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A B S T R A C T

The Perez 1990 transposition model has emerged as the preferred choice for estimating global tilted irradiance,
also known as plane-of-array irradiance. One notable drawback is the Perez model’s reliance on empirical
coefficients assigned to discrete bins of the sky clearness parameter, resulting in discontinuities in the calculated
tilted irradiance. In this study, we present a novel method to eliminate the discontinuities of the Perez model
by replacing the empirical look-up table with a set of six quadratic splines. This is facilitated by transforming
the unbounded sky clearness parameter (epsilon) to an equivalent bounded parameter (zeta).

Transposition using the original Perez model and continuous Perez–Driesse model are compared for
multiple orientations at two locations. The two models produce very similar deviation statistics, meaning the
continuous version can be used as a plug-in replacement for the original. Reverse transposition is demonstrated
using the Perez–Driesse model together with a new continuous version of the Erbs diffuse fraction model and
a simple bisection solution search. This combination achieves a substantially higher success rate than the
GTI-DIRINT algorithm in our tests.
1. Introduction

Knowledge of the solar resource is important for a range of differ-
ent fields, for example, within solar energy, agriculture, and climate
modeling. For solar energy applications, the quantity of interest is
typically the global tilted irradiance (GTI), i.e., the incident energy on
a panel that can be used for energy conversion. For photovoltaic (PV)
systems this quantity is also commonly referred to as plane-of-array
irradiance (POA). The global tilted irradiance depends on the specific
panel orientation and differs from the commonly available irradiance
components (global horizontal, diffuse horizontal, and direct normal
irradiance).

Consequently, solar radiation models have been developed to pre-
dict tilted irradiance from the commonly available irradiance com-
ponents. These models are called transposition models and provide
estimates of the incident irradiance for any arbitrarily oriented surface
(see [1] for classification of radiation models). Transposition models
typically require inputs of diffuse horizontal irradiance (DHI) and
direct normal irradiance (DNI) in addition to geometrical parameters,
including the solar zenith angle and orientation of the tilted surface.

The most common approach is to model tilted irradiance as consist-
ing of three separate components: direct irradiance, diffuse irradiance

∗ Corresponding author.
E-mail address: arajen@dtu.dk (A.R. Jensen).

from the sky, and diffuse irradiance reflected from the ground. Deter-
mining the incident direct radiation on a surface requires only sim-
ple geometrical calculations when the direct irradiance is known [2].
Several methods exist for estimating the ground-reflected diffuse irra-
diance with the majority of studies assuming this contribution to be
isotropic [3]. Determining the incident sky diffuse irradiance, however,
is significantly more complex, as the sky diffuse radiance is highly
variable in both time and space. As pointed out by several studies,
the sky diffuse irradiance cannot reasonably be assumed isotropic for
the purpose of transposition (e.g., Hay and McKay [4]), but rather it is
imperative that the main anisotropic effects are accounted for.

Numerous anisotropic sky diffuse transposition models have been
proposed during the past decades, with varying degrees of complexity
and accuracy. The performance of these models has been investigated
in several studies, with the majority finding the Perez et al. [5] model
to perform best. For example, Yang [6] compared 26 transposition
models using measurement data for four sites and concluded that the
Perez 1990 model ranked best overall. David et al. [7] came to the
same conclusion after evaluating four transposition models by com-
parison to irradiance measurements on 14 tilted planes at Le Reunion
Island. Ineichen [8] compared eight different transposition models
vailable online 2 December 2023
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𝐺

Nomenclature

Latin letters

𝑎 Weighted solid angle (circumsolar) [–]
𝑏 Weighted solid angle (horizon) [–]
𝐷𝑐 In-place sky diffuse irradiance [W/m2]
𝐷𝑔 In-plane ground reflected irradiance

[W/m2]
𝐷ℎ Diffuse horizontal irradiance (DHI) [W/m2]
𝐹 Anisotropic coefficient [–]
𝐹1 Circumsolar brightening coefficient [–]
𝐹2 Horizon/zenith brightening coefficient [–]
𝐺𝑐 Global tilted irradiance (GTI), 𝐺𝑐 = 𝐼𝑐 +

𝐷𝑐 +𝐷𝑔 [W/m2]
𝐺ℎ Global horizontal irradiance (GHI), 𝐺ℎ =

𝐷ℎ + 𝐼 cos𝑍 [W/m2]
𝐼 Direct normal irradiance (DNI) [W/m2]
𝐼0 Extraterrestrial normal irradiance [W/m2]
𝐼𝑐 In-plane direct irradiance [W/m2]
𝑘𝑡 Clearness index [–]
𝑚 Relative airmass [–]
𝑁 Number of data points [–]
𝑅𝑑 Sky diffuse transposition factor [–]
𝑅𝑟 Ground reflection transposition factor [–]
𝑆 Slope of the tilted plane [◦]
𝑍 Solar zenith angle [◦]

Greek letters

𝛥 Sky brightness [–]
𝜖 Sky clearness (1986 & 1987) [–]
𝜖0 Sky clearness, zenith independent (1988 &

1990) [–]
𝜅 Sky clearness adjustment constant (1.041)

[rad−3]
𝜌 Ground albedo [–]
𝜃 Incidence angle [◦]

Subscripts

𝑐 in-plane of panel/collector
𝑑 sky-diffuse
ℎ horizontal
𝑖 𝑖’th time step

using measurement data from Geneva and Denver and also concluded
that the Perez model gave the best results. For these reasons, the
Perez 1990 model has become the industry standard, which has led
most commercial PV modeling software to only offer the Perez 1990
and the simpler Hay transposition models (e.g., PVsyst, SolarFarmer,
PlantPredict, HelioScope). Additionally, Yang [6] noted that the Perez
model was the most cited transposition model.

The high accuracy of the Perez transposition model derives from
its sophisticated parameterization of the sky conditions, which serves
to capture the anisotropic effects. The sky conditions are parametrized
using the solar zenith angle (𝑍), sky clearness (𝜖), and sky bright-
ness (𝛥). The Perez model uses these parameters to determine the
anisotropic contributions, i.e., irradiance contributions from circum-
solar and horizon brightening/darkening. Specifically, the model cal-
culates two anisotropic coefficients using empirically determined co-
efficients stored in a look-up table. The anisotropic coefficients are
continuous with respect to the zenith angle and the sky brightness.
2

However, the coefficients are discontinuous with respect to the sky
clearness, stemming from the empirical coefficients being specified for
discrete bins of the sky clearness.

The discontinuous parameterization has the drawback that it results
in step-like jumps in the predicted tilted irradiance when the sky
conditions change 𝜖 bins. This is increasingly becoming an issue with
the more frequent use of sub-hourly data and models. For example,
this can pose an issue when employing tracker optimization algorithms
and result in unfounded fluctuations in performance metrics. Continu-
ous behavior of transposition models is also important for short-term
forecast of power availability for curtailed PV plants, e.g., Gostein and
Hobbs [9]. Additionally, the discrete nature of the Perez model intro-
duces challenges when utilizing the model for reverse transposition,
i.e., deriving GHI from GTI.

Faiman et al. [10] noted that using the Perez model for reverse
transposition results in non-linear equations. More importantly, the
authors pointed out that since the ‘‘sky clearness parameter is expressed
in terms of discrete steps . . . the iterative . . . algorithm does not always
converge’’. Similarly, Marion [11] noted that the Perez models are
‘‘not continuous functions, and this can be problematic for determining
an iterative solution when using simple methods such as bisection
algorithms and others that require a continuous function’’. For these
reasons, several studies have avoided using the Perez model for reverse
transposition and opted for simpler transposition models such as the
Hay model, e.g., Tschopp et al. [12]. Reverse transposition is further
discussed in Section 2.6.

By fixing the sky clearness bin calculated during the first iter-
ation, Faiman et al. [10] partly overcame the challenges, although
noting that ‘‘the construction of a continuous version of the Perez
model appears attractive’’ for reverse transposition. To this end, Elsinga
et al. [13] developed a continuous version of the Perez model by
replacing the discrete coefficients with continuous spline functions,
though regrettably and perhaps unknowingly using the outdated 1987
version of the Perez model. Notably, during the original model devel-
opment, Perez et al. [14] considered developing a fully analytical and
continuous model using polynomials but rejected the idea at the time
due to the increased computational requirement. However, due to the
development in computational power during the past decades, this no
longer poses an obstacle.

In this paper, we present a continuous form of the Perez 1990
transposition model and demonstrate the associated benefits when used
for reverse transposition. Specifically, the Perez model’s discontinuous
parameterization of the sky clearness using discrete bins is replaced
by continuous quadratic splines. The model is evaluated for forward
transposition by comparison to the original model and experimental
data to ensure that it can be used as a plug-in replacement for the
original model. Additionally, the use of the continuous Perez model for
enhanced reverse transposition is demonstrated, and the conditions for
which reverse transposition is impossible are defined.

The structure of this paper is as follows: A review of transposition
models is presented in Section 2 followed by a description of the
model development and formulation in Section 3. The performance of
the new continuous model is compared to measurement data and the
original Perez model in Section 4. The application of the continuous
Perez model to reverse transposition is demonstrated and discussed
in Section 5. Finally, the conclusions of the study are presented in
Section 6.

2. Background

2.1. Tilted irradiance

Global tilted irradiance, 𝐺𝑐 , is typically modeled as the sum of
three separate components: in-plane direct irradiance, 𝐼𝑐 , sky diffuse
rradiance, 𝐷𝑐 , and ground reflected irradiance, 𝐷𝑔 :

= 𝐼 +𝐷 +𝐷 (1)
𝑐 𝑐 𝑐 𝑔
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The in-plane direct irradiance can be calculated as 𝐼𝑐 = 𝐼 cos 𝜃, where
is the incidence angle between the normal vector of the surface and

he sun, and 𝐼 is the direct normal irradiance.
The in-plane ground reflected irradiance can be formulated as a

unction of the global horizontal irradiance, 𝐺ℎ:

𝑔 = 𝜌𝐺ℎ 𝑅𝑟 (2)

here 𝜌 is the ground albedo, and 𝑅𝑟 is the ground reflection trans-
osition factor. Under the common assumption of isotropic ground
eflections, 𝑅𝑟 is equal to (1 − cos𝑆)∕2, where 𝑆 is the slope of the
ilted plane.

Similarly, the in-plane diffuse sky irradiance, 𝐷𝑐 , can be calculated
as:

𝐷𝑐 = 𝐷ℎ 𝑅𝑑 (3)

where 𝐷ℎ is the diffuse horizontal irradiance, and 𝑅𝑑 is the sky diffuse
transposition factor. In the past decades, numerous different methods
have been proposed for modeling the sky diffuse transposition factor,
which are summarized in the following sections.

2.2. Isotropic transposition models

The simplest approach to modeling the sky diffuse irradiance is to
assume isotropic conditions, i.e., uniform distribution of the diffuse
radiance from the sky hemisphere. An isotropic transposition model
was first proposed by Moon and Spencer [15] and is provided in Eq. (4)
(see [16] for a discussion of the isotropic model origin). Due to the
assumption of uniform radiance, the isotropic sky diffuse transposition
factor only depends on the slope of the tilted plane, 𝑆.

𝑅𝑑 = 1 + cos𝑆
2

(4)

However, numerous comparison studies have shown that isotropic
models are too inaccurate and that it is imperative to include the main
anisotropic features in order to avoid significant short and long-term
errors in the prediction of tilted irradiance [4].

2.3. Anisotropic transposition models

The two main anisotropic effects are (1) enhanced irradiance from
the sun region due to forward scattering (circumsolar) and (2) horizon-
zenith gradients that include horizon brightening in clear conditions
and zenith brightening in heavily overcast conditions [14]. The main
attempts to develop models capable of capturing these anisotropic
effects are discussed below.

One of the earliest attempts to model the sky diffuse anisotropic
effects was made by Bugler [17], who extended the isotropic model
by adding a circumsolar brightening term corresponding to 5% of the
DNI. In the same year, Temps and Coulson [18] developed a model
that accounted for both horizon brightening and circumsolar effects,
though only suitable for clear sky conditions. Later, Klucher [19] added
a modulating term to the Temps and Coulson model to account for
variations between clear and overcast sky conditions.

Hay and Davies [20] developed what remains a very popular trans-
position model, which varies the circumsolar contribution based on
an anisotropic index. The anisotropic index describes the degree of
anisotropy and is calculated based on the transmittance of direct ir-
radiance through the atmosphere. Reindl et al. [21] extended the Hay
model by adding a horizon brightening correction factor.

It is worth noting that models utilizing a sky description based only
on the amount of direct irradiance (e.g., Hay, Klucher, and Reindl)
become isotropic in the absence of direct irradiance. Perez et al. [22]
found that these types of models tend to miss certain anisotropic effects,
particularly circumsolar enhancements for bright atmospheres with low
or no direct irradiance.
3

s

2.4. Perez transposition models

Consequently, Perez formulated a series of models that divide the
sky hemisphere into three zones: a circumsolar region, a horizon region,
and an isotropic background [22]. These models are based on novel pa-
rameterization of the sky conditions, yet relying on commonly available
data, i.e., solar zenith angle, DNI, DHI, and extraterrestrial irradiance.
The anisotropic contributions were determined from three parameters
and a table of empirical coefficients. The empirical coefficients were
derived by fitting the models to experimental data and are suitable for
all sky conditions. The variation of the specific anisotropic modeling
and parameterization of the various Perez models are described below.

The 1986 formulation of the Perez model treated the circumsolar
irradiance as a uniform contribution from a circular region centered
around the sun (15◦ half-angle) and horizon brightening from a finite
band at the horizon (angular thickness of 6.5◦) [22]. The sky conditions
were discretized into 200 categories based on the zenith angle, diffuse
horizontal irradiance (𝐷ℎ), and sky clearness (𝜖0) defined in Eq. (5).

𝜖0 =
𝐷ℎ + 𝐼
𝐷ℎ

(1986 𝑎𝑛𝑑 1987 𝑚𝑜𝑑𝑒𝑙𝑠) (5)

The Perez 1987 model featured several improvements, including
simplification of the governing equation and allowing negative horizon
brightening coefficients (equivalent to brightening at the top of the
sky dome) [14]. The new model formulation had the advantage of
reducing the number of empirical coefficients from 480 to only 48.
Additionally, the horizon brightening region was modified to be an
infinitesimally thin region at 0-degree elevation, and the sky condition
parameterization was adjusted by replacing 𝐷ℎ with sky brightness (𝛥)
as defined in Eq. (6).

𝛥 = 𝐷ℎ ⋅ 𝑚∕𝐼𝑜 (6)

here 𝑚 is the relative airmass and 𝐼𝑜 is the extraterrestrial normal
rradiance.

Furthermore, the 1988 and 1990 versions featured several improve-
ents and simplifications, including modeling circumsolar irradiance

s a point source instead of an arbitrarily sized region around the sun
isk [5,23]. This has the associated benefit that it is no longer necessary
o solve non-linear equations when deriving coefficients for the new
odel formulation. The sky clearness was also modified to eliminate

ts dependence on the solar zenith angle. The zenith independent sky
learness (𝜖) is expressed as:

=
𝜖0 + 𝜅 𝑍3

1 + 𝜅 𝑍3
(𝑧𝑒𝑛𝑖𝑡ℎ 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡, 1988 𝑎𝑛𝑑 1990 𝑚𝑜𝑑𝑒𝑙𝑠) (7)

here 𝜅 is a constant equal to 1.041 when the solar zenith angle 𝑍 is
n radians.

The Perez 1990 model remains the most widely used version of
he Perez transposition models, and its mathematical formulation is
ntroduced in detail in the following section. Note the Perez 1988 and
990 model formulations are the same, only the coefficient sets differ.

.5. Perez 1990 model formulation

The mathematical formulation of the 1990 Perez et al. [5] sky
iffuse transposition factor, 𝑅𝑑 , is provided in Eq. (8).

𝑑 = (1 − 𝐹1)
1 + cos𝑆

2
+ 𝐹1

𝑎
𝑏
+ 𝐹2 sin𝑆 (8)

The terms 𝑎 and 𝑏 represent the cosine of circumsolar incidence angles
n the considered tilted plane and the horizontal, respectively:

= max[0, cos 𝜃] (9)

= max[cos 85◦, cos𝑍] (10)

here 𝑍 is the solar zenith angle and 𝜃 is the incidence angle of the
un and the tilted surface.
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Table 1
Perez model coefficients (all sites composite 1990) [5].
𝜖 bin 𝐹11 𝐹12 𝐹13 𝐹21 𝐹22 𝐹23

[1.000–1.065) −0.008 0.588 −0.062 −0.060 0.072 −0.022
[1.065–1.230) 0.130 0.683 −0.151 −0.019 0.066 −0.029
[1.230–1.500) 0.330 0.487 −0.221 0.055 −0.064 −0.026
[1.500–1.950) 0.568 0.187 −0.295 0.109 −0.152 −0.014
[1.950–2.800) 0.873 −0.392 −0.362 0.226 −0.462 0.001
[2.800–4.500) 1.132 −1.237 −0.412 0.288 −0.823 0.056
[4.500–6.200) 1.060 −1.600 −0.359 0.264 −1.127 0.131
[6.200–∞] 0.678 −0.327 −0.250 0.156 −1.377 0.251

The anisotropic coefficients 𝐹1 and 𝐹2 are functions of the sky
conditions and express the degree of circumsolar and horizon/zenith
anisotropy, respectively.

𝐹1 = max[0, 𝐹11(𝜖) + 𝛥 ⋅ 𝐹12(𝜖) +𝑍 ⋅ 𝐹13(𝜖)] (11)

𝐹2 = 𝐹21(𝜖) + 𝛥 ⋅ 𝐹22(𝜖) +𝑍 ⋅ 𝐹23(𝜖) (12)

The most widely used set of anisotropic coefficients for Eqs. (11)
and (12) is provided in Table 1. This set of coefficients was derived
based on measurement data from eight different locations with vastly
different climatic conditions and will be used for the remainder of this
paper.

As can be seen from Eqs. (11) and (12), the anisotropic coefficients
are continuous with respect to the solar zenith angle and the sky
brightness. However, due to the binning of empirical coefficients (see
Table 1 and Fig. 1), the model is not continuous with respect to the sky
clearness (𝜖). As highlighted in the introduction, this discontinuity has
several important implications.

2.6. Reverse transposition

During the operation phase of a PV plant, it is customary to mea-
sure the irradiance in the plane of the PV panels for performance
monitoring. However, certain applications require GHI measurements,
e.g., irradiance remote sensing or operational tuning of forecasts and
validations. Additionally, when using measured GTI for PV perfor-
mance modeling, it is necessary to determine the split between direct
and diffuse irradiance in order to model incidence angle losses and
assess self-shading [12,24].

Therefore, methods for deriving GHI from GTI are of interest, which
use transposition models in reverse [25]. When only GTI for a single
orientation is available, it is necessary to also use a decomposition
model to derive GHI. Whereas if GTI is measured for multiple ori-
entations, GHI can be estimated without the use of a decomposition
model. In addition to obtaining GHI, reverse transposition also allows
for obtaining estimates of DNI and DHI.

Steinmüller [26] developed a method for reverse transposition
called the ‘‘two-solarimeter method’’, which derives DNI and DHI
from measurements of GTI from two different orientations. Similarly,
Faiman et al. [27] developed a multi-pyranometer instrument and
demonstrated the derivation of GHI from multiple GTI measurements
under the assumption of isotropic conditions. Yang et al. [28] presented
a method for using the Perez transposition for reverse transposition.
The method presented by Yang et al. requires knowledge of either
horizontal diffuse irradiance or GTI from multiple different oriented
sensors.

Furthermore, Gostein et al. [29] measured GTI using five differently
oriented reference cells and demonstrated deriving GHI, DNI, and DHI
using the Perez 1990 model. Gostein demonstrated a higher prediction
accuracy of GTI for alternative orientations compared to using high-
quality measurements of DNI and DHI, although this was only done
for one orientation. Lorenz et al. [30] deployed a network of stations
with three differently oriented reference cells and one horizontal pyra-
nometer. Lorenz used the DIRINT decomposition and the Perez 1990
4

transposition models to determine the azimuth of tilted reference cells
for quality control purposes. However, GTI is commonly only measured
for a single orientation, i.e., that of the PV panels. Hence methods
requiring multiple measurements have limited usage in practice.

To this end, Marion [11] developed the popular GTI-DIRINT method,
which estimates DNI and DHI from a single GTI measurement. The GTI-
DIRINT method estimates the irradiance components iteratively using
the DIRINT decomposition model [31] and the Perez 1990 transposition
model. Holmgren [32] noted that the performance of the GTI-DIRINT
method is poor when the angle of incidence (AOI) is greater than 80◦.

The aforementioned methods for reverse transposition are all nu-
merical, i.e., they rely on some form of optimization, which has the
drawback of longer computation times and potential conversion issues,
which analytical solutions do not have. For these reasons, Halilovic
et al. [33] developed an analytical method for reverse transposition.
While the method seems promising, the main drawback is that it
was developed and validated using data for a single region with a
homogeneous climate. Thus, the model cannot be recommended for
global usage before further validation is carried out. In contrast, the
Perez transposition model was developed based on measurement data
from eight different sites with vastly different climates and has been
found to be practically universally applicable with good performance.

2.7. Decomposition models

While transposition models require inputs of direct and diffuse irra-
diance, these individual components are often not measured. Instead,
it is customary to only measure GHI, primarily due to the high costs
and requirement of a tracker for measuring DHI/DNI. Consequently, it
is often necessary to employ methods for deriving DHI/DNI from GHI
prior to the transposition step. Such models are known as decomposi-
tion or separation models. Decomposition models range in complexity,
with the simplest models consisting of piecewise equations relating the
clearness index to the diffuse fraction, e.g., Erbs et al. [34]. A review
of decomposition models is presented in [35].

As mentioned in the previous section, decomposition models are
used for reverse transposition. Thus, similar to transposition models,
it is also desirable for decomposition models to be continuous.

3. Methods

This section first describes the main contribution, the transforma-
tion of the forward transposition model. Next, reverse transposition
is described in Section 3.2, followed by a discussion on root-finding
algorithms in Section 3.3. Last, Section 3.4 describes a modification to
the Erbs decomposition model in order for it to be continuous as needed
for reverse transposition.

3.1. Transposition

The Perez model uses lookup tables to map sky clearness values 𝜖
to a set of six empirical coefficients. Three of these factors are used to
calculate the circumsolar brightening factor (F1) and the other three are
used to calculate the horizon brightening factor (F2) (see Eqs. (11) and
(12)). To eliminate discontinuities at the transitions between 𝜖-bins, six
continuous functions of 𝜖 are needed to calculate the six coefficients.

The simplest type of continuous function would be a series of
connected line segments, one for each of the eight bins. However, the
continuous function must be also able to reproduce the original bin
values; that is, the average value of the continuous function over the
interval of each bin should equal the tabulated value for that bin.
This goal cannot be achieved using connected straight-line segments.
Connected curve segments can provide additional degrees of freedom,
which leads us to a spline solution, and a spline that reproduces the bin

values is known as a mean-preserving spline.
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Fig. 1. Illustration of the F11 coefficients (all sites composite 1990) and the quadratic
spline used to replace them in the continuous model.

In [13] we find an illustration of six (presumably cubic) splines
passing through the midpoints of each 𝜖 bin. This type of fit provides
continuity but fails to maintain the bin average values and, therefore,
would lead to larger deviations from the original model. In fact, to meet
the requirements, it is necessary to obtain only one additional degree
of freedom per segment or bin, hence, a quadratic spline segmented
at the bin boundaries is adequate. The quadratic variant also provides
continuity in the first derivative, that is, it is C1 continuous.

A challenge with the 𝜖 parameter is that its domain is unbounded,
ranging from 1 to ∞ (although in practice, most observations are below
20). The original empirical data points were unevenly distributed in
this range, which led to very narrow bins at low 𝜖 values (e.g., 1.0
to 1.056) and much wider ones at high values (e.g., 5.98 to 10.08).
For these reasons, Perez et al. [5] frequently uses a log scale in order
to improve the clarity of graphics. In this work, we propose a simple
transformation of 𝜖 that maps the original domain, 1 to ∞, to the
bounded range, 0 to 1. The transformed clearness value is called zeta
(𝜁) and is defined as follows:

𝜁 = 1 − 1
𝜖

(13)

The transformation to 𝜁 produces more uniform bin widths, which
signals that the original data points are more evenly distributed on the
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𝜁 scale. Since the underlying distribution is continuous, the transfor-
mation also improves the uniformity within each bin. This is important
because the mean-preserving spline fit assumes uniform distributions
within each bin.

Another small problem is that the last bin would need to be limited
to a finite 𝜖 value in order to calculate the average value of the spline
over that 𝜖 interval (in the spline fitting process). The choice of cut-off
strongly affects the spline that is produced, not only for the last bin but
also for the adjacent ones, because of the continuity requirement. The
new 𝜁 -space is bounded at 1.0 and eliminates the need for an arbitrary
upper 𝜖 limit. Fig. 1 shows the bin values for F11 on the 𝜁 scale along
with the quadratic spline used to replace them.

A recent paper by Ruiz-Arias [36] solves a system of linear equa-
tions to calculate the three quadratic polynomial coefficients for each
segment of a quadratic mean-preserving spline. For this work, we devel-
oped the same method initially but subsequently adopted a numerical
optimization that produces a set of overall spline coefficients rather
than the individual polynomial coefficients per segment. This leads
to a smaller total number of coefficients, maintains continuity even
if coefficients are rounded off (e.g., for publication), and enables fast
evaluation using efficient, established software routines in multiple
programming languages, including Python, MATLAB, and Fortran.

The first column in Table 2 lists the so-called knot values that
delimit the quadratic spline segments. These are simply the 𝜁 bin
boundaries with the first and last values repeated thrice. The coeffi-
cients that we calculated for the six F functions are listed in Table 2. A
typical software function to evaluate a spline function requires the list
of knots (t), one of the columns of coefficients (c), and the degree of
the spline (k), which is 2.

The circumsolar function 𝐹1 and horizon brightening function 𝐹2
are each linear combinations of three spline functions; therefore, the
first order derivative (C1 continuity) with respect to 𝜁 is maintained.
Fig. 2 illustrates how the change from 𝜖 to 𝜁 affects the bin distribution,
i.e., the bin distribution (𝜖) in the left subplots varies greatly, whereas
the bin distribution (𝜁) in the middle subplots are more uniform.

While preparing Fig. 2 we noticed that the value of 𝐹1 could exceed
1.0 for zenith angles less than 30◦, which would be physically incoher-
ent and produce a negative irradiance for the isotropic sky component.
However, in our validation data sets, we observed only isolated cases
with 𝐹1 over 0.7, and for one equatorial location (the BSRN station
DWN) the natural limit was approximately 0.9. Consequently, there ap-
pears to be a low likelihood of reaching 1.0. Nevertheless, to guarantee
physically coherent transposition results, we recommend that a limit of
Fig. 2. Comparison of 𝐹1 and 𝐹2 anisotropic coefficients calculated using binned coefficients vs. splines. All plots are for a solar zenith angle of 45◦. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Quadratic spline knot and coefficient values (k=2) for the continuous Perez model.

t 𝑐11 𝑐12 𝑐13 𝑐21 𝑐22 𝑐23
0.000 −0.053 0.529 −0.028 −0.071 0.061 −0.019
0.000 −0.008 0.588 −0.062 −0.060 0.072 −0.022
0.000 0.131 0.770 −0.167 −0.026 0.106 −0.032
0.061 0.328 0.471 −0.216 0.069 −0.105 −0.028
0.187 0.557 0.241 −0.300 0.086 −0.085 −0.012
0.333 0.861 −0.323 −0.355 0.240 −0.467 −0.008
0.487 1.212 −1.239 −0.444 0.305 −0.797 0.047
0.643 1.099 −1.847 −0.365 0.275 −1.132 0.124
0.778 0.544 0.157 −0.213 0.118 −1.455 0.292
0.839 0.544 0.157 −0.213 0.118 −1.455 0.292
1.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 be imposed on 𝐹1 in implementations of both the original and the
continuous models, as shown in Eq. (14).

𝐹1 = min[0.9, max[0, 𝐹11(𝜖) + 𝛥 ⋅ 𝐹12(𝜖) +𝑍 ⋅ 𝐹13(𝜖)]] (14)

Note that the min and max operations technically introduce dis-
continuities in the derivative of 𝐹1, which may need to be taken
into account in the root finding algorithm for reverse transposition
(discussed below).

In the remainder of this paper, we refer to the new continuous
version of the Perez model as the Perez-Driesse model. Next, we explain
how the Perez-Driesse model can be used for reverse transposition.

3.2. Reverse transposition

In this section, we discuss the process of determining a value for
GHI when given a value for GTI. Since it is not possible to invert the
Perez model analytically, a numerical optimization method is needed to
search for (and find) the value of GHI that, when transposed, produces
the given target GTI value:

𝑓𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝐺𝐻𝐼) → 𝐺𝑇𝐼𝑡𝑎𝑟𝑔𝑒𝑡 (15)

Prior to transposition GHI must be split into beam (DNI) and diffuse
(DHI) components using a decomposition function:

𝑓𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝐺𝐻𝐼) → 𝐷𝑁𝐼,𝐷𝐻𝐼 (16)

Therefore, the search needs both a decomposition and transposition
step:

𝑓𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝑓𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝐺𝐻𝐼)) → 𝐺𝑇𝐼𝑡𝑎𝑟𝑔𝑒𝑡 (17)

Mathematically, reverse transposition is then accomplished by find-
ing the root of the equation:

𝑓𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝑓𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝐺𝐻𝐼)) − 𝐺𝑇𝐼𝑡𝑎𝑟𝑔𝑒𝑡 = 0 (18)

The reverse transposition process can be visualized using Fig. 3.
Here we have taken a range of potential GHI values for a fictional
moment in time and calculated the corresponding GTI values by de-
composition and forward transposition (Eq. (17)). If, at this moment,
we measure that 𝐺𝑇𝐼𝑡𝑎𝑟𝑔𝑒𝑡 = 200 W/m2, then it is easy to read from the
graph that the corresponding value of GHI is approximately 370 W/m2.
A numerical optimization algorithm using Eq. (18) would determine
this value of GHI to the required level of precision.

The magnified portion of Fig. 3 shows a part of the curve where
the original Perez model produces discontinuities in the relationship
between GTI and GHI, and as a result, there are some values of GTI, that
simply do not have a corresponding GHI value. A numerical algorithm
searching for such a GTI value would fail to find an exact solution
because it does not exist and would at best provide the nearest solution.
The Perez–Driesse model does not leave such gaps and hence has an
exact solution for all values of GTI in this example, in other words,
6

Fig. 3. Example of the relationship between modeled GTI and GHI showing how the
Perez–Driesse model ensures there is a GHI value for every GTI value. The calculated
GTI is based on 𝜌 = 0.25, 𝑆 = 40◦, surface azimuth=180◦, solar zenith = 75◦, and solar
azimuth=82◦.

Fig. 4. Example of the relationship between modeled GTI and GHI at high angle of
incidence, where multiple GHI values can produce the same GTI value. The calculated
GTI is based on 𝜌 = 0.25, 𝑆 = 40◦, surface azimuth = 180◦, solar zenith=75◦, and solar
azimuth = 76◦.

the continuous transposition function for this case is a bijection, and
therefore invertible. While not apparent here, some Perez model dis-
continuities lead to downward jumps in the GTI vs. GHI graph, which
means there could be two solutions rather than zero. The Perez–Driesse
model eliminates this problem as well.

However, even after all discontinuities are smoothed out, there are
still situations where multiple solutions can occur, in other words, the
transposition is a surjection. An example of this is shown in Fig. 4.
As GHI increases the diffuse fraction (DF) decreases and where DF
decreases fast enough, DHI actually decreases. When the tilted surface
is oriented so that it receives little or no beam radiation GTI depends
mostly on DHI, therefore, some increases in GHI lead to a decrease in
GTI. As GHI increases further the diffuse fraction stabilizes and both
DHI and GTI start to increase again. Elsinga et al. [13] also identified
this problem, but assumed it could occur anytime. In fact, it only occurs
when little or no beam radiation reaches the surface, which happens
when the angle of incidence approaches 90◦ or goes beyond.

3.3. Root finding algorithms

Reverse transposition has now been formulated as finding the cor-
rect root of a continuous function (Eq. (18)). Many root-finding al-
gorithms exist and differentiate themselves most prominently by the
number of iterations they need to find a root. For reverse transposition,
however, speed is secondary to robustness.

One feature that contributes to robustness is the ability to specify
the upper and lower bounds for the solution. Since the solution is a
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GHI value it must be non-negative and its maximum can be estimated
from clear-sky conditions plus some reasonable margin. The simplest
bounded algorithm is bisection, and it is guaranteed to find a single
root in a given interval—provided there is exactly one root. This last
condition is the reason bisection cannot be used reliably together with
the original Perez model.

When multiple roots exist, the challenge is two-fold: finding the
solutions, and selecting the most appropriate one, since in the real
world, there is only one correct GHI value. This challenge invites the
use of heuristics, which we will explore in future work. Similarly, if no
numerical solution exists for the function, there is nevertheless a correct
GHI value. This could occur when one of the models (decomposition
or transposition) deviates too far from reality, but also when a GTI
measurement is incorrect and does not represent reality. Thus, in
addition to heuristics, a comprehensive reverse transposition process
will require some level of validation of inputs and outputs.

The GTI-DIRINT method should be mentioned in this context be-
cause it contains a custom root-finding algorithm and integrates some
heuristics, which include distinguishing between times when the sun is
in front of (AOI < 90◦) vs. behind the plane (AOI > 90◦). The solution
search is constrained to a range of plausible GHI values and does not
fail expressly because of multiple possible solutions but might converge
on any one or none of them. For times when the sun is behind the GTI
plane, the GTI-DIRINT algorithm assumes that the clearness index is
the same as for a preceding or subsequent period when the sun is in
front of the GTI plane.

3.4. Decomposition

As discussed in the background section, transposition algorithms
require separate inputs of DNI and DHI. Thus, if only GHI is available,
a decomposition model is needed to estimate the split between beam
and diffuse irradiance. In algorithms for reverse transposition from GTI
to GHI this decomposition step is also required, and the decomposition
model should ideally also be a continuous function to ensure that the
numerical methods employed can converge on a solution.

A simple and well-known decomposition model is the Erbs model
[34], which maps the clearness index (𝑘𝑡) to diffuse fraction (𝐷𝐹 ) using
an empirical piece-wise polynomial function. Close inspection of this
function at the two transition points reveals that it is not completely
continuous. Fig. 5 shows the transitions at 𝑘𝑡 = 0.22 and 𝑘𝑡 = 0.80.
Moving the transition points slightly and adjusting the polynomial
coefficients allowed us to make the Erbs model C1 continuous while
maintaining the prediction of 𝐷𝐹 within ±0.0005 of the original func-
tion over the full range of 𝑘𝑡. The level of continuity achieved in
practice is limited by the precision of the calculations and hence, by
the precision of the polynomial coefficients. We show all digits required
for double-precision floating-point calculations here, not because they
improve the model, but because they benefit numerical optimization
algorithms. Incidentally, it is possible to express this same piece-wise
polynomial as a degree 4 spline, however, that would require 16
coefficients.

𝐷𝐹 =

⎧

⎪

⎨

⎪

⎩

1 − 0.09 ⋅ 𝑘𝑡 if 𝑘𝑡 ≤ 0.216
0.165 if 𝑘𝑡 > 0.792
𝑃 (𝑘𝑡) otherwise

(19)

𝑃 (𝑘𝑡) = 12.26911439571261000 ⋅ 𝑘4𝑡
− 16.47050842469730700 ⋅ 𝑘3𝑡
+ 4.24692671521831700 ⋅ 𝑘2𝑡
− 0.11390583806313881 ⋅ 𝑘1𝑡
+ 0.94629663357100100 ⋅ 𝑘0𝑡

(20)

Like the continuous version of the Perez transposition model, this is
a drop-in replacement for the original Erbs model.
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Fig. 5. Comparison of the original Erbs decomposition model and the proposed C1
continuous Erbs–Driesse model. The insets show the two small discontinuities of the
original Erbs model that can potentially disrupt numerical optimization algorithms.

4. Performance assessment of the Perez–Driesse model

The performance of the continuous Perez–Driesse model is inves-
tigated in the following sections. First, the measurement data and
metrics used for the validation are described in Section 4.1. Second,
equivalence between the original and the continuous Perez model
for forward transposition is demonstrated in Section 4.2. The main
objective of this assessment is to demonstrate that the continuous
model can be used as a plug-in replacement for the original model
without negative consequences. Next, the elimination of discontinuities
in predicted tilted irradiance is demonstrated in Section 4.3. Last, the
computational differences between the two models are quantified in
Section 4.4.

4.1. Validation data

Two datasets of measured solar irradiance data were used to assess
the performance of the Perez–Driesse model. The first dataset was
obtained from NREL’s Solar Radiation Research Laboratory’s (SRRL)
Baseline Measurement System (BMS) in Golden, Colorado [37]. The
following three GTI configurations were used: (1) 40◦ tilt and south
facing (2) one-axis tracking plane with a north–south tracking axis, and
(3) normal to the sun corresponding to two-axis tracking.

The second dataset was obtained from the University of Oregon’s
Solar Radiation Monitoring Laboratory (SRML)’s station in Eugene,
Oregon. Data from the SRML can be accessed from solardata.uoregon.
edu. Four different GTI measurements from Eugene were used, namely:
(1) 30◦ tilt and south facing, (2) 90◦ tilt and south facing, (3) 90◦

tilt and north facing, and (4) normal to the sun corresponding to
two-axis tracking. The pyranometers used for the three fixed tilt GTI
configurations were shielded from the ground-reflected irradiance. Data
was retrieved using the pvlib iotools [38].

Both datasets also included measurements of GHI, DNI, and DHI,
as well as ancillary meteorological parameters with a frequency of
1-minute. All irradiance measurements were made using broadband
thermopile radiometers which were regularly cleaned. Specifically, DNI
was measured with Kipp & Zonen CHP1 pyrheliometers, and GHI was
measured using Kipp & Zonen CMP22 pyranometers. At the Golden
site, DHI and GTI were also measured using CMP22 pyranometers. At
the Eugene site, DHI was measured using a Schenk Star pyranometer,
and GTI was measured with Eppley PSP pyranometers. At the Golden
site, the GHI used for the validation was calculated from DHI and DNI.
Whereas due to the higher uncertainty of the Schenk Star pyranometer,
DHI was calculated from GHI and DNI at the Eugene site. For both sites,
data from 2022 was used.

http://solardata.uoregon.edu
http://solardata.uoregon.edu
http://solardata.uoregon.edu
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For the unshielded GTI pyranometers, it is necessary to account for
ground-reflected irradiance. As shown in Eq. (2) this requires knowl-
edge of the local albedo. For the Golden site, which features significant
variation in albedo due to snow cover, measured albedo was used.
However, the albedo was not measured at the Eugene site, and instead,
a fixed value of 0.2 was used as in [39].

4.1.1. Quality control
The measurement data from Golden was provided with quality

control flags calculated by the SERI-QC software [40]. Only data points
flagged 1, 2, or 3 were used, which corresponds to points for which
no test failed. The data provider of the Eugene data used a different
QC approach; for this dataset, only data flagged 11 or 12 were used.
Additionally, for both datasets, the BSRN quality control tests were
applied to the GHI, DHI, and DNI measurements; see [41] (extremely
rare limits were used). For the GTI measurements, limit thresholds were
imposed by comparison to GTI derived from a transposition model as
proposed by Lorenz et al. [30]. Specifically, the threshold limit imposed
was:

|𝛥𝐺𝑐,𝑖| < 0.15 ⋅ 𝐺𝑐,𝑖(𝑃𝑒𝑟𝑒𝑧) + 50 W∕m2 (21)

where 𝛥𝐺𝑐,𝑖 is the difference between the modeled (predicted) and
measured (observed) GTI at the 𝑖’th time step. The modeled GTI was
calculated using the Perez 1990 model (no notable difference in metrics
were found when using the Hay model). These limits have been defined
sufficiently loose to only remove obvious erroneous data (e.g., snow-
covered instruments). Thus, using the Perez model for quality control
and later using the data for assessing the same model does not pose an
issue.

Finally, only data for which the solar elevation was greater than
10◦ was used in order to eliminate measurement data with large
uncertainties.

4.1.2. Validation metrics
The model performances were evaluated using two metrics, namely

the mean bias difference (MBD) and the root-mean-square deviation
(RMSD) (see Gueymard [42] for an in-depth review of validation
metrics). The mathematical expressions for the MBD and RMSD are
provided in Eqs. (22) and (23).

𝑀𝐵𝐷 =
𝑖=𝑁
∑

𝑖=1

𝛥𝐺𝑐,𝑖

𝑁
(22)

𝑅𝑀𝑆𝐷 =

[𝑖=𝑁
∑

𝑖=1

(𝛥𝐺𝑐,𝑖)2

𝑁

]1∕2

(23)

where 𝑁 is the total number of data points. Both metrics have units of
W/m2.
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4.2. Equivalence of the Perez–Driesse and Perez models

As a first step, the predicted GTI from the Perez–Driesse and the
Perez models are compared to the measured GTI and to each other.
The comparison is presented in Table 3 in terms of MBD and RMSD.
A positive MBD indicates that the Perez–Driesse model predicts higher
irradiance values on average.

As can be noted from Table 3, both models exhibit low MBD when
compared to the validation measurements. Furthermore, the MBD and
RMSDs of the model-to-model comparison are much lower than when
compared to the measurements. This illustrates that while there are mi-
nor differences between the models, these differences are significantly
lower than the model accuracy; thus, the models can be considered
equivalent.

Fig. 6. Example of global horizontal irradiance and predicted in-plane diffuse irradi-
ance during a clear sky day. In the bottom subplot, the black line corresponds to the
diffuse irradiance predicted using the original Perez 1990 model, and the green line
corresponds to the predicted sky irradiance using the continuous Perez–Driesse model
proposed in this study.

4.3. Continuity demonstration

As noted, one of the shortcomings of the Perez model is the step
changes in predicted sky irradiance occurring when the sky clearness
change from one bin to another. The discontinuities in sky irradiance
predicted by the Perez model are demonstrated in Fig. 6, which shows
Table 3
Comparison of predicted GTI from the Perez and Perez–Driesse models against measurement data. A comparison of the Perez–Driesse against the Perez model is also shown. All
metrics are expressed in W/m2. Mean GTI is calculated from validation data.

Location GTI Mean Resolution Perez Perez–Driesse Perez–Driesse vs. Perez

configuration GTI MBD RMSD MBD RMSD MBD RMSD

Golden, CO 40◦, south 553 1-min −0.2 15.5 −0.3 15.4 −0.1 2.6
1-h 1.0 13.9 1.1 14.0 0.1 2.7

Golden, CO One-axis tracking 630 1-min −1.3 17.4 −1.3 17.5 0.0 3.4
1-h −0.7 15.6 −0.4 15.7 0.3 3.6

Golden, CO Two-axis tracking 735 1-min −0.3 21.9 −0.3 22.0 −0.1 4.6
1-h 1.4 19.2 1.8 19.3 0.4 4.7

Eugene, OR 30◦, south 433 1-min 3.2 19.0 2.6 19.0 −0.5 2.5
1-h 3.6 16.6 3.2 16.5 −0.4 2.4

Eugene, OR 90◦, south 237 1-min 18.4 30.5 17.7 30.7 −0.7 3.4
1-h 19.8 31.0 19.3 31.3 −0.5 3.4

Eugene, OR 90◦, north 70 1-min −0.9 14.4 −0.9 14.5 0.0 1.3
1-h −0.6 13.6 −0.6 13.5 0.1 1.2

Eugene, OR Two-axis tracking 562 1-min 18.9 33.0 17.9 33.1 −1.1 5.0
1-h 20.3 26.3 19.6 26.5 −0.7 4.9

Mean of all configurations 1-min 5.4 21.7 5.1 21.7 −0.1 3.3
1-h 6.4 19.5 6.3 19.5 −0.1 3.3
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Fig. 7. Frequency histogram of the change in sky diffuse irradiance between time steps.

the GHI and predicted in-plane sky diffuse irradiance for a fictional
clear sky day. For comparison, the in-plane sky diffuse irradiance
from the continuous Perez–Driesse model is also shown in the figure.
Noticeably, the model predictions are generally in close agreement. On
closer inspection, it can be seen that the Perez–Driesse model remains
continuous and takes on an intermediary value at the switch between
sky clearness bins.

To investigate the magnitude of the step changes caused by the
sky clearness binning, a frequency histogram of the absolute change in
irradiance from one time step to the next of the sky diffuse irradiance is
plotted in Fig. 7. The sky diffuse irradiance time series was calculated
based on the 40◦ south-facing sensor at Golden (see Section 4.1). A
noticeable difference in the frequency distribution can be seen in Fig. 7,
demonstrating that the predicted sky diffuse irradiance from the Perez
model exhibits significantly larger changes in irradiance from one time
step to the next. In particular, the new continuous model only exhibits
step changes up to about 25 W/m2, whereas the original Perez model
featured larger step changes and more frequently so. The investigation
was based on 1-min data, whereas the difference in the frequency
histogram is expected to be less for lower-frequency data.

4.4. Computational differences

The computational time of the pvlib python v0.9.5 [43,44] imple-
mentation of the Perez model has been compared to the Perez–Driesse
model. Both models were implemented in the Python programming
language and showed no statistical difference in computation time.
The computation time was calculated for a one-year simulation at a 1-
minute resolution. For both models, the computation time was 0.18 s
on an HP Pavillion laptop with 16 GB ram and an 11th Gen Intel i5
processor. The computation time was calculated as the average time
based on 10 runs with 50 loops each.

5. Application to reverse transposition

In this section, we demonstrate the operation of reverse transposi-
tion using the new continuous versions of the Perez and Erbs models
together with the simple bisection search, and we compare this to the
GTI-DIRINT implementation in pvlib python. The algorithms have three
possible outcomes: no solution is found, an incorrect solution is found,
or the correct solution is found. Using measured GHI and measured GTI
it is often difficult to distinguish between these three outcomes because,
in the real world, the relationship between these two measurements
may not fit any models. As a result, a successful reverse transposition
search could produce a value of GHI that does not match the measured
GHI, which in turn would give the erroneous impression that the search
was not successful.

To avoid this problem, we do not test the algorithms with measured
GTI but rather with modeled GTI. For the reverse transposition using
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Perez–Driesse, we calculate GTI from GHI using Erbs–Driesse decom-
position and Perez–Driesse transposition, whereas for GTI-DIRINT we
calculate GTI using DIRINT decomposition and the traditional Perez
transposition. In this manner, each algorithm is tested with target
values that it should be able to reach exactly—in other words, easy
targets.

The example we use is based on the 40◦ tilt south-facing mea-
surement at Golden described in Section 4.1. For each of the two
algorithms, we calculate the easy target GTI values, then run the
algorithm to estimate the GHI, and finally re-transpose this GHI to
check whether the target GTI was indeed attained. If the re-transposed
GTI value is close to the target (±1 W/m2), then we consider that the
algorithm succeeded in finding a solution. If the GHI that was found is
also close to the value we started with (±1 W/m2), then we consider
that the correct solution was found; otherwise, an incorrect solution was
found. These thresholds are somewhat arbitrary, but in cases where
the algorithms are converging successfully on the correct solution, both
errors are usually at least an order of magnitude smaller. GTI-DIRINT
uses a 1 W/m2 threshold internally to decide on convergence; therefore,
we applied the same threshold externally for consistency.

In Fig. 8 we visualize the performance of the two algorithms by
plotting the errors in GTI and GHI as a function of sun position
(azimuth and elevation). The color of each patch indicates the mean
bias deviation (MBD) for all the data points where the sun is in that
position (±1◦ azimuth, ±0.5◦ elevation) and the diagonal lines identify
sun positions where AOI=90◦ and AOI=80◦. While these graphs do
not register every single error, they very clearly identify where the
majority of errors occur. The top two frames depict the MBD of GTI,
therefore, the non-green areas show where the algorithms failed to
find solutions. While the Perez–Driesse-based method appears to always
finds a solution, this is somewhat misleading because the failure to
find a solution results in a not-a-number (NaN) value, which cannot
be included in the MBD. GTI-DIRINT fails frequently at lower sun
elevations and when AOI > 90◦. The bottom two frames depict the
MBD of GHI, therefore, the green areas represent correct solutions,
whereas the blue and red areas identify under- and over-estimations
respectively. In the Perez–Driesse-based method there is a small but
distinct region around the AOI=90 line where the incorrect solution
is frequently identified. These occurrences fall in the region where
multiple solutions can exist. GTI-DIRINT reports the incorrect solution
for a much wider range of sun positions, which may be due in part to
the nature of its search algorithm, and in part to the discontinuities of
both the Perez and DIRINT models that lead to multiple solutions at
other sun positions.

Table 4 quantifies these observations by reporting the proportion
of data points for which a solution was either not found, incorrect
or correct. The Perez–Driesse-based method is able to find the correct
solution for a substantially higher fraction of data points in all three
AOI angle ranges, with a remarkable success rate of 100% for the range
AOI< 80 which represents 85% of the data points and 97% of the solar
energy (GHI) in this example.

Table 5 provides several error metrics for the GHI reported by
the two methods. Data points where one of the methods produced a
NaN value (3%) were excluded from these calculations. What these
numbers tell us about our two methods is less important than what
they tell us about reverse transposition in general, and therefore also
when using measured GTI. In the best case, a well-performing search
method should not contribute at all to the GHI error, which should
ideally be the same as the forward transposition error. However, if the
search method is not successful, GHI errors may become very large.
Thus, an important output of any reverse transposition algorithm is
the ability to detect and report or suppress any output values that
are suspect. Similarly, evaluation and comparison studies of different
reverse transposition methods should go beyond overall aggregate error
metrics and investigate when and why the errors arise.
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Fig. 8. Mean bias deviation of GTI (upper diagrams) and GHI (lower diagrams) derived from reverse transposition using the 40◦ south-facing orientation at Golden. The GTI
targets values for reverse transposition were calculated from measured GHI using the same models as in the subsequent reverse transposition: Erbs–Driesse/Perez–Driesse on the
left; DIRINT/Perez on the right. The MBD is coded by color and plotted as a function of solar position. The dashed and solid black lines denote an incidence angle of 80◦ and
90◦, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Convergence metrics for the example case of reverse transposition.

AOI Description Perez–Driesse GTI-DIRINT

0–80◦
No solution 0% 3.6%
Incorrect solution 0% 2.4%
Correct solution 100% 94.0%

80–90◦
No solution 1.3% 33.8%
Incorrect solution 17.1% 8.3%
Correct solution 81.6% 57.9%

90–110◦
No solution 40.1% 67.0%
Incorrect solution 7.2% 14.9%
Correct solution 52.8% 18.1%

Table 5
Error metrics for GHI values produced by the reverse transposition
example. All values are in W/m2.

AOI Description Perez–Driesse GTI-DIRINT

0–80◦
MBD 0.0 0.0
RMSD 0.0 6.4
MAD 0.0 0.9

80–90◦
MBD 0.6 34.8
RMSD 52.7 77.3
MAD 19.9 40.7

90–110◦
MBD −6.9 10.8
RMSD 48.4 49.0
MAD 15.9 20.2
10
6. Conclusions

In this paper, we have shown how discontinuities in predicted irra-
diance of the widely used Perez transposition model can be smoothed
effectively by replacing the empirical look-up table with six quadratic
splines. As part of this work, we have transformed the sky clearness
parameter 𝜖, which varies from 1 to ∞, into an equivalent parameter
𝜁 that varies from 0 to 1. Empirical observations are more uniformly
distributed on the new 𝜁 sky clearness scale, therefore, the transformed
lookup table bin boundaries are more uniformly spaced as well. This,
in turn, benefits the spline fitting process.

The original Perez and the new C1 continuous Perez–Driesse trans-
position models were compared against measurements for multiple
orientations at two locations. The comparison showed very similar
deviation statistics (MBD and RMSD) in all cases, and the annual MBD
between the two models was found to be 1.1 W/m2 or less—usually
much less. Thus, the continuous transposition model can be considered
a drop-in replacement for the original.

The application where functional continuity is most called for is
reverse transposition (GTI→GHI), which employs a numerical optimiza-
tion or search algorithm. This process uses a decomposition model,
which should also be a continuous function. To demonstrate reverse
transposition, therefore, we adjusted the well-known Erbs decomposi-
tion model to provide C1 continuity. Like the Perez–Driesse transpo-
sition model, the resulting Erbs–Driesse decomposition model can be
considered a drop-in replacement for the original.

Using the two new continuous models, we then demonstrated that
reverse transposition can be done more reliably using the simple and
robust bisection algorithm than the custom GTI-DIRINT algorithm. The
latter failed to find a solution or reported the incorrect solution more
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often, resulting in substantially higher errors for the reported GHI. Both
algorithms had greater difficulty at angles of incidence approaching
90◦ and also just beyond 90◦ due to the demonstrated existence of
multiple mathematical solutions. However, GTI-DIRINT appeared to
fail frequently under other conditions as well. In future work on re-
verse transposition, we aim to develop suitable heuristics to choose
the best among multiple potential solutions, thereby making reverse
transposition as reliable and easy-to-use as forward transposition.

Software availability

Implementations of the Perez–Driesse and Erbs–Driesse models are
available as open-source software in pvlib python on GitHub.
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