleet size provides more flexibility
for repositioning decisions, but it entails higher capital investments and associated costs for

1



2 CHAPTER 1. INTRODUCTION

maintenance and storage (Imai and Rivera, 2001). Other solutions, such as using foldable
containers (Lee and Moon, 2020), strategically selecting depots near transportation hubs and
customers, or designing shipping networks considering empty and laden container flows, fall
under the same category. Efficient decision-making across all planning levels is a subsequent
challenge, given their distinct time resolutions and horizons (Braekers et al., 2011).

This thesis focuses on operational decisions for repositioning empty containers between
depots with look-ahead times up to several months. Our scope is limited to a shipping company
which operates an ocean and inland network, with container vessels connecting a set of ports.
Ports are connected to dry ports of the inland network by trains, barges and trucks. Owned and
long-term leased containers are stored at depots, where empty containers are returned to after
an importer unloaded their freight from a received container. However, the main responsibility
of a container depot is to provide empty containers to nearby exporters. This necessitates
maintaining an adequate inventory of containers, reducing the risk of future shortages as a result
of uncertain imbalances of container returns and demand. An ECR decision-making system of a
shipping company relies on two principal types of decisionmodels. A class of inventorymodels
determinewhether additional containers are neededat depots aswell as a class of routingmodels
to identify cost-effective routes for empty containers between depots. An essential element of
the inventory models are forecasts of future imbalances between empty container demand of
exporters and returns of importers. Developing an accurate ECR decision-making system is
extremely challenging because the dynamic operations of a container shipping company induce
a sequential dependency for present and future repositioning decisions, whereby all present
decisions are made under uncertainty. This is best known as sequential decision-making under
uncertainty.

1.2 Challenges and research directions
In the following, we explore different challenges for the development of decision and forecasting
models for ECR,wherewe focus onmathematicalmodeling only. Even thoughwe consider their
challenges subsequently in isolation, we follow Goltsos et al. (2022) in that the integration and
interaction of forecasting and decision-making models ultimately determine the overall value
of a decision system. Based on the presented challenges, we introduce three research directions
(RDs) for this thesis.

The inability to formulate and solve a single mathematical model that accurately repre-
sents the container inventory and routing decision-making processes for real-world shipping
networks has led to the emergence of two research streams. The first research stream focuses pri-
marily on addressing the empty container routing problem between depots, utilizing network
flow models. However, the sequential nature of this decision problem presents a significant
challenge, as multi-stage stochastic programs become computationally infeasible for realistic
problem sizes due to the exponential growth of the number of decision variables relative to
the number of planning stages (Shapiro and Nemirovski, 2005). Two-stage stochastic network
flow models have emerged to reduce the problem complexity by assuming all first stage pa-
rameters to be deterministic (Crainic et al., 1993; Cheung and Chen, 1998; Shu and Song, 2014;
Erera et al., 2009; Long et al., 2012). The applicability of these models remains computationally
challenging for large real-world networks and flow models with only deterministic parameters
may be considered instead. Examples for repositioning problems between sea ports include
the proposals in Song and Dong (2011); Brouer et al. (2011) and in Shintani et al. (2010); Olivo
et al. (2013) for inland operations. Optimal methods based on stochastic dynamic program-
ming (SDP) have been developed for two depot systems in Song (2007); Song et al. (2010); Ng
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et al. (2012). SDP proves advantageous for sequential decision problems since the number of
decisions grows linearly with the number of planning stages. However, SDP suffers from its
own curse of dimensionality, with exponentially increasing complexity as the number of states
expands. Consequently, approximation methods, such as approximate dynamic programming,
have been proposed for multi-depot systems in Lam et al. (2007).

The second research stream places more emphasis on the multi-stage nature of the ECR
problem. Rather than directly determining repositioning decisions between depots, this re-
search stream develops inventory control models to determine the appropriate quantity of
empty containers to be moved out (out-positioning) or brought in (in-positioning). Decisions
are made sequentially and aim to maintain balanced inventory levels in the face of uncertain
future demand and returns of empty containers. Optimal control policies are developed most
commonly for single depots (Li et al., 2004; Song and Zhang, 2010; Zhang et al., 2014; Song and
Dong, 2022). The overall ECR problem is effectively decomposed by using inventory control
policies to determine the desired number of in- and out-positioned containers for each depot,
operating in conjunction with a routing model for repositioning empty containers among all
depots. Simple threshold-type control policies for depots are commonly combined with heuris-
tics that determine repositioning decisions (Li et al., 2007; Dang et al., 2012, 2013; Zhang et al.,
2014). Heuristics that incorporate detailed information about the transportation network, such
as vessel departure times, are developed in Song and Dong (2008); Dong and Song (2009). Ad-
ditionally, the combination of inventory models with network flow models has been explored
in Chou et al. (2010); Lee et al. (2012); Epstein et al. (2012). The reliance on accurate inventory
control policies to determine the flow of empty containers within this decomposition approach
serves as motivation for our first research direction:

[RD1] Inventory control policies for container depots

Indeed, the ability of a depot to effectively in- and out-position empty containers relies on various
factors, including transportation capacities and inventory levels at other depots. For instance,
empty containers can be repositioned between oversea ports for moderate prices but with long
lead times (Dang et al., 2012). The lead times for in-positioning containers at deficit ports,
which are in need of containers, are dependent on transportation times from surplus ports,
which, in turn, are influenced by the shipping network (Dang et al., 2012). Incorporating wrong
assumptions about transportation times into the inventorymodel can have negative effects when
actual times deviate from their assumed values. A particular case are in-positioning options
with falsely assumed very short lead times. Larger than expected costs can accrue for deficit
ports due to container shortages when orders are made but assumed lead times are exceeded
in real-world operations. Deriving control policies also requires a description of the stochastic
process for exporter container demand and importer returns. A common assumption in the
ECR control literature is that both quantities are independent and identically distributed, cf.
Li et al. (2004); Song and Zhang (2010); Zhang et al. (2014); Song and Dong (2022). While this
assumption allows for the analytical derivation of optimal policies, it is likely too simplistic to
accurately capture the dynamics of real-world demand and return processes. The impact of
serially dependent demand in inventory systems has been explored outside the ECR literature
in Ray (1980); Graves (1999). Safety stock levels are found to be underestimated when positive
autocorrelation of a demand process is undetected, and overestimated for undetected negative
autocorrelation. Therefore, it is essential to account for these dependencies to avoid incurring
additional costs in inventory management. Crainic et al. (1993) emphasized in this regard that
accurate forecasts are critical for successful ECR planning. In this thesis, we adopt the view
that forecasting can be employed to find an appropriate approximation of the unknown empty
container demand and return processes from historical data.
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A broad research body has evolved for forecasting unknown future freight rates, container
throughput, vessel arrival times, container flows and market sizes. Albeit few publications
consider forecasting within the ECR context, we find that the related publications apply widely-
used methods without providing methodological contributions on the basis of the forecasting
problem’s fundamental characteristics. To the best of our knowledge,wefindMartius et al. (2022)
to be the exception with a bottom-up approach that utilizes the wealth of container movement
data. Instead of following the prevailing approach of directly forecasting total container in- and
outflows at depots, their method predicts the arrival and departure of individual containers.
As Martius et al. (2022) note themselves, their method is challenged by the impact of rare
events, such as the recent COVID-19 pandemic, general consumption pattern changes and the
reduction of the global container fleet’s size on empty container demand and returns. It is
therefore essential to recognize time-varying customers dynamics to be one of the factors that
imply non-stationary empty container demand and return processes. However, we find that
none of the existing ECR forecasting publications address the challenges that are induced by
non-stationarities. This motivates our next research direction:

[RD2] Forecasting non-stationary time series processes

Differencing has been traditionally applied to forecast time series with unit roots. Over time, the
field has evolved to model time series processes with various non-stationarity patterns, such as
mean or volatility changes due to structural breaks, where differencing is dispensable. Recent
approaches involve local stationarity concepts (Dahlhaus, 2012) to theoretically motivate the
estimation of stationary models on short time intervals. Models can adapt to changes in the
time series process by re-estimating the model parameters only on most recent data, without
considering the full history of the time series. The class of time-varying coefficient models is
closely related and assumes the model coefficients to be time-inhomogeneous, hence implicitly
considers the unknown stochastic process to be non-stationary (Grenier, 1983). Although each
method has its own merits and caveats, the scale and complexity of the ECR problem poses
a challenge to all of them. First, thousands of forecasts must be issued simultaneously for
container depot and various container type combinations. Second, the large time series corpus is
heterogeneous. While some time series share common patterns, such as seasonalities, volatility,
trends and non-stationarities, other time series are unrelated.

The traditional local strategy is to estimate a set of univariate candidatemodels for each of the
time series, followed bymodel selection to identify the most suitable for each series. Developing
suitable candidate models requires knowledge about the time series processes, and the model
tuning and selection problem can become computationally demanding when the number of
time series is large. Since each forecasting model is estimated for a time series independently,
no advantage is gained from the relatedness of some time series within the dataset. Global
methods aim to overcome these limitations and estimate a single forecasting model for all
time series to exploit potential similarities between them. The method commonly employs
flexible non-parametric machine learning models, such as a recurrent neural network in Salinas
et al. (2020), to enable adaption to complex time series processes in heterogeneous datasets
without explicit assumptions on the unknown processes (Montero-Manso andHyndman, 2021).
Cross-validation is essential for flexible machine learning models to detect overfitting, and
thus validating the generalizability of the model on unseen data. The risk of overfitting short
time series can be alleviated for locally estimated models by imposing restrictions through
structural assumptions about the time series processes, i.e. estimate parsimonious parametric
forecasting models. Our last research direction explores the applicability of recently emerged
hybrid forecasting models. These hybrids aim to combine "the best of both worlds" by using a
flexible globally estimated machine learning model to predict the parameters of locally applied
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parametric time series models:

[RD3] Fusing machine learning models with parametric time series models

Hybrid models that combine aspects of local and global strategies have been proposed for time
series panel forecasting to overcome limitations of the individual strategies. A recently evolved
literature strain proposes to incorporate structural assumptions about the stochastic process of
individual time series into a global forecasting model (Lim and Zohren, 2021). Rangapuram
et al. (2018) follow such a strategy and use a globally estimated machine learning model to
predict the unknown parameters of parametric time series models which are locally applied to
each time series of the panel. The specification of a local sub-model allows the forecaster to
incorporate structural assumptions about seasonal, trend or other domain-specific time series
properties into a global modeling framework. This class of hybrid models are believed to have
several merits over flexible global models in forecasting problems with limited amount of data.
The time series shortness is indeed a challenge in the ECR forecasting problem since automated
data collection has not always been a priority to container shipping companies. On one hand,
the local sub-model induces restrictions on the otherwise too flexible global machine learning,
hence there is the possibility of alleviating overfitting. On the other hand, learning can become
more efficient when the sub-model is correctly specified and multiple time series have shared
patterns that the global model can learn.

1.3 Research contributions
Motivated by these developments, the main objective of this thesis is to develop decision and
forecasting models for the ECR problem. We cover a broad range of topics in the decision-
making and forecasting disciplines, and explore the requirements of a proposed decision model
towards the forecastingmodel. First, this thesis explores the practical challenges and limitations
of automated ECR decision-making for global shipping companies. Our detailed description of
the ECR problem justifies to decompose the single large-scale ECR optimization problem into
several sub-problems. On the basis of our findings, we design an inventory control model for a
single depot. The inventorymodel is formulated as a sequential decision process with uncertain
future container demand of exporters and returns from importers. Second, we propose a novel
forecasting method for non-stationary time series. Our contribution is fundamental in that we
extend the state space modeling framework to direct multi-step ahead forecasting. We improve
previous works by demonstrating the occurrences of estimation biases if state space model
parameterizations do not account for the inherent serial correlation of direct multi-step ahead
forecasting errors. Our third and last contribution provides a critical view on a popular hybrid
method (Rangapuramet al., 2018) for forecasting time series panelswhich uses a global recurrent
neural network to parameterize local state space models. We discuss limitations that primarily
stem from imposing the same state space model process for all time series and using a flexible
recurrent neural network. Our findings draw attention to the fact that the hybrid model is only
suited for a narrow range of forecasting problems. Although our first contribution is tailored
to the ECR problem, the second and third contributions are more fundamental. The proposed
direct multi-step ahead state space models can be readily applied to other forecasting problems
and our analysis of a neural network and state space hybrid provide guidance for the future
design of hybrid models.

Towards the first research objective regarding inventory control policies for container de-
pots, we extend existing Markov Decisions Processes (MDPs) in two directions that allow us to
estimate optimal inventory policies for container depots. In [Paper A], we present a capacitated
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multiple supplier periodic-review inventorymodel for dailyECRplanningof an inland container
depot. Our MDP formulation improves on previous approaches by incorporating the different
in-positioning options available to an inland container depot, considering varying transportation
times and costs. The capacity of in-positioning options can reflect the unavailability of receiving
empty containers within a specified time due to container shortages at other depots. Since these
capacities naturally fluctuate over time based on variations in customer-based empty container
demand and return behavior, we formulate a time-inhomogeneousMDP. The common assump-
tion to date has been conversely that delivery times and cost for receiving empty containers are
constant (Li et al., 2004; Song and Zhang, 2010; Young Yun et al., 2011; Song and Dong, 2022).
On one hand, this prevents the estimation of policies that find optimal trade-offs between slower
but cheaper, and faster but more expensive, modes of transportation. Trade-offs exist because
requesting empty containers with greater lead times adds additional uncertainty on short-term
inventory developments due to unknown future empty container demand and returns. On the
other hand, only modeling constant short lead times can be restrictive for real-world operations
when container shortages cause lead times to be greater.

Similar to the MDPs of Li et al. (2004); Song and Dong (2022), our model assumes that
empty container returns from importers have a one decision period delay before they can be
reused, hence container returns cannot satisfy demand within the same period. Incorporat-
ing this assumption in an MDP requires the specification of a stochastic process for exporter
container demand and importer returns, instead of modeling their imbalance. An additional
contribution of [Paper A] is the extension of stochastic empty container demand and returns to
more realistic processes on the basis of real-world data. We investigate the effect of serial and
cross-sectional (correlation between demand and returns within the same period) dependencies
on the estimated in- and out-positioning policies. Our contribution is the demonstration of
additional accrued depot operation costs when policies are estimated with an MDP for which
serial and cross-sectional dependencies are misspecified. The results of [Paper A] emphasize
the need to accurately model the joint demand and return process. The common assumption in
the literature to estimate policies under serially and cross-sectionally independent demand and
return processes is shown to lead to substantially higher operational costs than estimated. Our
MDPs are formulated such that we can apply backwards dynamic programming to estimate
optimal policies, which allows us to isolate the effects of our methodological contributions.
However, the curse of dimensionality imposes restrictions on the complexity of the demand and
return processes. Therefore, the following contributions should be viewed independently of
the requirements in [Paper A] to formulate a stochastic process, such that backwards dynamic
programming remains computationally tractable.

Towards the second research direction, we combine state space modeling and direct multi-
step ahead forecasting to predict future observations of non-stationary time series. Direct
multi-step strategies may be favored for non-stationary time series because they avoid error
accumulation of iterated strategies due to model misspecification, which likely occurs in non-
stationary environments (Chevillon, 2007). Forecasting empty container returns has another
property that guides us towards direct multi-step ahead forecasting. Namely, present booking
data of customers contains partial information about future empty container returns to container
depot. It is possible to derive covariates on the basis of a container shipment’s destination and
expected arrival time, with the distinct property that the covariates’s values decrease with an
increasing forecasting horizon. This behavior is due to the fact that not all bookings that lead
to future container returns are presently observed. Applying the iterated multi-step strategy is
challenged by the fact that the estimated 1-step ahead relationship between the covariate and
container returns does not apply for longer forecast horizons. Thus, the forecast accuracy is
likely to deteriorate for multiple steps ahead. [Paper B] is first at describing this property for
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forecasting empty container returns. Another property of this forecasting problem is that many
time series are non-stationary. Level andvolatility changes arepresent, possiblydue to variations
in customer behavior or network adaptions of the shipping company. Furthermore, the global
COVID-19 pandemic affected supply chains, hence empty container returns of customers.

To this end, we propose to use the state space framework (Durbin and Koopman, 2012) to
model empty container return time series and extend it todirectmulti-step ahead forecasting. We
choose state space models because the modeling framework allows us to estimate a broad range
of time series models, such as time-varying coefficient models to account for non-stationarities,
in a probabilistic setting. Our proposal in [Paper B] is to explicitly model the serial correlation
of multi-step ahead forecast errors as a latent moving average process. Serial correlation exists
for multi-step ahead forecast errors even if the forecast model is correctly specified (Harvey
et al., 1997), hence our contribution is universal and not an artefact of model misspecification.
The main methodological contribution of [Paper B] is the exposition of estimation biases that
occur when state space models are parameterized for direct multi-step ahead forecasting but
the serial correlation of the forecast errors is not accounted for. Our simulation studies present
the estimation biases for time-varying coefficient autoregressive models, such as being used in
state space form in Poncela et al. (2013). The results demonstrate that estimation biases can be
substantial for long forecast lead times and strongly autocorrelated time series. In addition, we
propose a flexible innovation process with time-varying coefficients and consider the Unscented
Kalman filter (Julier and Uhlmann, 2004) for approximate state estimation of a consequently
non-linear state space model.

The ambition towards the third and last research objective has been to extend [Paper B]
into a hybrid forecasting model based on the Deep State Space Model (DSSM), which has
been proposed in Rangapuram et al. (2018). The model uses a globally estimated recurrent
neural network to predict time-varying parameters of local linear Gaussian state space models.
Estimating the parameters of the recurrent neural network jointly is expected to extract features
and learn complex temporal patterns from raw time series data, whereas incorporating structural
assumptions through a state space model can alleviate overfitting (Rangapuram et al., 2018). In
[Paper B], we propose to use theUnscentedKalmanfilter to estimate non-linear latent innovation
processes when autocorrelation functions of the forecast errors vary over time. However, the
remaining state space model remained linear and Gaussian. Our objective has been to adopt
DSSM to predict time-varyingmoving average coefficients to linearize the non-linear innovation
processes in [Paper B]. The premises has been to apply the computationally faster Kalman filter,
while retaining the ability to model adaptive innovation processes. However, a closer look at
DSSM lead us to the identification of significant limitations of this class of hybrid forecasting
models.

To this end, [PaperC] explores these limitations on the basis ofDSSM.Ourfirst contribution is
to clearly state the underlying assumption ofDSSM, in that all serieswithin the globallymodeled
time series panel must follow a stochastic process that is implied by the same parametric state
spacemodel. This is a limiting restriction formany real-world problems, where it is unlikely that
all time series can be sufficiently well approximated by a single parsimonious state space model.
Our second contribution in [Paper C] is the presentation of practical limitations as a result of
using a recurrent neural network to predict the state space model parameters. Here we note
that hyper-parameter tuning requires cross-validation, which limits the applicability of DSSM
when time series are short. Moreover, we demonstrate that the employed state space models
do not provide a universal safeguard against overfitting, since time-varying parameters are
predicted. Based on the identified methodological and practical limitations, we briefly discuss
the merits of hybrid models which first apply time series models locally and subsequently
estimate the parameters of a global model on the residuals. Our last contribution in [Paper C]
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is the verification of the experimental results in Rangapuram et al. (2018).

1.4 Thesis outline
The remainder of this thesis is organized as follows. In Chapter 2, we introduce important
container shipping concepts to provide additional context for the methodological contributions
of this thesis. On the basis of these preliminaries, Chapter 3 discusses the challenges of container
inventory management at depots and ECR planning between depots. Our discussion provides
the justification for decomposing the global ECR problem into sub-problems with various plan-
ning horizons. Chapters 4 summarizes the contribution towards the first research direction, and
Chapter 5 presents our contributions towards the second and third research direction. Finally,
we conclude the key findings of this thesis and discuss future research directions in Chapter 6.
The scientific articles that this thesis is based on are provided as appendices.

1.5 List of publications
The following publications form the basis of this thesis:

[Paper A] B. Sommer, T. Krogh Boomsma, K. Kähler Holst, "Inland empty container inventory
management with Markov decision processes", Submitted (first round of revision) to Trans-
portation Research Part E: Logistics and Transportation Review, 2023.

[Paper B] B. Sommer, K. Kähler Holst, P. Pinson, "Direct multi-step ahead forecasting with state-
space models", Submitted (first round of revision) to International Journal of Forecasting, 2022.

[Paper C] B. Sommer, K. Kähler Holst, P. Pinson, "A critical look at deep state space models
for time series forecasting", Submitted to Conference on Neural Information Processing Systems
(NeurIPS), 2023.



Container shipping preliminaries

In this chapter, we introduce essential elements and procedures in containerized shipping, while
focusing specifically on the ECR problem. Nevertheless, for a more comprehensive understand-
ing of various aspects within the extensive domain of container shipping, we recommend the
following selected books. The historical development of container logistics from its infancy in
the 1950s until the end of the 20th century is presented in Levinson (2006). Lee andMeng (2015)
focus on technical topics of container shipping and modern supply chains, including optimiza-
tions methods. For an overview on port related topics we refer to Notteboom et al. (2021), for
maritime economics to Cullinane (2010) and for the broader view on intermodal transportation
systems to Rodrigue (2020). Last, we refer the interested reader to Song and Dong (2022) for a
general introduction to empty equipment logistics and sequential decision-making models in
the ECR context.

In Section 2.1 we introduce the essential components of a global container shipping network.
The separation between ocean and inland networks, and their different transportation modes,
subsequently highlights several challenges for ECRplanning. Abrief introduction to the lifecycle
of a container shipment is presented in Section 2.2. The objective of the section is to illustrate the
basic steps of a container shipment, from the initial booking request until the return of an empty
container back to the shipping company. The presented processes form the basis of the covariate
that we derive from customer booking data to forecast empty container returns in [Paper B].

2.1 The network of container logistics
Container vessels connect ports across the globe and are the foundation of containerized ship-
ping. We begin our exposition of a modern intermodal container shipping network by introduc-
ing the key components of an ocean network. Ports are the entry point to the inland network,
which we subsequently introduce.

2.1.1 Ocean network

Today, most major container shipping companies deploy their vessels in large hub and spoke
networks (Song andDong, 2015). The network structure originates from the concept of economy
of scale, where the unit container transportation costs decrease with an increasing container ves-
sel capacity. Larger container vessels (mother vessels) are used to connect strategically important
ports (hubs) over long distances. These ports are often geographically central to a region and
their infrastructure supports modern container vessels with capacities exceeding 20000 TEUs
(twenty-foot equivalent unit). Hubs are connected to smaller ports (spokes) through container
vessels (feeders) with significantly lower capacity than mother vessels. A hub and spoke net-
work utilizes feeder vessels to move containers intra-regionally from spokes to hubs, where
the containers are loaded onto mother vessels for their longer distance journey. The procedure

9
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(a) Mother vessel service (Maersk AE7 Eastbound) (b) Feeder service (Maersk 49H)

Figure 2.1: Selected inter- and intra-continental services of Maersk (available as of June 2023).

of moving a container from one vessel to another is known as transshipment, a key feature of
modern networks that connect hundreds of ports.

Each vessel in the network is deployed to a service route that serves a set of ports in a
scheduled sequence. Multiple vessels, often with similar cargo capacities, are deployed to the
same service route to increase the frequency for customers to use the service. This is in essence
close to the operations of a public bus network, where it is also possible to redeploy buses from
one service to another when demand patterns change. A real-world example of these concepts
are presented in Figure 2.1 for two different Maersk services. Shipping a laden container from
Larvik (Norway) to Yantian (China) may use a feeder service from Larvik to Hamburg and
transship the container to a mother vessel which sails to Yantian. An important aspect of
shipping networks is that sailing times of mother vessels are long. About seven weeks pass in
the above example between the departure of the mother vessel in Hamburg and its arrival in
Yantian.

2.1.2 Inland network
The network of a container shipping company expands further on land, with ports being the
natural connection point between the ocean and inland network. Ports may generally also serve
demands of other ships, such as bulk carriers or oil tankers. However, our exposition is naturally
limited to ports with container terminals, which are facilities to transship containers from one
to another transportation vehicle. Terminals equally exist at inland locations, such as rail and
barge terminals, which we subsequently explore.

Container depots An essential component of the inland network are storage facilities, also
known as container depots, to store empty containers when they are not used by customers.
Indeed, shipping companies are the primary asset owners of containers and companies operate
large container fleets to avoid container unavailabilities that lead to lost sales. Idling times
when containers are not used are consequently long. The primary locations for storing empty
containers are either ports, facilities close to ports or at strategic inland locations. All of these
locations are also used by laden containers as temporary storage while they wait for a following
transportation service to arrive during transshipments. Storage capacities at ports are often
limited and costly, and thus shipping companies operate depots outside of ports. Shipping
companies may not necessarily own a container depot, such as for depots inside ports, and
instead use a third party depot. In this case, the shipping company pays storage and handling
fees, such as gate-in and gate-out fees for delivering and picking up a container. Furthermore,
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Figure 2.2: Location of Maersk container depots in parts of Western and Central Europe.

container depots are the locations where empty containers are cleaned and minor repairs are
performed in between two consecutive shipments.

If circumstances allow, depots are located close to ports to reduce transportation times and
costs, but also to enable more flexible operations since not all ports operate around the clock.
Hence, a container can be delivered to a depot if it arrives by land outside the port operating
hours. Inland container depots are operated by shipping companies to reduce the distances
to their customers. This is essential to serve customer needs in a timely and cost-effective
manner, which may not be possible when trucks cover large distances between customers and
container depots. Figure 2.2 gives an account of Maersk’s depot network in parts of Western
and Central Europe, where a substantial amount of inland container depots are operated. The
majority of depots in Germany are located in densely populated industrialized areas, distant
from the country’s largest ports in Bremerhaven and Hamburg. Many inland depots have
intermodal terminals with transshipment capabilities for rail and barge, which allows using
other transportation modes than truck to transport containers between inland depots and ports.
Most basic depots have conversely no intermodal terminals, and thus only trucks can deliver
and pick up containers.

Transportation modes Trucks are used to transport containers to and from customer sites.
Exceptions where truck transportation is dispensable exist, for example, when cargo loading
(stuffing) and unloading (stripping) of containers is carried out inside terminals. Container trans-
portation is then carried out by train, barge or container vessel. However, we subsequently
consider the common case where an exporter requests an empty container and performs stuff-
ing at their location. A truck has then to pick up an empty container at a depot and deliver it
to the customer site. Indeed, first and last mile deliveries generally rely on truck transportation,
whereby one exception has been mentioned previously. Alternative transportation modes exist
for inter-depot container movements when rail and barge infrastructures are available. In our
context we use barges to refer to the general class of small vessels that transport containers on
inlandwaterways, without further specifyingwhether a barge is self-propelled. Container ship-
ping companies rarely own any inland transportation assets and must consequently negotiate
transportation rates with different vendors. Contract specifications with vendors vary between
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transportation modes and across countries, albeit we may generally assume that procuring ca-
pacity on the spot market for trucking services is more common than for trains and barges.
Most contracts include volume-dependent transportation rates, such as procured capacity on
train and barge services. Deviating from the procured volumes incurs premium costs and shall
thus be avoided when planning container transports.

Trains and barges are attractive for cost optimization because their bulk carrying capabilities
can reduce transportation costs between inland and port terminals. Transportation costs for
larger container volumes over longer distances are additionally cheaper than truck because of
labor costs. A caveat of trains and barges is a reduced flexibility compared to truck transporta-
tion because container transportation is bound to a fixed rail and inland waterway network.
In addition, both modes generally follow a fixed schedule, whereas trucking services can be
purchased from third-party vendors at short notice. It follows from these characteristics that
shipping companies aim to benefit from the strengths of each transportation mode. That is,
barges and trains transport larger container volumes over long distances, whereas trucks are
dominantly used for first and last mile container transportation.

2.2 Lifecycle of a container shipment
The ambition of the following description is to provide a holistic view on container booking
processes for the ECR context of this thesis. Thus, many details of the complex shipment
processes are not presented. We refer the interested reader to Lee andMeng (2015) for additional
information about the relations between customers and shipping companies. Let us consider
the previous example of shipping cargo from Larvik (Norway) to Yantian (China) to illustrate
the effect of laden container movements on ECR planning. To begin with, let us assume that
a wholesaler in Yantian (import customer) wants to import frozen seafood from a producer
in Norway (export customer). Both exporter and importer agreed on the number of required
refrigerated containers, maximum shipping prices, and timelines for the containers to arrive in
China. They proceed by contracting a supply chain management company who does not own
any transportation assets (third party logistics), whichwe refer to as the customer in the following,
to fulfill their request. The supply chain management company subsequently interacts with the
shipping company.

Booking request Given the constraints for container quantities, prices and timelines, the cus-
tomer contacts the shipping company several weeks before the planned cargo departure times
to receive quotas for several shipping services. A service constitutes various aspects of the con-
tainer journey, such as who is responsible for inland transportation of the container and which
route the containers should preferably take. Both aspects are interlinked because a customer
can contract a third-party trucking service (merchant haulage) to pick up an empty container at
a depot and deliver a subsequently laden container to a port. In this example it may be more
suitable for a customer to use its own trucking service to deliver a laden container to Ham-
burg than using the shipping company’s feeder service from Larvik to Hamburg as shown in
Figure 2.1. The responsibility for these inland services is with the shipping company when a
customer chooses carrier haulage, which in essence is a more complete service. The customer
informs the shipping company about the export and import locations, and desired arrival time
of the empty container at the export site for stuffing. Based on this elementary information,
the shipping company proceeds and organizes the inland container transportation, including
which depot an empty container should be delivered from. For merchant haulage, the shipping
company and customer agree during the booking process instead on the pick-up and return
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times at specified container depots. The processes between merchant and carrier haulage are
therefore different since merchant haulage bookings require a mutual agreement on the pick-up
and return location of empty containers at the time of booking.

Quoted prices for all services will reflect the anticipated empty container availability at
depots near the export location at the time of booking. Container unavailabilities close to
the export location can lead to a rejection of a booking request. Unanticipated equipment
unavailabilities can in the worst lead to cancellations of already accepted bookings, which can
harm the reputation of the shipping company. An itinerary is created once a booking is created.
It includes information about the assigned container depots and timings for empty container
pick-ups and returns, and routing information for laden containers through the inland and
ocean network of the shipping company.

Booking execution The booking execution process is initiated when the customer requests
empty containers. There can be a significant time gap, ranging from several days to multiple
weeks, between the acceptance of a booking request and the collection of an empty container
fromadepot. Once stuffing isperformedat the export location, the laden container is transported
to a terminal for its further transport. The terminal can either be an inland terminal, such as
rail or barge, or a container terminal at a port, depending on the booking itinerary. Upon the
arrival of the laden container at its destination terminal, a truck transports the container to the
import customer site, where cargo is stripped. The empty container is then either picked up
by the carrier haulier or delivered by the merchant haulier directly to the designated container
depot. Upon arrival at the depot, containers are cleaned and small repairs are made, before
the container is re-used for a new export shipment. Exceptions to this standard procedure exist
when containers are triangulated by delivering the container immediately to an export customer
instead of returning it to a depot (Furió et al., 2013). The benefits are that trucking distances can
be reduced and depot fees, such as gate-in and gate-out fees, are avoided.

The duration between accepting a booking and the return of an empty container can extend
to several months for shipments between Europe and Asia. During this time several factors
influence the return time and location of empty containers. Delays are likely for bookings with
multiple transshipments due to the likelihood of missing a scheduled connection. Similar to the
airline industry, shipping companies also overbook their container vessels. Thus, empty con-
tainer returns are delayed when containers must be "rolled" to another vessel. Other deviations
from the expected return time can occur when customers request to keep the empty container,
for example when used as additional storage, longer than agreed on at the time of booking.
Similarly, customers with booked merchant haulage can request to return the empty container
to a different depot when the new location helps the haulier to optimize its operations. From
these dynamics it becomes apparent that utilizing booking data is beneficial for forecasting
future empty container returns at depots because the data contains useful information about
where and when containers are likely returned in the future. However, it is also evident that
several pre-processing steps are necessary to account for variations of expected return time and
location during the lifecycle of a booking.

Booking cancellation and amendment Additional uncertainty for empty container pick-ups
and returns are induced by booking cancellations and amendments. Customers may place
bookings for future departure dates of container vessels when prices are low, but cancel at a
later stage when the booked services are not required anymore or better prices were offered by a
competitor in the spot market. Moreover, customers can request amendments to their bookings,
such as previously described for the return time and location of empty containers. Other
amendments include requested changes for delivery times and locations of empty containers,
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but also container type changes. For example, a customer can initially request one 40ft container
and ask at a later stage for two 20ft containers instead. Requests to receive empty containers
earlier than agreed during booking time can occur when customers require additional storage
space because goods where manufactured earlier than expected. In conclusion, all booking
adjustments affect the ECR planning processes in that they reduce the certainty at which empty
container deliveries and returns occur.



Empty container repositioning

The introduction of the booking process illustrates the fundamental relevance of ECR for the
profitability of a container shipping company. ECR overcomes at a global scale structural
trade imbalances that cause empty container deficits in regions with greater laden container
exports than imports. Repositioning empty containers ensures therefore the availability of
containers in a deficit region and consequently the ability to generate revenue by exporting
laden containers. Important examples in this regard are China and South-East Asia, since
both areas have significant deficits of most container types due to greater laden export than
import demands. Repositioning decisions must be made well in advance due to inherently long
transportation times from European and North American to Asian ports. Unless a shipping
company can lease empty containers on a short notice, repositioning too few containers can
cause container unavailability and consequently lost sales when long transportation times are
prohibitive to receive additional empty containers in a timely manner.

In this chapter, we explore the ECR problem in greater depth. We begin our detailed
exploration by introducing the regional empty container repositioningproblem. Ourdescription
of theproblem in Section 3.1 highlights the importance ofmaintaining sufficiently large container
inventory levels at inland containerdepots. Next,wediscuss the inventorymanagementproblem
of a container depot in Section 3.2, where we describe the problem as a sequential decision-
making process under uncertainty. In Section 3.3, we explore the differences between global
and regional repositioning due to different transportation times. Our exposition provides
insights into empty container routing decisions for long-, medium- and short-term planning
horizons. Last, Section 3.4 provides insights into the design of an ECR decision-making system,
and highlights how the publications that were prepared over the course of this PhD project can
contribute as individual components to a larger system.

3.1 Regional empty container repositioning
Similar to the global scale, regional ECR equally concerns the provision of empty containers
to export customers and the revenue generated from laden export shipments. However, the
planning processes differ due to the shorter transportation times within inland networks. The
distribution of Maersk depots shown in Figure 2.2 and their relatively short distances from
each other highlight an important aspect. Namely, equipment unavailability in a single depot
does not necessarily result in lost sales, unless there is a container shortage affecting the larger
geographical region. If a stock-out occurs at the depot closest to an export customer, the
shipping company can arrange transportation from a farther depot to meet the customer’s
needs. However, it isworth considering that transporting empty containers over longer distances
to an export customer site on short notice may incur additional costs, thereby reducing the
profitability of the export shipment. In practice, the closest depot may not always be the
preferred choice for a container shipping company to deliver an empty container to an export
customer. Throughout this chapter, we will discuss how shipping companies can optimize their
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operations by selecting alternative depots when it improves efficiency and reduces costs. By
considering various factors, such as container availability and transportation costs, shipping
companies strategically manage their container depots in conjunction with the regional inland
and feeder transportation networks to meet customer demand.

Inland transportation rates for containers vary between regions and depend on contractual
agreements between the shipping company and inland transportation vendors. The availabil-
ity of transportation capacities also affects rates, which may be unfavorable for the shipping
company due to a short notice. Shipping companies strategically utilize container depots in
combination with the regional transportation network to ensure efficient supply of empty con-
tainers to exporters. Indeed, the essence of ECR is to resupply an empty container of a completed
import shipment to an exporter at low costs. Regional repositioning fulfills therefore the pur-
pose to increase the profitability for export shipments by transporting empty containers at low
costs to inland depots, from where trucks can carry out the first and last mile transportation.

3.2 The inventory management problem
Container inventory management strategies play a crucial role in repositioning strategies as
they assess whether current container stocks at depots, along with outstanding repositioning
orders, can satisfy future customer needs. An inventory system can support the decision-making
process to requestmore empty containers by assessing the future container availability at a depot.
Projecting future container unavailability can informdecisionmakers to requestmore containers
to be delivered to this depot, whereas a projection of future container surpluses is informative to
reduce inventory levels presently. In what follows, we provide a comprehensive introduction to
container inventory management at an inland depot in the context of the ECR problem. While
real-world container depots store various types of containers, we will simplify our analysis by
considering a depot that handles and manages standard 40ft steel containers exclusively. This
allows us to focus on the core aspects of inventorymanagement within the context of a container
depot. Another important consideration in real-world operations is the condition of containers.
Containers may vary in their condition, and damaged containers typically require repairs before
they can be used for future shipments. However, for the purpose of our analysis, wewill assume
that all containers in the depot are in sound condition.

3.2.1 Empty container in- and outflows
Container in- and outflows occur at a depot due to various factors, as depicted in Figure 3.1.
Empty container returns from import customers and deliveries to export customers are among
themain factors that cause empty container stock variations. These processes are controllable for
the coming dayswhen customer bookings already exist. Within a set of constraints, the shipping
company may request an import customer who just received a laden container to return the
container earlier than is specified in the customer’s booking documents. Similarly, the shipping
company can select the container depot fromwhere an empty container is delivered to an export
customer. There will generally be one preferred depot from where a shipping company aims to
deliver an empty container to an export customer. Vice versa, there is a preferred depot where
to return an empty container of a completed import shipment. A more detailed description of a
preferred depot is presented in the following and in Section 3.3, where we introduce the routing
problems that shipping companies need to solve.

To ensure cost-effective container availability for export customers, empty containers are
strategically repositioned to depots, allowing the preferred depot to offer them at lower costs.
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Empty container stock

In-positioned empty container
 from other depots

Out-positioned empty container
 to other depots

Empty container returns from
 importers

Empty container deliveries to
 exporters

In- and out-flows of purchased 
and leased empty containers

Figure 3.1: Schematic description of the empty container in- and out-flows of a container depot.

Inland depots must maintain an adequate stock of empty containers to minimize truck travel
distances when delivering or collecting containers from inland customer sites. The further
transport between inland locations and ports can benefit from the cost-effectiveness of trains
and barges, if trucks transport containers to inlandmulti-modal terminals. Shipping companies
reposition containers in order for depots to fulfill this task in periods when empty container
deliveries exceed returns within a depot’s region. Decisions to reposition containers from
another depot need to be made in advance for two primary reasons. Firstly, there may not
always be a nearby depot that can provide the container in a timely manner. Secondly, a short
notice makes it generally more difficult to transport the container at low costs. Empty container
delivery and return requests are unknown for future weeks since new bookings are accepted
continuously. Bookings, and therefore also future empty container delivery and return requests,
are largely uncontrollable because they represent the demand of import customers to receive
goods from export customers. Empty container repositioning requests with lead times are
therefore made under uncertainty.

3.2.2 Decision-making under uncertainty

The uncertainty of future events, such as unknown empty container demand and return but
also delays of outstanding repositioning orders, exposes a decision maker of depots to the risks
of requesting too many or too few containers. Having requested too few containers in the past
can cause low inventory levels at a depot, which subsequently requires requesting more empty
containers on a short notice to avoid stock outs. This can either accrue additional transportation
costs to the shipping company or cause stock outs if the containers cannot be repositioned due
to the short notice. Additional costs can also accrue if too many containers have been requested
in the past and the estimated demand for the containers did not materialize. Thus, containers
have arrived at a depot where they are not required anymore. Before containers idle at their
current location, they may be repositioned to another depot. Both cases of ordering too many
or too few containers illustrate the sequential dependence of current inventory levels on past
repositioning decisions.
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Figure 3.2: Empty container depots in the area around Frankfurt and Mannheim in Germany.
The dashed line close to Rüsselsheim, Worms and Mannheim is the Rhine river. The Main river
flows through the city of Frankfurt and enters the Rhine west of the city.

3.2.3 Inventory management system design
Finding the right balance betweenminimizing repositioning costs and reducing the likelihood of
stock outs is challenging for a large network of depots. Decisions about decreasing or increasing
stock levels must reflect several factors. Among them are forecasts about future empty container
delivery and return imbalances, the current stock level and outstanding repositioning orders.
It is further necessary to consider the connectivity of a depot to nearby depots, the remaining
transportation network and costs of different inland transportation modes. Many trucking
vendors charge a base rate for their services in combination with variable costs that dependent
among other factors on driving distances, fuel consumption and total service times. Given short
distances between depots and customers, the additionally accrued costs of using a depot for
empty container pick-ups or returns that is not the closest to the customer are comparatively
small. This has important implications for inventory management strategies in regions with
high densities of container depots. To emphasize this, let us consider the depots in the region
around Frankfurt andMannheim in Southern Germany (cf. Figure 3.2). All depots are located at
barge terminals, except for Frankfurt, where the depot is located inside a barge and rail terminal.
The intermodal terminals are connected to the big European ports in Rotterdam, Antwerp and
Hamburg. The driving distances by truck between the depots are short. Thus, all depots can
serve customers within the shown region. The shipping company can design an inventory
management system for the group of depots, which we refer to as a pool subsequently, on the
basis of the previously introduced responsibilities of a depot and container transportation costs.

Pooling container depots

An inventory model for a pool of container depots can be used to make empty container inven-
tory decisions with longer planning horizons. A longer view on future container demand and
return imbalances is necessary to optimize repositioning costs when imbalances vary over time.
Efficient repositioning strategies build up stock levels slowly by using cheaper transportation
options in anticipation of seasonal variations, for example due to higher demand during har-
vesting periods. Preferred transportation modes do not necessarily have to be train or barge,
but can also be trucks with attractive transportation rates during low demand periods. For the
shown container depots in the region around Frankfurt andMannheim in Figure 3.2, containers
are mostly transported to and from the large ports in Rotterdam, Antwerp and Hamburg. The
shipping company can adopt their repositioning planning for inland container pools in response
to the potentially large uncertainty of future empty container demand and returns in the coming
weeks. Inventory planning can allocate a request for additional empty containers to the con-
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tainer pool for the upcomingweeks, without yet specifying towhich depot the containers should
be transported. Daily operational decisions will organize the transport of empty containers to
each of the container depots while respecting the overall repositioning plan of the container
pool.

There are two important benefits of using an inventorymodel at this aggregation level. Firstly,
using the inventorymodel to plan ECRdecisions becomes easier because repositioning decision-
making for short andmedium longplanning horizons are decoupled fromnear-termoperational
decisions. One of the major tasks of a container shipping company is to route containers from
an origin to their destination. Planning the transportation in inland networks is better known as
container drayage, and concerns primarily optimal routing of trucks to satisfy laden and empty
container deliveries and pick-ups. Daily route scheduling can use information about a higher
level pool allocation plan to organize the transportation of empty containers accordingly. If
an allocation plan foresees to reduce stock levels in the pool, empty containers are transported
from import customers to intermodal terminals, from where containers are transported by rail
or barge to a larger port. Daily decisions can also be used to short-term balance inventory levels
of nearby container depots, as in the case of the depots around Frankfurt and Mannheim in
Figure 3.2. An important aspect is that operational decisions are executed often immediately,
whereas allocation plans are adjusted when new information becomes available.

Secondly, the task of forecasting empty container demand and return imbalances simplifies.
Forecasts are essential for empty container allocation and repositioning plans because empty
container demand and return imbalances can vary over time. Naturally, the objective is to
forecast demand and return imbalances in regions where a shipping company does business,
such that the company can reposition empty containers to prevent future shortages. Theproblem
that arises for ECR planning is how to form the responsibility regions in which depots are
responsible to deliver empty containers to export customers. Forming a responsibility region
for a container pool has several benefits. Generally, fewer forecasts need to be produced because
pools are groups of container depots. Aggregating the demand and returns of multiple depots
has the additional benefit that historical time series, which are the foundation of data-driven
forecasting models, become less erratic. The modeling implications and additional time series
properties are discussed in greater details in Section 5.1, which are the foundation for our
forecasting model in [Paper B]. These modeling and computational aspects can generally be
addressed accordingly. However, a significant challenge is imposed by the necessity to forecast
unconstrained demand for empty container inventory decision-making.

Forecasting unconstrained demand

Unconstrained demand refers to the demand of export customers that would materialize if
enough containers are available. Observing this "true" demand is infeasible in practice because
bookings that are cancelled by customers induce a censoring effect. Measuring the explicit
reason why a customer decided to cancel a booking is one necessary component to derive a
historical unconstrained demand time series for a region. Several challenges arise, with one
being that a booking may be cancelled because a customer decides to ship at lower costs with a
competitor. It is unclear whether this booking accounts as demand.

The procedure that is followed for the inventory model in [Paper A] is to use historical pick-
ups and returns as proxies for the true unconstrained quantities. Evidently, this also induces a
censoring effect because no demand is observed historically when bookings were rejected as a
consequence of container shortages. Nevertheless, using historical deliveries and returns avoids
the treatment of complicated censoring effects for historical bookings. A caveat is that Maersk
only provided historical deliveries and returns for container depots and not for geographical
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regions. A challenge that arises is that pick-ups and returns at a single depot can be controlled
during operational decision-making as we have previously discussed. Thus, feedback-loops
exists between forecasts, past operational routingdecisions and inventorymanagementdecisions
at the granularity of a single depot.

These effects can be exemplified by considering the delivery of an empty container to an
export customer when the closest depot has no equipment available. Carrying out the delivery
from a close-by depot subsequently assigns the demand proxy incorrectly to a depot that is not
the closest to the export customer. Choosing another than the closest depot can also happen due
to route optimization of trucks, hence the dependence on past routing decisions. The feedback-
loops can lead to the over- or under-estimation of the true demand of customers who are closest
to a depot, which will in subsequent steps affect inventory management decisions. Producing
forecasts for a pool of close-by depots mitigates these effects to a certain extent when several
pools are sufficiently far apart. This is based on the rational that the majority of customers
within an area are served by the same pool, albeit the previous feedback effects may still persist
for customers who are located in between pools. Forecasting demand for pools does evidently
not circumvent the challenges that are induced by the censoring effect when no containers were
available, although export customers were willing to shop freight.

3.3 The empty container routing problem
We have outlined the properties of an inventory model for managing empty container stock
levels at inland container depots. Based on the introduced design, decisions are made to adjust
stock levels for a group of container depots, a so-called container pool. In the following, we will
outline how an inventorymodel for inland pools can be integrated into the ECRplanning system
of a globally operating shipping company. We analyze the planning horizons of varying lengths
in relation to the distances that empty containers are planned to cover as part of a repositioning
decision. This examination encompasses long-term, medium-term, and short-term planning
perspectives. The combination of all planning horizons gives insights into the design of a global
data-driven ECR planning and decision-making system.

Long-term It can take up to twomonths to transport empty containers from surplus regions in
Europe to container deficit regions in Asia, where empty container deliveries exceed returns. It
is essential that the planning horizon reflects these long transportation times to ensure that ECR
plans can be established between far apart regions. The planning horizon may consequently
extend up to three months, which induces several challenges. First and foremost, uncertain
future empty container demand and returns limit the accuracy of detailed repositioning plans
between depots. Consider that it takes about seven weeks for a vessel on Maersk service
AE7 Eastbound (cf. Figure 2.1) to sail from Hamburg to Yantian. This strictly means that a
repositioning decision for loading empty containers on a vessel in Hamburg must be taken at
least seven weeks before the scheduled arrival in Yantian. However, more information about
future container demand and return imbalances in Yantian can be obtained after the vessel
departure in Hamburg. Our forecasting method that we develop in [Paper B] can aid the
decision process for repositioning empty containers over long distances because it addresses
the challenge of forecasting empty container demand and returns multiple weeks ahead in the
future. When the vessel is closer to its arrival in Yantian, it may occur that the requested empty
containers are not required anymore because revised forecasts become available. This highlights
the second important challenge of long-term ECR planning. That is, planning processes are
sequential and new information arrives dynamically.
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Information about vessel arrival times, container availability in depots, bookings, inland
transportation rates and vessel capacities all evolve dynamically over time. Therefore, new
information becomes continuously available that allows to revise repositioning orders ofmoving
empty containers. Moreover, current repositioning decisions have an effect on future decisions.
The decision to load empty containers on a vessel takes up capacity and thus limits the vessel’s
ability to carry additional containers in the future. Transporting laden containers are prioritized
over empty containers in practice. As a consequence, empty containers can be unloaded at a
different than their scheduled destination. These dynamic aspects require the planning model
to revise all active repositioning orders, otherwise containers will arrive in locations where they
are not needed anymore.

A third and last challenge that we would like to highlight is the granularity of the plan-
ning model. Oversea repositioning naturally requires container vessels. Therefore, long-term
planning has to reflect the vessel departure schedules at ports, hence the ocean transportation
network. To which extent the inland transportation network should be represented in long-term
planning is not clear. Trucks for example follow a flexible schedule, whereas trains and barges
generally follow a fixed schedule. Moreover, shipping companies can control variable costs
associated to owning and operating container vessels, which is contrary not the case for trans-
portation modes in inland networks. Since repositioning decisions are affected by prices, which
can vary in inland networks between vendors and transportation modes, it may be difficult to
reflect this information accurately in a long-term planning model. Overall, the planning model
must account for various container types, which all share the same capacities on vessels, barges
and trains.

Medium-term The challenges in long-term oversea planning can motivate additional plan-
ning processes with shorter horizons to optimize empty container flows in smaller geographical
regions. The design of a modern shipping network as a hub and spoke network lends itself
naturally to a decomposition with long- andmedium-term planning horizons. A shipping com-
pany can follow a strategy of long-term planning to transport empty containers to strategically
important hubs. Medium-term ECR planning further distributes empty containers from a hub
to a region with feeder services and inland transportation services. The shorter planning hori-
zon allows representing an inland network more accurately in terms of schedules, capacities
and freight rates, which may need to be forecasted when inland transportation capacities are
only procured on the spot market. Planning horizons may extend to several weeks to cover
the previous aspects of ECR between ports and inland pools. Our proposed empty container
allocation model in [Paper A] can be integrated into such a regional ECR planning model, since
it generates requests for reducing or increasing the inventory for an inland depot.

Decomposing this planning problem between regions is a challenging problem for a global
shipping company. A natural direction to follow is to formulate repositioning models for
each continent. However, feeder services may exist that connect two continents, such as parts
of Southern Europe and Northern Africa. A second challenge is related to the scale of the
repositioning problem and concerns the planning granularity. Repositioning plans are required
for all container types, which share capacities on feeder vessels, trains and barges. Moreover, it
is unlikely that a problem can be solved at a global scale for thousands of inland depots. Thus,
the introduced aggregation strategy may be applied to reposition empty containers between
ports and container pools. The planning problem remains dynamic and sequential due to the
traveling times of severalweeks for feeder vessels, whichmust be addressed accordingly. That is,
new information becomes continuously available once a container is loaded on a feeder vessel,
which may require to revise the repositioning decision.
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Short-term Operational, or short-term, planning primarily concerns empty and laden con-
tainer transportation between terminals, depots and customers. The routing task in inland
networks is also known as container drayage. Two tasks need to be fulfilled jointly. The first task
is the delivery of laden containers from terminals to import customer sites, and the subsequent
pick-up of an empty container once freight has been removed. The second task is the delivery
of empty containers to export customers and the subsequent transport of laden containers to
terminals. Drayage operations often concern the management of a fleet of trucks that is tasked
to minimize the transportation costs for picking up and delivering containers at fixed origins
and destinations. Optimal routing decisions are difficult to obtain for real-world problems be-
cause the problem has to be formulated as an integer problem. Thus, a large combinatorial
optimization has to be solved whenmany orders are handled simultaneously, which often relies
on heuristics. In fact, drayage operations can utilize container triangulation (Furió et al., 2013)
to minimize the transportation costs of empty containers to export customers. A challenge is
that the combinatorial problem for drayage planning becomes more complicated to solve. Opti-
mizing container triangulations creates additional possible routes for trucks because the return
location of empty container is not determined beforehand.

Drayage optimization may additionally address the requirement to balance empty container
inventories of nearby container depots. Formulating a drayage optimization problem with
triangulation and empty container inventory balancing faces the following challenge. On one
hand, the identification of triangulation to satisfy customer needs for receiving laden and empty
containers can be limited to a single day. On the other hand, optimizing empty container
inventories requires considering future information as we have discussed in detail. Thus,
triangulation is a static problem that can be solved every day independently of the next day,
whereas inventory decisions are sequential. Optimizing both decisions in a single optimization
problem is challenging due to the inherently large computational complexity, thus unlikely to be
practical for real-world problems. As a consequence, inter-depot balancing of empty containers
is planned independently by determining the return location of empty containers that cannot
be triangulated a priori. Thus, container drayage operations aim to fulfill a regional ECR plan.

3.4 An ECR decision-making system

Based on the described inventory management and container routing challenges, a shipping
company can design an ECR decision-making system that follows a top-down approach. Long-
term planning ensures that sufficient amounts of empty containers are available in strategically
located hubs. Planning decisions with horizons up to several weeks distribute empty containers
from hubs to inland depots and smaller regional ports. The distribution of containers to inland
depots ensures thatdailydrayageoperations canbe carriedoutwithout being subject to container
unavailabilities that interrupt operations, thus accrue additional costs. Eachof theplanning steps
addresses the inherently long lead times of transporting empty containers over long distances,
and therefore the related uncertainties due to unknown future empty container demand and
returns. Maintaining sufficient empty container stock levels in strategic locations is essential
in this top-down approach. It allows postponing the transport of empty containers to inland
depots until more information about future container imbalances become available. Although
the planning approach is considered to be top-down, decisions are executed bottom-up. That
is, drayage operations are made to fulfill regional ECR plans, and consequently global long-
term ECR plans. If a regional ECR plan aims to reduce empty container stocks, then drayage
operations are tasked to deliver empty containers to ports, from where they can be further
repositioned.
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Decomposing the global empty container inventory and repositioning problem is difficult
because all planning levels are interlinked with each other. Finding appropriate separations
between different temporal and spatial planning levels of the ECR problem is largely influenced
by the inventory and routing aspects that we have discussed throughout this chapter. Any
decomposition of the global ECR problem will evidently have caveats, which eventually lead
to short-comings of an ECR decision-making system. Nevertheless, the planning problem has
to be decomposed in some shape or form because formulating and solving a single mathemat-
ical model to optimize empty container inventory and routing decisions jointly is infeasible.
The optimization model would need to be a sequential and stochastic decision-making model
for balancing inventories of multiple container types between thousands of depots. Optimizing
drayage operationswould require accurate representations of customer locations, whereas plan-
ning the transportation of empty containers overseas requires to represent the large-scale ocean
network and the inherent uncertainties due to delays. Essentially, a single ECR planning model
would require to represent the global operations of a shipping company in a singlemathematical
model, which evidently is infeasible.

Depending on the specific design of a shipping company’s global ECR decision-making
system, several forecasting, routing and inventory models are required. The empty container
inventory model in [Paper A] can be used by a shipping company to support their inland depot
operations. In [Paper B], we develop a forecasting model that addresses many of the real-world
challenges when forecasting empty container demand and returns in the upcoming weeks. The
same methodology can be extended to forecast empty container demand and returns for larger
geographical regions and longer horizons, thus can benefit a shipping company to make long-
term repositioning decisions. The forecastingmethodology in [Paper C] has likely no immediate
benefit for ECR planning. None of the major forecasting problems that a shipping company
faces during ECR planning fulfills the requirements of the hybrid forecasting methodology of
[Paper C].
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Sequential decision-making under
uncertainty for container depots

The previous chapter explored challenges for empty container inventory management and rout-
ing. Throughout this chapter, we focus our attention on the inventory management problem
of an inland container depot. The assessment whether current container stock levels and out-
standing empty container repositioning orders are sufficient to satisfy future container demand
builds the cornerstone of the inventory problem. Decisions to receive empty containers from
other depots are made under uncertainty due to unknown future demand and must be made
in foresight due to transportation lead times. Inventory management decisions have been de-
scribed to have both immediate and long-term consequences. On one hand, ordering too few
containers can lead to future container shortages and additional costs if repositioning additional
containers on a short notice requires to pay premium costs. On the other hand, ordering too
many containers now can cause containers to idle in locations where they are not needed if
demand has been overestimated. Therefore, present decisions will affect the future ability of the
depot to provide empty containers to exporters at low costs.

In this chapter, we present our contributions towards the first research direction; inventory
control policies for container depots. Section 4.1 introduces the key elements for describing the
sequential decision process for managing the inventory of a container depot. We provide a brief
introduction to Markov Decision Processes (MDPs) and backward dynamic programming in
Section 4.2. Our contributions of [Paper A] are summarized in Section 4.3.

4.1 The sequential decision process of a container depot
A depot manager, which in our case is assumed to be the decision maker, faces the task of
controlling the inventory of an inland container depot. The decision maker can exchange empty
containers with ports and nearby inland depots to balance the inventory. The costs and lead
times for repositioning containers depend on the transportationmode and container availability
at other depots. Costs accrue to the decision maker for receiving and sending empty containers,
as well for operating the depot where storage costs accrue. The main responsibility of the
decision maker is to provide empty containers to exporters and accept container returns from
importers who unloaded their freight. Future demand of exporters and returns of importers
are unknown to the decision maker. A decision to in-position empty containers ensures that
the inventory can satisfy the demand of exporters in periods when demand exceeds the returns
from importers. Containers are conversely out-positioned to reduce the inventory, hence storage
costs, when container returns exceed demand. Both decisions are made daily at a fixed time
point, and no additional decision to either receive or send containers can be made before the
next day. The depot operates all year round and no definite date determines the end of this
planning process. The objective of the decision maker is to minimize the long-run operating
costs of the depot.

25
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Figure 4.1: Schematic illustration of a sequential planning process. Decisions are made at the
beginning of each decision period, which spans the time when additional information becomes
available to the decision maker before another decision is made.

Figure 4.1 illustrates the sequential planning process of the depot operator schematically
over time. An important aspect of the decision process is that the system evolves dynamically
over time, which is indicated by the growing history in Figure 4.1. At this point, let the system
refer in the broadest sense to a set of depots, the transportation network and customers. Today’s
decision to in- or out-position containers are chosen at the beginning of a decision period. Once
a decision is made, time passes and the system evolves. When it is time to make a new decision
during the next day to in- or out-position containers, the decision maker finds the inventory of
the depot and the rest of the system in a new state. The new state can provide the decisionmaker
with additional information about future container demandand returns, updated transportation
rates as well as inventory levels at other container depots. A characteristic of sequential decision
problems is that decisions have immediate and long-term effects on the system. The decision
maker considers for this reason a planning horizon to assess the long-term impact of a decision,
thus aims to assess whether the current decision allows to minimize future depot operating
costs. For instance, ordering no container now reduces immediate costs because no costs accrue
for receiving empty containers. However, long-term costs are affected when container shortages
occur and costly last minute orders must be placed to receive additional containers.

Throughout the remainder of this section, we introduce the common terminology to for-
mulate mathematical models for sequential decision processes. The mathematical formalism
enables the estimation of decisions for the depot operator in complex systems. We use decision
epochs to refer to the fixed time points when in- and out-positioning decisions are made at the
beginning of every decision period.

States At each decision epoch, the decision maker observes the state of the system. In the
broadest sense, the state provides the informationbasis formakingdecisions. The inventory level
of the depot is one ofmany states that describe the system, as it determines howmany containers
can be out-positioned. Outstanding in-positioning orders provide additional information to the
decision maker. A current ordering decision is naturally affected by the knowledge that more
containers will arrive during the next days. Similarly, states that describe the broader system can
improve a decision maker’s ability to take present decisions for minimizing the depot operating
costs in the long-run. For instance, a state can provide additional information about future
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empty container demand and returns.

Actions The decision maker takes a decision, or action, in every epoch to out- or in-position
empty containers once the system state is observed. Actions are selected from a finite set, as
only a countable number of containers can be out- and in-positioned. Moreover, the present
state determines the available actions. For the described inventory system, it is not possible to
out-position more containers than are presently available at the depot.

Exogenous processes The transition of a state from the present to the next epoch depends
commonly on two factors. First, an action will affect the states that we aim to control. That
is, the inventory of the container depot, but also states of outstanding empty container orders.
Second, exogenous processes can affect states. Satisfying the demand of exporters will decrease
the inventory, whereas picking up empty containers from importers will conversely increase the
inventory. Both quantities are stochastic and unknown for the current as well future periods
when the decision maker takes a decision at the current epoch. In addition, empty container
demand and returns are to a large extent uncontrollable, hence exogenous. Moreover, other
exogenous processes can be responsible for the delayed arrival of outstanding repositioning
orders.

Transition functions Stochastic exogenous information is only revealed for the present deci-
sion period once the decisionmaker has chosen an action. Transition functions aremathematical
formulations that describe the evolution from the present to the next epoch as result of a selected
action and realized exogenous variables. For instance, the inventory of the depot changes as a
consequence of the number of out- and in-positioned containers as well as empty container de-
liveries to exporters and returns from importers. Modeling a delay of outstanding repositioning
orders may not require a detailed physical description of the transportation process. Instead, a
probabilistic model can describe the likelihood of orders being delayed.

4.2 Markov Decision Processes
The former elements are basic components of mathematical formulations that describe sequen-
tial decision processes. An objective function that specifies how present decisions should be
madewith respect to an uncertain future ismissing. Objective functions include three important
elements. First, there are contribution or cost functions. Costs accrue every decision period as
a consequence of a decision maker’s action and realization of exogenous information. Costs
for depot operations are mostly associated with in- and out-positioning decisions, storage costs
but also accrued costs for unsatisfied exporter demand as a consequence of container shortage.
Second, an objective function includes a planning horizon (cf. Figure 4.1). Short planning hori-
zons can lead to myopic behavior if the impact of a decision to minimize the depot operating
costs in the future is underestimated. Conversely, the planning problem is becomes complex
when the impact of present decisions on the evolution of the system state must be evaluated for
longer horizons. The third component of an objective function specifies a criterion to account
for the uncertain system transition over future periods. The criterion determines how present
decisions should be taken with respect to their downstream impact for minimizing future costs.
Most objective functions consider expected value problems, where a present action is selected
to minimize future costs over the planning horizon in expectation. However, other risk-averse
objective functions also exist.
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4.2.1 Motivating Markov Decision Processes
Optimizing the objective function is challenging because decisions at the beginning of the plan-
ning horizon affect the downstream ability of later decisions to minimize costs. Finding optimal
solutions with respect to the objective function requires, as a consequence of the sequential de-
pendencies, to evaluate sequences of decisions over the whole planning horizon. The objective
function value represents therefore the value of a decision at the beginning of the planning
horizon to reduce future costs. A major challenge is that the number of decision variables
grows exponentially with the planning horizon length. Several algorithmic strategies evolved
in various communities of stochastic optimization to address this curse of dimensionality. We
refer the interested reader for a review of the extensive field to Powell (2019).

One common approach for long planning horizons is to formulate the sequential problem as
a Markov Decision Process (MDP). A decision process is Markovian when the state transitions
and the accrued costs depend on the past of the system and the decision maker’s decisions only
through the current state and selected action. The benefit of imposing theMarkovian assumption
is that the objective function of expected value problems can be solved recursively. Instead of
estimating the decisions for all periods simultaneously, it can be shown that the optimal decision
sequences can be found by solving a sub-problem for each decision period. Thus, our aim is
in the following to describe the depot operations as a MDP to estimate theoretically optimal
decisions.

However, in our case decisions are only theoretically optimal because a MDP is only an
approximation of a complex real-world system. It is therefore important to understand the
differences between the true decision processes at a container depot and a specified MDP. Real-
world depot operations are complex and repositioning decisions are subject to the continuously
evolving information set of a non-stationary environment. In particular, any decision in Fig-
ure 4.1 relies on forward-looking information throughout the whole planning horizon. Among
other factors, this includes information about the evolution of transportation rates and capaci-
ties. In addition, formulating a MDP for the container inventory management problem requires
assumptions about the empty container demand and return behavior of customers. In Chap-
ter 5, we discuss that these processes are frequently non-stationary. That is, the parameters that
describe the stochastic processes vary over time. A common approximation for non-stationary
processes is to assume them to be locally stationary, where parameters are constant for shorter
time windows. We follow this approach and assume empty container demand and return pro-
cesses to be stationary throughout the planning horizon in [Paper A]. Once the parameters that
describe the stochastic process change, the optimal decision sequence is re-optimized.

4.2.2 Finite-horizon and discrete Markov Decison Processes
Our brief introduction toMDPs is based on the text book of Puterman (1994), where all proofs of
the following standard results are found. We present a finite-horizon MDP in discrete time for
greater generality without considering for now an application to the depot operation problem.
Thus, let T = {0, 1, 2, . . . , )} denotes the set of decision epochs, with ) < ∞ being the finite
planning horizon. At each decision epoch C ∈ T , the decision maker observes a discrete-valued
state B from a finite state space S. Upon observing the state, the decision maker chooses an
action 0 from the set of possible actions in state B, AB . The set of all actions A = ∪B∈SAB

constitutes the action space of the MDP. Actions are discrete-valued, henceA is a finite discrete
space.

Once an action 0 is chosen in state B and epoch C, the system evolves into a new state B′ in
epoch C + 1 and the decision maker receives a reward. Note that negative rewards are equal to
costs. The transition under action 0 from the current state B to a state B′ in the next epoch follows
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Figure 4.2: Symbolic description of a sequential decisionprocess in discrete time. The illustration
has been adopted from Puterman (1994). The dashed lines indicate that actions and exogenous
information affect the transition of the state from the present to the next decision epoch.

the conditional probability %C(B′ |B, 0), with
∑
B′∈S %C(B′ |B, 0) = 1. The transition probabilities

depend on the state transition functions, and may therefore depend on exogenous processes.
However, we omit for now the explicit dependence of state transitions on exogenous processes
to simplify our exposition. We further let AC(B, 0, B′) denote the real-valued reward function
that assigns a contribution to the decision maker’s objective in period C as a consequence of the
transition from B to B′ under action 0. The reward functions are required to be known before
choosing an action. In addition, we require that the collected reward in period C is not effected
by future actions. Figure 4.2 provides a schematic illustration of this sequential decision process.

Due to uncertainty, decisions may be taken in expectation of the current period’s reward

AC(B, 0) = E(AC((, �, (′) | ( = B, � = 0) =
∑
B′∈S

AC(B, 0, B′)%C(B′ |B, 0)

to account for the stochastic transition from state B to future states under action 0. Throughout
the remainder of this chapter, we follow the convention that lower case characters (B) denote
realizations of stochastic variables ((). The essence of a sequential decision problem is that the
ability to generate an immediate reward has to be weighted against the possibility to generate
future reward when the system evolves into a new state. As we will show in the following, the
reward functions and transition probabilities contain all necessary information to make optimal
decisions when maximizing the sum of total expected reward over the finite planning horizon
). Finally, a MDP is defined by the tuple

{T ,S ,A , %C(·|B, 0), AC(B, 0, B′)}.

4.2.3 Expected total reward problems

Let B0 ∈ S denote the observed state of the system at the beginning of the planning horizon,
C = 0. The decision maker is tasked to find the sequence of decision functions 3C : S → AB that
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maximizes the expected total reward

+�
0 (B0) = E�

[
)−1∑
C=0

AC((C , 3C((C), (C+1) + A)(())|(0 = B0

]
(4.1)

over the planning horizon ). We use upper case (C to express the stochasticity of states at future
epochs C = 1, . . . , # . The transition between states is described by their transition probability
functions. The expectation is with respect to the distribution that is induced by the policy
� = (30 , 31 , . . . , 3)−1) ∈ Π, which denotes a sequence of decision functions. In addition, we
assume that no decisions are made at the last decision epoch ). Instead, the decision maker
receives a terminal or salvage value A)(B)) for being in a terminal state B) . +�

0 (B0) is known as
the value function and determines the expected reward when following the policy � from the
initial state B0 at C = 0 onwards. An optimal policy �★ is obtained by solving the maximization
problem

�★ = argmax
�∈Π

+�
0 (B0). (4.2)

Maximizing +�
0 (B0) directly requires to explicitly obtain the joint distribution of states that is

induced by a policy. Moreover, optimizing the policy for all stages simultaneously becomes
computationally intractable when ) is large due to the exponential growth of the number of
decision variables. Both challenges can be avoided by first recognizing that Equation (4.1) can
be written as

+�
C (BC) = E� [AC((C , 3C((C), (C+1) ++C+1((C+1)|(C = BC] , (4.3)

which is due to the Markovian assumption for the state transition and expected rewards. The
expression decomposes the value of being in period C in state BC into the expected immediate
reward and future rewards when following the policy � in the current and future decision
epochs. The proof for Equation (4.3) uses the linearity of the expectation operator. Thus, other
objective functions that may use risk measures do not necessarily follow the same recursive
structure. This prohibits the application of the following algorithm to estimate optimal policies.

4.2.4 Backwards dynamic programming
The inductive scheme of the value function lends itself to solve the objective function (4.2)
recursively. The standard result finds an optimal policy �★ to satisfy

+�★
C (BC) = max

0C∈ABC

E
[
AC((C , 0C , (C+1) ++�★

C+1((C+1)|(C = BC
]
,

whereABC is the space of allowable actions in state BC . The expression is known as the Bellman
equation and provides the foundation of dynamic programming. Instead of maximizing the
expected total reward in Equation (4.1) over all ) periods directly, we subsequently solve ) − 1
one-period maximization problems. Under the assumption that no decisions are made in the
final epoch ), we obtain

+)(B)) = A)(B))
as the value for being in state B) in the final epoch. We then step backwards in time and solve
the Bellman equation

+C(BC) = max
0C∈ABC

E[AC((C , 0C , (C+1) ++C+1((C+1)|(C = BC]

= max
0C∈ABC

∑
B′∈S

(
AC(BC , 0C , B′) ++C+1(B′))?C(B′ |BC , 0C

)
,



CHAPTER 4. SEQUENTIAL DECISION-MAKING UNDER UNCERTAINTY FOR
CONTAINER DEPOTS 31

since the value of being in state B′ in epoch C + 1 is known from the previous step. Obtaining the
transition probability functions %C(·|BC , 0C) is one of the difficulties when formulating a MDP in
many practical applications, as we illustrate for a stochastic inventory problem in the following.
The optimal policy is tabulated since any decision function 3★C (BC) in �★ returns the optimal
decision 0★C for state BC in epoch C. The described algorithm is better known as backwards
dynamic programming and suffers from a curse of dimensionality. It is important to note that
commonly we are only interested to find an optimal decision for the beginning of the planning
horizon, that is 3★0 (B0).

4.2.5 Curse of dimensionality
Backward dynamic programming finds a solution to the Bellman equation during each epoch for
every state in the state space S. The algorithm scales linearly in the number of decision epochs
), and is therefore attractive for solving planning problems with long horizons. However,
dynamic programming suffers from the curse of dimensionality for large state spaces. Powell
(2011) considers the inventory management problem for " different products to illustrate the
exponential growth of the state space. If each product ranges from 0 to % − 1 items, then
the state space will have %" unique states, where a single state is a "-dimensional vector of
an unique inventory position. Backwards dynamic programming becomes computationally
unattractive for large state spaces, since a solution to the Bellman equation is required for each
state. A related curse of dimensionality exists for large action spaces because an enumeration
of all actions is required to find the maximum to the right-hand side of the Bellman equation.
Reinforcement learning, also known as approximate dynamic programming, addresses these
curses of dimensionality with algorithmic strategies to learn policies for high-dimensional state
and action spaces. The application of relevant techniques is out of the scope of this thesis and
is considered to be future work. We refer the reader to Powell (2011) for an introduction of
approximate dynamic programming.

4.3 Optimal control for container inventory management
The curses of dimensionality represent a significant challenge when it comes to estimating
optimal decisions for sequential processes. In the following, we use common assumptions for
container depot operations that allow us to retain a compact state space. We apply backward
dynamic programming to estimate theoretically optimal inventory management policies, which
can serve as a starting point for developing approximate dynamic programming algorithms in
the future. In addition, using the exact algorithm provides a better understanding about the
dynamics of the inventory system under various specifications. The remainder of this section is
our contribution towards the first research direction and summarizes [Paper A].

4.3.1 Multiple supplier selection problem
Let us consider that the inland depot is exclusively responsible for satisfying the demand
of exporters inside a wider region. Trucks are used to deliver empty containers from the
depot to customer sites. The depot manager is responsible for maintaining sufficient inventory
levels to provide this service to exporters, and therefore repositions empty containers with a
port before shortages occur. Containers are transported between the port and inland depot
with multiple modes of transportation. Each mode has different delivery times and costs per
container. Figure 4.3 summarizes the description of this conceptual inland network. Based on
our description of the inventory management problem for depots in Section 3.2, the following
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Figure 4.3: Conceptualized transportation network with a single port and inland depot. Taken
from [Paper A].

exposition extends also to a group of nearby depots. For instances, we may use the MDP to
control the joint inventory of depots in the Frankfurt-Mannheim region in Figure 3.2, as most
depots are connected with barge and train services to the port of Rotterdam.

Actions We consider that the inventory consists of a single container type. The decisionmaker
uses out- and in-positioning decisions control the inventory, where all decisions are made once
every day for a finite planning horizon ). Let �−C ∈ A− = {0, 1 . . . , �̄−} denote the decision
to out-position empty containers from the depot in decision epoch C. We follow the notational
convention of [PaperA] anduse superscripts− and+ to denote empty container out- and inflows,
respectively. In addition, we use the bar notation to denote capacities. Thus, �̄− denotes the
available capacity for out-positioning empty containers to the port. Empty containers can be in-
positioned with lead times ; = 0, 1, . . . , ! to represent different modes of transportation, with !
representing the longest transportation time. Let �+

; ,C
∈ A+

;
= {0, 1, . . . , �̄+

;
} denote the number

of empty containers that are requested at epoch C to be delivered to the depot at the end of
decision period C+ ;. This implies that �+0,C requested containers will only arrive at the end of the
current period. We assume that all orders are deterministic, thus all requested containers arrive
without delay. Finally, we let �C ∈ A = A− ×A+0 ×A+1 · · · × A+! denote the full decision vector,
where × denotes the Cartesian product. The problem is viewed as a multiple supplier selection
problem because the decision maker chooses from various supply options. Each supply option
has different lead times for receiving the additional containers from the port. Extending the
depot inventory management problem to multiple lead times is one contribution of [Paper A].

States The inventory state of the container depot is denoted by �C ∈ ℐ = {0, 1, . . . , �̄}, where �̄
denotes the finite storage capacity. In addition, we use $; ,C ∈ O; , ; = 0, 1, . . . , ! − 1 to denote
the states of outstanding repositioning orders. These on-order states evolve as

$;−1,C+1 = $; ,C + �+; ,C , ; = 1, . . . , ! − 1,

and
$!−1,C+1 = �

+
!,C ,

where our notation for$; ,C should be read as the number of previously ordered empty containers
(before epoch C), that will arrive at the end of decision period C + ;. From the transition
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Figure 4.4: Schematic illustration of theMDPat epoch C. Arrows indicatewhen empty containers
arrive or leave the depot. Adopted from [Paper A].

functions we obtain O; = {0, 1, . . . ,
∑!
8=;+1 �̄

+
;
} as the finite space of the on-order state $; ,C .

We denote the complete endogenous state by (†C = (�C , $0,C , $1,C , . . . , $!−1,C), with (†C ∈ S† =
ℐ × O0 × O1 × . . . × O!−1. The inventory of the depot evolves as

�C+1 = min(max(�C − �−C − /−C , 0) + �+0,C + $0,C + /+C , �̄),

where/−C and/
+
C denote the empty container demandof exporters and returns from importers in

period C, respectively. Both variables are discrete-valued random variables and unknown to the
decision maker when action �C is selected at epoch C. The inner max operator incorporates the
assumption that inventory can at no point fall below zero containers. Moreover, we assume that
out-positioned empty containers leave the depot immediately. The outer min operator accounts
for the finite capacity of the storage and represents our assumption that empty container returns
have a one decision period lead time before they can be reused to satisfy demand. The delay
before returned containers can be reused necessitates to specify the joint process of /−C and /+C ,
instead a process for their difference. Figure 4.4 summarizes the state and action dynamics for
this MDP.

Exogenous processes An important contribution of [Paper A] is the exploration of serial and
cross-sectional dependent empty container demand and return processes. At this point, let us
assume that both processes are exogenous, thus cannot be controlled by the decision maker.
Moreover, demand cannot be backlogged. We consider the stochastic process of /−C and /+C to
be induced by the conditional joint distribution

%(I−C , I+C |I−C−1 , . . . , I
−
0 , I
+
C−1 , . . . , I

+
0 , GC) = %(I−C , I+C |GC),

which is conditionally independent of the process history, given an exogenous state -C ∈ X. We
follow the definition of a state variable and let -C only include information that is available at
decision epoch C. In fact, [Paper A] considers the demand and return processes to beMarkovian,
hence -C = (/−C−1 , /

+
C−1). Markovian demand and return processes imply that the demand

and return realizations of the previous decision period C − 1 provide useful information for
choosing �C in epoch C. Thus, the complete state vector of the inventory system becomes
(C = ((†C , -C) ∈ S = S† × X.
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4.3.2 Objective function
The objective of the decision maker is the minimization of expected future total costs

+�(B0) = E�

[
)−1∑
C=0

�C((†C , 3C((C), /−C , /+C ) + �)((†))
�����(0 = B0

]
,

where �C((†C , 3C((C), /−C , /+C ) is the cost function in period C and B0 ∈ S is the initial state of the
system. The function is defined to include costs for out- and in-positioning empty containers
(3C((C)), penalty costs for not satisfying demand and for empty container returns exceeding
the storage capacity, as well as holding costs. �)((†)) denotes the terminal cost function. All
cost parameters are time-homogeneous and known throughout the planning horizon. For a
detailed description of both cost functions we refer to [Paper A]. We employ backward dynamic
programming to estimate the optimal policy as �★ = argmin�∈Π+

�(B0), where

+C(BC) = min
0C∈ABC

E
[
�C((†C , �C , /−C , /+C ) ++C+1((C+1)|(C = BC , �C = 0C

]
= min

0C∈ABC

E
[
�C(B†C , 0C , /−C , /+C )|-C = GC

]
+ E[+C+1((C+1)|(C = BC , �C = 0C]

= min
0C∈ABC

∑
I−C ,I

+
C

%(I−C , I+C |GC)�C(B†C , 0C , I−C , I+C ) +
∑
BC+1∈S

%(BC+1 |BC , 0C)+C+1(BC+1)

is the Bellman equation for epoch C. The state-dependent action spaceABC enforces the constraint
that nomore than currently available containers can be out-positioned. Moreover, in-positioning
decisions are restricted not to exceed the maximum admissible value of each on-order state.
That is, �+

; ,C
+ >; ,C ≤ maxO;−1, with >; ,C being the already requested containers to arrive at the

end of period C + ;. The transition probability can be shown to factorize as %(BC+1 |BC , 0C) =
%(B†

C+1 |GC+1 , BC , 0C)%(GC+1 |GC). It shows that we must obtain %(GC+1 |GC) for the exogenous state
-C if it provides useful information to the decision-maker, thus describe the evolution of the
exogenous state over time.

4.3.3 Simulation studies
In [PaperA], simulation studies areused to investigatehowdifferent assumptions impact optimal
in- and out-positioning decisions. The storage capacity of the depot is assumed to be �̄ = 80.
There are three daily transportation options to in-position empty containers from the port, with
lead times of zero, one, and two periods. The in-positioning costs per container decrease as the
lead times increase to reflect that slower modes of transportation are cheaper. The penalty for
unsatisfied demand (1,000) is large compared to the penalty for exceeding the storage capacity
(50). Holding costs are small (1).

Exogenous processes and policy evaluation

All marginal demand and return processes are assumed to follow negative binomial autoregres-
sive (NBAR) processes

/C |/C−1 ∼ %(IC |IC−1) = #�
(

�2
C

�2
C − �C

,


 + �C

)
,
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where the superscripts to denote demand (/−C ) and return (/+C ) variables are omitted. #�(·, ·)
denotes a negative binomial distribution with mean and variance

�C B E[/C |/C−1] = exp(2 + � log(/C−1 + 1))

�2
C B Var[/C |/C−1] = �C +

1

�2
C

. (4.4)

The autoregressive parameter � controls the serial dependence strength, 2 is a drift term and a
dispersion parameter  induces overdispersion. A Clayton copula

��(D, E) = max
(
[D−� + E−� − 1]−1/� , 0

)
is applied to themarginal conditional CDFs �(I−C |I−C−1) and �(I+C |I+C−1) of two independent NBAR
processes to generate a cross-sectional dependent process for container demand and returns.
A parameter � ∈ [−1,∞]\{0} controls the dependence strength for the joint process. It is
not straightforward to obtain analytical expressions for %(I−C , I+C ) when marginal processes are
serially dependent and a copula is used to induce cross-sectional dependence. Therefore,
%(I−C , I+C ) is approximated with Monte Carlo sampling. More details for the sampling method
are presented in [Paper A].

The simulation studies investigate to the most part the effects of estimating policies under
misspecified demand and return processes. For instance, a policy is estimated under the as-
sumption that demand and return processes are serially and mutually independent. However,
the true process can conversely be serially and cross-sectionally dependent. The effects of this
misspecification between the assumed and true exogenous process are estimated with

E
[
+�★((†0 , -0)|(†0 = B†0

]
,

where the expectation is evaluated with respect to the true demand and return process, but the
policy �★ has potential been estimated with a different process.

A dependence on G0 is omitted to remove its effect on the estimated true costs of a policy.
To approximate the expectation we perform three steps. First, 10,000 trajectories of length )
are sampled from the true demand and return process. Second, starting for C = 0 in B†0 , the
value of an estimated policy �★ is obtained by following the policy throughout the planning
horizon while using demand and return samples to obtain the costs in each period. Third, an
approximation of the expectation is obtained by averaging all 10,000 policy values. We follow
this procedure to quantify the bias in the objective function, i.e. value function at C = 0, as
a consequence of a misspecified exogenous process. However, a decision maker in real-world
problems would only implement the optimal decision for the beginning of the planning horizon
at C = 0 (cf. Figure 4.1).

An important aspect is that �★ denotes an optimal policy for a specified MDP, thus for an
assumed demand and return process. The policy is numerically optimal because backward dy-
namic programming finds an exact solution for the objective function. However, we emphasize
that a policy may not always be optimal in the sense of lowest operating costs as a consequence
of misspecifications. The misspecification costs for policy �★1 are obtained by evaluating the
ratio

'(�★1 ,�
★
2 ) B '(�★1 ,�

★
2 |B
†
0) =

E
[
+�★1
((†0 , -0)|(†0 = B†0

]
E
[
+�★2
((†0 , -0)|(†0 = B†0

] , (4.5)
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Table 4.1: Serial and cross-sectional dependence of the exogenous process models for the MDP
formulations. Taken from [Paper A].

MDP name demand & return dependencies exogenous state
AR %(I−C |I−C−1)%(I+C |I+C−1) -C = (/−C−1 , /

+
C−1)

IID %(I−C )%(I+C ) none
ARcross %(I−C , I+C |I−C−1 , I

+
C−1) -C = (/−C−1 , /

+
C−1)

IIDcross %(I−C , I+C ) none

with �★2 being estimated under the true exogenous process, whereas �★1 is not. The ratio is also
known as relative regret. The initial state B†0 = (80 , >0) = (�̄/2, 0) = (40, 0) is considered in the
following experiments. That is, all policies are applied in a state where no previous containers
have been ordered. Finally, a planning horizon is ) = 100.

Varying in-positioning lead times

The first experiment in [Paper A] investigates the benefits of modeling in-positioning options
with greater lead times and lower costs. Policies are estimated for MDPs that each assume
different available in-positioning options. The maximum lead time is two decision periods and
all in-positioning capacities are equal, i.e. �̄0 = �̄1 = �̄2, but costsdecrease as lead times increase.
Thus, there is a financial reward for using in-positioning options with greater lead times. The
first MDP considers only the availability of the fastest option, thus �̄1 = �̄2 = 0. The remaining
two MDPs assume maximum in-positioning leads times of one and two periods. These MDPs
are paired with five different exogenous processes (serially and mutually independent negative
binomial processes) to investigate the effect of greater demand variance on the benefits of using
slower in-positioning options. The results in [Paper A] compare policies among each other on
the basis of the proposed policy value ratio in Equation (4.5). Each ratio quantifies the additional
expected depot operating costs when only fast and more expensive modes of transportation are
considered. Our results show that the total cost differences decrease as the demand variance
increases. We therefore conjecture that the benefits of using slower modes of transportation
diminishes as a consequence of greater future uncertainty which makes planning multiple
periods ahead more difficult. Nevertheless, lower expected operating costs are found for all
considered demand processes when slower and cheaper modes of transportation can be used.

Misspecification of the exogenous process

Four classes of MDPs are proposed to investigate the effects of serial and cross-sectional depen-
dence misspecification. Each MDP in Table 4.1 is labeled according to the dependence assump-
tion of the exogenous demand and return process. The most complex process is assumed for
the ARcrossMDP, where empty container demand and returns are serially and cross-sectionally
dependent. An IID MDP considers conversely a serial and mutual independent demand and
return process. The true exogenous process follows two marginal NBAR processes, where de-
pendence between container demand and returns is induced with a Clayton copula. [Paper A]
describes the procedure for generating samples for this process and how the distributions in
Table 4.1 are numerically approximated for the MDPs.

Misspecified serial dependence Our observations in [Paper A] follow the established knowl-
edge in the inventory management literature, in that undetected positive serial dependence of
the demand process leads to understocking, hence inventory is on average too low. To illustrate
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Table 4.2: Relative regrets for serial and cross-sectional dependence misspecification for the IID,
IIDcross and AR policies. Kendall’s � reports the cross-dependence strength, with � = �/(2 + �)
for the applied Clayton copula. Adopted from [Paper A].

�− 2− �+ 2+ � '(�★AR ,�★ARcross) '(�★IIDcross ,�
★
ARcross) '(�★IID ,�★ARcross)

-0.35 1.5 -0.35 1.5 0.5 1.07 1.03 1.25
-0.35 1.5 -0.35 1.5 0.25 1.02 1.05 1.13
-0.35 1.5 -0.35 1.5 0 1.00 1.06 1.06
-0.35 1.5 -0.35 1.5 -0.25 1.01 1.07 1.03
-0.35 1.5 -0.35 1.5 -0.5 1.02 1.07 1.02
0.35 0.7 0.7 0.5 0.50 1.08 1.02 1.01
0.35 0.7 0.7 0.5 0.25 1.03 1.11 1.04
0.35 0.7 0.7 0.5 0 1.00 1.17 1.17
0.35 0.7 0.7 0.5 -0.25 1.02 1.21 1.39
0.35 0.7 0.7 0.5 -0.5 1.06 1.21 1.58
0.35 0.7 0 0.5 0 1.00 1.05 1.05
0.35 0.7 -0.7 0.5 0 1.00 1.01 1.01

the occurrence of the effect, consider that a large demand realization in the previous period
reduced the inventory level at the present decision epoch. Positive serial dependence implies a
greater likelihood for another larger demand observation to occur in the coming decision period.
In a presently low inventory state, this informs the decisionmaker to order more containers than
it would otherwise order if the demand in the previous period was low. This information is
lost for serial independence assumptions, where the in-positioning decision only depends on
the endogenous state. The reverse effect occurs for negative serially dependent demand, where
overstocking occurs. Thus, inventory levels are on average too high.

[PaperA] extends these results to stochastic return processes. In agreementwith the demand
process, undetected positive serial dependence leads to understocking, whereas undetected
negative dependence to overstocking. In addition, our results show interactions between the
misspecification of demand and return processes. To explore these, let us consider the results
in Table 4.2. The relative regret is obtained for �★ARcross, which is the policy that is estimated
under the true demand and return process, as indicated by the parameters in the first column.
Each relative regret measures the increase of expected total depot operating costs during the
planning horizon as a consequence of misspecifications. The highlighted rows summarize
two key findings for mutually independent processes. First, misspecifications amplify if serial
dependencies are of the same sign. Table 4.2 highlights this for serially dependent demand.
The relative regret '(�★IID ,�★AR) of the IID policy is 1.05, thus 5% greater depot operating costs
than the �' policy, when empty container returns are serially independent. However, the
regret increases to 1.17 when empty container returns are also positively serially dependent.
Second, individual misspecifications are mitigated if serial dependencies are of opposite signs.
The last row in Table 4.2 shows that the undetected negative dependence of container returns
(overstocking) compensates for the undetected positive dependence of demand (understocking).
Therefore, the relative regret of the IID policy is found to be comparatively small.

Misspecified cross-sectional dependence Similar effects can be reportedwhen cross-sectional
dependence is misspecified. The dependence strength is measured with Kendalls’s � ∈ [−1, 1],
with � > 0 indicating positive dependence between empty container demand and returns in
period C. When negative cross-sectional dependence ismisspecified, understocking occurs. Sim-
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Table 4.3: Inventory system response when either serial or cross-sectional dependence are mis-
specified. The table should be read as; misspecified positive (row) serial dependence (column)
leads to understocking (cell).

serial dependence cross-sectional dependence
positive understocking overstocking
negative overstocking understocking

ilar to misspecified positive serial dependence, this occurs because missing information causes
the inventory system to performnot optimal. In this case, information is lost that fewer container
returns tend to follow larger demand in the same period. As a consequence of the absence of this
information, too few containers are in-positioned, which is unfavorable because the inventory
of the next epoch will be low. Overstocking conversely occurs for misspecified positive cross-
sectional dependence. Table 4.3 summarizes the effects for each individual misspecified serial
and cross-sectional dependence in our experiments. The relative regrets in Table 4.2 demon-
strate additional interactions betweenmisspecified serial and cross-sectional dependencies. The
results show that the misspecification of each dependence interact with each other, where we
identify the former explored mitigation and amplification effects.

Implications All misspecification costs are subject to defined cost parameters of the MDP.
Understocking becomes consequently more costly if the penalty for unsatisfied demand is large,
whereas overstocking is more costly when storage costs are high. However, our findings are
general and should raise awareness to the importance of investigating the existence of serial and
cross-sectional dependencies. The results in [Paper A] show that the common assumption of
serial and mutual independent container demand and returns can have a severe impact on the
container availability of a depot.

4.3.4 Empirical results
An empirical study with real-world data confirms the existence of dependencies for the empty
container demand and return processes of a shipping company. A dataset of 2192 daily empty
container deliveries, which we use as a proxy for demand, and return observations of a depot
has been provided. The unknown stochastic process of container demand and returns are
approximated on the basis of the historical time series data. All marginal processes are based on
negative binomial regression models and cross-sectional dependence is induced with a Clayton
copula. Similar to the previous study,we consider four combinations of serial and cross-sectional
dependencies (cf. Table 4.1). The unknown model parameters are estimated with maximum
likelihood and are found to imply positive serial and cross-sectional dependence.

Each of the four time series models are used to specify the exogenous process of container
demand and returns of a MDP. Once policies are estimated for the MDPs, the historical delivery
and return time series are used to evaluate them. The evaluation procedure is identical to the
simulation study, albeit the planning horizon is reduced to 49 days. Thus, 44 demand and return
trajectories are used to approximate expected depot operating costs over the planning horizon
of 49 days. Our results find the misspecification of the positive serial dependence to be more
harmful for depot operations than undetected cross-sectional dependence. The expected total
operating costs of the policy with serial andmutual independent demand and returns are found
to be 7% greater than for the policies which account for serial dependence (AR andARcross). The
costs when following a policy that is estimated under serial independent demand and returns,
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but cross-sectional dependence, are found to be 9% greater. The larger costs, even though
cross-sectional dependence is modelled, are due to the discussed mitigation effects. The policy
that is estimated under the serial and mutual independence assumption has lower costs since
themisspecified positive cross-sectional dependence (overstocking)mitigates the understocking
effect of misspecified positive serial dependence.
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Forecasting empty container deliveries and
returns

In Chapter 3, we provided a comprehensive analysis of the ECR problem, emphasizing the
critical need for accurate forecasts of empty container demand and returns at various spatial and
temporal levels to facilitate repositioning decisions. In what follows, our focus shifts to the long-
term repositioning problem from container surplus to deficit regions. The ECR decision system
of Maersk requires for this planning granularity forecasts of weekly empty container demand
and returns for container pools, which represent groups of nearby depots. In a previous section
(Section 3.2), we highlighted the importance of forecasting unconstrained demand, which refers
to demand that occurs regardless of the equipment availability at container depots. These
forecasts play a key role for repositioning containers to ensure that the projected demand can
be met proactively. However, accurately forecasting unconstrained demand presents significant
challenges, as we discussed earlier. To address this issue, we adopt the approach presented in
Section 3.2 and treat the historical empty container delivery and return time series as proxies
for the true unobserved demand and returns. The historical observations at container pools
are subsequently used for forecast model building and verification. The ECR system at Maersk
requires uncertainty estimates for future empty container volumes. Therefore, all forecasts must
be probabilistic. Furthermore, the extended planning horizon of the system requires forecasts to
bemade up to 13weeks ahead. Additionally, distinct forecasts are required for various container
types.

This chapter presents an introduction to this forecasting problem and our contributions
towards the research directions of the forecasting problem of non-stationary time series, as
well as the benefits of fusing machine learning models with parametric time series models.
We restrict our attention to the empty container return forecasting problem to simplify this
exposition. Nevertheless, the description of the forecasting problem in Section 5.1 also extends
to the empty container delivery forecasting problem. Section 5.2 presents a primer on state
space models, which are used in [Paper B] and [Paper C]. Our exposition is brief and covers
only the most important aspects for state and parameter estimation of linear Gaussian models.
The remaining two sections 5.3 and 5.4 summarize the contributions of [Paper B] and [Paper C],
respectively.

5.1 Forecasting problem characteristics

Empty container return forecasts must be produced for container pools and various container
type combinations. Container pools are distributed across all continents, with the exception of
Antarctica. The location of all depots that form pools are shown in Figure 5.1, which exemplifies
the operations of Maersk across the world.

41
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Figure 5.1: Depots that Maersk can use to store empty containers. Not all depots are always in
use due to seasonal demand variations.

5.1.1 Time series heterogeneities
In each of the countries where Maersk operates, public holidays exist that can affect empty
container returns due to a temporary reduction of industrial outputs. The return of containers is
delayed because rawmaterials and components inside laden containers are not processed. These
effects can be intensified when public holidays extend over several consecutive days, as is the
case with Chinese New Year. The associated public holiday typically spans a full working week
and significantly impacts empty container returns to many Chinese container depots. Figure 5.2
provides an illustration of the effect of Chinese NewYear and other holidays on empty container
returns.

It is important to note that the effect of public holidays on empty container returns is limited
to the region where they are celebrated. For instance, as shown in Figure 5.2, container returns
to a Japanese container pool decrease during the GoldenWeek public holidays in calendar week
18. This holiday has evidently no visible effect on container returns to the pools in China and
Great Britain. In fact, there exists no public holiday that is universally shared across the entire
world. Regional public holidays are one of many factors that explain why the properties of
empty container return time series vary across different locations. For a single pool, additional
variation exists between container returns of different types. Themajority of dry and refrigerated
cargo is transported in standardized 20ft or 40ft steel containers, whereas a smaller fraction of
cargo is transported in specialized containers. Demand for specialized containers is commonly
infrequent and can vary strongly across locations, hencemany return time series are intermittent
or lumpy. The observations of most time series for standard container types are conversely
greater than zero. The forecasting problem is consequently considered heterogeneous due to
the varying time series properties across locations and container types.

5.1.2 Exogenous covariates
The impact of public holidays on container returns suggest to derive covariates that enhance
the forecasting models. By having knowledge of past and future dates of public holidays, the
forecaster can utilize this information as the basis for deriving covariates. In this context, the
available holiday information to the forecaster is deterministic since the occurrence of holidays
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Figure 5.2: Year-to-year (2017-2022) plot for empty container (standard 40ft) returns to pools
in China (top), Japan (centre) and Great Britain (bottom). The dashed vertical lines indicate
regionally important public holidays that affect empty container returns. The effect of Chinese
New Year is visible in the top row during calendar weeks three to nine (shared region).

is known for the forecast horizon. However, the information would become stochastic if there
is a possibility for a public holiday not to occur, resulting in regular businesses to remain open.
Indeed, the description of the bookingprocess in Section 2.2 serves as the foundation for deriving
stochastic covariates based on import customers’s booking data. When creating forecasts for
the upcoming 13 weeks, the forecaster has access to a set of active bookings, also referred to as
booking data. The aim is to improve the forecasts by utilizing destination and expected arrival
time information for each shipment in the booking data. However, two challenges arise for the
forecaster. Firstly, the destination of a shipment does not correspond to a specific container pool,
as laden containers are delivered to customer sites. Secondly, the time between the expected
laden container arrival and the return of the empty container can vary due to factors such as
delays during the transportation of laden containers and customers extending the permitted
detention time for the empty container.

Maersk addresses both challenges by generating covariates for each pool andweekwithin the
forecast horizon. Each covariate represents the expected empty container returns for a specific
pool and future week based on the current booking data. Since the return location and time of
an active booking are uncertain, each covariate is stochastic. Furthermore, the covariates evolve
dynamically over time as new bookings are continuously accepted while existing bookings
may be canceled or modified. The shipping company has more visibility on bookings that
are expected to return empty containers within the next two weeks due to the commonly long
transportation times between origin and destination ports. That is, empty containers that are
to be returned soon are already traveling as laden containers or have already been delivered
to an importer. In contrast, fewer bookings are currently known to the shipping company for
empty containers that will be returned far in the future. Figure 5.3 illustrates these effects and
demonstrates how the booking covariate decreases in value as the forecast lead time increases.
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Figure 5.3: Example empty container return time series and associated booking covariates from
the dataset that is considered in the empirical analysis in [Paper B]. The illustration is adopted
from [Paper B].

5.1.3 Non-stationarities

Several time-varying internal and external factors can have an impact on empty container returns
to a container pool. Internal effects are related to the operational decisions made by a shipping
company. For example, the company can adjust its empty container return policy to reduce
the detention time for importers who keep a container after it has been delivered laden. As
a result, it is expected that customers will return empty containers earlier to avoid incurring
additional fees. While the total number of empty container returns is unlikely to be affected by
this policy change, the booking covariates will reflect the trend of earlier returns. Thus, there
is a time-varying interaction between the covariate and empty container returns. Additionally,
a shipping company’s decision to modify its ocean network can also impact empty container
returns. Introducing a new service connection to a port can increase the number of empty
container returns as additional customers begin utilizing it. Conversely, if a service is removed,
container returns may decrease as a result. These network changes have a direct effect on the
flow of containers, thus also influence empty container returns to depots.

External factors, such as the recent COVID-19 pandemic or the blockage of the Suez Canal,
are beyond the control of shipping companies. The pandemic had a significant impact on supply
chains, resulting inport closures, reduced trucking capacitiesdue todriver shortages, and factory
closures leading to laden containers not being emptied. Consequently, empty containers were
returned later than usual during this period. These effects persisted for several weeks, causing a
decrease in empty container returns and affecting the booking covariates as well. The variability
of global trade is another factor that influences empty container returns. Shipping demand
is closely tied to the state of the global economy, which naturally fluctuates over time. The
global recession following the financial crisis in the early 21st century had a widespread impact,
although different countries were affected to varying degrees. Some countries experienced a
more severe recession, resulting in a greater reduction in the demand for sending and receiving
freight. Figure 5.4 illustrates three time series where non-stationarities are caused by one or
multiple of the aforementioned internal and external factors.
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Figure 5.4: Selected non-stationary time series of empty container returns (standard 40ft) to
pools in Asia. All time series show signs of volatility and level changes. The shaded region
(bottom row) highlights the period when COVID-19 affected the empty container returns to this
pool. Weeks with almost no returns (due to regional lockdowns) were followed by a single week
with many returns.

5.1.4 Problem dimensions

The problem at hand is characterized as high-dimensional due to the need to generate empty
container return forecasts for approximately 4,000 time series. Figure 5.5 shows that the major-
ity of these time series exhibit low weekly empty container return values. This observation is
attributed to the sporadic demand for specialized containers in numerous locations. Further-
more, the time series are relatively short, as reliable data is only available from 2017 onwards.
Approximately 340 historical observations are available for each time series in June 2023.

5.2 State space models

We begin the description of a solution for this forecasting problem by considering an existing
model selection framework to tackle the heterogeneity of the time series data. Our objective is
to contribute a forecasting model to a candidate set that is composed to predict the empty con-
tainer returns for a single pool and container type combination. In particular, we concentrate our
attention on time series characterized by substantial weekly empty container returns at strategi-
cally important locations, specifically for standard container types. These are the container pool
and type combinations situated in the right tail of the distribution of weekly empty container
returns shown in Figure 5.5. We justify our focus on these time series by highlighting the critical
importance of accurate forecasts for locations with significant weekly empty container return
volumes. Large forecast errors in these cases can have detrimental effects on ECR decisions,
emphasizing the need for precise predictions.
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Figure 5.5: Distribution of average weekly empty container returns to pools from 2017-2023 for
various container types. Combinations for pools and container types with on average less than
one returned container per week are removed.

5.2.1 Motivating state space models
The presence of non-stationarities and the need to generate probabilistic forecasts provide strong
motivations for employing the state space modeling framework in this problem. State space
models assume that a time series process consists of underlying latent factors that evolve as
a Markov process over time. The associated frameworks provide treatments for inferring the
underlying latent states from potentially imprecise time series observations. This explains their
popularity in many signal processing applications, where the true signal can only be measured
imprecisely. The versatility of state space models also extends to forecasting tasks. The frame-
work allows for the estimation of various widely-used time series models, including exponential
smoothing (Hyndman et al., 2008) and ARIMA (Durbin and Koopman, 2012). Additionally, it
facilitates the estimation of structural time series models (Durbin and Koopman, 2012), which
incorporate multiple structural components such as trends, seasonalities, and cycles into the
time series process. These features make state space models a powerful tool for addressing the
complexities of the forecasting problem at hand.

Forecasts generated within the state space modeling framework inherently possess a proba-
bilistic nature because the models explicitly describe stochastic processes. One of the strengths
of this framework is its ability to estimate both stationary and non-stationary time series models
within the same framework. For the state space models presented in [Paper B], non-stationary
state processes are employed to capture and adapt to changes in the dynamics of the time series.
A different approach is taken in [Paper C], where state space models with time-varying model
parameters are estimated. Additionally, the state space modeling framework readily accommo-
dates the inclusion of covariates in the parameterization of the models. The interaction between
the covariates and the state variables can be explicitly modeled, providing a powerful way to
capture the dynamics and dependencies within the data. In summary, the state space modeling
framework strikes a balance between flexibility and structural assumptions in time series mod-
eling. The use of latent states allows for the representation of non-stationary processes, with the
ability to adapt to changes in the observed time series. At the same time, structural assumptions
can be incorporated into the models, such as seasonal components or covariate information,
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enabling a comprehensive and robust representation of the underlying time series dynamics.

5.2.2 Linear Gaussian state space models
The popularity of state space modeling dates back to the 1960s and is strongly associated with
the derivation of the Kalman filter (Kalman, 1960). Since then numerous contributions have
been made to the field, particularly in the domain of non-linear systems. Today, a large body
of text books is dedicated to state space modeling. The treatment and analysis of univariate
and multivariate time series can be found in Durbin and Koopman (2012), Hamilton (1994) and
Harvey (1989). The following expositions are restricted to univariate linear Gaussian state space
models, which constitute the foundations of the models in [Paper B] and [Paper C]. We adopt
the notation of [Paper C] and let IC ∈ R denote the real-valued time series observation at discrete
time point C, with C = 1, 2, . . . , ).

A linear Gaussian state space model assumes a latent state vector lC ∈ R< to follow aMarkov
process

lC = LC lC−1 + XC(C , (C ∼ N(0,WC), (5.1)

where LC and XC are parameter matrices of appropriate dimensions. The evolution of the latent
state over time is driven by Gaussian noise (C , with covariance matrix WC . The observation
process

IC = a>C lC + 1C + &C , &C ∼ N(0, �2
C ) (5.2)

maps the unobserved state vector to the time series observation, where aC is a parameter vector
and �2

C is the variance of the Gaussian observation noise &C . The parameter 1C may be a time-
varying intercept or a function of covariates, i.e. 1C = #>C xC for linear effects with covariates xC
and parameter vector #C . We assume throughout the remainder of this section that the covariates
are deterministic. Moreover, all expectations are implicitly conditional on the set of covariates
to simplify notations. We note that similar regression effects can also be incorporated into the
state process. The parameterization of a linear Gaussian state space model is completed with
the specification of a Gaussian prior l0 ∼ N(-0 ,V0) for the initial state vector. Two important
problems arise when the presented model is used for forecasting. First, a forecast of a new
observation I)+1 depends on l)+1 and leads to the state estimation problem. Second, at least
some of the parameters LC ,XC ,WC , aC , 1C and �2

C are unknown. This leads to the parameter
estimation problem.

State estimation

The inference of the unobserved state vector lC based on the observation sequence I1:C =
(I1 , I2 , . . . , IC) up to time C is better known as filtering. The filtering task addresses the esti-
mation of the conditional probability density function ?(lC |I1:C). We subsequently show that this
density is multivariate Gaussian and derive the Kalman filter to estimate the conditional mean
and variance of the distribution recursively.

We begin our derivation by showing that the joint density ?(l1:C , I1:C) ismultivariateGaussian.
First, we note that the marginal density

?(l1:C) = ?(l1)
C∏
8=2

?(l8 |l1:8−1) = ?(l1)
C∏
8=2

?(l8 |l8−1) (5.3)

is multivariate Gaussian. This can be verified in a few steps. First, the factorization in Equa-
tion (5.3) is due to the Markov property of the state process (5.1). From the linearity of the state



48 CHAPTER 5. FORECASTING EMPTY CONTAINER DELIVERIES AND RETURNS

process follows next that the conditional density ?(lC |lC−1) is multivariate Gaussian. Last, we
use the standard result that the product of two Gaussian densities is also Gaussian. The den-
sity ?(l1:C) is consequently Gaussian because ?(l1) is Gaussian, which follows from the selected
prior distribution l0 ∼ N(-0 ,V0) and the linear state process (5.1). Second, we note that the
conditional density

?(I1:C |l1:C) = ?(IC |l1:C)
C∏
8=2

?(I8 |I1:8−1 , l1:C) = ?(I1 |l1)
C∏
8=2

?(IC |lC)

is also multivariate Gaussian. The observation process (5.2) shows that ?(IC |lC) is Gaussian,
which immediately verifies the result. FromBayes rule follows that ?(l1:C , I1:C)must beGaussian.
Since the density ?(l1:C , I1:C) is Gaussian, ?(lC , I1:C) is Gaussian too.

Lemma 1. Suppose that ^ and _ are jointly Gaussian distributed random vectors with

E
[(
^
_

)]
=

(
-G
-H

)
Var

[(
^
_

)]
=

(
�GG �GH
�>GH �HH

)
,

where �GG is a non-singular matrix. The conditional distribution of _ given ^ is also Gaussian with
conditional mean given by

E[_ | ^ = x] = -H + �>GH�−1
GG

(
x − -G

)
and conditional covariance matrix

Var[_ | ^ = x] = �HH − �>GH�−1
GG�GH .

The result extends to non-Gaussian joint distributions, where -H + �>GH�
−1
GG

(
x − -G

)
becomes the Best

Linear Unbiased Estimator (BLUP).

Proof. See Durbin and Koopman (2012).

In the next steps we use Lemma 1 multiple times. First, applying the lemma to the density
?(lC , I1:C) verifies that the filter density ?(lC |z1:C) is also multivariate Gaussian. Similar to Durbin
and Koopman (2012), we note that the joint conditional density function

?(lC , IC |I1:C−1) = ?(lC |I1:C)?(IC |I1:C−1)

is multivariate Gaussian. This is verified by using the state (5.1) and observation (5.2) processes
to write

?(IC |I1:C−1) = ?(a>C (LC lC−1 + XC(C) + 1C + &C |I1:C−1)

for the 1-step ahead forecasting density. The density is Gaussian due to the linearity and the
independence assumption of the Gaussian innovations (C and &C . We apply Lemma 1 a second
time to obtain recursions for the filter density’s ?(lC |I1:C)mean vector lC |C and covariance matrix
VC |C under serially independent innovations. With lC |C−1 and VC |C−1 denoting the mean vector and
covariance matrix of ?(lC |I1:C−1), we apply Lemma 1 to ?(lC , IC |I1:C−1) and obtain

lC |C = lC |C−1 + Cov[lC , IC |I1:C−1]Var[IC |I1:C−1]−1 (IC − E[IC |I1:C−1])
VC |C = VC |C−1 − Cov[lC , IC |I1:C−1]Var[IC |I1:C−1]−1Cov[lC , IC |I1:C−1]>.
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From the state process (5.1) and the serial independence assumption of the process noise (C
follow the recursive expressions

lC |C−1 B E[lC |I1:C−1] = LC lC−1|C−1

VC |C−1 B Var[lC |I1:C−1] = LCVC−1|C−1L
>
C + XCWCX>C ,

which are also known as prediction equations. The covariance

Cov[lC , IC |I1:C−1] = VC |C−1aC

is due to the independence between lC and &C as well as the serial independence assumption for
&C . The conditional mean of the 1-step ahead forecast density ?(IC |I1:C−1) is obtained as

ÎC |C−1 B E[IC |I1:C−1] = a>C lC |C−1

and the corresponding variance as

�̂2
C |C−1 B Var[IC |I1:C−1] = a>C VC |C−1aC + �2

C .

Finally, we obtain the filter equations

lC |C = lC |C−1 + QC

(
IC − ÎC |C−1

)
VC |C = VC |C−1 − QCa>C V

>
C |C−1 ,

where QC = VC |C−1aC/�̂2
C |C−1 is also known as the Kalman gain. The prediction and filter equations

constitute theKalmanfilter recursions. Thefilter is initializedbyusing theprior statedistribution
l0 ∼ N(-0 ,V0) to set l0|0 = -0 and V0|0 = V0 for the prediction equations at C = 1.

Parameter estimation

In most forecasting problems, at least some state space model parameters are unknown. Thus,
let ) include all unknown parameters in LC ,XC ,WC , aC , 1C and �2

C for all C = 1, . . . , ). In addition,
we assume that the mean -0 and variance V0 of the initial state distribution are known. The
standard procedure to obtain parameter estimates for a linear Gaussian state space model is to
maximize the likelihood

?(I1:) ;)) = ?(I1;))
)∏
C=2

?(IC |I1:C−1;)), (5.4)

which has an analytically tractable form because the 1-step ahead forecast distributions are
Gaussian. Thus, the log-likelihood is obtained as

log ?(I1:) ;)) = −)2 log(2�) − 1
2

)∑
C=1

(
log(�̂2

C |C−1) +
(IC − ÎC |C−1)2

�̂2
C |C−1

)
,

where ÎC |C−1 and �̂2
C |C−1 are obtained from the Kalman filter. Parameter estimates can be obtained

by maximizing the log-likelihood directly with the aid of numerical optimization methods.
Employing the Expectation-Maximization algorithm is a common alternative to direct maxi-
mization approaches, which enjoys good convergence properties during earlier iterations. We
refer the reader to Durbin and Koopman (2012) for a detailed discussion about parameter esti-
mation techniques in state space models and the treatment of unknown parameters in the initial
state distribution.
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Forecasting

In the last part of this exposition we consider producing forecasts for C = ) + 1, . . . , ) + �,
with � ∈ N0 being the forecast horizon, when the last time series observation is obtained at
C = ). To achieve this, it is necessary to determine all the parameters of the state space model
for C = 1, . . . , ) + �. However, it is important to note that the coefficients in ) have only
been estimated using the observed sequence I1 , . . . , I) . Thus, the estimated coefficients must
parameterize the evolution of the state space model parameters over time. Once the parameters
are known for C = ) +1, . . . , ) +�, forecasts can be generated using the Kalman filter, treating all
observations beyond C = ) as missing. The procedure effectively iterates the latest 1-step ahead
state prediction l)+1|) forward in time on the basis of the state process (5.1). This allows for an
efficient calculation of the mean and variance of the Gaussian forecast distributions ?(I)+ℎ |I1:))
by following a recursive multi-step ahead forecasting strategy. For the treatment of missing
observations we refer the reader to Durbin and Koopman (2012).

5.3 Direct multi-step ahead forecastingwith state spacemodels
Multi-step ahead forecasting, where the forecast horizon � is greater than one, is a long-standing
challenge. Several methods, which may be categorized as single-output and multiple-output
(Ben Taieb et al., 2012), emerged over time. Single-output methods produce predictions for
each lead time ℎ = 1, . . . , � independently, whereas the sequence of predictions for the whole
forecast horizon is simultaneously produced by multi-output methods. The selection of a
multi-step ahead forecasting strategy is mostly problem- and model-specific, since there is
no universally superior method when forecasting models are misspecified. The state space
modeling framework lends itself naturally to follow a single-output strategy and producemulti-
step ahead forecasts recursively. Many widely used time series models, such as the common
autoregressive model (AR(?)) with Gaussian innovations

IC =

?∑
8=1

�8IC−8 + &C , &C ∼ N(0, �2)

have standardparameterizations in state space form. The estimatedmodel parameters describe a
1-step ahead relationship between present information and the time series observation at the next
time point. By following the introduced forecasting procedure for state state models, forecasts
for the next ℎ = 1, . . . , � observations are produced recursively. In case of the former AR(?)
model, obtaining a point forecast Î)+2|) requires using the 1-step ahead point prediction Î)+1|)
since I)+1 is unknownwhen the forecast is made at time point ). However, there are forecasting
problems where it is desirable to model the relationship between a time series observation at
time C and information at a lagged time point C − ℎ directly, where ℎ > 1.

5.3.1 Direct versus iterated multi-step ahead forecasting
The recursive (iterated) strategy produces optimal multi-step ahead forecasts if the model is
correctly specified for the unknown time series process. However, forecast errors accumu-
late for misspecified models, which has been one of the main reasons for the development
of other multi-step ahead forecasting strategies. Chevillon (2007) noted in this regard that
model misspecification may occur for non-stationarity processes due to unnoticed unit roots
or non-stationary covariates. Iterated strategies can face additional difficulties when stochastic
exogenous covariates are used to forecast IC with information that is available at time point C−1.
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A common approach is to use historical observations of the stochastic covariates and estimate
the 1-step ahead relationship between IC and the covariate information that is known at time
point C − 1, say GC |C−1. Producing genuine forecasts for C = ) + 1, . . . , ) + � as a next step faces
the challenge that the most present stochastic covariate G) |)−1 is observed at time C = ). Thus,
the covariates themselves must be forecasted, i.e. Ĝ)+1|) , . . . , Ĝ)+�|) are required. The iterated
forecasting strategy can accumulate additional forecast errors as a consequence of inaccurately
predicted covariates, which is particularly likely if the predicted covariates are biased. Indeed,
this the case for the introduced booking covariates when the 1-step ahead booking covariate
1C |C−1 is used to estimate the forecasting model parameters. The multi-week ahead covariates
1)+2|) , . . . , 1)+�|) must be used for genuine forecast since the 1-step ahead covariate is only
available for ) + 1. However, from the design of the covariate we know that the multi-week
ahead covariates become systematically smaller as the forecast horizon increases (cf. Figure 5.3),
which is likely to bias the multi-step ahead predictions of empty container returns if an iterated
strategy is followed.

Direct multi-step ahead forecasting strategies circumvent the former limitations. A separate
model is used for each lead time ℎ = 1, . . . , � to directly target the relationship between the
observation IC and the forecast information that is available at C − ℎ. An autoregressive model
with exogenous inputs (AR(?)-X) canbe formulated for the task of direct ℎ-step ahead forecasting
as

IC =

?∑
8

�8IC−8+(1−ℎ) + #>xC |C−ℎ + &C , &C ∼ N(0, �2), (5.5)

where xC |C−ℎ are exogenous covariates that are lagged by ℎ steps to predict IC . At C = ), all
information is known to forecast a new observation at C = ) + ℎ as a result of directly targeting
the ℎ-step ahead relationship between forecast information and target variable IC . The direct
strategy has not always been found in empirical studies to be superior, even though it avoids
error accumulation of the iterated strategy (Ben Taieb and Atiya, 2016). Indeed, the selection of
a multi-step ahead strategy is problem and model specific. For instance, the iterated strategy
adds additional computational complexity, since � models need to be estimated. Nevertheless,
the direct strategy is the natural choice for the empty container return forecasting problem due
to the booking covariates.

5.3.2 Serially correlated multi-step ahead forecast errors
An often overlooked property of direct multi-step ahead forecasting is that the forecast error
sequence of the optimal ℎ-step ahead forecast is serially correlated. In fact, the ℎ-step ahead
errors of any well-conceived set of forecasts are expected to follow a moving average (MA)
process of order ℎ − 1 (Harvey et al., 1997). We verify in [Paper B] that the serial correlation of
forecast errors stems from the autocorrelation of the time series process that we aim to forecast.
It follows that a direct multi-step ahead model, such as the AR-X model in Equation 5.5, is
misspecified if serially independent errors are assumed. Minimizing the sum of squared errors
of the misspecified model will provide unbiased parameter estimates, albeit the standard least
squares estimator is not efficient due to the ignored serial dependence of the innovation process
(Hyndman and Athanasopoulos, 2021).

[Paper B] demonstrates that themisspecification ismore costlywhen time-varying coefficient
regression models are estimated in state space form. Time-varying coefficient models are one of
many approaches that have been developed tomodel non-stationary time series. The coefficients
evolve over time, which makes the models implicitly non-stationary, thus suitable for the empty
container return forecasting problem. Several different approaches, including the state space
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&̃,8 (right) for the stationary AR(1) process when the model (5.7) assumes the observation noise

to be Gaussian white noise. Taken from [Paper B].

modeling framework, exist to date that model the coefficient’s evolution through time. One of
the contributions in [Paper B] is the demonstration of biased maximum likelihood estimates
for time-varying regression models in state space form that ignore the serial dependence of
multi-step ahead forecast errors. Our results are significant because previous publications (cf.
[Paper B]) have followed a similar state space approach for direct multi-step ahead forecasting
without being aware that harmful consequences of misspecified innovation processes exist.

5.3.3 Estimation biases
In the following, we summarize the main results of [Paper B] on the basis of the conducted
Monte Carlo experiment. To begin with, let a time series follow a stationary AR(1) process

IC = �IC−1 + �C , �C ∼ N(0, 1), (5.6)

for C = 1, . . . , 2000 and with I0 ∼ N(0, 1/(1 − �2)). We generate 1000 replicates of this process
for a range of autoregressive coefficients � ∈ (−1, 1), and let ℐ? denote the set of time series for a
distinct value of �. Moreover, we define the time-varying regression model in state space form

�C = �C−1 + �C , �C ∼ N(0, �2
�)

IC = �CIC−ℎ + &̃C
�� ∼ N(�� , �2

�)
(5.7)

for the purpose of direct multi-step ahead forecasting, with lead time ℎ and C ≥ � = ℎ + 1.
The innovation term &̃C is first assumed to be Gaussian white noise, i.e. &̃C ∼ N(0, �2

&̃). The
state space model in Equation (5.7) is purposely misspecified with respect to the true time
series process. It assumes the regression coefficient to be time-varying as well the innovation
to be serially independent. We proceed to estimate the unknown parameters 7 = (�2

� , �
2
&̃)

with the first 1000 observations of each simulated time series through maximum likelihood,
where we use �� = �ℎ and �2

� = 0.0025 to reduce the effect of the state initialisation on the
parameter estimates. Figure 5.6 shows the bias of the variance parameter estimates as a function
of the true autoregressive coefficient � for selected lead times. We expect from the chosen
model parameterization that the estimates of �2

&̃ will be in the neighbourhood of the conditional
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variance Var
[
.C+ℎ |.C = HC

]
=

∑ℎ−1
8=0 �28 of the data generation process. The results show instead

that the variance is visibly underestimated for ℎ > 2 and
����� > 0.7.

The innovation process should follow aMA(h-1) process when a model is parameterized for
direct ℎ-step ahead forecasting. However, we parameterized a state space model with serially
independent innovations, which greater deviates from the true innovation process as the lead
time ℎ and

����� increase. Ignoring the serial dependence leads to biased state estimates as the
Kalman filter is derived under the assumption of white observation noise. The assumption is
used to show that the 1-step ahead density ?(IC |I1:C−1) is Gaussian, which requires the obser-
vation process noise &C in Equation (5.2) to be independent of I1:C−1. The biased state estimates
are consequently biasing the maximum likelihood estimates. Ultimately, we find the misspeci-
fication to negatively affect the forecast accuracy for longer lead times, given that a time series
process is significantly autocorrelated with

����� > 0.7.

5.3.4 Modeling solutions
Our proposal to reduce the estimation bias is tomodel the ℎ-step ahead innovations as aMA(h-1)
process. The innovation process for the state space model in Equation (5.7) becomes

&̃C =
ℎ−1∑
8=1

)8&C−8 + &C , &C ∼ N(0, �2
&), (5.8)

where )1 , . . . , )ℎ−1 are the coefficients of the moving average process. Incorporating the MA
innovation process in the state space model is achieved by augmenting the state vector lC−1
with the lagged innovations &C−1 , . . . , &C−ℎ+1. A detailed description of the augmentation and
alternative approaches for estimating state space models with finite lag autocorrelated obser-
vation noise are presented in [Paper B]. Repeating the maximum likelihood estimation for the
simulated AR(1) processes demonstrates the removal of the estimation biases. This improves
the forecast accuracy to the optimal ℎ-step ahead forecast with perfect information about the
true AR(1) data generating process. It is straightforward to verify that the state space model
in Equation (5.7) with MA(ℎ − 1) observation noise is correctly specified for this time-invariant
AR(1) process. However, the innovation process Equation (5.8) becomes misspecified in case
where the autoregressive coefficient of data generating mechanism varies with time.

To extendourmodeling framework to awider range of time series processes, we subsequently
consider MA processes with time-varying coefficients

&̃C =
ℎ−1∑
8=1

tanh()8 ,C)&C−8 + &C , &C ∼ N(0, �2
&), (5.9)

where each MA coefficient is a latent state that follows a random walk

)8 ,C = )8 ,C−1 + �8 ,C , 8 = 1, . . . , ℎ − 1.

The innovations (�1,C , . . . , �ℎ−1,C) are assumed to be multivariate Gaussian and serially indepen-
dent. Parameterizing a state space model with this innovation process faces the challenge that
both MA coefficients )1,C , . . . , )ℎ−1,C and innovations &C−1 , . . . , &C−ℎ+1 are latent state variables.
The innovation process (5.9) requires therefore to model non-linear state interactions, which
cannot be achieved by the Kalman filter. Our solution is to use the Unscented Kalman Filter for
approximate state inference. We refer to [Paper B] for details about the filter and our proposal for
maximum likelihood estimation of the unknown model parameters with a Gaussian surrogate
likelihood.
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5.3.5 Empirical results
A Monte Carlo simulation demonstrates the ability of the non-linear state space model to es-
timate time-varying MA coefficients. However, our empirical results for the task of empty
container return forecasting finds the linear Gaussian state spacemodel with time-invariantMA
processes to produce more accurate forecasts. We expect this to be due to the introduced ap-
proximation errors of the Unscented Kalman filter. The results of our study can be summarized
by the following findings. First, parameterizing an MA(ℎ − 1) innovation process for direct
ℎ-step ahead forecasting with time-varying coefficient regression models improves forecast ac-
curacies on average, when the models are parameterized in state space form. Here, we measure
improvements with respect to the state space models with serially independent observation
noise. Second, the accuracy improvements are greater for point than for probabilistic forecasts.
Third, the improvements can be substantial if the innovation process misspecification leads to
positively biased variance parameters that determine the variability of the time-varying regres-
sion coefficients. Overfitting occurs because the regression coefficients become too adaptive to
changes in the time series process due to the positive estimation bias. A detailed discussion of
the case study design and results are presented in [Paper B].

5.4 Fusing neural networks with state space models
A property of the empty container return forecasting problem is that time series are compar-
atively short, yet show complex patterns. Modeling complex time series with parameter-rich
forecasting models can cause high variance for parameter estimates as a consequence of insuffi-
ciently long training data. This can lead to undesirable effects due to potentially large parameter
variations if the forecasting model is re-estimated when a new observation is obtained. Pooling
has been proposed in this context to reduce the variance of parameters by estimating a common
forecasting model for a group of time series. Estimating a single model makes the implicit
assumption that all series follow the same unknown data generating process with identical
parameter values. The fulfillment of the assumption leads to a reduced parameter estimation
variance since the parameters are estimated on a larger time series dataset. Following this
strategy can therefore be attractive for forecasting related time series when it is challenging to
estimate the effect of rare events for a single series in isolation. For instance, poolingmay benefit
the estimation of public holiday effects on container returns for a group of container poolswithin
the same country.

5.4.1 Global forecasting models
Early applications of pooling can be found in forecasting problems with short panel data of
related time series. For instance, Garcia-Ferrer et al. (1987) forecast future annual output growth
rates for nine countries, where only 30 years of prior observations are available. The lack of
historical training data poses a significant challenge for the estimation of a single model for each
time series. On one hand, there is the risk of overfitting. On the other hand, it is challenging to
perform model validation and selection when time series are this short. Pooling time series by
estimating a parsimonious forecasting model reduces the risk of overfitting, albeit only mildly
improving the model validation task. A shortcoming is that imposing the same parsimonious
model for all time series in the panel can lead to estimation biases if the time series processes
substantially differ from each other. That is, the panel is heterogeneous, although the pooled
model imposes a homogeneity assumption. Several approaches emerged in response to this
limitation, all aiming to retain the ability of learning jointly from a time series panel. Most
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Figure 5.7: Schematic illustration for using a globally estimated model for forecasting. The
global model parameters have been estimated with all three time series.

methods try to identify homogeneous sub-groups within the panel, for which a pooled model
is subsequently estimated.

Many recent machine learning models for time series forecasting have been proposed in the
context of forecasting related time series. Although a single model is estimated for a group of
time series, there are fundamental differences to the former application of pooling. Whereas
pooling has been applied in the past to reduce the variance of a parsimonious model when
limited training data is available, flexible machine learning models are contemporary applied to
large time series datasets. Machine learning models are flexible, and often over-parameterized,
to learn complex time series patterns with limited or no assumptions about the data generating
processes. The flexibility of the models additionally allows modelling heterogeneous datasets,
circumventing to partition related time series into sub-groups. Cross-validation is quintessential
for hyper-parameter tuning and overfitting prevention, which requires time series to be of
sufficient length. Figure 5.7 illustrates schematically the application of pooling to a time series
dataset, which is contemporary known as global modeling. Learning model parameters for
each series in isolation is conversely known as local modeling (Montero-Manso and Hyndman,
2021), and is illustrated Figure 5.8

The inherent risk of overfitting in low data regimes as a consequence of learning complex
patterns completely data-driven motivated the development of hybrid models. The principal
idea of many hybrid models is to combine statistical time series models with machine learning
models. On one hand, using a statistical model allows to incorporate domain knowledge about
the time series processes into the hybrid model. Depending on the hybrid model design, this
can induce regularization effects to mitigate the risk of overfitting. On the other hand, a hybrid
model tries to benefit from the flexibility of a machine learning model to learn complex data
patterns, ideally from a larger set of related time series. Several hybrid models have been
proposed to date, among some following the model design to use a globally estimated machine
learning model to predict parameters of locally applied statistical models. Figure 5.9 provides a
schematic illustration of this hybrid strategy for time series forecasting.
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Figure 5.8: Schematic illustration for using a locally estimated models for forecasting. Each
model has been estimated individually for each of the three time series.
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Figure 5.9: Schematic illustration of a hybrid forecasting model. A globally estimated model
predicts the parameters of locally applied time series models. The input of the time series into
the local models is omitted for simplicity.

5.4.2 Deep state space models
ADeep State Space Model (DSSM) follows such a strategy and uses a globally learned recurrent
neural network to predict the parameters of locally applied linear Gaussian state space models.
In the following, we briefly introduce DSSM to allow us to subsequently highlight important
limitations of hybrid models that follow similar designs. The interested reader finds a detailed
description of the model in Rangapuram et al. (2018) and a briefer summary in [Paper C].

Let us consider a panel of # univariate time series indexed by 8 ∈ ℐ = {1, . . . , #}. All time
series are real-valued I

(8)
C ∈ R, with C = 1, . . . , ), which conversely to [Paper C] implies equal

length of all time series. We adopt the previous notation and let I(8)1:) = (I
(8)
1 , . . . , I

(8)
)
) denote the

historical observations of time series 8. For each time series, there exists a sequence of � known
exogenous covariates x(8)1:)+� = (x

(8)
1 , . . . , x

(8)
)+�), where � ∈ N>0 denotes the forecast horizon. The

notation omits the previous bar notation and follows the convention that x(8)C are covariates for
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forecasting I(8)C .
DSSM tackles a probabilistic forecasting problem by assuming each time series in the panel

to follow a linear Gaussian state space model. Each state space model follows an identical
parameterization that is specified by the state (5.1) and observation (5.2) processes, albeit the
values of unknown model parameters are allowed to vary between time series. In addition,
a diffuse state prior l0 ∼ N(0, �O<), with � being large and < being the number of states, is
assumed for each state space model. Let )(8)C denote the %-dimensional vector of unknown
state space model parameters for time series 8 at time point C. A common approach is to use a
mapping

)(8)C = Ψ(8)(x(8)C ; 5(8))
to specify the evolution of the state space model parameters through time. The unknown time-
homogeneous coefficients 5(8) of time series 8 can be obtained by maximizing the conditional
likelihood

?(I(8)1:) |x
(8)
1:) ; 5(8)) = ?(I(8)1:) ;)(8)1:)),

which is computationally attractive because the likelihood can be evaluated with the Kalman
filter. The difference between this and the likelihood of the linear Gaussian state space model
in Equation (5.4) is that we explicitly assume the model parameters to vary over time. A DSSM
extends the former idea for estimating time-inhomogeneous state space model parameters to a
global modeling setup by maximizing the pseudo likelihood

?(I(1)1:) , . . . , I
(#)
1:) |x

(1)
1:) , . . . , x

(#)
1:) ; 5) =

#∏
8=1

?(I(8)1:) |x
(8)
1:) ; 5) =

#∏
8=1

?(I(8)1:) ;)(8)1:)),

with )(8)C =	(x(8)C ; 5), where the likelihood factorizes due to an imposed mutual independence
assumption between the time series in ℐ. The global mapping 	 is composed of a recurrent
neural network and a final layer to output the state space model parameters of dimension %,
where more details are provided in [Paper C]. The unknown parameters 5 are learned globally
from all time series, whereas state space model parameters )(8)1:) are predicted locally for each
series.

5.4.3 Limitations
Estimating the parameters of the recurrent neural network jointly is expected to extract features
and learn complex temporal patterns from raw data, whereas incorporating structural assump-
tions through the state spacemodel can alleviate overfitting (Rangapuram et al., 2018). Themain
contribution of [Paper C] is a critical analysis of the methodological and practical limitations of
this approach.

Methodological limitations

By imposing the same state space model structure for all time series, DSSM follows the original
concept of pooling to assume a homogeneous data generating process for all series. However,
DSSM permits parameter value heterogeneities since covariates of time series 8 predict the
state space model parameters of the respective series. An assumption of homogeneous data
generating processes is in our view a major limitation for many real-world problems where
different stochastic processes are likely to be present. Choosing a flexible state space model
parameterization mitigates the misspecification risks, albeit defeating the purpose of using
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Figure 5.10: Classification of forecasting problems based on the number of time series, # , and
the time series length, ). Taken from [Paper C].

a parametric model to mitigate the risk of overfitting. One criterion for successfully applying
DSSM is therefore that all time series followapproximately the samedata generatingmechanism.
Other criteria are the number of available time series # and time series length ). Local models
are preferred when # is small and global models when # is large. Holding out valuable
training observations for pseudo out-of-sample forecast evaluation is undesirable when ) is
small, whereas several (cross-)validation methods exists for moderately large ). Figure 5.10
summarizes these aspects and provides guidances for the applicability of a hybrid forecasting
method. In [Paper C], we argue that DSSM is suited for forecasting problems with moderate
), as pseudo out-of-sample model forecast evaluation is required for model evaluation and
selection, and moderate # of time series from a single data generation process.

Practical limitations

The imposed assumption of DSSM that each time series can be approximated by the same
state space model requires model selection because of the misspecification risk. Our Monte
Carlo study in [Paper C] highlights the negative consequences for forecast accuracies when the
specified state space model cannot approximate the true data generation process well. The ap-
plicability to real-world problemswith similar characteristics as the introduced empty container
return forecasting task is thus limited. Moreover, [Paper C] demonstrates that imposing a linear
Gaussian state space process for each time series does not provide a general safeguard against
overfitting. Therefore, a successful application of DSSM relies on the same cross-validation
methods to detect overfitting as other machine learning models. Evidently, it is possible to pa-
rameterize rigid state spacemodelswhere overfitting is extremelyunlikely. However, this reverts
back to the loss of forecast accuracy when the state space model is significantly misspecified.
Cross-validation is additionally required to tune network and optimization hyper-parameters,
which is computationally costly. In particular, we note that DSSM has higher computational
costs than a standard recurrent neural network since each time series is processed by the Kalman
filter.
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5.4.4 Empirical results
Our real-world data benchmarks in [Paper C] re-evaluate the forecast accuracy of DSSM on the
publically available electricity and traffic datasets. The experiment follows the same design as
in Rangapuram et al. (2018), albeit we additional consider forecasts of locally estimated state
space models with time-homogeneous parameters. Moreover, in our experiment we replace the
recurrent network of DSSM, which is subsequently denoted by DSSM-RNN, with a feedforward
neural network (DSSM-FFN). The purpose is to assess the benefits of globally estimating the
time-homogeneous parameters of the state space models which we use as local benchmarks
for each time series. Our results for the electricity dataset show insignificant forecast accuracy
improvements of both hybrid models in comparison to the locally estimated time-homogeneous
state space models. Improvements are conversely found for the traffic dataset, with larger im-
provements forDSSM-RNNthanDSSM-FFN.However, our discussions provide strong evidence
that the improvements are due to misspecified state space models. The effects are less severe for
DSSM-RNN since the predicted time-inhomogeneous state space model parameters, thus the
ability to model heteroscedasticities, mitigate biases due to the misspecified state process.
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Conclusions

This thesis presented contributions to three research directions in the field of empty container
repositioning, focusing on decision and forecast model building. The first research direction
involved the development of inventory control policies for container depots, with a focus on
the stochastic sequential decision-making problem of an inland depot for managing container
inventory. Next, the forecasting problem of non-stationary time series was studied, which
has significant relevance for repositioning planning since empty container demand and return
processes are often non-stationary. Last, practical applicability of a recently proposed class of
hybrid forecasting models was explored.

6.1 Key findings
Towards the first research direction (RD1), we contributed with a novel capacitated multiple
supplier periodic-review inventory model for daily ECR planning of an inland container depot.
The model is formulated as a time-inhomogeneous Markov decision problem, for which we
apply backward dynamic programming to estimate optimal policies that control the inventory
by out- and in-positioning containers. A Monte Carlo study confirmed the ability to estimate
policies that utilize slower and cheaper modes of transportation for in-positioning additional
containers rather than faster but more expensive modes. The cost reduction of using slower
modes of transportationwere thereby found todecrease as the variance of future empty container
demand increased. This verified the intuition that planning multiple periods ahead is more
difficult as uncertainty increases, which makes the usage of in-positioning options with greater
lead times less attractive. A second Monte Carlo study investigated the consequences for depot
operational costs if serial and cross-sectional dependencies of the empty container demand and
return processes were misspecified. Our results showed that undetected dependencies can
lead to substantially greater operational costs than expected during policy estimation. That is, a
misspecification leads toworse inventorymanagement decisions. The implications of ourMonte
Carlo studies were substantiatedwith the existence of serial and cross-sectional dependencies in
a real-world dataset of historical empty container deliveries and returns. We therefore concluded
that the common assumption of serially and mutually independent empty container demand
and return processes is too restrictive for real-world problems.

In relation to the problem of forecasting non-stationary time series (RD2), we contributed
a novel methodology for direct multi-step ahead forecasting with state space models. Our
methodology is based on the known property that direct multi-step ahead errors of even well-
specified forecasts are finite lag serially correlated. Our main findings were estimation biases
that can occur for time-varying coefficient regression models in state space form. The models
were parameterized for direct multi-step ahead forecasting, but assumed serially independent
observation noise. The maximum likelihood estimates of the model parameters were shown to
become significantly biased if the forecast lead time was long and the true time series process
was strongly autocorrelated. Parameterizing an MA(ℎ − 1) innovation process, where ℎ is the
forecast lead time, removed the bias in ourMonteCarlo simulations. We additionally introduced
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a more flexible innovation process with latent MA coefficients to model a wider class of time
series processes. The state space model became consequently non-linear, and we proposed to
apply the Unscented Kalman filter for approximate state estimation. A Monte Carlo simulation
showed the general efficacy of this approach, albeit the forecasted variances were found to be
slightly biased as a consequence of the approximate state estimation. The latter approximation
error was also conjectured to cause inferior forecast accuracy of the model with non-linear
innovation processes at the task of forecasting empty container returns. However, our results
showed the general efficacy of parameterizing a time-invariant coefficient MA(ℎ − 1) innovation
process for direct multi-step ahead forecasting. The forecasts were on average more accurate
than the reference state space model with serially independent innovations.

Towards the third and last research direction (RD3), we conducted an assessment of Deep
State Space Models to demonstrate the critical limitations of this hybrid forecasting model. The
model uses a globally estimated recurrent neural network to predict the parameters of locally
applied linear Gaussian state space models. We identified various methodological and practical
limitations for this class of hybrid models which employ a flexible global model to predict
parameters of local parsimonious sub-models that incorporate domain knowledge. The main
methodological limitation stems from imposing the same state space model for all time series
of the dataset. This is found to be a restriction for most real-world problems where stochastic
processes can differ substantially between time series. Regarding this, we demonstrated poor
forecast accuracy for the partition of a larger dataset for which the imposed sub-model could
not approximate the time series well. This necessitates performing model selection for the sub-
models, which limits the applicability of this hybrid model to time series with sufficiently long
history for pseudo out-of-sample forecast accuracy evaluation. Moreover, we demonstrated
that employing a sub-model with time-inhomogeneous parameters does not provide a general
safeguard against overfitting. Even though itmay reduce the speed atwhich the recurrent neural
network overfits, the reliance on cross-validation to detect when overfitting occurs remains.
Finally, our results demonstrated on two publicly available datasets that the hybrid model
produced only minor forecast accuracy improvements over locally estimated parametric state
spacemodel. However, the hybrid required computationallymore demanding hyper-parameter
tuning schemes.

6.2 Perspectives for future research

The investigations in this thesis open up various directions for future research. To begin with,
our proposedMDP to model depot operations makes several assumptions that could be relaxed
in future work. Themodel assumes that all future transportation capacities and costs are known
at the beginning of the planning horizon. This may not be the case for real-world operations
where capacities and costs may only be known with certainty for the coming days. Similarly,
we considered all the cost parameters of the depot to be known, even though the estimation of
a lost sales penalty is challenging in practice. One direction to follow could be to use current
freight rates to determine lost sales costs. However, future rates are unknown and the associated
penalty would ignore the possibility of receiving additional containers for a premium cost on
short notice. In regard to this, a lost sales assumption can be too restrictive when decisions
are made daily, as exporters can wait in most cases another day to receive an empty container.
Backlogging empty container delivery orders for one or two days could be a more realistic
assumption, albeit the state space of our model would further increase. The necessity to keep
the state space sufficiently compact is a limitation of our proposal to find optimal policies with
backward dynamic programming. A methodological future research direction is therefore the
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development of approximate dynamic programming (ADP) algorithms.
Three future directions are interesting. The first direction can utilize ourMDP in conjunction

with backward dynamic programming as a baseline for designing efficient ADP methods for
a single depot. Once the properties of the approximation are understood, the MDP can be
extended by relaxing the former assumptions. In line with this direction, we would further
investigate the compatibilitywith routingmodels, particularly the effects arisingwhen requested
empty containers cannot be delivered or arrive delayed. A second research direction explores
other objective functions towards risk-aware decisionmaking. Other riskmeasures can consider
a quantile of future total costs, orminimaxobjectives tominimize themaximumtotal costs during
the planning horizon. As a third direction, we propose to investigate the application of ADP
to estimate repositioning decisions in a network of depots. In all cases, using ADP tackles the
curse of dimensionality of large state spaces. Depending on the ADP algorithm, it may still be
necessary to parameterize a stochastic process for empty container demand and returns, which
is particularly challenging for a network of depots. Therefore, future research should investigate
the applicability of arbitrary probabilistic forecasts to estimate container inventorymanagement
decisions. An immediate challenge is thereby that an MDP requires the full description of the
exogenous stochastic process. Thus, it is unclear how direct multi-step ahead forecasts can be
used.

The exploration of Model Predictive Control (MPC) methods is in this regard an interesting
future research direction. MPC solves a sequential decision problem over a specified planning
horizon, but only implements the decision at the initial epoch. Once the system has evolved into
a new state after the decision has been taken, MPC re-estimates the decision for the initial epoch
with newly obtained information. That is, MPC is applied as a rolling horizon procedure. We
may therefore consider estimating policies for our formulated MDP in a rolling horizon proce-
dure, where the latest probabilistic forecasts for future empty container demand and returns are
used instead of the fully specified stochastic process. The forecasts are assumed to be serially
independent as the estimation of the joint forecast distribution over the planning horizon is likely
infeasible for long horizons. MPC is only one approach that uses approximations to the sequen-
tial decision problem to permit the usage of arbitrary probabilistic forecasts. Independently of
the approximation method, we see the relaxation of parameterizing the exogenous stochastic
process for the MDP as a requirement to benefit from the other methodological contributions of
this thesis towards the forecasting literature.

For our developed direct multi-step ahead forecastingmethodologywith state spacemodels,
we used the Unscented Kalman filter for approximate state estimation when non-linear innova-
tion processes were applied. Future research should address whether more suitable methods
can be found to perform state estimation at similar or less computational costs, while reducing
the observed approximation errors in our simulation and empirical studies. Similarly, we may
want to relax the necessity of using a Gaussian surrogate likelihood for parameter estimation.
This can extend the applicability of our method to time series that are poorly approximated
by a Gaussian likelihood. A limitation of our proposal is that the number of unknown MA
coefficients in the innovation process grows with the forecast lead time. We therefore consider
investigating whether more parsimonious innovation processes, for instance when using fewer
MA terms, can prevent the observed estimation biases to a similar degree.

Other research in this direction can explore the applicability of multi-input multi-output
strategies for multi-step ahead forecasting with state space models. Instead of forecasting each
lead time in isolation, we can consider a multivariate state space model to forecast all or a
subset of lead times simultaneously. A benefit could thereby be the ability to share parameters
of the innovation processes across lead times, which can lead to more parsimonious parame-
terizations. Similarly, we can explore whether sharing innovation process parameters across
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related time series is sufficient to reduce estimation biases. For a fixed forecast lead time, we
could parameterize a multivariate state space model for a set of related time series, and share
latent moving average coefficients among all innovation processes. However, it is likely that the
latent state space grows too large as a growing number of lagged innovations must be included.
It is additionally not clear how to perform in-sample model selection between univariate and
multivariate models. Moreover, further research should investigate in-sample model selection
between direct and iterated multi-step ahead parameterizations. To the best of our knowledge,
it is not clear if it is possible to perform in-sample model selection based on information cri-
teria between our direct multi-step and standard iterated multi-step ahead state space model
parameterizations.

Using pseudo out-of-sample forecast evaluation remains conversely a necessity for model
selection with hybrid forecasting models, which imposes the data requirement for having suf-
ficiently long time series. Future research should determine whether the reduced overfitting
risk due to the imposed parametric sub-model has practical benefits. A shortcoming of our
research is in this regard a missing comparison of the hybrid model against a standard recurrent
neural network. We conjecture that a sufficiently regularized and globally estimated model will
perform in our experimental study equally well or better. We particularly expect improvements
for the traffic dataset, since we have found the employed state space model to be misspecified to
capture weekend effects. Evidently, the selection of a cross-validation strategy plays an impor-
tant role in this comparison, as the pure neural network is more prone to overfitting. Additional
future research should in this regard investigate whether recurrent neural networks and re-
lated hybrid models are suited for problems with short time series. A shortcoming is that each
time series must be processed sequentially, which reduces the range of possible cross-validation
strategies. Using boosted trees or feedforward neural networks, hence solving the forecasting
as a regression problem, allows using K-fold cross-validation techniques.

Our research provided some insights into the forecasting problem characteristics that are
favorable for the application of hybrid forecasting models. However, additional research is
required to verify whether the ability to jointly learn from related time series has the desired
effects when parametric sub-models are used. In the space of empty container demand and
return forecasting, future research should investigate the possibilities for learning the effect of
public holidays jointly from a set of time series. A challenge in this regard is to find appropriate
parameterizations. Regression effects of holidays are likely to enter the state space model in the
observation process as a time-varying parameter that is predicted by the global neural network.
This may cause identifiability issues for state space model parameterizations, while at the same
time exposing the model to a greater risk of overfitting. Finally, we propose future research
to compare this class of hybrid models against bottom-up models, where parametric models
are first estimated locally and a flexible model is estimated globally on the residuals. A benefit
is that bottom-up models are less exposed to model misspecifications. Empirical research is
required to investigate whether the greater overfitting risk of bottom-up models is a limitation
for problems where we expect hybrid models to perform well.
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Abstract Container logistics companies store empty containers at depots from where they are de-
livered to export customers to satisfy their demand for shipping freight. Depots further satisfy the
needs of import customers who received freight and must now return an empty container. A crucial
problem is that demands and returns are often imbalanced, requiring the logistics companies to
reposition empty containers between depots. In this paper we formulate the single depot empty con-
tainer allocation model as a capacitated multiple supplier periodic review inventory control problem
with lost sales and deterministic lead-times. The developed discrete-time Markov Decision Process
extends previous allocation models by explicitly accounting for varying lead-times and costs of differ-
ent transportation modes for receiving empty containers from other depots. Optimal policies for in-
and decreasing the depot’s container stock level are learned for serial and cross-sectional dependent
demand and return processes. We quantify the costs of ignoring these dependencies in simulation
studies and demonstrate their existence on real-world data.

Keywords Inventory control, Dependent exogenous processes, Multiple supplier sourcing, Optimal
policy learning, Time-inhomogeneous Markov decision process

1 Introduction

The redistribution of empty containers from import- to export-dominant regions is an essential task
of a container shipping company. Generally known as empty container repositioning (ECR), the
redistribution of empty containers is unavoidable since structural trade imbalances let empty con-
tainers accumulate in import-dominant regions while export-dominant regions experience container
shortages. The processes are complex and costly, with estimated annual repositioning costs exceed-
ing $10 billion for the global container shipping market Song et al. (2005); Notteboom et al. (2021).
Players in the shipping market seek cost reductions through innovative repositioning strategies to
increase profitability in a competitive environment Zhang et al. (2014). Of particular interest for
cost optimization are inland operations where multiple options are available for the transporta-
tion of containers in between ports and inland depots. Other than road transportation by truck,
many regions have existing rail and waterway infrastructure with great optimization potential for
the utilization of less flexible, but more cost-effective and environmentally friendly, transportation
options.

This paper contributes to the ECR literature by proposing a novel empty container allocation model
for the dynamic operations of an inland container depot. The depot is assumed to be connected to
a sea port through multiple transportation modes, each mode following its own schedule. Our main
contribution is the extension of the existing empty container allocation models by accounting for the
different cost and delivery time parameters of each transportation mode. We formulate the problem,
which is a particular instance of a multiple supplier inventory control problem (Svoboda et al., 2021),
as a discrete-time Markov Decision Process (MDP) and demonstrate that an optimal policy can be
obtained for realistic problem sizes under reasonable assumptions. As an additional contribution,
justified by the operational data of a container shipping company, we investigate the existence of
serial and cross-sectional dependence of the empty container demand (by export customers) and
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return (from import customers) processes. To the best of our knowledge, the investigation of cross-
sectional dependencies are new to the ECR literature.

Our work builds on the understanding that formulating and solving a single multi-modal, multi-
commodity, stochastic and dynamic model is infeasible when thousands of depots are used for empty
container storage Braekers et al. (2011). This explains why the ECR problem is typically handled
by approximations, e.g. replacing stochastic quantities by deterministic estimates (Song and Dong,
2015), or decomposition methods, e.g. first solving a global repositioning problem between ports and
then formulating a second problem that distributes empty containers from ports to inland depots
(Braekers et al., 2011). Indeed, the decomposition into ocean and inland systems can be viewed
as a natural consequence of the different transportation modalities and their characteristics. The
connection between these systems is established by sea ports in which containers can be transferred
between container vessels, trucks, trains and barges as illustrated by the stylized system in Figure 1.
Another interpretation of the landside operations is that ports serve as sinks for outflowing empty
containers and sources for inflowing containers. Throughout the paper, we follow this decomposition
strategy with the assumption that global repositioning planning ensures sufficient empty container
stock levels at ports in export-dominant regions and sufficient storage capacities in import-dominant
regions. For a more complete description of the ECR problem and solutions at a global scale, we
refer the interested reader to Song and Dong (2015).

Modeling the operations for only an isolated multi-modal inland network of a container logistics
company remains challenging. Complexities are primarily induced by the stochastic nature of fu-
ture empty container demand of export customers, future container returns by import customers,
transportation delays, capacity constraints, equipment failures and the model’s time resolution and
planning horizon. To alleviate the related computational challenges, the operational ECR inland
planning can further be decomposed into two separate optimization problems (Braekers et al., 2011).
An empty container allocation model is used initially to determine the distribution of containers
across the depots in the network, followed by a routing model that minimizes transportation costs
subject to the fulfillment of the previously estimated container allocations. Examples that follow
this decomposition for inland operations are found in Crainic et al. (1993); Olivo et al. (2005). The
allocation and routing decomposition is also applied on the global scale, with examples for ocean
repositioning presented in Feng and Chang (2008); Chou et al. (2010); Zhang et al. (2014).

The allocation model often relies on inventory theory to derive the ordering and releasing quantities
for a single container depot, i.e. the number of containers to be exchanged with ports and other inland
depots. The non-standard inventory control problem, in which positive (export customer requests)
and negative (import customer returns) demand occurs, has been solved using several modelling
techniques such as optimal control theory, dynamic programming or simulation (Song and Dong,
2015). An important aspect of the allocation-routing decomposition is that sufficient information
about available transportation options with ports and other inland depots should be incorporated
in the allocation model. It follows that the routing model cannot fulfil container requests in time if
the depot’s respective allocation model assumes transportation times too short to be accommodated
by the inland transportation network.

It is precisely this understanding in combination with the different transportation times of truck,
train and barge in inland networks that requires an extension of existing empty container allocation
models. In this paper, a MDP captures the dynamic operations of an inland container depot. The
Markov process allows us to accommodate a fine time resolution and a long planning horizon while
accounting for uncertainty of serial and cross-sectional dependent future demands and returns. The
paper is structured as follows. Section 2 illustrates how the dynamic depot operations can be viewed
as a non-standard multiple supplier inventory control problem. By reviewing existing inventory
models within and outside the ECR context, we identify the research gaps. Section 3 develops the
MDP for the introduced inventory system and presents propositions to remove states and actions
which are not visited or selected under an optimal policy, respectively. In Section 4 we first illustrate
the reductions in total operating costs obtained from modelling transportation modes with longer
delivery times but lower costs. We proceed to examine the impact on operating costs when policies
are estimated with misspecified processes, where serial- and cross-sectional dependencies for the
exogenous empty container demands and returns go undetected. The existence of these dependencies
and consequences of their misspecification are showcased for real-world data in Section 5. The paper
is concluded in Section 6.
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Figure 1: Empty container flows in an inland network with a single port and inland depot. The
empty container flows between the port and depot are bi-directional, whereas the empty container
exchange with customers is uni-directional with import customers returning empty containers and
export customers receiving empty containers.

2 An inventory model for the dynamic depot operations

We demonstrate the applicability of our inventory control model by considering the stylized inland
transportation network in Figure 1. The network consists of geographically distant empty container
storage facilities at an inland depot and sea port, and import and export customers in the region
surrounding the inland depot. The inland depot manager, subsequently referred to as the decision
maker, is responsible for simultaneously satisfying the empty container demand of export customers
and accommodating the empty container returns of import customers. Future empty container
demand and returns are uncontrollable and unknown to the decision maker, hence are stochastic
exogenous variables. In line with the majority of the ECR literature, we assume that a single
container type is returned and demanded by customers. The objective of the decision maker is to
satisfy demand and manage returns subject to minimizing costs, with penalties occurring for lost
sales and exceedance of the depot’s storage capacity.

To optimize operating costs, the decision maker can request empty containers from the port and
thereby avoid lost sales when empty container demand exceed returns. On the contrary, inventory
holding costs and storage exceedance penalties are reduced by sending empty containers from the
inland depot to the port. We refer to decisions that increase inventory as in-positioning, and let
out-positioning refer to decision that reduce inventory. Both types of decisions are made periodically
at discrete time points. For all points in time, only past empty container demand and returns are
known. Thus, the decision maker can place repositioning orders in anticipation of future empty
container demand and returns, although with knowledge about current inventory stock levels and
previous in-positioning orders that have not yet arrived.

As an illustrative example, the decision maker can choose to reposition containers via truck, train
and barge. Trucks are the fastest transportation mode with the highest unit costs, whereas barges are
the slowest but also the least expensive. We assume that the available transportation capacities and
related transportation times are deterministic and known during the planning period. Furthermore,
we assume that the decision maker cannot adjust previous empty container orders that have not
yet arrived, i.e. it is not possible to order many containers with slow transportation modes only to
later reduce such orders. Due to the difference in transportation times, the in-positioning decision
problem can be viewed as a supplier selection problem. Supply options with longer delivery times
may generally be preferred because of their lower costs. However, the longer delivery times of empty
containers induce a higher risk of running out of equipment (lost sales) or receiving more returns
than required.

2.1 Multiple supplier inventory control

Depot operations can be described as a capacitated multiple supplier periodic review inventory con-
trol problem (Minner, 2003) with lost sales and deterministic lead times for requested empty con-
tainers. The inventory varies dynamically due to exogenous demand and supply, i.e. empty container
deliveries and returns, and is controlled through in- and out-positioning decisions. An out-positioning
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decision can be viewed as a disposal option, and the in-positioning decisions are replenishment op-
tions with varying lead times. The described problem is non-standard because stochastic variables
both increase and decrease the inventory level at the depot. Nevertheless, our problem shares some
similarities with remanufacturing or product recovery systems in which product returns represent
another mode of supply in addition to replenishment options (Govindan et al., 2015). The inventory
decision problem is sequential due to the dependence of cost-optimal future inventory and decision
trajectories on the current decision. With this sequential nature of the problem, the multistage
stochastic optimization problem is best formulated as an MDP. Exact analytical solutions have only
been obtained for special cases of the multiple supplier inventory problem with convex cost func-
tions and monotonic inventory transition functions. For example, Whittemore and Saunders (1977)
consider the standard inventory problem without disposal options and prove that policies with a
base stock structure are optimal for two supplier systems with consecutive lead times, serially inde-
pendent demand and backlogging. The authors proceed to consider systems with non-consecutive
ordering lead times and show that the optimal ordering policies are no longer simple functions of the
requested inventory replenishment items. For inventory systems with lost sales, analytical solutions
are challenged by having to keep track of the available inventory and previously ordered items that
have not yet arrived, enlarging the state space. Thus, the analytical solutions reviewed in Svoboda
et al. (2021) rely on stylized assumptions such as backlogging or serially independent demand.

To avoid such stylized assumptions, we solve the multistage stochastic optimization problem numer-
ically. We apply stochastic dynamic programming (SDP) and benefit from the linearly increasing
complexity with respect to the number of decision epochs. SDP may, however, suffer from the curse
of dimensionality, i.e. the algorithm’s exponential complexity in the number of states and actions.
As previously discussed, any multiple supplier inventory model with lost sales has to track the
on-order items of previous placed orders. The size of the state space increases as a consequence
exponentially with the maximum lead time among all supply options (Svoboda et al., 2021). Larger
problem instances therefore often require approximation (Fang et al., 2013) or heuristic methods
(Zipkin, 2008) to obtain policy estimates. Our decision to proceed with an exact solution algorithm
is twofold. On one hand, we provide an algorithm that can solve small and medium-sized problems
to optimality. On the other hand, our algorithm can serve as a starting point for approximation and
heuristic methods for larger, unsolvable, instances.

A property of many inventory systems is for demand to be serially dependent. It is well understood
that ignoring the presence of positive autocorrelation will lead to underestimated safety stock levels,
while ignored negative autocorrelation will cause overestimation Ray (1980); Graves (1999). Indeed,
forecasts are an essential component in many inventory control systems, where past demand obser-
vations provide information on future values. While there are many ways to incorporate demand
forecast information into inventory control models (Goltsos et al., 2022), for the MDP we follow the
common approach of including an exogenous stochastic demand process. This approach can likewise
account for the serial dependence of empty container returns, although at the expense of further
enlarging the state space. The following literature review of ECR problems shows that accounting
for serial dependence has so far received little attention.

2.2 Research gaps

Few papers formulate the empty container inventory management problem of a single container depot
as an MDP. To the best of our knowledge, Li et al. (2004) are the first to model the dynamic port
storage operations with a discrete-time stochastic inventory model. The main differences to our work
are that in-positioning decisions materialize immediately with zero lead time and that short-term
container leasing is possible with infinite capacity, which effectively allows for penalized backlogging.
Empty container demand and returns are assumed to be serially and mutually independent. These
assumptions allow the authors to show the existence of an optimal two threshold-type policy for the
discounted finite-horizon cost minimization problem. Clearly, there are limitations to the proposed
model. As noted by Zhang et al. (2014), short-term leasing options with known future capacities and
prices are rather limited in reality. The recent COVID-19 pandemic and the related global container
shortage exemplifies this, cf. (Toygar et al., 2022). Zhang et al. (2014) replace the possibility of
short-term leasing by the occurrence of lost sales if demand exceeds the inventory that remains
upon out-positioning. While it is standard to assume that empty containers leave the inventory
immediately for out-positioning decisions, there are several variations for in-positioning decisions.
For example, Young Yun et al. (2011) assume a fixed four week lead time for in-positioning decisions
in their inventory model of a deficit port. Moreover, the MDP formulation of Song and Zhang
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(2010a) extends the model in Li et al. (2004) by assuming a fixed one decision period delay of in-
positioned empty containers. The MDP formulation, however, is not generalized to longer lead times
reflecting the varying distances to surplus regions or the different transportation times of distinct
transportation modes.

A common limitation in Li et al. (2004); Song and Zhang (2010a); Zhang et al. (2014) is that
empty container demands and returns are serially independent. This assumption is appealing from
a modeling perspective, but may not reflect reality. Indeed, Crainic et al. (1993) noted that accurate
forecasts of the complex empty container demand and return processes are critical for the successful
application of the dynamic and stochastic empty container allocation model. Approximations to the
stochastic processes has, with a few exceptions, only received little attention in the empty container
allocation literature. For example, Dang et al. (2012) considered a discrete-time inventory control
model, assuming that the empty container demands and returns follow two mutually independent
AR(1) processes. For the continuous-time empty container allocation model of a single port, Song
and Zhang (2010b) assume that the net flow, i.e. difference between empty container demand and
returns, follows a two-state Markov chain. In both cases, modeling assumptions are made without
support from real-world data. In contrast, we estimate the stochastic processes from real-world data
in Section 5. Finally, existing works do not consider cross-sectional dependence between demands
and returns, in spite of the assumption that returned empty containers have a one period lead
time before they can be reused. Positive cross-sectional dependence can reduce target stock levels
because a high number of returns tend to follow large empty container demands, whereas negative
dependence requires higher stock levels. As we demonstrate in the simulation study of Section 4,
the estimated policies may perform poorly if cross-sectional dependence goes undetected.

3 Markov decision process framework

This section formulates the MDP for the inventory problem, following the terminology and no-
tation of Puterman (1994). In most cases, we make the assumptions of the reviewed MDPs for
empty container inventory management, but highlight the assumptions that are unique to our MDP.
The notation follows the convention that stochastic variables are denoted by upper-case characters.
Realizations of stochastic variables and known parameters of the MDP are denoted by lower-case
characters. We use the short-form P (x|y) to denote the conditional probability P (X = x|Y = y)
of the random variables X and Y . Similarly, F (x|y) denotes the conditional cumulative probabil-
ity P (X ≤ x|Y = y). We further use the superscripts + and − to denote actions and stochastic
variables that increase and decrease the inventory level, respectively.

Decisions are made at decision epochs that correspond to the beginning of a time period. At
each decision epoch the decision maker has information about the current inventory position, all
previously ordered but not yet arrived empty containers and all previous empty container demands
and returns. The decision maker places out- and in-positioning orders, and out-positioned containers
leave the depot immediately. All in-positioning orders arrive at the end of a decision period and
have lead times of at least one decision period, i.e. empty containers ordered at the current decision
epoch will at the earliest be available at the following epoch. Transportation capacities and lead
times for the in- and out-positioning decisions are assumed to be known. Empty container returns
also have one decision period lead time, and thus, demand in the current decision period has to
be satisfied with the inventory that remains after the out-positioning decision has been taken. The
decision maker accrue costs according to the chosen in- and out-positioning decisions, holding costs
and penalty fees for loosing sales and exceeding the finite storage capacity.

3.1 Decision epochs and planning horizon

The periodic inventory review scheme involves a discrete-time decision process, and the inland trans-
portation in- and out-positioning options suggest a daily time-resolution due to the correspond-
ing transportation times. Hence, in- and out-positioning decisions are taken at decision epochs
t = 0, 1, . . . , T − 1, with t being a day within the planning period of finite length T . Following
Puterman (1994), no decision is made at epoch T and a terminal cost is accrued. A finite hori-
zon is chosen to allow for policy estimation in a time-inhomogeneous MDP by backwards dynamic
programming.
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Figure 2: Illustration of states and actions at epoch t. The exogenous state is illustrated with
Xt = (Z−t−1, Z

+
t−1).

3.2 Action space

At each decision epoch, the decision maker can choose among two complementary in- and out-
positioning options. The first option is to out-position empty containers A−t ∈ A− = {0, 1 . . . , Ā−}
that immediately leave the depot, where Ā− denotes the out-position transportation capacity. The
second option is to place empty container in-positioning orders A+

l,t ∈ A+
l = {0, 1, . . . , Ā+

l } with

varying lead times l = 0, 1, . . . , L. The convention for A+
l,t is that containers that are requested at

epoch t will arrive at the end of decision period t + l. A lead time of 0 means that the requested
containers will only arrive at the end of the current decision period. Contrary to Li et al. (2004);
Zhang et al. (2014), we do not allow for emergency orders that arrive immediately. The full decision
vector at time t is denoted by At ∈ A = A− ×A+

0 ×A+
1 · · · ×A+

L , and the dynamics of all decisions
are illustrated in Figure 2.

3.3 State space

We first introduce endogenous states. Subsequently, we discuss exogenous states that are required
for serially dependent empty container demand and return processes.

Endogenous state space The endogenous state space includes two components. The first com-
ponent is the empty container inventory level It that is known at decision epoch t ∈ T . We assume
lost sales and a finite storage capacity Ī such that It ∈ I = {0, 1, . . . , Ī}. The second component
keeps track of the previously ordered but not yet arrived empty containers. With in-positioning
order lead times l = 0, 1 . . . , L − 1, we let Ol,t ∈ Ol denote the total number of previously ordered
containers at time t to arrive at the end of decision period t+ l, where a lead time of 0 implies that
the containers arrive at the end of the current decision period. Since the maximum lead time is L
periods, we only keep track of previously ordered empty containers that arrive in the coming L− 1
periods. Throughout the remainder of the paper we refer to these states as on-order states and their
arrival dynamics are depicted in the process diagram in Figure 2. Their transition through time is
deterministic and is governed by

Ol−1,t+1 = Ol,t +A+
l,t, l = 1, . . . , L− 1, (1)

and
OL−1,t+1 = A+

L,t. (2)

From the transition functions, it follows that each on-order state takes values in Ol =
{0, 1, . . . ,∑L

i=l+1 Ā
+
l }. Together with the inventory state, we let S†t = (It, O0,t, O1,t, . . . , OL−1,t)

denote the endogenous state which takes values in S† = I ×O0×O1× . . .×OL−1, where × denotes
the Cartesian product.

The inventory transition function depends on the on-order state O0,t and is defined as

It+1 = min(max(It −A−t − Z−t , 0) +A+
0,t +O0,t + Z+

t , Ī), (3)

6



where Z−t and Z+
t are the stochastic discrete-valued empty container demands and returns that

occur in decision period t, i.e., they are unknown when the decision At is made at epoch t. The
inner max operator reflects the lost sales assumption, that out-positioned containers reduce the
available inventory immediately and that returned empty containers have a one decision period lead
time before they can be reused. The outer min operator accounts for the finite capacity assumption
of the storage.

Exogenous state space The exogenous states contain the information about serially dependent
variables that affect the transition probabilities of the inventory state due to the dependence of It+1

on Z−t and Z+
t . We assume that the joint distribution of empty container demand Z−t and returns

Z+
t in decision period t depends on a subset of the variables Z−0 , Z

+
0 , . . . , Z

−
t−1, Z

+
t−1, which we denote

by the vector Xt. Without further specifying the dependence structure of the stochastic process on
its own history, we let X denote the exogenous state space that contains the required lags of empty
container demands and returns. Since Z−t and Z+

t are unknown when the decision at epoch t is
made, the exogenous state Xt can only include previous observations up to and including Z−t−1 and

Z+
t−1. The complete state vector of the systems becomes St = (S†t , Xt) ∈ S = S† ×X .

3.4 Immediate costs

We assume fixed in- and out-position ordering costs λ+
l , λ

−. The stochastic transition costs from

endogenous state S†t to S†t+1 under action At are defined for t = 0, . . . , T − 1 as

Ct(S
†
t , At, Z

−
t , Z

+
t ) =λ−A−t +

(
L∑

l=0

λ+
l A

+
l,t

)

+ λl max(Z−t − (It −A−t ), 0) + λh max(It −A−t − Z−t , 0)

+ λp max(max(It −A−t − Z−t , 0) + Z+
t +A+

0,t +O0,t − Ī , 0),

where λl, λp and λh are the lost-sales penalty, storage exceedance penalty and holding costs. Lost
sales max(Z−t −(It−A−t ), 0) reflect the assumption that demand has to be satisfied with the inventory
that remains after the out-positioned containers leave the depot immediately. Similarly, holding costs
have to be paid for inventory that remains after demand has been satisfied, i.e. max(It−A−t −Z−t , 0).
The last term reflects penalty costs for arriving containers that exceed the storage capacity Ī. The
costs are stochastic since Z−t and Z+

t are not yet observed when choosing action At.

For a fixed action At = at that is selected while being in state St = st, the expected costs are

E
[
Ct(S

†
t , At, Z

−
t , Z

+
t )|St = st, At = at

]
=

λ−a−t +

(
L∑

l=0

λ+
l a

+
l,t

)
+ λpE

[
max(max(it − a−t − Z−t , 0) + Z+

t + a+
0,t + o0,t − Ī , 0)|Xt = xt

]

+ E
[
λh max(it − a−t − Z−t , 0) + λl max(Z−t − (it − a−t ), 0)|Xt = xt

]
,

where we use that Z−t and Z+
t may depend on some exogenous variables Xt, but are otherwise

independent of the endogenous states and selected actions.

The terminal costs that accrue in the final period t = T when the controllable part of the system
occupies state S†T are a design choice. We propose

CT (s†T ) =E
[
λp max(max(IT − Z−T , 0) + Z+

T − Ī , 0)|S†T = s†T

]

+ E
[
λh max(IT − Z−T , 0) + λl max(Z−T − IT ), 0)|S†T = s†T

] (4)

to assign appropriate costs to inventory positions that dependent on whether the depot experiences
an empty container deficit or surplus in the long-run, hence the costs are in expectation of Z−T and
Z+
T . The expectation is, however, not conditional on the exogenous state XT because the value

of policies with and without exogenous state spaces are compared in Section 4. Comparability is
here ensured by only conditioning on the endogenous state. Due to an additional comparison of
policies with varying transportation modes, hence different on-order state spaces, the terminal costs
are also independent of the on-order states. Eventually, one recognizes the terminal costs to mirror
the immediate costs that accrue when no previous ordered empty containers arrive and no in- and
out-positioning decisions are made.
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3.5 Transition probabilities

The transition functions for the endogenous states and the exogenous process model for the empty
container demands and returns fully determine the one-step transition probability P (st+1|st, at)
from state st to st+1 under action at. The transition probability has the factorization

P (st+1|st, at) = P (s†t+1, xt+1|st, at)
= P (s†t+1|xt+1, st, at)P (xt+1|st, at)
= P (s†t+1|xt+1, st, at)P (xt+1|xt),

where P (xt+1|st, at) = P (xt+1|xt) is due to the exogeneity assumption for the empty container
demand and return process. The exogenous transition probability P (xt+1|xt) is obtained from the
demand and return process. The deterministic transition function of the on-order states can be used
to express the endogenous factor as

P (s†t+1|xt+1, st, at) = P (it+1|xt+1, st, at)
L−1∏

l=0

P (ol,t+1|xt+1, st, at)

= P (it+1|xt+1, st, at) · 1{oL−1,t+1 = a+
L,t} ·

L−1∏

l=0

1{ol−1,t+1 = ol,t + a+
l,t},

where 1{·} denotes the indicator function. The factor simplifies to

P (s†t+1|xt+1, st, at) = 1{it+1 = max(it − a−t − z−t , 0) + a+
0,t + o0,t + z+

t , Ī)}

· 1{oL−1,t+1 = a+
L,t} ·

L−1∏

l=0

1{ol−1,t+1 = ol,t + a+
l,t},

if xt includes the empty container demands z−t−1 and returns z+
t−1 of the previous period, since the

conditioning set of P (it+1|xt+1, st, at) contains all the information for it+1.

3.6 State-dependent action space

The action space is naturally constrained by the physical properties of the inventory system. In state
St, the out-positioning decision A−t is constrained by the available inventory It, i.e. 0 ≤ A−t ≤ It,
because it is not possible to out-position more containers than are currently at the depot. We further
introduce the mutual exclusivity constraint,

A−t A
+
0,t = 0,

i.e., A−t = 0 if A+
0,t > 0 and A+

t,0 = 0 if A−t > 0, to prohibit the estimation of policies for which empty
containers are out-positioned to only receive some containers again at the end of the decision period.
We exclude such actions because they are unreasonable in practice with a daily time-resolution, but
also to reduce the action space. The joint action space for A−t and A+

0,t becomes

A0,St = {(a−t , a+
0,t) | a−t a+

0,t = 0, a−t ∈ {0, 1, . . . ,min(It, Ā
−)}, a+

0,t ∈ A+
0 }.

The endogenous state space introduces additional restrictions on the in-positioning actions because
each on-order state Ol,t takes values in Ol for l = 0, 1, . . . , L− 1. From the on-order state transition
functions (1) and (2) follows

A+
l,St

= {a+
l,t|a+

l,t +Ol,t ∈ Ol−1, a
+
l,t ∈ A+

l }, for l = 1, . . . , L− 1,

and
A+
L,St

= {a+
L,t|a+

L,t ∈ OL−1, a
+
L,t ∈ A+

l }

The action space for A+
0,t remains unchanged because the action does not affect any on-order state.

The full state-dependent action space is thus ASt
= A0,St

×A+
1,St
×A+

2,St
× · · · × A+

L,St
.
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3.7 Objective function and optimality equations

Following Puterman (1994) we let dt(St) : S → ASt
denote the decision rule for selecting an action

in each state under policy π = (d1, d2, . . . , dT−1) ∈ Π, with the standard assumption of Π being the
set of Markovian and deterministic policies. The objective of the decision maker is to find a policy
π that minimizes the expected costs over the planning horizon

Vπ(s0) = Eπ

[
T−1∑

t=0

Ct(S
†
t , dt(St), Z

−
t , Z

+
t ) + CT (S†T )

∣∣∣∣∣S0 = s0

]
,

with initial state s0 ∈ S. Here the expectation is taken with respect to the distribution induced by
the policy π. The optimal policy is obtained as

π? = argmin
π∈Π

Vπ(s0)

and is numerically calculated by minimizing (5) with backwards dynamic programming, starting in

VT (ST ) = CT (S†T ),

and solving the Bellman equation

Vt(st) = min
at∈Ast

E
[
Ct(S

†
t , At, Z

−
t , Z

+
t ) + Vt+1(St+1)|St = st, At = at

]

= min
at∈Ast

E
[
Ct(s

†
t , at, Z

−
t , Z

+
t )|Xt = xt

]
+ E[Vt+1(St+1)|St = st, At = at]

= min
at∈Ast

∑

z−t ,z
+
t

p(z−t , z
+
t |xt)Ct(s†t , at, z−t , z+

t ) +
∑

st+1∈S
p(st+1|st, at)Vt+1(st+1)

recursively for each decision epoch T − 1, T − 2, . . . , 0.

3.8 Pruning state and action spaces

The following propositions can be used to reduce the state and action spaces of the formulated MDP
and improve the efficiency of the backward dynamic programming algorithm. All proofs are found
in the appendix.

Proposition 1 reduces the endogenous state space for on-order states by considering the accrued
penalty when previously ordered containers arrive and exceed the storage capacity. The proof
verifies the intuition that no optimal solution could have more ordered containers arriving at the
end of a decision period than can be stored at the depot.

Proposition 1. Let λp > 0. Any on-order states that satisfy

Ot,l > Ī, for l = 0, 1 . . . , L− 1

cannot occur in an optimal solution.

As a result, the on-order state spaces can be restricted to Ol = {0, 1, . . . ,min(Ī ,
∑L
i=l+1 Ā

+
l )}.

The number of possible inventory states can be reduced when the exogenous state includes the
empty container returns of the previous period. Proposition 2 is a result of the inventory transition
function (3) and states that the previous period’s empty container returns can generally not exceed
the current epoch’s inventory position. An exception applies, however, to the greatest inventory
position It = Ī. In this inventory state all previous returns that exceed the storage capacity are
necessarily truncated to respect the capacity constraint.

Proposition 2. If Z+
t−1 ∈ Xt, then states St with

It < Z+
t−1 < Ī

cannot occur in any solution.

Propositions 3 and 4 demonstrate how to reduce the action space for A−t and A+
0,t when the system is

in state St. The first proposition relies on the lost sales costs and the demand process and finds the
largest out-positioning decisions that may be optimal. All greater out-positions, which are shown to
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Table 1: Cost and capacity parameters for in- and out-positioning decisions.
decision variable capacity unit cost

A−t 35 (Ā−) 25 (λ−)
A+

0,t 35 (Ā+
0 ) 100 (λ+

0 )

A+
1,t 35 (Ā+

1 ) 75 (λ+
1 )

A+
2,t 35 (Ā+

2 ) 50 (λ+
2 )

cause lost sales with probability one, are found to be suboptimal. The second proposition extends
this line of thought to empty container inflows and identifies the largest in-positioning decision. All
greater in-positions are shown to be suboptimal due to the finite storage capacity and the accrued
penalty for exceeding it. The identified in- and out-positioning can be removed from ASt

as a
consequence of their suboptimality.

Proposition 3. Let
Z−xt

= {z−t ∈ N0 | P (z−t |xt) > 0}
denote all possible empty container demand realizations that occur with non-zero probability in deci-
sion period t. For λ− > 0 and λl ≥ 0, any out-positioning decision A−t that satisfies

A−t > It −minZ−xt
≥ 0,

in state St cannot be optimal.

Proposition 4. Let
Z+
xt

= {z+
t ∈ N0 | p(z+

t |xt) > 0}
denote all possible empty container return realizations that occur with non-zero probability in decision
period t. For λ+

0 > 0 and λp ≥ 0, any in-positioning decision A+
0,t that satisfies

A+
0,t > Ī −

(
max(It −maxZ−zt , 0) + minZ+

zt +O0,t

)
≥ 0,

in state St cannot be optimal.

4 Simulation studies

This section presents two simulation studies illustrating how different assumptions impact the opti-
mal in- and out-positioning decisions. The first study demonstrates the potential for reducing the
costs of an inland container depot when in-positioning options with varying lead times and costs
are modelled explicitly. The study further investigates conditions under which more expensive but
faster in-positioning options are favorable. The second study confirms the importance of account-
ing for serial and cross-sectional dependence in the empty container demand and return process.
So far, we have assumed this process to be known. However, this assumption is violated in most
real-world applications. We consider different degrees of misspecifications between the true and the
assumed demand and return processes and learn the optimal policies under these assumptions. Our
results illustrate that a policy’s true cost can deviate significantly when the serial and cross-sectional
dependence structure is not captured correctly.

Network parameters Both studies consider the inland network in Figure 1, where the inland
depot can only exchange empty containers with a port. The storage capacity of the depot is assumed
to be Ī = 80 and there exist 3 daily transportation options with the port, for which lead times vary
between 0, 1 and 2 days. Table 1 displays cost and capacity parameters. The cost parameters are
chosen to incentivize the usage of slower in-positioning options. The capacity parameters are selected
such that A+

0,t alone can cover all the in-positioning demand of the depot when Ā+
1 = Ā+

2 = 0. The
out-positioning costs are selected to be lower as the in-positioning costs to incentivize stock level
reduction through out-positioning at times of a container surplus, a behavior that is expected from
real-world depot operations. For the cost parameters of the storage in Table 2, we choose the lost
sales penalty to be in the neighborhood of current global freight rates for 20ft containers. The
penalty for exceeding the storage capacity is naturally smaller since the arriving empty containers
can either be redirected to a different depot or additional space at the depot can be used with a
premium on costs. The holding costs are small because it is assumed that container handling costs
are included in the costs for in- and out-positioning.
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Table 2: Depot parameters
capacity (Ī) lost-sales penalty (λl) exceedance penalty λp holding cost λh

80 1,000 50 1

Demand and return processes Throughout the remainder of this section it is assumed that the
marginal processes for empty container demands and returns are negative binomial autoregressive
(NBAR) processes

Zt|Zt−1 ∼ P (zt|zt−1) = NB

(
µ2
t

σ2
t − µt

,
α

α+ µt

)
,

where the superscripts to denote demand (Z−t ) and return (Z+
t ) stochastic variables are omitted.

NB(·, ·) denotes a negative binomial distribution with mean and variance

E[Zt|Zt−1] = µt = exp(c+ θ log(Zt−1 + 1))

Var[Zt|Zt−1] = σ2
t = µt +

1

α
µ2
t

. (5)

The autoregressive parameter θ controls the strength of serial dependence, c is a drift term and
the dispersion parameter, with α = 10 for all simulated processes if not otherwise stated, induces
overdispersion. The experimental study with real-world data in Section 5 illustrates the fit to
the data. We utilize a copula to induce negative and positive cross-sectional dependence between
demands and returns. Copulas have the benefit over multivariate stochastic processes, such as frailty
models, that the dependence strength is controlled in a simple manner. In this study we apply the
Clayton copula

Cκ(u, v) = max
([
u−κ + v−κ − 1

]−1/κ
, 0
)

to the conditional CDFs F (z−t |z−t−1) and F (z+
t |z+

t−1) of two independent NBAR processes, with
copula parameter κ ∈ [−1,∞]\{0}. We subsequently use the Kendall rank correlation coefficient
τ ∈ (−1, 1) to report dependence strengths between demands and returns. Kendall’s τ measures the
ordinal association between two quantities and relates to the Clayton copula parameter κ through
τ = κ/(2 + κ) (Nelsen, 2006). Similar to a Pearson correlation coefficient, large negative τ indicate
strong negative correlations and τ = 0 implies no rank correlation. Other bivariate copulas could
have been applied, such as the Frank (uniform dependence across the variables’ domain) or Gumbel
(stronger dependence in both tails) (Nelsen, 2006). However, we consider the Clayton (stronger
dependence in the left tail for low demands and returns) copula because it is found to best describe
the cross-sectional dependence structure of the real-world data in Section 5.

A caveat of our approach to model cross-sectional dependent processes is that no closed form ex-
pression exists for the unconditional distribution P (z−t , z

+
t ) when demands and returns are serially

dependent. However, we require this distribution to learn policies under misspecified serial de-
pendence structures. As a solution we propose to approximate P (z−t , z

+
t ) with a trajectory of 107

demand and return samples. Starting in t = 1, demand and return pairs are sampled from the copula
Cκ(F (z−t |z−t−1), F (z+

t |z+
t−1)), where z−t−1 and z+

t−1 are the sampled values of the previous time step

and initialized with z−0 = 0, z+
0 = 0. The first 104 samples of the simulated trajectory are removed

to reduce the effect of this initialization. The distribution P (z−t , z
+
t ) is eventually obtained with the

observed frequencies of the remaining samples.

Dynamic programming parameters To compare policies with different in-positioning trans-
portation modes and demand and return processes, and hence, different state spaces, we use the
terminal cost function (4). The distribution of Z−T and Z+

T , over which the expectation is calculated,
is specified by the experiment. We set T = 100 to reduce the effect of the terminal value on the
policies during early decision epochs.

Policy evaluations and comparisons Consider the case where a policy is learned under a de-
mand and return process that deviates from the true process. For a system occupying an endogenous
state s†0, a policy’s costs under misspecification are calculates as

E
[
Vπ?(S†0, X0)|S†0 = s†0

]
,

where the expectation is evaluated with respect to the true demand and return process. The initial
exogenous state x0 is omitted in the conditional expectation to remove its effect on the estimated
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Table 3: Policy value ratios of the models with maximum in-positioning transportation lead times of
0, 1 and 2 decision periods (denoted by a policy’s subscript). The first column reports the variance
of the demand process, which follows a negative binomial distribution.

Var
[
Z−t
]

R(π?0 , π
?
1) R(π?0 , π

?
2)

20 1.29 1.81
40 1.27 1.73
60 1.24 1.61
80 1.20 1.47
100 1.16 1.35

costs. Monte-Carlo integration is applied to compute the expectation since an exact value is only
obtainable from a policy’s value function when the true and assumed exogenous processes align.
10,000 trajectories of length T are sampled from the true demand and return process to approximate
the expectation by applying a learned policy forward from the initial s†0 until the end of the planning
horizon. The estimated values of two policies are compared by evaluating the ratio

R(π?1 , π
?
2) := R(π?1 , π

?
2 |s†0) =

E
[
Vπ?

1
(S†0, X0)|S†0 = s†0

]

E
[
Vπ?

2
(S†0, X0)|S†0 = s†0

] ,

which is a relative regret if π?2 is learned under the true exogenous process whereas π?1 is not.

Throughout the remainder of this section we assume s†0 = (i0, o0) = (Ī/2, 0) = (40, 0) in all exper-
iments. All initial on-order states o0 are set to zero because policies are learned for MDPs with
different in-positioning lead times in our initial experiment. Non-zero on-order states would other-
wise be disadvantages for a policy with maximum lead time L = 0, for which the endogenous state
space reduces to S†t = It.

4.1 Varying in-positioning lead times

In this experiment, we learn policies of 3 different MDPs to verify that the availability of slower
in-positioning transportation modes reduces the operational costs of the depot. The first MDP does
not model in-positioning options with lead times greater than 0, i.e. Ā+

1 = Ā+
2 = 0, but takes Ā+

0

as in Table 1. Similarly, the second model takes Ā+
2 = 0 and the third model is unrestricted with

the originally proposed capacity parameters. The policies of all three models are labeled according
to the maximum available lead time of the transportation modes, i.e. π0, π1 and π2.

All policies are estimated for five exogenous demand and return processes. Each demand distribution
is taken to be negative binomial with mean 10, i.e. c = log(10) and θ = 0 in the conditional
expectation 5 of the NBAR process, but with varying variances (20, 40, 60, 80 and 100) that we
control through the dispersion parameter α. The return variables are also negative binomial with
c = log(5), θ = 0 and α = 10 in Equation 5. Both variables are independently and identically
distributed, hence the exogenous state space of all models is empty. We assume that the exogenous
processes of the MDP models are correctly specified.

Results The results in Table 3 show the effectiveness of the slower transportation modes to reduce
costs. If the depot has initially 40 empty containers in stock, no containers are on order and the
demand variance is 20, then the policy with maximum lead time of 0 has 29% and 81% larger
expected operating cost during the planning period of 100 epochs than the policies with maximum
transportation lead times of 1 and 2 days, respectively. It is observed, though not shown in the paper,
that no in- or out-positioning decisions of the optimal policies are at their capacity bounds. Thus, the
reported cost ratios are not due to capacity shortages of the policies with smaller total in-positioning
capacities. The results further indicate that the usage of slower in-positioning transportation modes
is subject to the demand process variance. As indicated by the declining policy value ratios in
Table 3, the relative benefit of using slower in-positioning modes diminishes with increasing demand
variance. This follows naturally since planning multiple periods ahead becomes more difficult as the
uncertainty of future empty container demands and returns increases.
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Table 4: Serial and cross-sectional dependence of the exogenous process models for the MDP for-
mulations.

MDP name demand & return dependencies exogenous state

AR P (z−t |z−t−1)P (z+
t |z+

t−1) Xt = (Z−t−1, Z
+
t−1)

IID P (z−t )P (z+
t ) None

ARcross P (z−t , z
+
t |z−t−1, z

+
t−1) Xt = (Z−t−1, Z

+
t−1)

IIDcross P (z−t , z
+
t ) None

4.2 Misspecifications of the exogenous process

In this study, we examine the effects on the operating costs of the exogenous process differing between
policy estimation and evaluation. We begin by investigating the consequences of not accounting for
serial dependence. We proceed to examine the misspecification introduced by ignoring cross-sectional
dependence between empty container demands and returns.

The policies of this study stem from four different MDPs. The second column of Table 4 lists the
MDP’s stochastic process for demands and returns reflecting whether serial or cross-sectional de-
pendence is considered, and the third column shows the corresponding exogenous state. The two
marginal distributions P (z−t ) and P (z+

t ) of the IID model are approximated through Monte-Carlo
sampling from two specified NBAR processes, whereas the joint distribution P (z−t , z

+
t ) of the IID-

cross model is approximated by the trajectory sampled from the Copula Cκ(F (z−t |z−t−1), F (z+
t |z+

t−1)).

The sample spaces, i.e. the observation pairs xt = (z−t−1, z
+
t−1) that are sampled during the Monte-

Carlo procedure, are used as the exogenous state space of the AR and ARcross models to avoid the
inclusion of exogenous states that are never visited according to the approximated unconditional
distributions. To further limit the computational requirements, we remove exogenous states which
are rarely visited by removing samples with low probability from the space in increasing order until
a maximum of 0.0005 of the total mass is removed. The transition probabilities are corrected ac-
cordingly by redistributing missing mass in the conditional distributions equally among each of their
remaining samples. A consequence of this procedure is that a pair (z−t−1, z

+
t−1) which has not been

part of the exogenous state space during policy estimation may be sampled during policy evaluation.
We propose to select the action from the exogenous state xt in the estimated policy with the smallest
Euclidean distance to the observed pair. To ensure comparability between all policies, we use the
approximated unconditional distribution of mutually independent demands and returns for calcu-
lating the terminal cost in Equation (4). Thus, all MDPs in Table 4 have the same terminal costs.
The remaining model parameters for the depot and transportation modes are taken as introduced
in Table 1 and 2, except that the in-positioning transportation mode with the lead time of 2 days is
excluded to avoid excessive computations, i.e. Ā+

2 = 0.

4.2.1 Misspecified serial dependence

To begin the examination of misspecified exogenous processes, we learn the policies of the IID and
AR MDPs for a range of mutually independent NBAR processes for empty container demands
and returns. The IID model is misspecified since it ignores the serial dependence of the exogenous
process. Thus, to estimate the true expected costs under this policy, we use Monte-Carlo integration
with samples from the mutually independent NBAR processes. We also use Monte-Carlo integration
for the AR model with the correctly specified exogenous processes to integrate out the effect of the
initial exogenous state X0 on the costs during the planning horizon of 100 epochs.

Table 5 reports the relative regret R(π?IID, π
?
AR) for 25 different demand and return processes. As

before, we take the initial endogenous state to be s†0 = (40, 0). The top rows with θ− > 0 and
θ+ = 0 highlight the misspecification effect for demand processes with positive serial dependence
and independently distributed returns. We observe that the misspecification leads to understock-
ing, which is in concordance with known results for standard inventory systems without stochastic
returns, where the understocking effect becomes more pronounced with increasing autocorrelation.
Even though holding costs are comparatively lower for the IID policy, overall costs are higher due
to the larger lost sales penalty costs that are caused by operating the depot at lower than optimal
inventory levels. Therefore, the observed cost differences are highly dependent on the lost sales
penalty λl. The higher costs under the IID policy will diminish with decreasing penalities because
lost sales due to understocking will have smaller effects on depot operating costs. The results in
the bottom rows for θ− < 0 further verify that undetected negative autocorrelated demand causes
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Table 5: Relative regretR(π?IID, π
?
AR) for misspecified serial dependence. The first column reports the

parameters of the two mutually independent NBAR processes with conditional mean and variance
defined in Equation 5, and dispersion parameter α = 10 for both processes. The autoregressive
parameters θ− and θ+ control the serial dependence strength, for which θ− = θ+ = 0 implies serial
independence. The two last columns list the average accrued lost sales penalty and holding cost
differences for the 10,000 Monte Carlo trajectories of length T=100.

θ− c− θ+ c+ R(π?IID, π
?
AR) E

[
Vπ?

IID
(S†0 , X0)|S†0 = s†0

] lost sales cost
(IID - AR)

holding cost
(IID - AR)

0.7 0.5 0.7 0.5 1.32 22,868 8,313 -482
0.7 0.5 0.35 0.7 1.15 34,001 6,254 -832
0.7 0.5 0 1.5 1.19 25,803 6,146 -702
0.7 0.5 -0.35 1.5 1.14 35,587 6,081 -852
0.7 0.5 -0.7 2.5 1.19 24,795 5,806 -623

0.35 0.7 0.7 0.5 1.17 12,811 2,446 -817
0.35 0.7 0.35 0.7 1.06 5,264 525 -489
0.35 0.7 0 1.5 1.05 6,047 503 -412
0.35 0.7 -0.35 1.5 1.02 4,769 279 -128
0.35 0.7 -0.7 2.5 1.01 5,894 46 24

0 1.5 0.7 0.5 1.15 10,452 1,414 -983
0 1.5 0.35 0.7 1.0 10,092 37 -10
0 1.5 0 1.5 1.0 4,584 -2 8
0 1.5 -0.35 1.5 1.0 11,574 -58 49
0 1.5 -0.7 2.5 1.03 4,505 -87 486

-0.35 1.5 0.7 0.5 1.04 11,155 608 -186
-0.35 1.5 0.35 0.7 1.01 3,993 -50 59
-0.35 1.5 0 1.5 1.02 5,477 -83 266
-0.35 1.5 -0.35 1.5 1.06 3,450 -93 676
-0.35 1.5 -0.7 2.5 1.08 5,960 -120 693
-0.7 2.5 0.7 0.5 1.03 9,237 134 -178
-0.7 2.5 0.35 0.7 1.04 11,847 -322 532
-0.7 2.5 0 1.5 1.06 5,111 -241 459
-0.7 2.5 -0.35 1.5 1.03 13,487 -339 591
-0.7 2.5 -0.7 2.5 1.09 4,896 -234 744
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Table 6: Relative regrets for serial and cross-sectional dependence misspecification for the IID,
IIDcross and AR policies. Kendall’s τ reports the cross-dependence strength, with τ = κ/(2 + κ)
for the applied Clayton copula.

θ− c− θ+ c+ τ R(π?AR, π
?
ARcross) R(π?IIDcross, π

?
ARcross) R(π?IID, π

?
ARcross)

-0.35 1.5 -0.35 1.5 0.50 1.07 1.03 1.25
-0.35 1.5 -0.35 1.5 0.25 1.02 1.05 1.13
-0.35 1.5 -0.35 1.5 0.00 1.00 1.06 1.06
-0.35 1.5 -0.35 1.5 -0.25 1.01 1.07 1.03
-0.35 1.5 -0.35 1.5 -0.50 1.02 1.07 1.02
0.35 0.7 0.70 0.5 0.50 1.08 1.02 1.01
0.35 0.7 0.70 0.5 0.25 1.03 1.11 1.04
0.35 0.7 0.70 0.5 0.00 1.00 1.17 1.17
0.35 0.7 0.70 0.5 -0.25 1.02 1.21 1.39
0.35 0.7 0.70 0.5 -0.50 1.06 1.21 1.58

overstocking when returns are serially independent. However, the cost ratios are smaller compared
to the reported values in the top rows for undetected positive dependence. This follows from the
smaller contribution of holding costs to total operating costs, which are largely determined by lost
sales penalities and in-positioning costs. Hence, the reported results will vary for different holding
cost parameters λh, with smaller differences for decreasing λh. In spite of the seemingly smaller
impact of undetected negative serial dependence on a depot’s operating costs, the consequences are
more far-reaching because costs of an inflated container fleet size accrue when hundreds of depots
experience negatively autocorrelated demand processes.

While the previous results are known for inventory systems with stochastic demands, we observe
the same effects for misspecifications of stochastic returns. The center of the table shows for seri-
ally independent demand that undetected positive serial dependence in the return process leads to
understocking, whereas undetected negative dependence leads to overstocking. In the special cases
where demand is positively and returns negatively dependent, but also in the reverse case, we ob-
serve that the individual misspecification effects act favorable in case of the IID policy. The results
show that undetected positive demand dependence has less severe consequences when negative serial
dependence of returns also goes undetected. The reverse is true for positive return dependence that
generally adds to the understocking effect of undetected positive demand dependence. In real-world
applications it is unknown whether the misspecifications of demand and return processes act favor-
able, and thus, we emphasize the importance of accurately accounting for serial dependence.

4.2.2 Misspecified cross-sectional dependence

In this final experiment, we learn policies for all four MDPs to examine the effect of model misspeci-
fication under serial and cross-sectional dependence. We follow the steps of the previous experiment
and evaluate all learned policies for s†0 = (40, 0). The results with comparison to the correctly
specified MDP model ARcross are reported in Table 6, where Kendall’s τ reflects the strenght of
cross-sectional dependence induced by the Clayton copula. Two distinct autocorrelated demand and
return processes have been selected.

The first 5 rows of the table correspond to a balanced depot since the marginal NBAR processes
are identical for the demands and returns. Both variables are negatively serially dependent, for
which we have shown in the previous study that overstocking occurs when the serial dependence
goes undetected. The consequently higher operating costs (6%) are shown in row number 3 for the
mutually independent reference case with τ = 0. With respect to the policy of the ARcross model, we
observe that the IID policy of the last column performs worse for positive cross-sectional dependence
and better for negative dependence, where it is on par with the AR policy for τ = −0.5. While this
seems at first counterintuitive, it can be explained by the same effects that were observed in the
previous experiment when undetected serial dependence of demands and returns acted favorable for
the IID policy.

To begin with, consider the case of negative cross-sectional dependence for serially independent
demands and returns. If this dependence goes undetected, inventory levels are generally too low,
hence understocking occurs. This follows from information being ignored that large demands and few
returns are more likely to occur jointly. Under the occurrence of such an event the inventory system
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moves into an unfavorable state since the opening inventory level of the following decision epoch may
drop too low. More lost sales are likely to follow in the next decision period. Rows 4 and 5 in Table 6
report that the misspecification of negative cross-sectional dependence, hence understocked inventory
levels, acts against the overstocking effect of misspecified serial dependence. The relative regret
R(π?AR, π

?
ARcross) increases due to the stronger misspecified cross-sectional dependence, hence less than

optimal inventory levels occur under the AR policy. On the contrary, R(π?IID, π
?
ARcross) decreases

because the otherwise too high inventory levels for the misspecified negative serially dependent
demand and return process are beneficial when large demands and small returns occur in the same
decision period.

The same dynamics are observed for the relative regrets in the first two rows with positive cross-
sectional dependence. Overstocking occurs if this dependence goes undetected because information is
ignored that large demands and returns are more likely to occur jointly, which has the favorable effect
of ensuring sufficient inventory levels after large quantities of demand has been satisfied. The shown
relative regrets in the first two rows demonstrate that accounting for the cross-sectional dependence
is essential to prevent additional overstocking when negative serial dependence of demands and
returns goes undetected. It is further shown that under strong positive cross-sectional dependence
(τ = 0.5) it is less detrimental to misspecify the serial dependencies as long as the cross-sectional
dependence is modelled correctly. This may lead to the following question. Which dependencies
should be addressed more carefully? The answer is both because in real-world applications it is
unclear which dependence structures are present before any investigations are conducted. The last
two rows of Table 6 should serve as a warning in this regard. Learning a policy under the convenient
assumption of serial and cross-sectional independent demand and returns can have catastrophic
consequences if the true process deviates unfavorably.

5 Experimental study

This section demonstrates the existence of serial- and cross-sectional dependence in the real-world
data of a global container shipping company, and the consequences of misspecifying these depen-
dencies. The dataset contains daily empty container deliveries to export customers and container
returns from import customers for an inland depot that is in deficit of empty containers. We consider
observations from 01.01.2014 but only preceding 01.01.2020 due to the induced non-stationarities of
the COVID-19 pandemic on global trade. The 2192 observations measured in 20ft containers are
converted to 40ft containers (division by two and rounding down to the nearest integer number) to
reduce the state space. Except for a weekend effect with lower deliveries and returns on Saturdays
and Sundays, no seasonalities are detected for the time series.

Demand and return processes The true stochastic process of empty container demands and
returns is unknown. We therefore use the time series data to estimate statistical models that deter-
mine the exogenous process in our MPDs. The statistical models are learned under the assumption
that historical empty container deliveries to export customers are a proxy for the unknown empty
container demand (Z+

t ). Similarly, historical returns are a proxy for customer initiated empty con-
tainer returns (Z−t ). In total we learn four statistical models with varying serial and cross-sectional
dependencies. We use a variation of the naming convention in Table 4 to highlight the dependence
assumptions of the MDPs. A minor adaptation is applied because the weekend effect induces a
time-dependence in the distributions for demand and returns. In decision period t the stochastic
variables are not identically distributed because their distributions differ between weekdays and
weekends. Thus, ID and IDcross indicate the time-inhomogeneous MDPs with serially independent
exogenous processes.

The exogenous process of the MDPs with mutual independent demands and returns are obtained
through negative binomial (NB) regression. The conditional mean in Equation (5) of the NBAR
process is adapted to

E[Zt|Zt−1] = exp(c+ βut + θ log(Zt−1 + 1)), (6)

which accounts for the weekend effect with a regression coefficient β. A deterministic indicator
variable ut is employed to differentiate between weekdays (ut = 0) and weekends (ut = 1). The
demand and return process of the AR model is obtained by estimating the unknown coefficients in
Equation (6) and dispersion parameter α of the NBAR process from the historical time series. For
the exogenous process model of the ID MDP, θ = 0. A Clayton copula with NBAR conditional
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Table 7: Maximum likelihood estimates of the NB regression and copula models for empty con-
tainer returns (Z−t ) and demand (Z+

t ) with marginal distributions parameterized as in Equation (6).
Kendall’s τ in the second last column is obtained as τ = κ/(2 + κ).

c− θ− β− α− c+ θ+ β+ α+ κ (τ) AIC
ARcross 1.60 0.33 -0.28 22.60 1.45 0.31 -0.19 5.31 0.18 (0.08) 24,259
AR 1.56 0.35 -0.28 22.65 1.44 0.32 -0.20 5.27 0 (0) 24,329
IDcross 2.38 0 -0.28 14.98 2.07 0 -0.14 4.48 0.22 (0.1) 24,751
ID 2.38 0 -0.29 14.78 2.08 0 -0.15 4.41 0 (0) 24,867

marginals (6) is estimated for the joint process of historical deliveries and returns to obtain the
process for the cross-sectional dependent ARcross and IDcross MDPs.

The coefficients of all four statistical models are estimated by maximizing the conditional likeli-
hood. As noted in Trivedi and Zimmer (2017), the employed autoregressive and weekday regressors
mitigate the identification concerns of copulas for discrete outcomes. The estimated coefficients in
Table 7 show mild positive serial dependence and weak cross-sectional dependence. The Akaike
Information Criterion (AIC) identifies the copula model with autoregressive regressors as the best
fitting statistical model for the unknown stochastic process (Akaike, 1974). We also estimated the
Frank and Gumbel copula to the data (Nelsen, 2006). However, none attained a lower AIC than the
Clayton copula. The simulation study’s procedure to obtain the exogenous state spaces for the AR
and ARcross model is applied. In particular, P (z−t , z

+
t ) is approximated by 107 Monte-Carlo sam-

ples, and removing samples with low probability from the approximated distribution. Samples are
removed in increasing order until a maximum of 0.0005 of the total mass has been removed.

Network and dynamic programming parameters The depot parameters are taken as listed
in Table 2. The exogenous state spaces of the MDPs with serially dependent processes are larger
compared to the previous simulation study. To avoid excessive computations we reduce the in- and
out-positioning capacities to Ā− = 10, Ā+

0 = 5, Ā+
1 = 5 and Ā+

2 = 10. All cost parameters are the
same as in Table 1. The planning horizon is 7 weeks (T = 49), and planning begins on a Monday
(t = 0) and ends on a Sunday (t=49) when the terminal costs as defined in Equation (4) accrue.
With this assumption, we omit the inclusion of a state variable for the dummy variable ut since
its value can be inferred from the decision epoch t. The two marginal distributions P (z−t |ut = 1)
and P (z+

t |ut = 1) that are estimated for the ID MDP are used for the terminal cost calculation of
all other MDPs to ensure identical terminal costs, and hence allows a fair comparison between all
policies because cost differences accrue during t = 0, . . . , T − 1.

Policy evaluations and comparisons The policy values with respect to the unknown stochastic
process for empty container demands and returns is estimated by using the historical time series
samples to approximate the expectation (6), with s†0 = (i0, o0) = (40, 0) as before. Each sample
trajectory contains T = 49 observations, thus a total of 44 trajectories are obtained from the 2192
time series observations. The first observation of each trajectory corresponds to a Monday to align
with the assumption that planning begins on a Monday. The exogenous state x0 of the AR and
ARcross model are thus the empty container deliveries and returns of the preceding Sunday. Since
the earliest observation is available for Wednesday 01.01.2014, the first sample of the first trajectory
is the delivery and return observation pair of Monday 06.01.2014 and x0 is the observation pair of
Sunday 05.01.2014.

Results The results in Table 8 agree with the misspecification effects of the simulation study.
We find the ID and IDcross policies to have an average 7% and 9% higher costs than the ARcross
reference policy. When ignoring positive serial dependencies for demand and returns in the ID model,
inventory stock levels are comparatively lower, hence holding and in-positioning cost are lower,
than the policies with serial dependent exogenous processes. Figure 3 exemplifies the difference in
inventory positions for a selected sample trajectory. Eventually, the lower inventory levels imply
higher lost sales, and thus, higher overall costs. Higher average out-positioning cost for policies
with autoregressive exogenous processes further indicate their superiority. Indeed, the modelled
serial dependence provides additional information such that containers are only out-positioned in
periods when they are not needed. This is in contrast to general understocking behavior under
the ID and IDcross policies. The results additionally show the interaction effects of misspecified
serial and cross-sectional dependencies. The average holding costs during the planning period of the
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Table 8: Estimated policy value for historical empty container delivery and return time series.
Parenthesized values in the first column refer to the ratio R(π?, π?ARcross) where π? is the policy of
the respective row. The remaining columns report the average accrued cost for the planning horizon
of 49 days, fx. the ARcross policy accrued an average 682 lost sales cost for each of the 44 sample
trajectories.

E
[
Vπ? (S†0 , X0)|S†0 = s†0

] lost sales
cost

holding
cost

storage excess
cost

in- & out-positioning
cost

ARcross 9,194 682 1,723 228 6,355 & 35
AR 9,156 (1.0) 523 1,759 243 6,428 & 38
IDcross 10,051 (1.09) 1,977 1,587 218 6,012 & 6
ID 9,808 (1.07) 1,659 1,626 230 6,072 & 8
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Figure 3: Attained inventory states (top) of the ARcross and IDcross policies for a selected empty

container delivery and return trajectory (bottom) when starting in s†0 = (it = 40, o0,t = 0). The
first delivery and return observation pair corresponds to Monday 10.05.2015.
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ID (1,626) and IDcross (1,587) policies exemplify this effect. It is observed that the overstocking
effect of undetected positive cross-sectional dependence under the ID policy compensates for the
understocking effect of undetected positive serial dependence.

Pruning state and action spaces Finally, we would like to emphasize the effectiveness of the
propositions in Section 3.8 for pruning state and action spaces. The unpruned state space of the
ARcross MDP contains about 12.7 million states, and is reduced with the application of Proposition 2
by roughly 18%. The selection of in-positioning capacities causes Proposition 1 to be ineffective
because no on-order state exceeds the storage capacity. Clearly, this will change if in-positioning
capacities increase.

The maximum observable demand is below the storage capacity, which allows the application of
Proposition 4 to reduce the action space for A+

0,t. However, the resulting exogenous processes of
the estimated statistical models imply a minimum demand of zero containers for each decision
period. Proposition 3 is consequently ineffective since it is equivalent to the constraint A−t > It.
The combined effect of pruning states with Proposition 2 and reducing the state-dependent action
spaces with Proposition 4 is that the total number of evaluated actions per epoch reduces from
approximately 12.9 to 10.9 billion, a reduction of 15%.

6 Conclusions

In this paper, we have extended existing empty container allocation models by accounting for vary-
ing lead times of transportation modes that are available in inland logistics networks. A simulation
study confirmed the cost reductions due to a usage of slower but less expensive transportation modes
for repositioning empty containers between a port and an inland depot. Furthermore, we investigate
serial and cross-sectional dependent empty container demand and return processes, and the effect
on policy values when the dependencies go undetected. The study extended known results for the
misspecification of serial dependence for demand processes in inventory systems to the empty con-
tainer return process. To the best of our knowledge, we are the first to investigate the consequences
of ignoring cross-sectional dependence between container demands and returns for empty container
allocation models. This is particular important due to the common assumption that empty con-
tainer returns have a one period lead time before they can be reused to satisfy demand. A real-world
dataset of delivered and returned empty containers of a depot demonstrated the existence of both
types of dependence structure. Policy evaluation with historical data confirmed the reliance of our
MDP on exogenous process models that accurately describe the serial and cross-sectional depen-
dence of empty container demands and returns. A caveat of our MDP is that the estimation of an
optimal policy becomes intractable for larger state spaces.

Future work should thus address policy approximation methods for the applicability of the MDP to
larger problem instances with more in-positioning transportation modes and more complex demand
and return processes. Our backwards dynamic programming algorithm could provide reference
for how well such approximation methods perform on the problem instances considered in this
paper. A next step could be assess the benefits for repositioning decisions of a routing model.
To incorporate even more information about the inland network, one can investigate the effect of
stochastic transportation lead times, prices and capacities on in- and out-positioning decisions. The
relaxation of the fixed one period lead time for returned empty containers is likewise of practical
interest. In practise, the state of returned containers varies, such that returned damaged containers
have a greater lead time before they can be reused for a new shipment.
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Song, D., Zhang, J., Carter, J., Field, T., Marshall, J., Polak, J., Schumacher, K., Sinha-Ray, P.,
and Woods, J. (2005). On cost-efficiency of the global container shipping network. Maritime
Policy & Management, 32(1):15–30.

Song, D. and Zhang, Q. (2010a). Optimal inventory control for empty containers in a port with
random demands and repositioning delays. In Cullinane, K., editor, International Handbook of
Maritime Economics, pages 301–321. Edward Elgar Publishing, Cheltenham, UK.

20



Song, D.-P. and Zhang, Q. (2010b). A Fluid Flow Model for Empty Container Repositioning Pol-
icy with a Single Port and Stochastic Demand. SIAM Journal on Control and Optimization,
48(5):3623–3642.

Svoboda, J., Minner, S., and Yao, M. (2021). Typology and literature review on multiple supplier
inventory control models. European Journal of Operational Research, 293(1):1–23.
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7 Appendix

The following proofs relate to the propositions in Section 3.8 for reducing the state and action spaces
of the introduced MDP.

Proof of Proposition 1. Assume that there exists a t such thatO0,t > Ī. Given It, O1,t, . . . , OL−1,t, Xt,

let Ô0,t = Ī.
If λp > 0, then

λp
(
max

(
max(It −A−t − Z−t , 0) + Z+

t +A+
0,t +O0,t − Ī , 0

))

> λp

(
max

(
max(It −A−t − Z−t , 0) + Z+

t +A+
0,t + Ô0,t − Ī , 0

))

for all Z+
t , Z

−
t and A+

0,t, A
−
t and for all t = 1, . . . , T − 1. All other costs are the same, as they do

not depend on O0,t.
The assumption O0,t > Ī implies It+1 = min

(
max(It −A−t − Z−t , 0) +A+

0,t +O0,t + Z+
t , Ī

)
= Ī for

all Z+
t , Z

−
t and A+

0,t, A
−
t and for all t = 1, . . . , T − 1, and similarly for Ô0,t. Because Vt+1 does

not depend on O0,t, Vt(It, O0,t, . . . , OL−1,t, Zt) > Vt(It, Ô0,t, . . . , OL−1,t, Zt). If CT is decreasing in

O0,T , CT (O0,T ) ≥ CT (Ô0,T ).

Proof of Proposition 2. The proposition follows immediately from the inventory transition function
(3)

Proof of Proposition 3. Given a state St with It, O0,t, Xt that satisfies Ā− > It−minZ−xt
> 0, where

Z−xt
is the set of all demand realizations that occur with positive probability in period t as defined

in Proposition 3. Assume that A−t > It − minZ−xt
and Â−t = It − minZ−xt

. Then λ− > 0 implies

λ−Â−t < λ−A−t . Also, if λl ≥ 0, then

λl max(Z−t + Â−t − It, 0) ≤ λl max(Z−t +A−t − It, 0)

for all Z−t . All other costs are the same for out-positioning decisions A−t and Â−t , as A−t > It−Z−xt
≥

It − Z−t , and so, max(It − Z−t − A−t , 0) = 0 for all Z−t , and similarly for Â−t , which further implies
equal transition probabilities for both decisions. Thus, Â−t is a better solution than A−t .
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Proof of Proposition 4. Given a state St with It, O0,t, Xt that satisfies

Ā+
0 > Ī −

(
max(It −maxZ−xt

, 0) + minZ+
xt

+O0,t

)
≥ 0,

where Z−xt
and Z+

xt
are respectively the empty container demand and return realizations in period

t with positive probability as earlier defined in Proposition 3 and 4. Assume the in-positioning
decisions with 0 lead time A+

0,t > Ī −
(
max(It −maxZ−xt

, 0) + minZ+
xt

+O0,t

)
and Â+

0,t = Ī −(
max(It −maxZ−xt

, 0) + minZ+
xt

+O0,t

)
. Then λ+

0 > 0 implies λ+
0 Â

+
0,t < λ+

0 A
+
0,t. Also, if λp ≥ 0,

then
λp max

(
max(It − Z−t , 0) + Z+

t + Â+
0,t +O0,t − Ī , 0

)

≤ λp max
(
max(It − Z−t , 0) + Z+

t +A+
0,t +O0,t − Ī , 0

) (7)

for all Z+
t , Z

−
t . All other costs are the same for in-positioning decisions A+

0,t and Â+
0,t. Moreover,

both decisions have equal transition probabilities since It+1 = Ī for all Z+
t , Z

−
t .Thus, Â+

0,t is a better

solution than A+
0,t.
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Abstract

The selection of a multi-step ahead forecasting strategy is a long-standing problem. While
it is known that the errors of an optimal h-step ahead forecast are serially correlated up
to lag h − 1, a common assumption for direct multi-step ahead forecasting models is to
let the model innovations be serially uncorrelated. In this paper we show that this as-
sumption can lead to estimation biases, and ultimately to forecast accuracy deteriorations,
when time-varying coefficient models are estimated in state-space form for direct multi-step
ahead forecasting. To enable direct multi-step ahead forecasting with state-space models
we propose to explicitly model the latent serially correlated innovation process of a direct
h-step ahead forecast as a MA(h − 1) process. We show on a real-world dataset that our
proposed methodology produces on average more accurate probabilistic forecasts than the
corresponding state-space models with serially uncorrelated innovations.

Keywords: State-space models, Direct multi-step ahead forecasting, Non-stationary time
series, Probabilistic forecasting, Demand forecasting

1. Introduction

Forecasts are an integral component of many modern data-driven decision-making pro-
cesses. Today it is widely accepted that optimal decision-making must reflect the inherent
uncertainty of the future and therefore, forecasts should be thought of and issued within a
probabilistic framework (Gneiting and Katzfuss, 2014). Besides being probabilistic, forecasts
are often required for multiple lead times to enable decision-making for multiple steps in
the future. Forecasters can choose from a variety of multi-step ahead forecasting strategies,
with broad categorizations into single-output and multiple-output methods. The widely
utilized iterated and direct strategies, and their less frequently applied variations, belong
to the first category since the models output a single value for each lead time. Multiple-
output strategies instead output forecasts for the whole forecast horizon simultaneously to
account for the inter-dependencies of the forecasts for different lead times. Since none of the
available strategies is superior in all conditions, it is problem- and model-specific conditions
that determine multi-step ahead forecasting strategy to be applied. For example, while the
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accumulation of forecast errors under model misspecification may discourage the usage of
the iterated strategy from a theoretical standpoint, empirical studies have not collectively
found the error accumulation avoiding direct strategy to be superior (Taieb and Atiya, 2015).
Indeed, even if the direct strategy seems to bypass the error accumulation problem, there is
a latent and serially correlated innovation process that is disregarded. We will hence explore
here a more flexible approach within a state-space framework, allowing to perform direct
multi-step ahead forecasting while aiming to accommodate the latent innovation process
component.

In addition, a frequently encountered challenge in many forecasting problems is that time-
series show non-stationary behaviour. Traditionally, stationary time series models have been
applied to differenced series or to small time intervals which are assumed to be locally (or
approximately) stationary (Dahlhaus, 2012). Time-varying coefficient models take a differ-
ent approach by assuming the model coefficients to be time-dependent, hence the models are
implicitly non-stationary (Grenier, 1983; Chen and Tsay, 1993). For example, time-varying
coefficient ARMA-X models allow modelling processes with both time-varying effects of ex-
ogenous inputs and autocorrelation functions. The coefficient evolution through time can
generally be accommodated in many ways. Examples include local regression methods (Chen
and Tsay, 1993; Cai and Tiwari, 2000), recursive estimation techniques (Moulines et al.,
2005; Messner and Pinson, 2019) and proposals within a state-space framework (Priestley,
1980; Durbin and Koopman, 2012). The latter framework offers a unified treatment for a
wide range of non-stationary time series with missing values, structural breaks and season-
alities (Davis et al., 2021) – it is hence preferred here. Within the same framework it is
possible to model univariate and multivariate time series based on different distributional
assumptions (West et al., 1985).

We propose a novel direct probabilistic multi-step ahead forecasting methodology with
state-space models for non-stationary time series. Our proposal relies on the knowledge that
the errors of a direct multi-step ahead forecast with a fixed lead time but varying forecast
origin are serially correlated, even when the mean structure of the forecast model is correctly
specified (Harvey et al., 1997). To the best of our knowledge, this is the first time that
this deficiency of dynamic models for direct multi-step ahead forecasting is discussed. For
example, Poncela et al. (2013) used time-varying coefficient AR models in a state-space form
for direct multi-step ahead forecasting, though overlooking the potential misspecification
of the innovations process. Other selected examples from energy applications where the
serial correlation in the multi-step ahead forecast errors is ignored during the modelling
process include time-varying AR-X models that are either parameterized in state-space form
(Sanchez, 2006) or recursively estimated (Bacher et al., 2009). We expect the application
of dynamic models for multi-step ahead forecasting with potentially misspecified innovation
processes not to be limited to these examples. Therefore, our main contribution is to expose
an estimation bias in the coefficient estimates of dynamic models that do not account for
the serial correlation in the multi-step ahead forecast errors. For state-space models we
show based on simulation studies that the innovation process misspecification may cause a
significant bias in the maximum likelihood estimates that ultimately degenerates the forecast
performance.
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Our work is inspired by the past success of modelling non-stationary time series with
time-varying coefficient models (Karakatsani and Bunn, 2008; Song et al., 2011; Dangl and
Halling, 2012). We exploit the flexibility of the state-space modelling framework to estimate
a broad range of model types (Durbin and Koopman, 2012; Hyndman et al., 2008; Harvey,
1990) and propose a modular approach to multi-step ahead forecasting. It is based on
the explicit modelling of the multi-step ahead forecast errors as a latent moving average
process. A key contribution is then the proposal of relevant parameterizations and their
evaluation in an empirical analysis with real-world data. We consider our approach to be
modular since our methodology is generally compatible with already existing state-space
model parameterizations, e.g., the time-varying AR and AR-X model parameterizations in
Poncela et al. (2013) and Sanchez (2006), respectively.

The paper is structured as follows. Firstly, Section 2 motivates in detail our proposal
while building on related work. The exposition of the main theoretical results on direct
multi-step ahead forecasting for non-stationary time series is then provided in Section 3.
Section 4 presents suitable model parameterizations and describes the associated state and
parameter maximum likelihood estimation procedures. The proposed models and associated
estimation framework are validated based on simulation experiments in Section 5. Section 6
gathers empirical evidence for the proposed framework before Section 7 concludes this paper
by discussing the main findings and perspectives for future work.

2. Motivating multi-step ahead forecasting within a state-space framework

Multi-step ahead forecasting strategy selection is a long-standing challenge in time series
forecasting. Attempts of theoretical comparisons between the iterated and direct strategy
are presented in Atiya et al. (1999), Chevillon (2007) and Taieb and Atiya (2015) among
others, with the finding that the direct strategy is preferred under model misspecification,
i.e., when the set of candidate models does not contain the true model. In addition, Chevillon
(2007) explained that direct multi-step ahead forecasting is likely superior in non-stationary
environments because model misspecification may occur owing to unnoticed unit roots or
non-stationary regressors. On contrast, short time series and forecasting problems with
short horizons are favorable conditions in which the iterated strategy can produce superior
forecasts (Ben Taieb et al., 2012).

Since there is no overall superior strategy it is often the specific characteristics of a
forecasting problem that influence the selection of a multi-step ahead forecasting strategy.
Consider a forecasting problem where domain knowledge suggests that the functional re-
lationship between some regressors and the response variable depend on the forecast lead
time. This may be the case for forecasting the weekly number of delivered products for a
company which accepts product orders with future delivery times (Bartezzaghi et al., 1999).
The functional relationship of the response variable with the regressors, which are derived
from already received orders, will vary with the lead time under the assumption that the
number of received orders decreases with the increased distance in delivery time. Through-
out the remainder of this paper we use the term horizon-dependent to refer to this class of
regressors.
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Figure 1: Example target variable time series and horizon-dependent regressors from the dataset that is
considered in the empirical analysis of Section 6. The time series are aligned such that the observations yt
match with the regressors bt|t−h, where h is the lead time measured in weeks.

Another example of a forecasting problem with horizon-dependent regressors is presented
in the empirical analysis of Section 6. The objective is to forecast future empty container
returns from customers to the container storage facilities of a large container shipping com-
pany. For this problem it is possible to compute highly predictive regressors by utilising the
booking information of travelling full containers. The exemplary shown data in Figure 1
suggests that the functional relationship between the regressors and the response variable
changes with the look ahead time. The reason for the seen behaviour is that bookings,
which return the associated empty containers further ahead in the future, have not yet been
observed at the forecast origin. Due to the changing relationship between the regressors and
response variable it is therefore difficult to justify the application of the iterated strategy
for producing multi-step ahead forecasts.

This forecasting problem has further similarities with many other demand forecasting
problems where the time series often show non-stationary behaviour of changing mean,
autocorrelation and variance. Other domains, where differencing or model coefficient re-
estimation on small time intervals has traditionally been applied to non-stationary time
series, are economics and energy forecasting applications. Many recent proposals in the
forecasting literature take a different approach by avoiding stationarity considerations al-
together. The time-invariant parameters of global models (Januschowski et al., 2020) are
estimated on large data sets to allow parameter sharing among related time series even
though individual time series may show different non-stationarity patterns. Successful meth-
ods based on deep neural networks and boosted trees are presented in Rangapuram et al.
(2018); Salinas et al. (2020); Lim et al. (2021) and Ma and Fildes (2020), respectively.
Non-stationarities may be tackled within the global modelling framework by parameter re-
estimation on small time intervals. However, this approach faces difficulties in situations
where individual time series need different interval lengths.
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A benefit of local modelling techniques in this context is that the level of parameter
adaptivity to address non-stationarities can be optimized for each time series individually.
An example is the extension in terms of time-varying autoregressive coefficients of a sta-
tionary AR model to non-stationary time series (Grenier, 1983). While several estimation
procedure exist today for time-varying coefficient models, we will focus in this paper on
the state-space framework. A parameterization of a time-varying coefficient AR model in
state-space form usually assumes the AR coefficients to be latent state variables that follow
a first order Markov process (Durbin and Koopman, 2012). Efficient inference on the latent
coefficients is often possible via Kalman-type filters and parameter estimation is conducted
via maximum likelihood.

Model parameterizations are certainly not limited to these model types. The state-space
framework generally allows to parameterize parsimonious structural time series models (Song
et al., 2011; Durbin and Koopman, 2012) for forecasting problems with available domain
knowledge and potentially little data. At the same time it is also possible to parameterize
flexible non-linear models where sequential Monte Carlo methods are required for inference
(Svensson and Schön, 2017). State-space models are considered extensions of generalized
linear models to time series data. Thus they allow for appropriate model parameterizations of
demand time series with positive integer counts where the Gaussian assumption is severely
violated if the time series are zero-inflated (West et al., 1985; Seeger et al., 2016; Davis
et al., 2021). An additional appealing property of state-space models and a deciding factor
of their applicability in real-world forecasting problems is that the parameter estimation via
maximum likelihood is efficient and fast for reasonably complex models. For example, Seeger
et al. (2016) demonstrated the ability of state-space models to forecast hundred thousands
of time series.

The state-space framework is conceptually designed to perform multi-step ahead fore-
casting by following the iterated strategy where unobserved regressors are replaced by their
forecasts. Our novel methodology for direct multi-step ahead forecasting with state-space
models utilises that the error sequence of the optimal h-step ahead forecast follows a moving
average process of order h− 1 (Harvey et al., 1997). Further, this result can be expected to
hold approximately for any reasonably well-conceived set of forecasts (Harvey et al., 1997).
A direct multi-step ahead model with independently distributed innovations is therefore
clearly misspecified in its innovation process. Interestingly, one finds frequently applications
of the direct multi-step ahead forecasting strategy where the serial correlation of the forecast
errors is ignored. Examples for energy forecasting Sanchez (2006); Bacher et al. (2009); Pon-
cela et al. (2013). As we show in this paper, time-varying coefficient models in state-space
form are susceptible to estimation biases when the serial correlation of the forecast errors
is grossly misspecified. An important aspect is that time-varying AR coefficients induce a
time-dependence in the autocorrelation function of the h-step ahead forecast errors. The
generality of estimating time-varying coefficient models with complex, serially correlated
innovation processes sets the state-space framework apart from the referenced estimation
methods.

Possible solutions to estimate models with serially correlated innovations in the state-
space framework can be broadly categorized as follows. One can select filtering algorithms
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that are derived under the assumption of serially correlated noise (Li et al., 2013; Sun et al.,
2016). The coefficients of the autocorrelation function are static model coefficients and thus,
it is not straightforward to model processes with time-varying autocorrelation functions.
Alternatively, one augments the state-space model with a parametrized innovation process
such that the resulting auxiliary dynamical system is driven by white noise (Bryson and
Johansen, 1965). Standard filtering algorithms can then be used for state inference because
the inputs to the system are white. We prefer this approach because it allows to model
a wide range of time-varying autocorrelation functions in a flexible, yet parsimonious way.
It is further compatible with state-space models that are already in use because one must
only replace the observation noise process, while the other model components remaining
unchanged. As shown in the following section, the flexibility is particularly needed for non-
linear time series since the sequence of direct h-step ahead forecast errors experience complex
autocorrelations.

3. On the serial correlation of multi-step ahead forecast errors

In this section we verify that the errors of a well-conceived h-step ahead forecast follows
an approximate MA(h− 1) process. We show this on the basis of a general non-stationary
autoregressive process before providing the generalisation to autoregressive processes with
exogenous inputs. Thus, let us for now assume that a univariate time series y1, . . . , yT is
generated by the non-stationary autoregressive process

yt = fθt(xt−1) + εt , (1)

with xt−1 = (yt−1 . . . yt−d)> and where for generality f is assumed to be a non-linear
function in the vector xt−1 of lagged endogenous variables. The additive innovations {εt}
are assumed to be white noise, albeit the following results immediately extent to processes
with serially correlated innovations. The sequence of model coefficients {θt} that parame-
terizes the function f is restricted such that the stochastic process (1) is locally stationary
(Dahlhaus, 2012). For the assumed data generating mechanism we now show that the er-
rors of the optimal 2-step ahead forecast are serially correlated up to lag 1, followed by the
generalization to h-step ahead forecasts and subsequently data generating mechanisms with
exogenous inputs.

3.1. Properties of the 2-step ahead forecast errors
We begin by writing the stochastic process for yt+2 as a function of the available infor-

mation set at time instance t and the future innovations εt+1 and εt+2. By expansion of the
data generating mechanism (1) we obtain

yt+2 = fθt+2(xt+1) + εt+2

= fθt+2(yt+1, . . . , yt−d+2) + εt+2

= fθt+2(fθt+1(xt) + εt+1, yt, . . . , yt−d+2) + εt+2,

(2)
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where the first argument of fθt+2 depends on the innovation term of time t+ 1. With a first
order Taylor series expansion in the function’s first argument around the point fθt+1(xt) we
obtain

yt+2 = fθt+2(fθt+1(xt), yt, . . . , yt−d+2) + εt+1

∂fθt+2(fθt+1(xt))

∂x1

+ ε2t+1

∂fθt+2(fθt+1(xt))

2∂x21
+ o(ε3t+1) + εt+2

= fθt+2(fθt+1(xt), yt, . . . , yt−d+2) + ε̃t+2|t,

(3)

where ∂
∂x1

denotes the partial derivative with respect to the first argument in fθt+2 and
o(ε3t+1) denotes the higher order terms of the Taylor series expansion. The expansion shows
that the sequence {ε̃t+2|t} is at most serially correlated up to lag 1 due to the dependence
of ε̃t+2|t on the innovations εt+1 and εt+2. Then, since ε̃t+2|t additional depends on the time-
varying autoregressive coefficients it follows that the autocorrelation structure of {ε̃t+2|t}
is time-varying too. To familiarize the reader with the previous exposition we exemplify
both conditions in Example 1 for a time-varying coefficient AR(1) process and 2-step ahead
forecasting.

Example 1 (2-step ahead forecast errors of a non-stationary AR(1) process). Let the time
series y1, . . . , yT follow the time-varying coefficient AR(1) process

yt = θtyt−1 + εt, (4)

where {εt} is Gaussian white noise with variance σ2 and where {θt} follows a process such
that the time series is locally stationary and for simplicity it is assumed that y0 = 0. For
the specified data generation mechanism we can write

yt+2 = θt+2θt+1yt + θt+2εt+1 + εt+2

= θt+2θt+1yt + ε̃t+2|t.
(5)

from which, under the assumption that the sequence of model coefficients {θt} is known, we
obtain

Var
[
ε̃t+2|t|θt+2

]
= (θ2t+2 + 1)σ2, (6)

and
Cov

[
ε̃t+2|t, ε̃t+1|t−1|θt+1, θt+2

]
= θt+2σ

2. (7)

Clearly, both quantities are time-varying due to the dependency on θt+2. The implication
for the conditional variance is that uncertainty measures, such as prediction intervals, of
the optimal forecast are necessarily time-varying. For this constructed example the forecast
uncertainty is large when |θt+2| is large and small for a small autoregressive coefficient. The
conditional covariance in Equation (7) verifies that the lag 1 autocorrelation of the optimal
2-step ahead forecast errors is also time-varying. Last, it is straightforward to verify that
Cov

[
ε̃t+2|t, ε̃t+2−τ |t−τ |θ1, . . . , θt+2

]
= 0 for |τ | > 1.
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3.2. Properties of the h-step ahead forecast errors
The generalisation to greater temporal differences between the forecast origin t and lead

time t+ h can be derived via the following recursion. First write

yt+2 = ỹt+2|t + ε̃t+2|t, (8)

where ỹt+2|t = fθt+2(fθt+1(xt), yt, . . . , yt−d+2) denotes the term in Equation (3) which at time
t is independent of the future innovations εt+1 and εt+2. With the same notational convention
we can write

yt+h = fθt+h(yt+h−1, . . . , yt+h−d) + εt+h

= fθt+h(ỹt+h−1|t + ε̃t+h−1|t, . . . , ỹt+2|t + ε̃t+2|t, fθt+1
(xt) + εt+1, yt . . . , yt+h−d)

+ εt+h,

(9)

where h < d is assumed for the sake of notational brevity. We continue as before with the
first order Taylor series expansion in the function’s first h − 1 arguments around the point
(ỹt+h−1|t, . . . , ỹt+2|t, fθt+1) to obtain

yt+h = fθt+h(ỹt+h−1|t, . . . , ỹt+2|t, fθt+1(xt), yt, . . . , yt+h−d) + ε̃t+h|t

= ỹt+h|t + ε̃t+h|t.
(10)

Because all ε̃t+j|t for j = 2, . . . , h−1 in Equation (9) are respectively functions of εt+1, . . . , εt+j
and xt, it follows that ε̃t+h|t is also functionally dependent on xt and εt+1, . . . , εt+h. Con-
sequently ε̃t+h|t can be at most serially dependent up to lag h − 1, with the dependence
structure varying with time due to a functional dependence on θt+1, . . . ,θt+h−1.

The serial dependence structure for {ε̃t+h|t} remains generally intact as long as the data
generating mechanism is autoregressive. For example, let the time series y1, . . . , yT be gen-
erated by the stochastic process

yt = fθt(xt−1,ut−1) + εt, (11)

where xt−1 and {εt} as before. The non-linear data generating function f depends now
additional on a vector ut = (u1,t . . . uk,t)

> of exogenous variables. Following the previous
steps we can write again

yt+h = fθt+h(ỹt+h−1|t, . . . , ỹt+2|t, fθt+1(xt,ut), yt, . . . , yt+h−d,ut+h−1) + ε̃t+h|t

= ỹt+h|t + ε̃t+h|t,
(12)

where ε̃t+h|t is now a more complicated construction that additionally also depends on
ut, . . . ,ut+h−2. However, the dependence on εt+1, . . . , εt+h remains and thus, the previous
statements on the serial dependence of {ε̃t+h|t} also remain valid.

An implication of the serial dependency up to lag h−1 is that ε̃t+h|t follows a MA (h−1)
process, where the MA coefficients are complicated functions of observed data and unob-
served model coefficients when f is non-linear. In practice however this circumstance is
often ignored when estimating a h-step ahead forecast model to the unknown data gen-
erating mechanism by assuming the additive innovations ε̃t+h|t to be independently, and
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frequently also identically, distributed. Examples where the innovations of h-step ahead dy-
namic models are assumed to serially independent can be found in Sanchez (2006); Bacher
et al. (2009); Poncela et al. (2013); Messner and Pinson (2019). As we will show later on in
Section 5 for simulated data, the consequences of the serial independence assumption can
be severe when using state-space models for direct h-step ahead forecasting.

4. State-space modelling

Up until this point we have used the previous data generating mechanism as a mean to ex-
plore theoretical properties of the h-step ahead forecasts. Because the data generating mech-
anism remains unknown to a forecaster we propose in the following a general methodology
for the estimation of dynamic models for multi-step ahead forecasting in non-stationary envi-
ronments. It is assumed that the non-stationary data generating mechanism of the observed
time series y1, . . . , yT can be sufficiently well approximated by a time-varying coefficient
model. Moreover, the forecaster has access to a set of forecast horizon-dependent exogenous
regressors ut|t−h, which are assumed to be available for the respective lead time T + h. The
notational change from ut+h|t to ut|t−h is intentional to let the presented state-space model
parameterizations follow the standard notational conventions within the state-space litera-
ture (Harvey, 1990; Hyndman et al., 2008; Durbin and Koopman, 2012). Genuine h-step
ahead probabilistic forecasts, outside the state-space model parameterizations, for lead time
t + h based on the information set that is available at the forecast origin t are denoted by
F̂t+h|t.

Under these assumptions we propose to approximate the unknown stochastic process for
yt as a function of at time t − h available endogenous and exogenous regressors with the
general state-space model

θt+1 = fh(θt,ηt+1), (13a)
yt = gh(θt,xt−h,ut|t−h) + ε̃t|t−h, (13b)

where t = τ, . . . , T due to the unavailability of endogenous regressors xt−h = (yt−h . . . yt−h−d)>

for t < τ = d+ h. The underlying idea of the model is that fh parameterizes together with
ηt+1 a process for the evolution of the unobserved time-varying (regression) coefficients θt
through time. The observation model (13b) is responsible for mapping the latent state vec-
tor θt into the observational space of yt, which is decomposed into a system model function
gh(·) of endogenous and exogenous regressors, and an additive error term ε̃t|t−h. We assume
that both functions gh : Rm × Rd × Rk → R and fh : Rm × Rr → Rm are smooth and
potentially non-linear. Last, the initial state vector is assumed to follow θτ−1 ∼ p(θτ−1),
with p(θτ−1) being known and potentially degenerate.

While the evolution through time of the state vector is assumed to be driven by the
white noise sequence {ηt}, it has been shown that this assumption is invalid for ε̃t|t−h when
h > 1. We utilise instead the previous results and assume that ε̃t|t−h follows an approximate
MA(h − 1) model conditional on the system model gh(·) and the state process (13a) being
appropriate approximations to the unknown data generating mechanism. Moreover, since
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we identified the MA coefficients to be time-varying for data generating mechanisms with
time-varying autoregressive coefficients we consider the h-step ahead innovations to follow

ε̃t|t−h = εt +
h−1∑

j=1

φt,jεt−j, (14)

where {εt} is white noise. For generality the MA coefficients are also assumed to be latent
and to follow a first order Markov process

φt+1 = fMA
h (φt, ξt+1), (15)

where φt = (φt,1 . . . φt,h−1)> and {ξt} being white noise. The MA coefficient time pro-
gression model fMA

h (·) is a smooth function which may be non-linear in its arguments,
fMA
h : Rh−1 × Rs → Rh−1. While the innovations ξt and ηt that drive the evolution of the
latent states may be cross-correlated, we assume that εt of the MA process (14) is at all
times independent of the state innovations.

Generally, the assumed process for ε̃t|t−h is a modelling choice. For example, one may
consider the time-invariant coefficient MA process

ε̃t|t−h = εt +
h−1∑

j=1

φjεt−j, (16)

as a less flexible, but posibbly computationally more robust, alternative. The additive
decomposition of the observation model (13b) allows immediately for direct multi-step ahead
forecasting. It is merely necessary to choose a parameterization for ε̃t|t−h, which in many
cases is independent of the choices for fh(·) and gh(·). In the remainder of this section we
will present the general estimation treatment for the considered state-space model under the
most general assumption that ε̃t|t−h follows the time-varying coefficient MA process (14).

4.1. Estimation
It follows from the observation model (13b) that forecasting a future dependent variable

YT+h requires the estimation of the latent, dynamically evolving states θT+h and φT+h
conditional on the information set on the stochastic process at time instance T . Optimal and
computational efficient inference via recursive filters with closed form analytical expressions
is often only possible in special cases. For example, the Kalman filter (Kalman, 1960) is
optimal for the class of stationary linear state-space models with Gaussian innovations. It is
computationally efficient since it recursively estimates the sufficient statistics of the latent
state’s conditional distribution given the current information set on the stochastic process.

For non-linear and non-Gaussian models it is rarely possible to derive analytical ex-
pressions for the targeted conditional distributions. Inference for these models is usually
performed by approximating the filter distributions with sequential Monte Carlo methods
(Doucet et al., 2001) or by placing assumptions on the filter distributions to allow for their
efficient approximation. While Monte Carlo methods allow for arbitrary close approxima-
tions of the respective conditional distributions by increasing their sample sizes, they are
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difficult to apply in practical forecasting problems of reasonable size due to their computa-
tional complexity. We therefore decide to trade off accuracy losses due to approximations
with desirable computational properties and propose in Section 4.1.1 the application of the
Unscented Kalman filter (Julier and Uhlmann, 2004) for state inference.

A second inference task involves the unknown model coefficients of the functions fh(·),
fMA
h (·) and gh(·), and distributional coefficients of the white noise sequences {ηt}, {ξt} and
{εt}. We propose to estimate the unknown coefficients of the state-space model by maximiz-
ing the observed data likelihood. We consider the σ-field Fht = σ(Y1, . . . , Yt−h, U1|1−h, . . . , Ut|t−h)
and we assume that conditional on this reduced filtration the stochastic process {Yt}t=1,...,T

is distributed according to the state-space model described by equations (13a), (13b), (14)
and (15), with (partial) likelihood given by

Lh(y1, . . . , yT ,u1|1−h, . . . ,uT+h|T ) = ph(y1, . . . , yτ−1|u1|1−h, . . . ,uh|τ−h)

×
T∏

t=τ

ph(yt | y1, . . . , yt−1,u1|1−h, . . . ,ut+h|t),
(17)

where the subscript h indicates that the density is implied by the filtration {Fht }t=1,...,T .
Finding an analytical expression for this likelihood is generally challenging when the under-
lying state-space model is non-linear and non-Gaussian. Our proposal in Section 4.1.2 is
therefore to estimate the unknown state-space model coefficients by maximizing a Gaussian
likelihood as an approximation to (17).

4.1.1. State estimation
The general state filtering problem concerns the estimation of the latent states conditional

on the current available information set on the stochastic process. As we showed before the
stochastic process that is obtained by conditioning on the reduced filtration is assumed to
follow a state-space model which is described by Equations (13a), (13b), (14) and (15). The
implied state-space model assumption on the stochastic process allows us subsequently to
apply standard filtering techniques by first defining the full information set on the stochastic
process at time t as the σ-field

Ft = σ(Yτ , . . . , Yt,Xτ |τ−h, . . . ,Xt|t−h,Uτ |τ−h, . . . ,Ut+h|t)

= σ(Y1, . . . , Yt,Uτ |τ−h, . . . ,Ut+h|t),
(18)

which follows from Xt|t−h := (Yt−h Yt−h−1 . . . Yt−h−d+1)
> and the assumption of the exoge-

nous regressors ut+h|t to be known at time instance t for lead time t+h. The filtering problem
for the specified model concerns then the estimation of the conditional probability density
p(at|Ft), where αt = (θ>t φ

>
t )> is the complete state vector of the system. It is generally

recognized that it is impractical, or at times infeasible, to derive an analytical expression
with a finite number of coefficients for the filter density p(αt|Ft) when the observation and
state processes are non-linear, and the innovation processes are non-Gaussian. In this paper
we use the Unscented Kalman filter (UKF) and approximate the unknown conditional dis-
tribution p(αt|Ft) by its first two moments. For the applicability of the filter we assume in
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the following that the noise sequences {ηt}, {ξt} and {εt} are mutually independent mean
zero white noise sequences with finite, known variance.

The filter is computationally attractive because the mean E
[
αt|Ft

]
and variance Var

[
αt|Ft

]

of the distribution are approximated with a small number of carefully chosen sample points,
the so-called σ-points. A deterministic sampling approach is used to generate these points,
which distinguishes the UKF from sequential Monte Carlo methods where random sam-
ples from the system noise distributions are required. In this paper we follow the sampling
procedure of Algorithm 1, which is found in Julier and Uhlmann (1997).

Algorithm 1 (σ-point sampling and transformation procedure). The m-dimensional random
variable x with mean x̄ and covariance Pxx is approximated by 2m + 1 weighted points
given by

X 0 = x̄ W0 = κ/(m+ κ)

X i = x̄+
(√

(m+ κ)Pxx

)
i

Wi = κ/2(m+ κ)

X i+m = x̄−
(√

(m+ κ)Pxx

)
i
Wi+m = κ/2(m+ κ)

where κ ∈ R is a tuning parameter and
(√

(m+ κ)Pxx

)
i
is the ith column of the matrix

square root of
√

(m+ κ)Pxx, which throughout this paper is obtained via the Cholesky
decomposition. With Wi being the weight associated with the ith point, the transformation
procedure is given by:

1. Instantiation of sigma points through the system model to obtain the transformed
sigma points,

Y i = f(X i)

2. The mean and covariance of the transformed points are obtained as

ȳ =
2m∑

i=0

WiY i

Pyy =
2m∑

i=0

Wi (Y i − ȳ) (Y i − ȳ)>

Subsequently, we let α̂t|t denote the UKF estimate of E
[
αt|Ft

]
and α̂t|t−1 be the estimate

of E
[
αt|Ft−1

]
. To elaborate on the failure of the filter for direct h-step ahead forecasting

under model misspecification we will in the following only consider the time propagation of
the state mean estimates. For the detailed exposition of the filter the interested reader is
referred to Julier and Uhlmann (2004) and Wan and Van Der Merwe (2000).

In line with the Kalman filter, the UKF updates the state mean estimate α̂t|t−1 with the
information set on the process at time instance t as

α̂t|t = α̂t|t−1 +Kt (yt − ŷt) , (19)
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where Kt is the gain term of the UKF and ŷt denotes the approximation to the filter’s
internal 1-step ahead prediction E

[
yt|Ft−1

]
, which is not to be mistaken for a genuine h-

step prediction of the respective state-space model. Following the derivations in Julier and
Uhlmann (2004) and Wan and Van Der Merwe (2000) we note that the UKF is derived for
state-space models which assume the process and observation noise sequences to be white.
An immediate implication of the white observation noise sequence is that the sequence of
internal 1-step ahead prediction errors vt = yt − ŷt must also be serially uncorrelated for
an approximately correctly specified state-space model to the unknown data generating
mechanism. As we showed before, the proposed state-space models for direct h-step ahead
forecasting do only well approximate the data generation mechanism when the innovations
term ε̃t|t−h is well specified, i.e. follows an MA(h − 1) process with unknown coefficients.
We demonstrate empirically in Section 5 that it is precisely this misspecification of the
innovations process for state-space models with a correctly specified system model gh(·)
which introduces an estimation bias.

Since the UKF assumes by design white observation noise, a practical challenge is the
estimation of the proposed models with finite lag serial correlated observation noise. At this
stage we propose to use the state augmentation approach which was originally proposed in
Bryson and Johansen (1965) for continuous-time dynamical systems. The idea is to augment
the state vector αt = (θ>t φ

>
t )> with the vector of the autocorrelated observation noise

ε?,t = (ε̃t−h|t εt−1 . . . εt−h+1)
> such that the evolution through time of the resulting auxiliary

dynamical system is driven by white noise. The observation equation of the reparameterized
model becomes then noise free because the augmented state vector α?,t = (θ>t φ

>
t ε

>
?,t)
>

includes the autocorrelated noise ε̃t|t−h of the original parameterization. The noise free
observation equation of the reparameterized model is exemplary shown for a linear and
Gaussian state-space model in Example 2.

Example 2 (State augmentation method for finite lag autocorrelated observation noise.).
Consider the linear and Gaussian state-space model

θt+1 = Tθt +Rηt+1

ε̃t+1 = φεt + εt+1

yt = z>θt + ε̃t,

(20)

where {ηt} and {εt} are mutually independent Gaussian white noise sequences with known
variances. The initial state vector θ0 is assumed to be multivariate Gaussian with known
mean µ0 and variance P0. The MA coefficient φ, the transition matrix T , the process noise
selection matrix R and the emission vector z are assumed to be known. For the MA(1)
process we can write (

ε̃t+1

εt+1

)
=

(
0 φ
0 0

)

︸ ︷︷ ︸
:=TMA

(
ε̃t
εt

)

︸ ︷︷ ︸
:=ε?,t

+

(
1
1

)

︸︷︷︸
:=rMA

εt+1 (21)

which is taken to be the auxiliary dynamical system in the augmented state-space model
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with noise free observation equation
(
θt+1

ε?,t+1

)
=

(
T 0
0 TMA

)(
θt
ε?,t

)
+

(
R 0
0 rMA

)(
ηt+1

εt+1

)

yt =
(
z> z>MA

)
αt,

(22)

where αt =
(
θ>t ε>?,t

)>
is the unobserved state vector and zMA =

(
1 0

)
.

4.1.2. Model coefficient estimation and model selection
To this end we have assumed that the state-space model coefficients are known, which is

generally not the case for real world forecasting problems. Performing maximum likelihood
estimation for non-linear and non-normal state-space models often relies on approximations
because exact analytical likelihood expressions are difficult to derive. In this paper we
assume that the true model likelihood (17) is sufficiently well approximated by a Gaussian
likelihood which is factorized as

L̃(YT ,UT ;ψ) =
T∏

t=τ

p(yt|Yt−1,ut|t−h), (23)

where YT = (y1 . . . yT )>, UT = (u>τ |τ−h . . . u>T |T−h)
> and ψ denotes the unknown coef-

ficients of the state-space model. The factorization follows from ut|t−h being purely exoge-
nous. We propose this approximation because the mean and variance of the likelihood terms
p(yt|Yt−1, ut|t−h) are estimated by the UKF during the latent state estimate propagation.
With ŷt being the UKF’s estimate of E

[
yt|Ft

]
and σ̂t being the corresponding estimate of

Var
[
yt|Ft

]
, we obtain

log L̃(YT ,UT ;ψ) ∝ −1

2

T∑

t=τ

(
log σ̂t +

(yt − ŷt)2
σ̂t

)
. (24)

In our experiments we estimate the unknown state-space model coefficients ψ by numeri-
cally maximizing Equation (24). We show empirically in Section 5 and Section 6 that the
approximation of the true likelihood by this Gaussian likelihood in its prediction error de-
composition works sufficiently well in practice because the point forecasts and its uncertainty
estimates are jointly considered.

For the general case when a set of candidate state-space models are available we propose
to perform model selection based on the attained maximum values of (24). This allows
among other possible criteria to perform either likelihood ratio tests for nested models or
base the selection on penalized likelihood scores such as the AIC or BIC for arbitrary sets
of candidate models. Basing the model selection on the log-likelihood value is particular
appealing for our proposed models since each state-space model in its direct multi-step ahead
parametrization is an approximation to the true data generating mechanism. Therefore,
models with misspecified observation innovations processes are generally expected to attain
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smaller likelihood values. The model selection can further be supplemented by testing the
filter’s internal 1-step ahead prediction error sequence {yt − ŷt}t=τ,...,T for serial correlation.
As beforehand discussed, the error sequence should be white for well fitting models since
each state-space model aims to approximate the true stochastic process. For additional
state-space model diagnostics we refer the interested reader to Durbin and Koopman (2012).

4.2. Forecasting
With the information set specified in Equation (18) we are interested in obtaining the

distributional forecast as the estimation of FT+h|T = L(YT+h|FT ). In line with the previous
expositions we may assume that this conditional distribution is sufficiently well described by
its first two moments. Following the discussion in Durbin and Koopman (2012) for obtaining
forecasts with the KF, we obtain estimates of E

[
YT+h|FT

]
and Var

[
YT+h|FT

]
by continuing

the UKF beyond time instance t = T while treating the observations YT+1, . . . , YT+h−1 as
missing. When following this approach, prediction intervals can be obtained via distribu-
tional assumptions on F̂T+h|T .

Alternatively, one may use Monte Carlo sampling to obtain a non-parametric estimate
of L(YT+h|FT ). To this end the requirement for the application of the UKF has been that
the noise sequences {ηt}, {ξt} and {εt} are mean 0 white noise sequences with finite, known
variances. To apply ancestral sampling we make a formal distributional assumption for each
innovation term. A set of Monte Carlo samples for L(αT+h|FT ) is obtained by sampling from
the innovations distributions for t = T + 1, . . . , T +h and subsequently projecting the latest
state vector estimate α̂T |T forward in time via the specified process model (Equations (13a),
(14) and (15)). Using these samples together with the observation model gh(·) provides one
with samples of the forecast distribution F̂T+h|T . The benefit of this approach is that no
assumptions about the forecast distribution are required to derive prediction intervals.

5. Monte Carlo experiments

We use simulated time series in this section to demonstrate that a large misspecification
in the innovations process of direct h-step ahead state-space model parametrizations induces
a bias in the maximum likelihood estimates of the unknown model coefficients. To begin
with, we consider stationary time series for which we estimate time-varying coefficient AR
models. We show that the estimation bias is significant for long forecast horizons and when
the generated time series exhibit large sample autocorrelations. As a consequence of the
large estimation biases the misspecified models achieve poor empirical forecast accuracy. It
is then shown that the model parametrizations with MA(h−1) innovations processes regain
the accuracy of the oracle forecast. The results are then extended to a non-stationary AR(1)
data generation process where the true AR coefficient is time-varying.

5.1. Stationary data generation process
The purpose of this experiment is to support the previous claims that state estimates,

and ultimately the maximum likelihood estimates, are biased when the innovations process
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of a state-space model is misspecified for direct multi-step ahead forecasting. To showcase
this empirically we consider each time series in the set Iρ to follow the stationary AR process

yt = ρyt−1 + ζt, ζt,
iid∼ N (0, 1), (25)

where t = 1, . . . , 2000 and y0 ∼ N(0, 1
1−ρ2 ). We generate 1000 replicates from this process

for a range of ρ ∈ (−1, 1), i.e.
∣∣Iρ
∣∣ = 1000 where the subscript indicates the respective AR

coefficient. The first 1000 observations of each time series are used for maximum likelihood
estimation of the unknown state-space model coefficients while the last 1000 observations
are withhold to evaluate the forecast accuracy later on. For demonstrating the estimation
bias we misspecify a state-space model for this data generation mechanism by considering

θt+1 = θt + ηt+1, ηt+1
iid∼ N (0, σ2

η)

yt = yt−hθt + ε̃t|t−h

θτ ∼ N (µτ , σ
2
τ )

(26)

where h is the look-ahead time of the model and t ≥ τ = h+ 1.
The model is purposely misspecified by letting the latent AR coefficient follow a first-

order random walk. This parameterization is chosen because it is often applied in practice
since the latent coefficient can move freely under the random walk assumption, thus capture
potential temporary and permanent shifts in the true coefficient. The model is further
misspecified by letting the observation noise ε̃t|t−h be Gaussian white noise with variance σ2

ε̃ .
The model formulation is completed by taking µτ = ρh and σ2

τ = 0.0025, which will reduce
the effect of the initial state value on the maximum likelihood estimates. Since the model is
linear and Gaussian we use the Kalman filter for state inference and numerically maximize
the Gaussian likelihood (24) to obtain estimates for the variance coefficients ψ = (σ2

η, σ
2
ε̃ ).

For the given data generation process one would expect the estimates of σ2
η to be at the

boundary of the coefficient space at 0. Furthermore, the estimates of σ2
ε̃ are expected to be

in the neighbourhood of the conditional variance Var
[
Yt+h|Yt = yt

]
=
∑h−1

i=0 ρ
2i of the data

generation process. However, due to the misspecified autocorrelation for {ε̃t|t−h} when h > 1,
the maximum likelihood estimates are biased. Figure 2 presents for selected lead times the
average estimate of σ2

η and the average estimation bias for σ2
ε̃ across all 1000 simulated time

series as a function of the true AR coefficient ρ. The figure depicts that the estimates σ̂2
η are

negatively biased and σ̂2
ε̃ are positively biased. The estimation biases increase non-linearly

with the absolute value of ρ and the lead time h, with being significantly visible for σ2
ε̃ when

|ρ| > 0.7. This dependency is expected from the previous expositions in Section 3.1 where it
is shown that the residuals of the optimal direct h-step ahead forecasts follow a MA(h− 1)
process with the MA coefficients being a function of ρ. Therefore, the iid observation noise
assumption of model (26) is severely violated when |ρ| and h are large.

We investigate the forecast accuracy of the misspecified model (26) by performing genuine
rolling out-of-sample forecasting on the remaining 1000 observations of each time series while
keeping the variance estimates fixed at their maximum likelihood values. The misspecified
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Figure 2: Average estimate 1

|Iρ|
∑
i∈|Iρ| σ̂

2
η,i (left) and average bias 1
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i∈|Iρ|Var

[
Yt+h|Yt = yt

]
−σ̂2

ε̃,i (right)

for the stationary data generation process (25) when the model (26) assumes the observation noise to be
Gaussian white noise.

model is compared against the model which assumes the correct innovation process

ε̃t|t−h =
h−1∑

i=1

φiεt−i + εt, εt
iid∼ N (0, σ2

ε ), (27)

which follows from the data generating mechanism. The state-space model (26) remains lin-
ear and Gaussian when using the presented state augmentation approach to account for the
serial correlation in ε̃t|t−h, thus we continue applying the KF for state inference. An example
of the state augmentation approach for linear models is illustrated in Example 2. The un-
known coefficients of the corresponding direct h-step ahead model ψ = (σ2

θ , σ
2
ζ , φ1, . . . , φh−1)

are obtained via maximum likelihood estimation while taking µ1 = ρh and σ2
1 = 0.0025 as

before.
The h-step ahead forecast accuracy of both models are compared via the skill scores

SSh,model =
1∣∣Iρ
∣∣
∑

i∈|Iρ|
1− S(h,model),i

S(h,oracle),i

, (28)

where S(h,oracle),i is the average out-of-sample Continuous Ranked Probability Score (CRPS)
(Gneiting and Katzfuss, 2014) of the h−step ahead oracle forecast for the ith time series in
the set Iρ. Analogously S(h,model,i) denotes the average out-of-sample CRPS of a proposed
direct h−step ahead state-space models. The model S(h,model,i) and oracle S(h,oracle),i scores
are both calculated as the average CRPS over the last 1000 observations of each time series.
The oracle forecast is given as the conditional distribution L(Yt+h|Fot ), where the oracle
forecaster is assumed to know the data generation process. With the information set Fot
including the time series observations up to time t and the true AR coefficient ρ, the h-
step ahead oracle forecast is obtained as L(Yt+h|Fot ) = N(ρhyt,

∑h−1
i=0 ρ

2i). We follow this
definition of an oracle forecast to illustrate in the following that the state-space model
with a correctly specified innovations process is almost optimal in the proposed accuracy
measurement.
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Figure 3: Averaged CRPS skill scores for the direct h-step ahead time-varying coefficient
AR model (26) which takes the observation noise ε̃t|t−h to be (i) ε̃t|t−h

iid∼ N(0, σ2
ε̃ ) and

(ii) ε̃t|t−h =
∑h−1
i=1 φiεt−i + εt, εt

iid∼ N(0, σ2
ε ). The skill scores are calculated for the stationary data

generation process (25) and the reference CRPS is the oracle forecast. With abuse of notation we let
ε̃t|t−h ∼ MA(h− 1) indicate that the observation noise follows on MA process of order h-1.

Following these definitions, Figure 3 shows the skill score SSh,model for the previous
chosen true AR coefficient and lead time ranges. The presented skill scores verify that the
biased variance estimates of the misspecified model result in poor forecast accuracy when
|ρ| and h are large. The direct h−step ahead models with the parametrized MA(h − 1)
observation noise processes achieve scores that are comparable to the oracle forecasts. This
is expected since the observation noise processes are correctly specified and therefore the
maximum likelihood estimates σ̂2

η are close to the parameter space boundary at 0 and the
estimates σ̂2

ζ are close to the true value of 1.

5.2. Non-stationary data generation process
This experiment considers a different data generation process in form of the time-varying

coefficient AR process
yt = ρtyt−1 + ζt, ζt

iid∼ N (0, 1), (29)

where t = 1, . . . , 2000 and y0 = 0. We take

ρt =

{
0.9 for t = 1, . . . , 1000

0 for t = 1001, . . . , 2000
(30)

to simulate a significant structural break that is expected to be captured by the proposed
state-space model and generate 1000 time series replicates from this process. Letting the
oracle forecaster again having access to the data generation process (29) and defining Fot
as the information set to include the time series observations up to time t and the AR
coefficients up to time instance t+ h, the oracle forecast is obtained as

L(Yt+h|Fot ) = N







h∏

i=1

ρt+i


 yt, 1 +

h−1∑

i=1




h∏

j=1+i

ρ2t+j





 . (31)
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As it has been shown, the resulting residual of this oracle forecast follows an MA(h − 1)
process, where the MA coefficients are functions of the time-varying AR coefficient ρt. We
utilize this and demonstrate the generality of our proposed framework by considering the
state-space model




θt+1

φ1,t+1
...

φh−1,t+1


 =




θt
φ1,t
...

φh−1,t


+




ηt+1

ξ1,t+1
...

ξh−1,t+1


 ,




ηt+1

ξ1,t+1
...

ξh−1,t+1




iid∼ N (0,Q)

ε̃t+1|t+1−h =
h−1∑

j=1

tanh(φi,t)εt−j+1 + εt+1, εt+1
iid∼ N (0, σ2

ε )

yt = yt−hθt + ε̃t|t−h

(32)

as an approximation to the given data generation mechanism. The latent coefficient θt of the
model follows a random walk to allow for tracking the time-varying product term

∏h
i=1 ρt+i

of the oracle’s forecast mean. By letting each of the model’s MA coefficients φ1,t, . . . , φh−1,t
follow a random walk we achieve that the variance of ε̃t|t−h is time-dependent, hence the
model is expected to track the time-varying variance of the oracle forecast. To obtain
a parsimonious model it is assumed that all MA coefficient process noises are mutually
independent and share a single variance coefficient σ2

ξ . The AR coefficient process noise
ηt+1 has variance σ2

η and is assumed to be independent from the remaining process noises.
Therefore, the covariance matrixQ is diagonal, with (σ2

η, σ
2
ξ , . . . , σ

2
ξ ) being the h-dimensional

coefficient vector of the main diagonal. The hyperbolic tangent transformation is applied
to avoid model identifiability challenges due to the invertibility property of MA processes
when estimating the unknown variance coefficient σ2

ζ .
For state inference we apply the state augmentation approach, which results in a non-

linear state process due to the interactions of the latent MA coefficients and innovation terms
in the parameterization of ε̃t|t−h. The model formulation is completed by assuming α?,0 ∼
N(0, I) for the initial state vector of the augmented system. The unknown model coefficients
ψ = (σ2

η, σ
2
ξ , σ

2
ζ ) are estimated by numerically maximizing the Gaussian likelihood (24),

where the mean and variance of each likelihood term are estimated with the UKF. The σ-
points of the UKF are generated with Algorithm 1 while taking κ = 3−m, with m being the
length of the augmented state vector. The value is heuristically chosen under the assumption
that the state vector is approximately Gaussian (Julier and Uhlmann, 1997).

The proposed state-space model shows generally a good trackability for the time-varying
product term

∏h
i=1 ρt+i and the oracle’s forecast variance. The average estimates across

all 1000 Monte Carlo replicates are shown in Figure 5.2, where a small bias in the pre-
dicted variance is observed for 4- and 6-step ahead forecasts. The bias results from the
UKF only providing approximations to the filter distributions of the non-linear state-space
model, which itself is only an approximation to the true data generation mechanism. More-
over, the estimated statistics are seen to lag behind the respective true values because the
proposed maximum likelihood estimation jointly accounts for adaptivity and variability in
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Figure 4: Averaged estimates (dashed line) across all 1000 Monte Carlo replicates of the oracle’s forecast
variance (bottom row) and time-varying product term

∏h
i=1 ρt+i (top row) for selected lead times h.

the corresponding state estimates. This bias-variance tradeoff avoids therefore the costly
consequences in terms of poor forecast accuracy due to overfitting of more adaptive, but
highly volatile state estimates. The in-sample CRPS skill scores in Figure 5 confirm that
the impact on the forecast accuracy of the observed estimation bias and time-delay is small.

6. Empirical analysis

In this empirical analysis we investigate the effectiveness of the proposed state-space
modelling approach for direct multi-step ahead forecasting on a real-world dataset from a
container shipping company. The foundation of the shipping company’s business is to provide
empty containers to customers, which are then being filled with freight before the container is
moved to an ocean port. Once a container arrived at its destination, the freight is discharged,
and the empty container is being returned to the shipping company. Providing empty
containers at a low cost is difficult because global trade imbalances let empty containers
accumulate in regions with negative containerized trade balances.

Empty containers are contrary scarce in regions which export more containers than
they import. To satisfy demand it is therefore an essential task of the shipping company to
reposition empty containers from surplus to deficit regions. The repositioning decisions must
be made well in advance before empty container demand and supply mismatching occurs
since it takes several weeks for containers to be transported on the major transport routes.
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Figure 5: Empirical distribution across all 1000 Monte Carlo replicates of the in-sample CRPS skill score
(SS(h,model),i = 1− CRPS(h,model),i

CRPS(h,oracle),i
, i = 1, . . . , 1000) for selected lead times h between the oracle forecast and

estimated state-space model.

The interested reader finds a general introduction to the empty container repositioning
problem in Song and Dong (2022). The associated shipping company of this study has
implemented an optimization framework with the objective of finding optimal repositioning
decisions. The framework requires forecasts of future weekly empty container deliveries from
container storage facilities to customers, and forecasts of container returns from customers
to storage facilities. The forecasts are additionally required to be probabilistic.

This forecasting problem has the property that partial information about future empty
container returns is well in advance available before the actual returns materialise. Consider
that it normally takes multiple weeks before a travelling full container is being returned to
one of the shipping company’s storage facilities. It is then possible to utilise the related
booking information about the container’s final destination and expected arrival time to
derive an important predictor. The predictor is stochastic because the shipping company
grants its customers the possibility to return the container within a loose time window after
its full arrival. Customers may also request to return the container in a different container
storage location than agreed upon at the time of booking, adding additional uncertainty. An
important characteristic of the predictor, which we will refer to as the booking information
regressor, is that its value depends on the lead time of the associated forecast. This is due to
the circumstance that the expected empty container returns based on the available booking
information decrease with the forecast lead time since bookings with returns far ahead in
the future have not been observed yet at the forecast origin. This is depicted in Figure 1 for
a time series from the available dataset.

6.1. Data
The associated shipping company provided two anonymized datasets (available in the

supplementary material). The first dataset contains 100 time series of historical weekly
empty container returns, with records dating back to week 11 of 2017. All time series are
short with only 259 observations and many time series experience non-stationarities in terms
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Figure 6: Truncated example time series from the available anonymised dataset. The shown predictions
(origin indicated by dashed vertical line) are direct 1- to 5-step ahead predictions of tvARX-MA models,
where the model parameters have been estimated on the training data (indicated by the solid line). The
markers indicate the median of the predictive distributions, whose central 50% and 80% prediction intervals
are overlaid.

of changing levels or variances. An example of changing levels due to the effects of the global
COVID-19 pandemic on containerized trade is depicted for 3 time series in Figure 6. Similar
level and volatility variations are visually observable before 2020, which may have been
caused by changes in the shipping company’s network or of regional economical conditions.

The second dataset contains the associated booking information regressor for all 100
time series, where each regressor is available for 1- to 5-step ahead forecasts. Since all
observations and regressors are strictly greater than 0, we proceed to log transform both
variables to align better with the Gaussian assumption of the following state-space models.
The booking information regressor is also transformed to keep it on the scale of the response
variable.

6.2. State-space model parameterization
The following base model parameterization is considered to investigate the importance

of accounting for the serial correlation in the multi-step ahead forecast errors. All direct
h−step ahead state-space models in this study are based on variations of the time-varying
coefficient AR-X model



µt+1

θt+1

βt+1


 =



µt
θt
βt


+ ηt+1 ηt+1

iid∼ N (0,Q)

yt = µt + yt−hθt + bt|t−hβt + ε̃t|t−h

(33)
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where µt is a local level state, θt and βt are time-varying regression coefficients for the lagged
response variable and the forecast horizon-dependent booking information regressor bt|t−h,
respectively. It should be noted that the index i that references to a distinct time series
within the considered dataset is omitted to improve the readability.

The model aims to capture some of the observed non-stationarities by allowing the
intercept, autoregressive and regression coefficient state to vary with time. The adaptivity of
each state is at this controlled by the covariance matrixQ, for which many design choices are
available. However, since the time series in this study are short, we follow the parsimonious
principle and take Q to be a diagonal matrix, where (σ2

µ, σ
2
θ , σ

2
β) are the coefficients on the

main diagonal.

6.2.1. Serially uncorrelated innovations
The reference model in this analysis assumes ε̃t|t−h

iid∼ N(0, σ2
ε̃ ), which ignores the serial

correlation in the residuals of the multi-step ahead forecasts. State inference via the Kalman
filter can be performed routinely because the state-space model is linear and Gaussian.
Models with this innovations process are the most parsimonious in this analysis since only
4 unknown coefficients ψ = (σ2

µ, σ
2
θ , σ

2
β, σ

2
ε̃ ) must be estimated from data.

6.2.2. MA(h-1) innovations
This model assumes the h-step ahead innovations to follow the MA(h− 1) process

ε̃t|t−h =
h−1∑

i=1

φiεt−i + εt, εt
iid∼ N (0, σ2

ε ), (34)

that has already been used in the simulation study of Section 5.1. Since the observation
innovations are serially correlated, we employ the state augmentation technique to obtain
a state-space model with an innovation free observation equation. The state-space model
remains linear and the standard Kalman filter can also be applied for state inference. The
vector of unknown model coefficients increases to ψ = (σ2

µ, σ
2
θ , σ

2
β, φ1, . . . , φh−1, σ2

ε ) and grows
with the forecast lead time h.

6.2.3. MA(h-1) innovations with time-varying coefficients
The most flexible innovation process in our analysis extends the previous MA(h − 1)

innovations parameterization to

ε̃t|t−h =
h−1∑

i=1

tanh(φi,t−1)εt−i + εt, εt
iid∼ N (0, σ2

ε ), (35)

with 


φ1,t+1
...

φh−1,t+1


 =




φ1,t
...

φh−1,t


+ ηφ,t+1 ηφ,t+1

iid∼ N (0,Qφ), (36)
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where Qφ is a diagonal matrix with (σ2
φ, . . . , σ

2
φ) on the main diagonal, i.e. all MA coefficient

states share the same innovation variance parameter. We expect this to work sufficiently
well under the assumption that all MA coefficient states vary with the same rate of change,
yet are uncorrelated. In addition we prefer this low-dimensional parameterization due to
the limited amount of data in this study.

The hyperbolic tangent transformation is employed to avoid model identification chal-
lenges related to the invertibility property of MA processes. We further take ηφ,t+1 and the
innovations ηt+1 of the base parameterization (33) to be mutually independent. The state
augmentation approach is employed, resulting in a non-linear state space model for which the
UKF is used for state inference. The σ-points are generated with Algorithm 1 while taking
κ = 3−m, with m being the length of the augmented state vector. The value is heuristically
chosen under the assumption that the state vector is approximately Gaussian (Julier and
Uhlmann, 1997). Last, the vector of unknown model coefficients ψ = (σ2

µ, σ
2
θ , σ

2
β, σ

2
φ, σ

2
ε ) is

independent of the forecast lead time given that h > 1.

6.3. State initialisation and model coefficient estimation
The non-stationary states of all models are initialised diffusely by taking the initial state

mean to be 0 (Durbin and Koopman, 2012). For the level state we assign a variance of 20 and
a smaller variance of 0.5 to the regression and MA coefficient states, with the expectation of
the latter state estimates to be in the neighbourhood around 0. The remaining states of the
augmented system for models with the time-invariant coefficient MA innovations process are
initialised with their corresponding stationary distribution (Gardner et al., 1980). A larger
initial variance of 20 is assigned to ε̃t|t−h for the model with time-varying MA coefficients,
reflecting that the state is non-stationary due to the dependency on the non-stationary MA
coefficient states. The remaining serially uncorrelated innovation states of the augmented
system are initialised with their stationary distribution.

A train-test split is performed to assess the genuine out-of-sample forecast performance
of the considered models. The first 233 observations, approximately 90% of the total time
series length, are used for parameter estimation. The remaining 26 observations are used
for forecast evaluation with the model parameters fixed to the estimates that have been
obtained on the training set. Even though we perform batch learning on the variance and
MA coefficient estimates, the state estimates are allowed naturally to vary on the hold-out
set. The model parameters are estimated by numerically maximizing the negative Gaussian
log likelihood (24) as proposed in Section 4.1.2. The contribution of the first 15 log likeli-
hood terms is set to 0 to mitigate the effect of the state estimation burn-in period on the
model parameter estimates that results from the chosen initialisation procedure. To reduce
convergence issues we propose to start the numerical maximization procedure of each model
log likelihood in 10 different starting values. Each parameter starting value set is chosen
randomly within a fixed interval in which the resulting coefficient estimates are expected to
lie. The model fit with the largest log likelihood within each subgroup is then considered in
the following analysis.
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Table 1: Declaration of the state-space models that are being used in the empirical analysis. tv indicates
that the corresponding regression and moving average coefficients are time-varying. All models assume
εt
iid∼ N(0, σ2

ε ) and h denotes the forecast lead time.
system model gh(·) innovations process ε̃t|t−h filter type

tvAR-iid µt + yt−hθt εt KF
tvAR-MA µt + yt−hθt

∑h−1
i=1 φiεt−i + εt KF

tvAR-tvMA µt + yt−hθt
∑h−1

i=1 tanh(φi,t−1)εt−i + εt UKF
tvARX-iid µt + yt−hθt + bt|t−hβt εt KF
tvARX-MA µt + yt−hθt + bt|t−hβt

∑h−1
i=1 φiεt−i + εt KF

tvARX-tvMA µt + yt−hθt + bt|t−hβt
∑h−1

i=1 tanh(φi,t−1)εt−i + εt UKF
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Figure 7: Estimates of MA coefficients for 3-step ahead models, tvAR-MA (left) and tvARX-MA (right),
for all 100 time series. The central horizontal black line indicates the median of all 100 coefficient estimates.

6.4. In-sample results
We first analyse the in-sample properties of the proposed modelling framework before an

investigation of their true out-of-sample predictive performance is presented. Throughout
the following two sections we differentiate between AR and AR-X models to show that the
inclusion of the booking information regressor reduces the negative effects of the misspecified
innovations process. Table 1 provides a summary of all the models that are being considered
in this study. We further restrict ourselves to 3- and 5-step ahead forecasts and like to remind
the reader that the order of all MA innovation processes is set to h− 1, where h denotes the
forecast lead time.

6.4.1. MA coefficient estimates
To begin with, it can be reported that the vast majority of the MA coefficient estimates

of the tvAR-MA and tvARX-MA models are positive and greater than 0. Figure 7 shows
this for the 3-step ahead forecast models. The same observations can be reported for the
5-step ahead forecast models (not shown here). The statistical significance of the non-zero
MA coefficient estimates can be estimated with a likelihood-ratio test since the tvAR(X)-
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MA and tvAR(X)-iid models are nested. The null hypothesis of the restricted tvAR-iid
model fitting the observed data better than the tvAR-MA model is rejected for 66 (3-steps
ahead) and 57 (5-steps ahead) times series at the significance level α = 0.05. Less frequent
null hypothesis rejections of 56 (3-steps ahead) and 41 (5-steps ahead) can be reported for
the tvARX-iid model. These results indicate the effectiveness of the considered models with
MA innovations processes to account for the serial correlation in the h-step ahead residuals.
The effectiveness is further validated below by evaluating the in-sample forecast accuracy.

6.4.2. In-sample forecast accuracy
The probabilistic forecasts are obtained in this study by Monte Carlo sampling as intro-

duced in Section 4.2, where each forecast is made of 200 samples. The first 15 forecasts are
ignored when calculating accuracy metrics to remove the effects of the state estimation burn-
in period. Furthermore, we take the exponential of all Monte Carlo samples to calculate the
forecast metrics on the response variable’s original scale. To compare the effectiveness of
our approach we calculate the scaled skill scores

SSgh,inno = 100
Sgh,iid − Sgh,inno

Sgh,iid
, (37)

where gh ∈ {tvAR, tvARX} and inno ∈ {MA, tvMA} are the system model and innovation
process parameterizations as defined in Table 1, respectively. With S being a forecast
accuracy summary measure for a distinct time series i = 1, . . . 100 and look ahead time
h ∈ {3, 5}, such as the average CRPS or MSE, it follows that the skill score assesses the
difference in forecast accuracy between models with the same system model gh, but with
different innovations processes. For the negative oriented CRPS and MSE it follows from
the definition in Equation (37) that a positive skill scores indicates superior forecasts of the
models with serially correlated innovations.

Table 2 summarizes the skill scores on the training set when using the CRPS to evaluate
the probabilistic forecasts of the considered state-space models. The CRPS scores for each
lead time, time series and model are obtained as the average

CRPSgh,inno =
1

|Ttrain|
∑

t∈Ttrain
CRPS(yt+h, F̂t+h|t,(gh,inno)), (38)

where Ttrain is the set of training observations indices for which the h-step ahead forecasts
F̂t+h|t,(gh,inno) from the indicated model are available. The presented percentiles show that
the greatest improvement over the corresponding model with iid innovations is achieved
by the tvAR-MA model. For 50 time series the in-sample CRPS is reduced by more than
1.8%, with reductions greater than 8.6% for 10 time series. The table shows further that
the tvAR-tvMA model performs marginally worse than the tvAR-MA model. This may be
attributed to the combination of model misspecification and the deficiencies in the proposed
state estimation procedure with the UKF, which has already been discussed in the simulation
study of Section 5.2.

The improvements over the iid model parameterization of the tvARX models are gener-
ally found to be smaller. The smaller improvements are expected on the basis that including
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Table 2: Percentiles of the scaled training CRPS skill scores across all 100 time series of the models with
MA innovations processes. The skill scores, as defined in Equation (37), are calculated with respect to the
corresponding models with iid innovations.

3-steps ahead 5-steps ahead
10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

tvAR-MA 0.1 0.5 1.8 4.4 8.6 -0.4 0.8 2.5 5.8 11.9
tvAR-tvMA -2.2 -0.7 0.5 3.1 7.4 -5.2 -1.3 0.9 4.1 8.3
tvARX-MA -0.4 -0.1 0.6 2.3 7.8 -1.0 -0.3 0.9 2.6 9.5
tvARX-tvMA -4.6 -2.2 -0.3 1.5 7.8 -7.9 -3.4 -0.9 1.2 4.9

Table 3: Percentiles of the scaled training MSE skill scores across all 100 time series of the models with
MA innovations processes. The skill scores, as defined in Equation (37), are calculated with respect to the
corresponding models with iid innovations.

3-steps ahead 5-steps ahead
10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

tvAR-MA 0.2 1.3 4.4 10.3 18.7 -1.0 1.7 6.7 15.3 26.8
tvAR-tvMA -4.1 -1.8 1.5 8.6 16.3 -13.0 -3.5 2.0 10.3 18.7
tvARX-MA -1.0 -0.1 1.5 5.6 14.9 -2.2 -0.4 1.0 5.4 19.7
tvARX-tvMA -9.3 -3.9 -0.3 3.8 13.8 -17.3 -7.1 -0.9 3.6 9.7

the booking information regressor accounts for additional serial correlation which the tvAR
models do not capture, eventually causing the serial correlation in the h-step ahead residuals
to be comparatively smaller for the tvARX models. The parameter estimation bias of the iid
model parameterizations, and hence the forecast accuracy deterioration, are consequently
also smaller since the residual process becomes better approximated by an iid process.

Moreover, the trend of the 5-step ahead skill scores to be slightly greater can be reported.
This is in line with the results of the simulation study in Section 5 where it has been observed
that the improvements over the iid model are a function of the forecast lead time and the
autocorrelation function of the data generation mechanism. Last, the same observations, but
generally with greater improvements, can be observed for the MSE skill scores in Table 3.

6.5. Forecasting results
We investigate the out-of-sample forecast accuracy with the same skill score as defined in

Equation (37), but where we take the forecast accuracy summary metric to be the average
CRPS

CRPSgh,inno =
1

|Ttest|
∑

t∈Ttest
CRPS(yt+h, F̂t+h|t,(gh,inno)), (39)

where Ttest are the observation indices of the test set for which observation and forecast pairs
are available. Table 4 and Table 5 provide the summaries over the skill score distributions
for the CRPS and MSE, respectively. The tables show generally similar results with respect
to the previous in-sample scores. That is, the tvAR and tvARX models with time-invariant
MA innovations processes improve on average the most over their corresponding iid model
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Table 4: Percentiles of the scaled test CRPS skill scores across all 100 time series of the models with MA
innovations processes. The skill scores, as defined in Equation (37), are calculated with respect to the
corresponding models with iid innovations.

3-steps ahead 5-steps ahead
10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

tvAR-MA -2.3 -0.5 1.8 5.9 10.6 -4.0 -0.2 2.3 7.6 15.1
tvAR-tvMA -6.8 -2.5 0.6 4.5 9.6 -8.6 -4.7 0.6 5.3 11.4
tvARX-MA -4.1 -0.3 0.6 2.8 6.1 -4.8 -1.7 0.4 2.8 7.3
tvARX-tvMA -8.4 -4.7 -1.0 1.9 5.2 -8.5 -5.5 -2.7 0.9 6.3

Table 5: Percentiles of the scaled test MSE skill scores across all 100 time series of the models with MA
innovations processes. The skill scores, as defined in Equation (37), are calculated with respect to the
corresponding models with iid innovations.

3-steps ahead 5-steps ahead
10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

tvAR-MA -6.8 -0.4 5.4 12.5 20.2 -7.5 -0.8 4.6 15.8 28.2
tvAR-tvMA -13.4 -5.3 0.7 8.8 19.2 -22.6 -9.1 -0.6 11.3 25.0
tvARX-MA -7.5 -0.3 2.0 6.3 16.3 -9.1 -3.1 1.8 6.3 21.9
tvARX-tvMA -17.0 -8.4 0.2 4.4 14.2 -23.9 -10.4 -4.2 2.1 11.7

parameterizations. The observed improvements are in the order that is expected from the
simulation study in Section 5.1 where large improvements over the iid models are dependent
on the sample autocorrelation and degree of model misspecification. It is further interesting
to point out that, compared to the training skill scores, the interpercentile-range increases
virtually for all models and look-ahead times. Large negative skill scores in particular are
in this study observed for time series with significant level changes that occur after training.
For such time series, as illustrated in Figure 8 for the 3-step ahead predictions of the tvAR
models on ts54, a positive estimation bias in σ̂2

µ is beneficial because it allows the tvAR-
iid model to adapt better to the changed level. The faster and better adaptivity over the
tvAR-MA model is seen as the steeper decline in µ̂t|t that starts around time step 220.

An example where the positive estimation bias in σ̂2
µ of the tvAR-iid model results in

poor forecast accuracy is shown in Figure 9 for the 3-step ahead predictions on ts55. The
forecasts for the last 8 observations are poor because the local level estimates µ̂t|t of the tvAR-
iid model are too adaptive, causing the estimates to be dragged down with the decrease in
the dependent variable around time step 243.

The reliability diagrams are depicted for the tvAR models and 3-step ahead forecasts in
Figure 10. Overall, the probabilistic forecasts from the various models are well-calibrated
for the majority of time series. Almost identical reliability diagrams are obtained for the
5-step ahead forecasts (not shown here), albeit slightly more time series are found above or
below the shown 5%−95% consistency bars. The same general statements also apply to the
reliability of the tvARX models.
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Figure 8: 3-step ahead point predictions (top), local level estimates µ̂t|t (middle) and autoregressive coeffi-
cient θ̂t|t (bottom) estimates of the tvAR-MA (dashed line) and tvAR-iid (dotted line) for time series ts54.
The vertical line separates the training and testing sets. The top plot shows that the point predictions of
the tvAR-iid model adapt better to the level change of the time series, ultimately producing a lower test set
CRPS and MSE than the tvAR-MA model.
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Figure 9: 3-step ahead point predictions (top), local level estimates µ̂t|t (middle) and autoregressive coeffi-
cient θ̂t|t (bottom) estimates of the tvAR-MA (dashed line) and tvAR-iid (dotted line) for time series ts55.
The vertical line separates the training and testing sets. The top plot shows that the point predictions of
the tvAR-iid model follow the lagged observations too closely, ultimately producing a higher test set CRPS
and MSE than the tvAR-MA model.
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Figure 10: Out-of-sample reliability diagram for all 100 time series and 3-step ahead forecasts. The dashed
diagonal line indicates a perfectly calibrated forecast and the vertical bars are the 5% − 95% consistency
bars for selected nominal levels derived using the bootstrap method of Bröcker and Smith (2007) (with a
number of replicates Nboot = 5000).

Table 6: Percentiles of scaled test CRPS skill score (100CRPStvAR,inno−CRPStvARX,inno
CRPStvAR,inno

) over all 100 time
series.

3-steps ahead 5-steps ahead
10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

iid -8.2 11.4 24.6 41.3 55.4 -5.4 8.3 21.6 35.0 49.9
MA -6.8 7.5 22.6 40.4 50.7 -13.3 3.9 17.7 34.5 47.3
tvMA -8.5 5.1 25.0 39.8 52.7 -14.4 3.6 19.6 32.2 47.8

6.5.1. Improvements of the ARX models
Up until this point it has only been claimed that the booking information regressor is

highly predictive. We validate this subsequently by calculating the improvements of the
tvARX over the tvAR models for all 3 innovations processes inno ∈ {iid,MA, tvMA} with

SSinno = 100
StvAR,inno − StvARX,inno

StvAR,inno
, (40)

where StvAR,inno is a forecast accuracy summary measure on the test set as before. The
CRPS skill score percentiles for the 100 considered time series and two forecast lead times
are presented in Table 6, where it can be seen that the improvements are significant, and
consistent, for all three innovation processes. Moreover, it can be seen that the improvements
are smaller for the 5-step ahead models. This is expected from the previous introduction of
the booking information regressor where it has been emphasized that the available number
bookings with future empty container return dates decrease with the forecast lead time.
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7. Conclusions

In this paper, we have shown that care must be taken when performing direct multi-step
ahead forecasting with time-varying coefficient models in state-space form. We showed em-
pirically that there exists an estimation bias for state-space models which incorrectly assume
the innovations of a h-step ahead model to be serially uncorrelated. The severity of the bias
was identified to depend on the autocorrelation function of the data generating mechanism
and the lead time of the forecasting model. To enable direct multi-step ahead forecasting
with state-space models we proposed to explicitly model the latent serially correlated in-
novation process of the h-step ahead forecasts as a MA(h − 1) process. Subsequently, we
introduced two alternative time-variant and time-invariant coefficient MA process parame-
terizations along with their required state and model coefficient estimation procedures.

An empirical analysis of a real-world dataset of 100 time series confirmed the effectiveness
of our modelling and estimation framework. The analysis showed that the state-space models
with the MA innovation processes produce generally more accurate direct multi-step ahead
probabilistic forecasts than the corresponding models with serially independent innovations.
However, we also observed that the non-linear state-space models with the time-varying
coefficient MA processes were inferior to the linear models with time-invariant coefficient
MA processes. We expect this to be due to the introduced state approximation error of
the Unscented Kalman filter, which ultimately propagates through to the proposed model
coefficient estimation procedure based on a surrogate Gaussian likelihood.

Future work should thus address the state approximation error for non-linear state-
space models by investigating other filtering methods. Of additional practical interest are
in addition the identification of model selection strategies. While it is appealing to use in-
sample likelihood-based criteria, it is not apparent how to perform model selection between
different model classes, such as a potentially an ETS model and our proposed state-space
models. This further extends to the selection of a multi-step ahead forecasting strategy
when expert knowledge does not provide strong evidence for the prevalence of one of the
candidate strategies. Another interesting research direction is to investigate how to exploit
and share dependencies between related time series, similar to global forecasting methods.
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Abstract

We explore the limitations of Deep State Space Models (DSSM), a hybrid learning
and forecasting approach that fuses parametric state-space models with recurrent
neural networks to forecast panels of related time series. DSSM uses a global
(jointly-learned) neural network to learn associations between related time series
whereas locally (per-time-series) learned state space models allow to incorporate
structural assumptions about the panel process, hence providing a guard against
overfitting. We revisit the derivation of the method and identify several design
choices that cause distinct challenges in real-world forecasting problems. Our
claims are supported in two parts. First, experiments based on Monte Carlo
simulations highlight the identified limitations. Second, we use the same public
data sets from the original DSSM publication to demonstrate that the method does
only produce minor forecast accuracy improvements over parametric state space
models. Finally, we extend our findings to the broader class of hybrid models with
similar design principles.

1 Introduction

Motivated by decision problems within retail (multiple products), load management (multiple cus-
tomers) and traffic management (multiple sections), recent research has been dedicated to forecasting
large panels of time series simultaneously. Methods that forecast a set of time series are frequently
classified as local or global to distinguish between two extreme cases (Montero-Manso and Hyndman,
2021). Local methods estimate the unknown parameters of a forecasting model for each time series
in isolation, whereas the parameters of a global model are estimated jointly from all time series in
the panel. Flexible non-parametric machine learning (ML) models are usually employed as global
methods in larger data regimes to learn associations between features and time series observations
fully data-driven. Parametric models are conceptually more suitable for panels with shorter time
series when structural assumptions are necessary to estimate models that generalize well. Several
hybrid methods have emerged in-between both extremes to combine "the best of both worlds", namely
the ability of global models to learn jointly from all time series and the robustness of parametric
models due to the incorporation of structural assumptions about the unknown data generation process.

A popular forecasting method within this paradigm is Deep State Space Models (DSSM) (Rangapuram
et al., 2018), a hybrid method that fuses linear Gaussian state space models (LGSSMs) with recurrent
neural networks (RNNs). The ambition of this paper is to give an independent first-hand view
on the limitations of this hybrid method. Contrary to the original paper, we explore in greater
detail the underlying assumptions of this approach and identify them as a limitation for many
real-world forecasting problems. Our experimental studies, using datasets that have been used
extensively as benchmarks in other deep learning publications, demonstrate only marginal forecast

Preprint. Under review.



accuracy improvements of DSSM over parametric state space models whose parameters are estimated
independently for each time series through maximum likelihood estimation.

The remainder of the paper is organized as follows. Related forecasting methods are discussed in
Section 2. Notation and models are introduced in Section 3. Section 4 elaborates on the shortcomings
of DSSM. We support our claims with quantitative and qualitative experiments in Section 5. The
paper is concluded in Section 6.

2 Related work

State space models offer a flexible framework to estimate a broad class of time series models, such as
exponential smoothing (Hyndman, 2008), ARIMA and structural component models (Durbin and
Koopman, 2012). The principal design of DSSM is based on pooling univariate LGSSMs. If the
number of time series observations is small, then it is common to pool all time series and estimate
a common model (Fröhwirth-Schnatter and Kaufmann, 2008). Indeed, this is a global forecasting
model, however, it is parsimonious to prevent over-fitting on short time series. For heterogeneous
panels, where data generating processes differ substantially between series, this will induce a bias
due to the insufficient flexibility of the common model. DSSM overcomes the stringent assumption
of homogeneous data generating processes with identical parameter values. A global RNN learns the
mapping from a feature to parameter space, while maintaining parametric state space models for each
individual time series to alleviate the risk of over-fitting. By training the global model end to end for
all time series the authors aim to share statistical strength for parameter estimates between related
time series.

For a review of forecasting groups of time series in panels we refer the reader to (Duncan and
Szczypula, 2001). In-between group heterogeneity is discussed in Bandara et al. (2020) and dealt
with by first assigning time series to groups, either by expert judgement or time series clustering,
and then estimating a pooled model for each group. Unobserved heterogeneity within each group
can be additionally modeled with random effects (Coakley et al., 2006). Contrary methods utilize
model-based clustering to jointly estimate group assignments and model parameters in each of
the groups (Fröhwirth-Schnatter and Kaufmann, 2008; Duncan and Szczypula, 2001). Exogenous
features, such as geography or item category, can be incorporated to estimate group assignments.
DSSM has strong similarities with model-based clustering, however, the method never estimates
an explicit grouping. Identical to the work of Garcia-Ferrer et al. (1987); Baltagi (2005), DSSM
assumes that all time series in the panel can be modelled with a single parametric model. Related
time series are grouped implicitly because an RNN predicts the parameter values of each parametric
forecasting model from a set of time series dependent features. This approach follows the rational
that statistical strength can be borrowed between related time series, where relatedness is estimated
non-parametrically with a neural network. Hence, DSSM aims to preserve the benefits of parametric
forecasting models for short time series while utilizing a flexible global model to find associations
between time series to reduce parameter estimation errors.

Different designs for blending parametric and non-parametric ML forecasting models have been
proposed in the past. Bottom-up approaches are followed in Smyl (2020); Bandara et al. (2021) by
first estimating a parametric model for each local time series, followed by training a global RNN
on the residuals to account for remaining non-linearities that are potentially shared among related
time series. Both contributions extend the hybrid model of Zhang (2003) where a feedforward
network is trained on the residuals of an ARIMA fit. However, the forecasting method in Zhang
(2003) is local, hence over-fitting is likely for short time series. DSSM follows a top-down approach
by parameterizing a LGSSM for each time series in the panel with a global RNN. Benidis et al.
(2022) determines two major limitations of DSSM, namely that of a Gaussian noise assumption and
linear state dynamics. The Normalizing Kalman Filters of de Bézenac et al. (2020) is an immediate
extension of DSSM to multivariate and non-Gaussian time series. The method utilizes normalizing
flows for tractable inference of non-Gaussian and non-linear SSMs, however, a linear and Gaussian
state processes is retained. This restriction is addressed in Kurle et al. (2020) and Ansari et al. (2021)
by utilizing switching LGSSMs to introduce non-linearities in the model by modeling regime changes
as stochastic processes. While DSSM also allows to detect different parameter regimes across time
and different series, the employed global RNN performs this deterministically (Kurle et al., 2020).
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3 Background

We adopt the notation of Rangapuram et al. (2018) throughout the remainder of the paper to facilitate
comparability between their and our presentation of DSSM. Let there be a panel of N time series
indexed by i ∈ I = {1, 2 , . . . , N}. All real-valued time series are univariate and we let z(i)t ∈ R
denote the observation for series i at equally spaced time points t ∈ {1, 2, . . . , Ti}. The full history of
series i is denoted by z(i)1:Ti

= (z
(i)
1 , z

(i)
2 , . . . , z

(i)
T1

) where we assume for notational brevity that there
are no missing values even though the state space model framework handles them in a straightforward
manner (Durbin and Koopman, 2012). There exists further a sequence of D exogenous time-varying
features x(i)

1:Ti+τ
= (x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
Ti+τ

) that are associated with the respective observation at time

t, i.e. x(i)
t are the features to forecast z(i)t . With τ ∈ N>0 denoting the forecast horizon, we aim to

estimate
p(z

(i)
Ti+1:Ti+τ

|F (i)
Ti

)

for each time series in I, where F (i)
Ti

denotes the σ-field of the full information on the unknown
stochastic process for series i that is available to the forecaster at the forecast origin Ti. Following
the global learning paradigm, we allow F (i)

Ti
to include past observations and features from all other

series in I\{i} with the restriction that all Ti are associated with the same absolute point in time, e.g.
a particular year for annual data. This assumption prevents data leakage during training by avoiding
forecasting based on future observations of other time series.

3.1 State space models

One of the two major design principles of DSSM is the assumption that each series i follows a
stochastic process that is induced by a LGSSM. To formalize this idea let l(i)t ∈ RL denote the latent
state of series i that evolves over time as a linear Gaussian Markov process

l
(i)
t = F

(i)
t l

(i)
t−1 +R

(i)
t η

(i)
t , η

(i)
t ∼ N(0,Q

(i)
t ), (1)

The state process allows to incorporate structural assumptions about the unknown data generation
process by appropriate choices of the transition F (i)

t , selectionR(i)
t and covariance matrixQ(i)

t . The
unobserved states are mapped to the time series observations through the linear observation process

z
(i)
t = a

(i)
t

>
l
(i)
t + b

(i)
t + ε

(i)
t , ε

(i)
t ∼ N(0, σ

(i)
t

2
), (2)

where b(i)t is a scalar to model transient effects, such as promotions in retail, or deterministic short-
term trends. Effects that persist over time are better modeled by including a similar coefficient in the
state process. The parameterization of the LGSSM is completed by specifying a prior distribution
for the initial state l(i)0 . Contrary the proposed estimation of an isotropic Gaussian distribution
in Rangapuram et al. (2018), where the variance parameters are difficult to estimate, we suggest
the diffuse initialization l0 ∼ N(0, κIL). This initialization is preferred by us since it is more
parsimonious and produces almost identical parameter and state estimates for time series of sufficient
length. The selection of κ as a non-tuneable parameter is discussed in Section 5.1. We refer the reader
to Durbin and Koopman (2012) for a detailed introduction to the state space framework, including
exact treatments of the initialization problem when states are non-stationary, and relevant LGSSM
parameterizations.

3.2 Parameter estimation

In practice, parameters in F (i)
t ,R

(i)
t ,Q

(i)
t ,a

(i)
t or b(i)t and σ(i)

t

2
must be estimated from data. Thus,

let θ(i)t be the P -dimensional vector of unknown model parameters at time t. The standard procedure
is to maximize the likelihood

p(z
(i)
1:Ti

;θ
(i)
1:Ti

) = p(z
(i)
1 ;θ

(i)
1 )

Ti∏

t=2

p(z
(i)
t |z(i)1:t−1;θ

(i)
1:t), (3)

which follows from the chosen parameterization of the state (1) and observation (2) process. Analyti-
cal expressions exist for LGSSMs and likelihood evaluation is performed efficiently with the Kalman
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filter (Durbin and Koopman, 2012). Estimating P × Ti parameters of the presented LGSSM without
additional restrictions is numerically challenging and does not provide estimates for the forecast
range {Ti+1, Ti+2, . . . , Ti+τ}. This is circumvented by applying

θ
(i)
t = Ψ(i)(x

(i)
t ;φ(i)) (4)

as a map between features and LGSSM parameters, where φ(i) are learnable parameters. Ψ(i) can
be parametric, non-parametric, or a mixture of both since a different map can be applied to each
parameter in θ(i)t . For example, temporal smoothness of parameters can be modelled with splines. It
is then customary to maximize the conditional likelihood

p(z
(i)
1:Ti
|x(i)

1:Ti
;φ(i)) = p(z

(i)
1:Ti

;θ
(i)
1:Ti

),

to obtain an estimate for φ(i), where we use the mapping (4) implicitly for notational brevity.
(Rangapuram et al., 2018) extends precisely this idea into a global modelling framework. DSSM
uses a global non-parametric ML model Ψ to map features of each time series to the respective SSM
parameter values. For real-valued features x(i)

t ∈ RD, Ψ is a stacked model with RNN layers and a
linear output layer of dimension equal to the number of unknown SSM parameters P . (we propose
to use GRU layers (Cho et al., 2014) as they provide a good trade-off between performance and
computational efficiency (Chung et al., 2014).

Since the output of the last layer is real-valued, an affine mapping is inserted into Ψ to transform
parameter estimates to their respective domains, e.g. R+ for variance parameters. When categorical
features are available, we suggest using an embedding layer and concatenate the output with the re-
maining real-valued features before feeding them into the input GRU layer. The learnable parameters
φ of Ψ are jointly estimated by maximizing the pseudo likelihood

p(z
(1)
1:T1

, . . . , z
(N)
1:TN
|x(1)

1:T1
, . . . ,x

(N)
1:TN

;φ) =
N∏

i=1

p(z
(i)
1:Ti
|x(i)

1:Ti
;φ) =

N∏

i=1

p(z
(i)
1:Ti

;θ
(i)
1:Ti

),

with θ(i)t = Ψ(x
(i)
t ;φ). The pseudo likelihood results from a cross-sectional independence assump-

tion among the time series in the panel since the full likelihood is intractable. It remains that the
likelihood of a series p(z(i)1:Ti

;θ
(i)
1:Ti

) can be efficiently evaluated with the Kalman filter. DSSM is
thus better viewed as a vehicle that aims to achieve two tasks. First, it imposes temporal smoothness
on SSM parameter estimates with the recurrent structure of Ψ. Due to the recurrence, the predicted
parameters θ(i)t are a function of x(i)

1:t. Second, using an RNN as a single global mapping Ψ between
features and LGSSM parameters allows learning associations between related time series, hence
perform data-driven pooling to estimate parameters that are similar for related time series.

3.3 Forecasting

Forecasting the future observations of time series i is carried out straightforwardly by applying
the learned mapping Ψ to the feature sequence x(i)

1:Ti+τ
to obtain θ(i)1:Ti+τ

. The joint distribution

p(z
(i)
Ti+1:Ti+τ

|z(i)1:Ti
,θ

(i)
1:Ti+τ

) can be approximated by Monte Carlo forward sampling (Rangapuram

et al., 2018). The marginals p(z(i)Ti+k|z
(i)
1:Ti

,θ
(i)
1:Ti+τ

), k = 1, . . . , τ are obtained more efficiently by
applying the Kalman filter for t = 1, . . . , Ti + τ , while merely treating the observations beyond Ti as
missing (Durbin and Koopman, 2012).

4 Limitations

4.1 Methodological limitations

The original method of Rangapuram et al. (2018) restricts itself to parameter heterogeneity be-
cause identical LGSSM parameterizations are considered for all time series in the panel. We
identify this to be a major limitation for real-world problems with heterogenous stochastic pro-
cesses. An immediate remedy would be to choose a flexible LGSSM parameterizations that is
able to approximate a wide range of stochastic processes. Under the assumption that all time se-
ries can be modelled as an ARMA(p, q) process, one may choose p and q large and expect the
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global model to predict parameters close to 0 for processes with lower autoregressive and mov-
ing average orders. Data-driven pooling for time series with similar p and q through exogenous
features in the global model is essential to achieve benefits over local maximum likelihood es-
timates. Preventing overfitting for shorter time series due to flexible LGSSM parameterizations
requires then to perform regularization at the global model level, hence requires careful hyper-
parameter tuning. However, this goes against the initial motivation to use parsimonious statistical
models to alleviate the risk of overfitting with a flexible global model (Rangapuram et al., 2018).

(Semi-)parametric models

Pseudo out-of-sample model
selection.

Non-parametric models

Pseudo out-of-sample model
selection.

Parametric models

In-sample model selection (e.g.,
likelihood-based information
criterions).

Joint parametric models /
shared parameter models

In-sample model selection.

Hybrid

Large T

Small T

Small N Large N

Figure 1: Classification of forecasting problems
based on the number of time series, N , and the
time series length, T .

From this example it becomes apparent that
there must be a sweet spot for DSSM to be pre-
ferred over its alternatives. To provide some
guidance let us classify forecasting problems
based on the number of time series N and
time series length T (see Figure 1). Time se-
ries model selection is challenging in problems
with small T , since holding out valuable train-
ing observations for pseudo out-of-sample fore-
cast evaluation reduces an already short train-
ing dataset even further. Instead, one should
perform model validation and selection based
on in-sample scores (Diebold, 2015). How-
ever, DSSM requires a validation set for hyper-
parameter tuning or an implementation of early
stopping criteria to prevent overfitting. Model
selection is contrary less challenging for problems with large T for which several (cross-)validation
strategies have emerged for time series data (Bergmeir et al., 2018; Lainder and Wolfinger, 2022).
However, longer time series also allow to use more flexible models that do not impose the same state
space process for each series. Local methods are applied in problems with few time series when
cross-learning is unlikely to improve forecast accuracy or when time series are short. Furthermore,
manual model and feature engineering remains computational and work-wise feasible. Global non-
parametric models may contrary be preferred for large N problems because the complexity of model
selection among a set local methods is reduced. When T is also large, one may choose a global
non-parametric model. Here we refer to the experimental study in Rangapuram et al. (2018), where
DeepAR (Salinas et al., 2020) outperforms DSSM on the electricity and traffic dataset for rolling one
day-ahead predicitons when more training data becomes available. DSSM is conceptually thus suited
for problems with moderate T , due the necessity of using pseudo out-of-sample model validation,
and moderate N of time series from a single data generation process due to the restrictive assumption
of model homogeneity.

4.2 Practical limitations

To apply DSSM successfully in real-world forecasting problems it is essential to choose a LGSSM
that can approximate all time series in the panel. Indeed, using a DSSM as an automated forecasting
method is challenging because domain expertise is required to determine the structure of the LGSSM.
This is in contrast to DeepAR, which can be deployed fully automatically when time series are
sufficiently long to perform hyper-parameter tuning. Choosing a LGSSM parameterization depends
mostly on time series properties, such as the type of seasonalities, trends and cycles. Further
considerations are based on suspected non-stationarities, i.e. properties such as mean and variance of
the time series evolving over time, and the forecast horizon. Depending on the time series process,
using autoregressive models may be recommended for short horizons and less preferred for longer
horizons due to prediction error accumulation when forecasts are produced iteratively (Ben Taieb
et al., 2012). All these considerations must be incorporated into the LGSSM and exposes DSSM to
the consequences of model misspecification.

This might suggest to use a fairly rich LGSSM as a starting point, but we note that some care must be
made to avoid model identifiability issues (Hamilton, 1994), and that a too flexible LGSSM structure
may eliminate the possible advantages of the hybrid model approach due to increased complexity
and potential optimization challenges. Hence, it is apparent to us that a selection of LGSSMs must
be performed even when there is enough evidence that the time series panel is homogeneous. The
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selection of LGSSMs becomes significantly more laborious for heterogeneous panels. Our first
experiment in Section 5.1 demonstrates the inflexibility of DSSM due to the imposed stochastic
process of the chosen LGSSM when the panel consists of a mixture of different data generation
processes. The results demonstrate that a DSSM produces poor forecasts when the true stochastic
processes cannot be approximated by the LGSSM. A potential remedy is to perform model selection
locally. Multiple global models, each with a different LGSSM, are trained for the whole dataset. The
final forecasts are then issued from the global model which performed best for each of the series on
their respective test partition. However, using conventional train, validation, test splits is challenging
for short time series.

Additional practical challenges stem further from the fact that input normalization is recommended
to efficiently train neural networks. Exponential smoothing models, which can be parameterized in
state space form (Hyndman, 2008), are used in the bottom-up approach of Smyl (2020) to perform
data-driven input normalization. Indeed, Smyl (2020) can be viewed as a reversed variant of DSSM
since the method first applies exponential smoothing locally and learns a global RNN on the residuals.
This method does not suffer to the same extend from a misspecification of the parametric models
because the global RNN in Smyl (2020) can learn from any signal that is left in the residual processes.
Model selection can therefore be omitted to reduce the computational complexity. Another advantage
of Smyl (2020) over DSSM is that their method is not restricted to Gaussian forecast distributions.
Both methods have instead in common that hyper-parameter tuning is essential to produce accurate
forecasts. We agree that imposing restrictions through the LGSSM in DSSM slows down overfitting.
Nonetheless, our second experiment in Section 5.1 demonstrates that DSSM still relies on early
stopping strategies because the global RNN can overfit the time-varying parameters of the LGSSM.
Thus, successfully applying DSSM in real-world forecasting problems relies on the same techniques
to monitor under- or over-fitting as other neural network forecasting methods. Alleviating overfitting
with an imposed LGSSM structure has consequently little practical value.

Lastly but not least, DSSM and the variations hereof that we mention in Section 2 all suffer from
high computational costs due to the loss-function evaluation which relies on each time series being
processed by the Kalman filer sequentially. This leads not only to much slower training compared to
non-hybrid methods, but also to high memory usage during back-propagation for long time series. In
combination with the strong requirement of proper hyper-parameter tuning and model selection this
severely restricts the practical applicability of DSSM.

5 Experiments

5.1 Monte Carlo experiments

In our first experiment, we demonstrate the rigidness that DSSM imposes with a parametric LGSSM
and the consequences when the true data generation processes are not approximated well by the
LGSSM. To verify our claims we consider a heterogeneous time series panel of 250 simulated time
series that is a mixture of stationary and non-stationary processes. The stationary time series are
generated from an ARMA(1, 1) process with autoregressive coefficient θ = 0.8, moving average
coefficient φ = 0.5 and observation noise variance σ2

ε = 5. Non-stationary time series are generated
from a local level model with signal-to-noise ratio σ2

η/σ
2
ε = 1 and measurement noise variance

σ2
ε = 1. We refer to the long version of this paper for more details on the parameterizations. For an

introduction to both processes we refer the reader to Durbin and Koopman (2012). We generate panels
that vary in the number of time series lengths T ∈ {120, 220, 420} and mixture decomposition. The
true data generation process of the ith time series is given by the ARMA(1,1) process with probability
expit(µ+ β>Xi) with the featuresXi ∼ N (0, I5), and otherwise follows the local level process.
The regression coefficient β is drawn randomly from a multivariate Gaussian distribution. We control
the mixture of both processes by varying µ ∈ {1.5, 0,−1.5}, which corresponds to approximately
25%, 50%, and 75% of local level processes. The last 20 observations of each time series are reserved
for rolling 1-step ahead out-of-sample forecast evaluation, hence 100, 200 and 400 observations are
respectively available for training and hyper-parameter tuning of the DSSM.

Models To quantify the misspecification costs we use a DSSM with a local level model, i.e. a
global RNN predicts the two time-varying variance parameters of a local level state space model. The
RNN has a single GRU layer with hidden dimension being 15. We use the static standard normal
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Figure 2: Test set skill score distribution of 0.5-quantile losses between a DSSM (losses averaged
across 5 training runs) and locally estimated LGSSMs for the Monte Carlo experiment with mixture
processes. The mixture ratio between ARMA(1,1) and local level processes increases from 25% to
75% of ARMA(1, 1) processes. Negative skill scores refer to superior forecast accuracy of a locally
estimated LGSSM over DSSM. Markers indicate the median of the skill score distribution of each
DSSM training run to represent the stochasticity of the training procedure.

featuresXi and the time series ID as features. An embedding layer with dimension 50 is used for
the categorical ID feature. We use the Adam optimizer of PyTorch (Paszke et al., 2019) to estimate
the RNN and embedding parameters, and only tune the learning rate. Early stopping is implemented
by tuning the number of training epochs. All hyper-parameters were tuned manually by using a
conventional training and validation split (10% of the observations that remain after removing 20 test
observations) as described in the Appendix B of the long version. We compare the global DSSM
model against locally estimated ARMA(1, 1) and local level models. Maximum likelihood estimation
is performed for each model on the full training length and the AIC (Akaike, 1974) is used for
in-sample model selection. All time series are normalized based on their means and variances during
the training range, which excludes the validation set for the DSSM to prevent data leakage. The
normalization allows us to perform a diffuse state initialization l0 ∼ N (0, 10IL) for all time series,
irrespective of their original scales.

Results We assess the forecast accuracy of DSSM and the selected parametric LGSSM on the basis
of ρ−quantile losses

Pρ(z
(i)
t+τ , ẑ

(i)
t+τ |t) =

{
ρ(z

(i)
t+τ − ẑ(i)t+τ |t) if z(i)t+τ > ẑ

(i)
t+τ |t,

(1− ρ)(ẑ
(i)
t+τ |t − z

(i)
t+τ ),

where ẑ(i)t+τ |t is the estimated ρ-quantile of the forecast distribution issued at time t for lead time
t + τ . The forecast accuracy between both methods is compared for each time series with skill

scores, SS(i)
ρ = 1 − S(i)

ρ,comp

S
(i)
ρ,ref

, where we use S(i)
ρ,ref to denote the sum of ρ−quantile losses from

the reference forecast model over the test set. Letting the parametric LGSSMs be the reference
model, negative skill scores subsequently imply superior forecast accuracy over the competing DSSM
because quantile losses are negative oriented scores. To assess the 1-step ahead forecast accuracy we
use S(i)

ρ =
∑19
j=0 Pρ(z

(i)
Ttrain+j+1, ẑ

(i)
Ttrain+j+1|Ttrain+j). Figure 2 shows the obtained ρ = 0.5 skill

score distribution for all 9 panels.

The results confirm the methodological limitation of a DSSM when the imposed LGSSM is unable to
approximate the local stochastic process sufficiently well. Indeed, we choose a local level LGSSM
for the DSSM purposely since it can only approximate an ARMA(1,1) process when |θ| ∈ [0, 1)
is at either of the parameter space’s bounds and φ = 0. A growing number of negative skill
scores is consequently observed for increasing proportions of ARMA(1, 1) processes in the panel,
which is due to a decreasing number of time series being approximated well by the imposed local
level model of the DSSM. The results further show that the skill score differences increase with
increasing time series length. This effect stems from the decreasing parameter estimation variance
due to increasing training data for the correctly specified LGSSMs. The DSSM benefits less from
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increasing training data because the local level model is misspecified for at least 25% of the time
series. Hence, obtaining more observations of a process that the local level cannot approximate is
superfluous. The forecast accuracy of the DSSM would evidently improve if a ARMA(1, 1) LGSSM
is used since θ → 1 will approximate a local level process. Thus, it is essential to perform model
selection for DSSM at least at the global level to find a LGSSM that works well for a particular panel.
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Figure 3: Training (negative log-likelihood) and
validation (sum of rolling 1-step ahead weighted
quantile losses) losses of DSSM (with a ARMA(1,
1) LGSSM) for a panel of 250 ARMA(1,1) pro-
cesses.

Circumventing the selection of a parsimonious
LGSSM by choosing a richer parameterization
comes at the price of higher computational costs
and greater risk of overfitting. We subsequently
use a panel with 250 ARMA(1, 1) processes of
length 100 to verify that DSSM is equally ex-
posed to overfitting as other neural network fore-
casting methods. The time series are assumed
to have hourly frequency and we use the hour of
day and day of the week as dynamic real valued
features, where we use a cos and sin transforma-
tion to preserve the cyclic nature of both features.
Figure 3 presents the evolution of training and
validation losses for 5 different training runs.
The global RNN starts overfitting after approxi-
mately 15 epochs when 90 observations of each
series are used for training. Overfitting occurs
due to the predicted time-varying autoregressive,
moving average and variance parameters.

5.2 Real-world data benchmarks

In our last experiment we re-evaluate the performance of DSSM on the publicly available electricity1

and traffic2 datasets. We employ the same LGSSM as in Rangapuram et al. (2018) with hourly
and daily seasonal components. Rolling 1-week ahead (168 steps) forecasting is performed for 3
consecutive weeks, while using the previous 3 weeks for training and hyper-parameter tuning. All
hyper-parameters were manually tuned on the last 10% of the 3 week long training time series, where
we found the learning rate and number of training epochs to matter most. A detailed description
of the hyper-parameter tuning procedure and results are presented in the Appendix C. The reason
for not using an expanding training window stems from the increasing computational costs that do
not result in additional accuracy improvements, which has been also observed in Rangapuram et al.
(2018). We compare DSSM against locally estimated seasonal LGSSMs to investigate the benefits of
learning the state space model parameters jointly on real-world homogenous datasets. A description
of the seasonal LGSSM can either be found in Rangapuram et al. (2018) or in Appendix A. The local
parametric LGSSM and the LGSSM of the DSSM are identical except that the parameters of the local
LGSSM are time-invariant. Following Rangapuram et al. (2018), the time series ID is used as a static
feature and the hour of the day and day of the week are used as dynamic real value features after
they have undergone a cos and sin transformation. We additionally train a global feedforward neural
network (FFN) to predict the time-invariant parameters of the same seasonal LGSSM to separate the
effects of time-varying parameters and cross-learning. The FFN uses only the time series ID as a
static feature, which is necessary since otherwise the global model predicts equal parameters for all
time series.

Results The skill scores in Table 1 show no forecast accuracy improvements of the global hybrid
over the locally estimated seasonal LGSSMs. The results are consistent across all forecast periods
and hybrid training runs, which verifies the robustness of the results. Accuracy improvements of
the global methods are contrary observed for the traffic dataset, for which we present a summary
of the skill scores in Table 3 in the Appendix. The original DSSM method achieves the largest
improvements, whereas minor improvements are obtained for the global FNN. We expect these
results to be due to varying volatility on weekdays and weekends, an effect that does not seem to

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://archive.ics.uci.edu/ml/datasets/PEMS-SF
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DSSM-RNN
Quantile-loss Period p10 (s.d.) p50 (s.d.) p90 (s.d.)

0.5
1 -0.08 (0.008) 0.012 (0.005) 0.149 (0.007)
2 -0.082 (0.007) 0 (0.003) 0.103 (0.007)
3 -0.153 (0.109) -0.003 (0.019) 0.141 (0.058)

0.9
1 -0.146 (0.021) 0.039 (0.005) 0.248 (0.014)
2 -0.178 (0.012) 0.013 (0.005) 0.21 (0.011)
3 -0.526 (0.475) -0.025 (0.046) 0.254 (0.131)

DSSM-FFN

0.5
1 -0.037 (0.008) 0.001 (0.002) 0.053 (0.003)
2 -0.026 (0.003) 0 (0.001) 0.048 (0.009)
3 -0.032 (0.003) 0.001 (0.001) 0.098 (0.007)

0.9
1 -0.13 (0.02) 0.001 (0.006) 0.147 (0.022)
2 -0.104 (0.018) 0.006 (0.004) 0.143 (0.013)
3 -0.086 (0.011) 0.001 (0.002) 0.198 (0.018)

Table 1: Test dataset skill scores for the electricity dataset. Negative scores indicate superior forecast
accuracy of the local parametric LGSSM over the respective hybrid model with RNN and FFN
architectures. Skills scores are shown for quantile losses 0.5 and 0.9 with a rolling forecast over
3 periods. The DSSM training is repeated 5 times and the average and standard deviation of the
quantiles (10%, 50%, 90%) of the skill scores are reported.

be dominant in the electricity dataset. The effect can be captured by the RNN due to the prediction
of a time-varying observation noise variance. The global DSSM-FFN contrary predicts a single
time-invariant variance parameter. Furthermore, we observe the seasonal LGSSM to be slightly more
misspecified for the traffic dataset than for the electricity. This observation is also supported by the
overall larger quantile losses that are reported in Rangapuram et al. (2018). As a consequence, the
local maximum likelihood estimates are more exposed to noise than the global models. Hence, we
observe minor improvements of the global DSSM-FNN hybrid.

6 Conclusions

In this paper we identify substantial limitations in the design of DSSM (Rangapuram et al., 2018), a
hybrid forecasting method that fuses deep learning with parametric state space models to forecast
panels of related series. The method’s major limitation stems from the assumed model homogeneity
that is induced by adapting a single state space model parameterization for all time series in the
panel. Our Monte Carlo simulation shows that DSSM produces inaccurate forecasts when the true
stochastic process of a time series cannot be sufficiently well approximated by the imposed state
space model structure. We further demonstrate that the parsimonious state space model structure
does not guard against overfitting when its time-varying parameters are predicted by a global RNN.
DSSM requires therefore the same techniques that prevent standard deep learning methods from
overfitting, which makes it challenging to apply in forecasting problems with short time series. Our
benchmarks for the electricity and traffic datasets show only minor forecast accuracy improvements
of DSSM over locally estimated state space models with the same respective parametric structure.
Overall, we find that the added computational and methodological complexity of using a RNN to
parameterize local statistical time series models can only pay off in very specific forecasting problems.
In case of DSSM, it requires a panel that is sufficiently long to perform hyper-parameter tuning and
model selection, and where all time series follow approximately the same stochastic process. Other
hybrid methods, such as the proposed extensions for DSSM in Kurle et al. (2020); de Bézenac et al.
(2020); Ansari et al. (2021), aim to extend the applicability of DSSM to a broader class of forecasting
problems by removing restrictions of the parametric state space models in DSSM. Ultimately, each
of the methods operate under similar constraints as DSSM in terms of computational complexity
and modelling assumptions, which requires a careful assessment of a methods applicability for a
forecasting problem.
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A State space model details

A.1 Local level model

A local level model is parameterized in Durbin and Koopman (2012) by the state and observation
equations
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A.2 ARMA(1, 1)

An ARMA(1,1) process is parameterized in Durbin and Koopman (2012) by the state process
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with autoregressive ρ(i)t and moving average φ(i)t coefficients, respectively. The observation process
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is noise-free since the state process includes the serially correlated MA(1) process. DSSM predicts
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A.3 Seasonal component model

The seasonal model with hourly and daily components is described in Rangapuram et al. (2018) by
the state process
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where at = (1{hour(t)=j}24j=1
, 1{day(t)=j}7j=1

/24)> is an indicator vector. All seasonal components
are allowed to vary over time due to the employed random walk, where the state innovation variance

σ
(i)
η,t

2
controls the level of adaptivity to changes in the time series process. The proposed state process

is parsimonious in that a single variance parameter is shared between hourly and daily states. A more
flexible parameterization would contrary estimate two separate variances independently to circumvent
model misspecification for processes where either of the seasonal components is constant over time.
The division of the daily indicator vector 1{day(t)=j}7j=1

by 24 follows from employing a single shared
state innovation variance. The chosen state process implies that a daily state is "updated" 24 times
during a 24 hourly cycle. A division by 24 consequently distributes the total daily state variation
evenly across its hourly cycle, such that the overall variability of hourly and daily states due to a

shared σ(i)
η,t

2
is the same. The state space model is completed by the observation process

z
(i)
t = a>t l

(i)
t + ε

(i)
t , ε

(i)
t ∼ N (0, σ

(i)
ε,t

2
),

and DSSM predicts the unknown parameters θ(i)t = (σ
(i)
η,t

2
, σ

(i)
ε,t

2
). The presented model can be

viewed as an extended local level model for which each seasonal component follows a random walk.

B Monte Carlo simulations

B.1 Hyper-parameter tuning

We employ a conventional train, validation and test split in this experiment. Given a panel with 220
observations per series, we initial remove the 20 most recent observations of each series to perform
out-of-sample forecast accuracy evaluation for a trained DSSM. The remaining 200 observations are
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Figure 4: DSSM training and validation loss (5 runs) for the Monte-Carlo simulation (Section 5.1)
with a panel of 50% local level processes and Ttrain = 400. The losses are normalized by their
respective values after the first training epoch.

partitioned into a training (180 observations) and validation (20 observations) set. For each panel we
tune the number of GRU layers and the hidden dimensions of DSSM, and keep the output dimension
of the embedding layer fixed at 50. We only tune the learning rate of the Adam optimizer and use
the default values of the PyTorch (Paszke et al., 2019) implementation for the remaining parameters.
Early stopping is implemented by monitoring the validation loss over the number of training epochs.
We further implement a total training time budget for each DSSM fit of 1 hour to limit computing
time. The validation loss is calculated by performing rolling 1-step ahead forecasting.

Overall, we find the validation loss to be fairly insensitive with respect to the RNN hyper-parameters,
given a sufficiently small learning rate (< 5×10−2) is employed. Figure 4 shows the evolution of
the training and validation loss for a RNN with one GRU layer and 15 hidden units, and a learning
rate of 3×10−3. The validation loss converges after approximately 15 epochs, while the training loss
decreases further at a very slow rate due to the flatness of the log-likelihood function for the imposed
local level sub-model. An identical behavior is observed for the other eight panels. Thus, we proceed
with a learning rate of 3×10−3 and stop training after 20 epochs.

B.2 Overfitting experiment - additional information

We generate 250 ARMA(1, 1) time series with θ = 0.8, φ = 0.5 and σ2
ε = 5. Each time series is 100

observations long and an hourly frequency is assumed. The RNN has a single GRU layer, 15 hidden
units and we employ a learning rate of 10−3. An embedding layer with output dimension equal to 50
is used to encode the categorical time series ID. We further use time-varying input features for the
RNN. Let x(hour)t ∈ {1, . . . , 24} be the hour during which observation z(i)t has been recorded. We
avoid one-hot-encoding by employing the transformations

x
(hour)
sin,t = sin(x

(hour)
t ), x

(hour)
cos,t = sin(x

(hour)
t )

to obtain two real-valued features. The same transformations are applied to the day of the week
feature x(day)t ∈ {1, . . . , 7}.

C Real-world data benchmarks

C.1 Dataset partitioning

Electricity dataset The electricity load dataset contains load measurements for 370 customers
that are recorded at 15 minute intervals from 2011-01-01 00:15:00 until 2015-01-01 00:00:00. We
convert the time series to an hourly frequency by summing the respective four observations of a
given hour. The last observation of the dataset is thus available for the one hour period that ends at
2015-01-01 00:00:00. The last 6 weeks are used in our experiment for rolling 1-week ahead forecast
evaluation. Customer MT_223 is removed from the dataset because consumption has been zero since
2013. Period 1 in Table 1 uses therefore the first three weeks for training and hyper-parameter tuning
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electricity traffic
GRU layers 1 1
hidden units 40 30
learning rate 0.0025 0.0015

epochs 20 2
Table 2: Selected hyper-parameters for real-world data benchmarks.
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Figure 5: Validation and training losses for traffic dataset with varying learning rate (shown in color
bar) and number of hidden units (not shown). The number of GRU layers is 1. More severe overfitting
occurs for RNNs with two GRU layers.

and predicts week 4. Due to the rolling window approach we use weeks 2-4 for training in period 2
and predict week 5. Last, weeks 3-5 are used in period 3 for training and forecasts are made for week
6, hence the last 168 observations of the hourly time series.

Traffic dataset The traffic dataset requires additional pre-processing steps due to missing data. The
dataset in its original form contains 10 minute averages for the occupancy rate of 963 care lanes of
the San Francisco bay area. We obtain hourly time series by averaging six respective observations
of a given hour. All time series span a period of 15 months and measurements are available from
the 1st of January 2008. The dataset source states that public holidays are removed from the dataset.
Therefore, to avoid the treatment of missing values we select a six week long period without any
public holidays. The period starts with the 73th day of the original dataset and we impute the start of
the the obtained time series to be Monday, the 3rd of March 2008. We then repeat the steps of the
electricity dataset to partition the dataset into training and test sets. That is, period 1 uses the first
three weeks for training and hyper-parameter tuning and forecasts are produced for week 4.

C.2 Hyper-parameter tuning

We tune the same hyper-parameters as described for the Monte Carlo simulation in Section B. 10%
of the training data, i.e. 50 hours of the 3 week long training data, are used to validate a set of
hyper-parameters with a pseudo out-of-sample forecasting scheme. All 50 steps of the validation
set are predicted from the end of the training data in accordance with the 1-week ahead forecasting
task for the test set, i.e. we do not perform rolling 1-step ahead forecasting as in the Monte Carlo
simulation study. The hyper-parameters are only optimized once for the first training period of each
dataset. All applied hyper-parameters are summarized in Table 2. Figure 5 verifies that overfitting
occurs early for the traffic dataset, thus the number of training epochs is chosen to be comparatively
small.

C.3 Additional results

Due to a page limit we report skill scores for the traffic dataset in Table 3. At this point we would
like to provide additional insights into the forecast accuracy improvements of DSSM-RNN and
DSSM-FFN for this dataset. Figure 6 shows two clear distinctions between both considered datasets.
First, there is significantly greater hour to hour variation in the traffic dataset due to greater road usage
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DSSM-RNN
Quantile-loss Period p10 (s.d.) p50 (s.d.) p90 (s.d.)

0.5
1 -0.069 (0.018) 0.066 (0.02) 0.327 (0.024)
2 -0.166 (0.016) 0.102 (0.011) 0.374 (0.009)
3 -0.227 (0.041) 0.075 (0.034) 0.319 (0.023)

0.9
1 -0.123 (0.055) 0.09 (0.022) 0.449 (0.042)
2 -0.209 (0.052) 0.072 (0.021) 0.377 (0.023)
3 -0.213 (0.082) 0.178 (0.032) 0.416 (0.043)

DSSM-FFN

0.5
1 -0.027 (0.006) 0.022 (0.001) 0.345 (0.007)
2 -0.198 (0.012) 0.039 (0.005) 0.304 (0.002)
3 -0.193 (0.015) 0.012 (0.009) 0.269 (0.011)

0.9
1 -0.078 (0.01) 0.069 (0.006) 0.501 (0.002)
2 -0.279 (0.046) 0.014 (0.012) 0.343 (0.01)
3 -0.366 (0.049) 0.027 (0.039) 0.325 (0.02)

Table 3: Test dataset skill scores for the traffic dataset. Negative scores indicate superior forecast
accuracy of the local parametric LGSSM over the respective hybrid model with RNN and FFN
architectures. Skills scores are shown for quantile losses 0.5 and 0.9 with a rolling forecast over
3 periods. The DDSM training is repeated 5 times and the average and standard deviation of the
quantiles (10%, 50%, 90%) of the skill scores are reported.

Figure 6: Standardized traffic (top row) and electricity (bottom row) datasets. The time series subsets
are created by following the steps in Section C.1. Each time series is standardized by subtracting the
mean and subsequently divide by the standard deviation.
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Figure 7: Forecast errors (observation - forecast distribution median) of DSSM-RNN (one training
run) for the 3rd period of the traffic dataset. Each line represents the errors of one time series in the
set over the prediction horizon of 168 hours.

during commuting hours in the morning and afternoon than during night times. This consequently
implies forecast heteroscedasticity, which is not modeled by DSSM-FFN and the local parametric
LGSSMs since a time-invariant observation noise variance is estimated. Second, the traffic data
shows a clear weekend effect in terms of missing peak hours during mornings and afternoons, albeit
occupancy rates of the remaining weekend hours being approximately the same as during weekdays.

From the presentation of the seasonal LGSSM in Section A it becomes apparent that the model
cannot capture this effect because the forecasts are the sum of the hourly and daily state estimates
(see observation equation). This parameterization is restrictive since it only models weekend effects
where all hours on Saturdays and Sundays are shifted up- or downwards compared to other weekdays.
Each local and global model has therefore to find a trade-off for this misspecification and choose
between larger forecast errors that either occur on weekdays or weekends. Figure 7 shows this
trade-off for DSSM-RNN, where the peak hours are predicted systematically too low (positive errors)
on weekdays and slightly too high (negative errors) on weekends. This deficiency reemphasizes our
discussion in Section 4 on the limitations of DSSM and the requirement for LGSSM selection. A
more suitable LGSSM would contrary estimate hourly states for weekdays and weekends without the
using any states to capture daily variations. The described effect is also visible in the forecasts (right
column in Figure 5) that are presented in the long-version of Rangapuram et al. (2018). Eventually,
we find DSSM-RNN to produce more accurate forecasts because modelling heteroscedasticity with
time-varying innovation variances can reduce the state estimation bias of the misspecified state
process. We find this to be the case because DSSM-RNN predicts large forecast variances for peak
hours, which consequently makes the hourly state estimates less subjective to variations due to large
forecast errors during peak hours.

C.4 Visualization of forecasts

Figures 8 and 9 show out-of-sample forecasts of DSSM-RNN for the test set of both public datasets.

D Repository

The material to reproduce our results is provided on GitHub at https://github.com/benesom/
critical-dssm.
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Figure 8: 90% and 50% prediction intervals (PIs) for the 3rd period of the traffic dataset. The
forecasts are generated by DSSM-RNN and the two time series have been randomly selected.
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Figure 9: 90% and 50% prediction intervals (PIs) for the 3rd period of the electricity dataset. The
forecasts are generated by DSSM-RNN and the two time series have been randomly selected.
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