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A B S T R A C T

Inverse design of high-resolution and fine-detailed 3D lightweight mechanical structures is notoriously
expensive due to the need for vast computational resources and the use of very fine-scaled complex meshes.
Furthermore, in designing for additive manufacturing, infill is often neglected as a component of the optimized
structure. In this paper, both concerns are addressed using a so-called de-homogenization topology optimization
procedure on complex engineering structures discretized by 3D unstructured hexahedrals.

Using a rectangular-hole microstructure (reminiscent to the stiffness optimal orthogonal rank-3 multi-scale)
as a base material for the multi-scale optimization, a coarse-scale optimized geometry can be obtained using
homogenization-based topology optimization. Due to the microstructure periodicity, this coarse-scale geometry
can be up-sampled to a fine single-scale physical geometry with optimized infill, with only a minor loss in
structural performance and at a fraction of the cost of a fine-scale solution. The upsampling on 3D unstructured
grids is achieved through stream surface tracing, aligning with the optimized local orientations. The periodicity
of the physical geometry can be tuned, such that the material serves as a structural component and also as an
efficient infill for additive manufacturing designs.

The method is demonstrated through three examples of varying geometrical complexity. It achieves
comparable structural performance to ‘‘brute force’’ state-of-the-art methods but stands out for its significant
computational time reduction. By allowing multiple active layers, the mapped solution becomes more
mechanically stable, leading to an increased critical buckling load factor without additional computational
expense. The control of active layers also provides direct control over the internal structure, i.e., infill, ensuring
that the infill is incorporated as a structural component and enhancing the manufacturability of the de-
homogenization procedure. Furthermore, the proposed approach exhibits promising results, achieving volume
fractions and weighted compliance values within 5% of the large-scale SIMP model, while demonstrating a
computational efficiency improvement ranging from 10 times to over 250 times.
1. Introduction

Inverse design approaches, such as topology optimization [1], pro-
vide a systematic approach to obtain optimized design based on differ-
ent objectives like stiffness, strength, weight, etc., with the evident ad-
vantage of designs with less resource consumption and longer lifetime.
However, the procedure can be computationally expensive on fine-scale
complex geometries. Moreover, systematic inverse design methods tai-
lored for industrial-grade additive manufacturing are needed to exploit
infill as an optimized structural component. Designing for stiffness max-
imization with an infill requirement results in a material distribution
problem on two length scales: macro- and micro-scale. The material dis-
tribution at the macro-scale can be optimized to minimize the amount

∗ Correspondence to: Department of Civil and Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Koppels Allé, Building 404, 2800
Kgs., Lyngby, Denmark.

E-mail address: pdlj@dtu.dk (P.D.L. Jensen).

of material used while achieving desired mechanical properties and
performance. Simultaneously, the material distribution at the micro-
scale can be optimized to achieve specific mechanical properties such
as stiffness or strength.

Using standard topology optimization methods, multi-scale material
distribution on a single length scale requires high-resolution and large-
scale modeling capabilities to obtain designs with a sufficient level
of detail [2]. To address this problem, much research over the past
two decades has been aimed at making this feasible by utilizing paral-
lel programming paradigms; domain decomposition approaches [3–5],
and efficient multigrid preconditioning techniques [6,7]. With these
advances, it is now possible to solve large-scale problems with billions
vailable online 30 November 2023
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Fig. 1. Graphical depiction of the de-homogenization procedure on complex geometries.
of design variables [8,9]. While large-scale topology optimization is an
important tool to gain new insights into structural design, the point-
wise material or void description results in length-scale dependent
solutions. Furthermore, large-scale topology optimization comes at a
significant computational cost, limiting commercial access to only the
largest companies and hampering widespread access to high-resolution
optimal design.

In order to overcome the need for high-resolution finite element
analysis and tackle the length-scale problem, homogenization theory
can be used to compute the mechanical properties of optimized local
periodic microstructure of the structural elements in the macroscopic
structure. The optimization problem can thus be relaxed by posing the
material distribution problem as a macroscopic continuous descrip-
tion, independent of length scale. This multi-scale design problem,
also known as homogenization-based topology optimization [10] can
significantly reduce the size of the numerical problem that needs to be
solved.

It is well-known that multi-scale periodic laminated microstruc-
tures, so-called rank-𝑁 microstructures (where 𝑁 indicates the number
of laminations) [11–14], achieve the optimal stiffness-to-density ratio
under different domain settings and loading conditions. Hence these
microstructures, which can be interpreted as infill structures, are the
obvious choice for the multi-scale design problem as they will result
in optimal stiffness. In 3D under a single load case, an orthogonal
rank-3 microstructure is stiffness optimal [15,16], but its physical
realization is challenging. The corresponding, easy-to-realize, single-
length-scale, rectangular-hole microstructure approaches the rank-3
laminate in terms of stiffness; however, there exists no closed-form
solution to obtain its mechanical properties. Instead, a method like
numerical homogenization can be used to obtain the properties [17].

The multi-scale design problem requires a physically realizable
interpretation to be applicable. The so-called de-homogenization ap-
proach introduced by Pantz and Trabelsi [18] and improved by Groen
and Sigmund [17], maps the homogenization-based topology optimiza-
tion solution to a single-scale solution with low computational cost
by the construction of global mapping that approximates microstruc-
ture orientations (orientation mapping fields) and lamination widths.
The procedure has been extended to multiple load case problems
by Jensen et al. [19] and to 3D, on structured grids by [20]. How-
ever, the approach is challenged by microstructure non-uniqueness
and ordering issues, particularly in 3D. While unordered microstruc-
ture orientations can be ordered in 2D, the problem is much more
complex in 3D. Strict regularization and starting guess schemes have
been proposed, but orientation singularities remain an issue. Similar
approaches have been made with open lattice structures, as shown in
3D by Geoffroy-Donders et al. [21], Wu et al. [22], Wang and Tamijani
[23], however, these methods produce open-walled structures which
2

from a stiffness performance perspective, are inferior to closed-walled
microstructures [24].

Stutz et al. [25] showed that a global mapping of the de-homogeniz-
ation can be obtained from a number of partial solutions. A set of
stream surfaces are obtained from random starting points and aligned
with the microstructure orientations. Singularities are avoided in solid
and void regions, and a subset of stream surfaces is selected through
an optimization process to achieve uniform spacing for a target length
scale. Selected surfaces are then converted to implicit solids, forming
mapped single-scale, shell-like surfaces that align closely to microstruc-
ture orientations without implicit regularization. The resulting output
is a union of surfaces, making the addition of other solids and structures
easy, such as an exterior boundary shell. A promising approach similar
to [25] was published by Garnier et al. [26] where the de-homogenized
structure is generated with a reaction/diffusion approach, however, this
is again only shown for open lattice structures.

The de-homogenization procedure is a two-step multi-scale design
problem. The first step of the procedure is to solve a multi-scale
topology optimization problem using near-optimal periodic microstruc-
tures as base material. The topology optimization can be obtained on
a relatively coarse grid allowing for extremely fast computations on
single workstations. The second step of the procedure is mapping the
coarse-scale solution to a fine-scale solution (the de-homogenization),
which only should introduce a minor loss in performance.

De-homogenization procedures have so far only been developed for
regular/structured grids, with limited application to practical engineer-
ing problems. To effectively capture the essential characteristics of such
problems, unstructured grids must be employed. However, this intro-
duces complexities for homogenization-based topology optimization,
requiring careful consideration of factors such as obtaining a high-
quality unstructured grid, regularization of microstructure material,
and solver setup. Moreover, interpolations and upscaling become more
challenging for the mapping procedure due to the unstructured coarse-
scale solution. Therefore, this paper aims to address these concerns
and extend the stream surface-based de-homogenization topology op-
timization procedure to complex geometries on unstructured grids in
3D. Infill is frequently appended as an afterthought in manufacturing
processes, potentially leading to suboptimal mechanical performance.
In contrast, the proposed approach optimizes local microstructure,
which can be interpreted as infill, to adapt to the local stress state.
Therefore, the proposed approach is applied to practical engineering
design problems, where the infill is directly integrated from the under-
lying microstructure model and is considered a significant structural
component, instead of resolving the structural infill on a single scale as
in [2].

The proposed de-homogenization procedure is graphically depicted

in Fig. 1. The procedure advances the methodology closer to the
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Fig. 2. Illustration of the design problem. The optimization problem is solved on 𝛺, which is partitioned into an active design domain 𝛺𝐴 and a passive domain 𝛺𝑃 . Fixed
displacements are applied to Dirichlet boundaries 𝛤𝐷 , while tractions, 𝐹 , are applied to Neumann boundaries 𝛤𝑁 . The point-wise homogeneous microstructure design material has
macroscopic varying design variables, thicknesses 𝑤𝑖, orientations 𝜃𝑗 , and material indicator 𝑠𝑘.
ultimate goal of reproducing the giga-scale wing [8] and bridge [9]
examples at an affordable computational cost without any loss in the
level of structural details.

The paper is organized as follows: Section 2 presents the multi-scale
optimization problem, including new microstructure geometry and in-
fill regularization. In Section 3 the frame field-aligned de-homogeniza-
tion is reintroduced with a short description of previous work in
addition to modifications and extensions included in this paper. Sec-
tion 4 includes the numerical implementation. In Section 5 the method
is demonstrated on different examples. The final Section 6 includes
conclusions and final remarks to the work.

2. Multi-scale topology optimization

The goal of the first step of the de-homogenization procedure is
to obtain an optimized multi-scale solution that can be mapped and
upscaled to a physical structure. The multi-scale optimization prob-
lem is illustrated in Fig. 2 with the computational domain 𝛺 ∈ R3,
which is partitioned into an active design domain 𝛺𝐴 ⊆ 𝛺 and
a passive domain 𝛺𝑃 ⊆ 𝛺. 𝛺 is subjected to tractions 𝐹 applied
to Neumann boundaries 𝛤𝑁 , while zero prescribed displacements are
applied to Dirichlet boundaries 𝛤𝐷. The objective of the optimization
problem is to maximize stiffness, i.e., minimize compliance (external
work) on 𝛺. The domain 𝛺 is discretized by 𝑁𝑒 finite elements on
an unstructured grid, with 𝑁𝐴

𝑒 elements in 𝛺𝐴. The microstructure
design material is assumed to be point-wise homogeneous on the
macroscopic scale. Hence, the multi-scale design problem is cast as a
homogenization-based topology optimization problem, i.e. the design
domain is explicitly posed on the macroscopic scale and implicitly on
the microscopic scale. The microstructure design material description
is constant within each finite element. The following sections will
formulate the microstructure parametrization, optimization problem,
objective penalization and design regularization.

2.1. Microstructure design parametrization

The microstructure is parameterized on the macroscopic scale to
control the mechanical properties of the homogenized microstructure.
There are numerous ways to parameterize the microstructure. In this
work, the microstructure is considered as a two-phase composite where
one phase is stiff with a base Young’s modulus of 𝐸0 and the other phase
is compliant with a base Young’s modulus of 𝐸min = 10−6 𝐸0, mimicking
void. The Poisson’s ratio of both phases is in this case set to 𝜈0 = 1∕3.
The microstructure is parameterized by three different sets of design
variables for a material point on the macroscale 𝑒 ∈ 𝛺,
3

𝒙𝑒 = {𝑤𝑖, 𝜃𝑗 , 𝑠𝑘}, 𝑖 ∈ {1,… , 𝑁𝑤}, 𝑗 ∈ {1,… , 𝑁𝜃}, 𝑘 ∈ {1,… , 𝑁𝑠}, (1)
where 𝑤𝑖 ∈ [𝑤min, 𝑤max] is the 𝑖th relative thickness variable of 𝑁𝑤
thicknesses. 𝑤min and 𝑤max are upper and lower thickness bounds,
0 ≤ 𝑤min ≤ 𝑤max ≤ 1. The Euler angle 𝜃𝑗 ∈ [−4𝜋, 4𝜋] refers to
the 𝑗th Euler angle variable of 𝑁𝜃 total angles, used to determine the
orientation of the microstructure. Remark that the bounds on 𝜃𝑗 are
chosen large enough to ensure that 𝜃𝑗 can rotate ±2𝜋 from an initial
position range of [−2𝜋, 2𝜋], and thus prevent 𝜃𝑗 to reach these bounds
during optimization and causing the box constraint to be active. The 𝑘th
material indicator variable, 𝑠𝑘 ∈ [0, 1], introduced in [27] is included to
control present and non-present material, and regulate material layout
as discussed in Section 2.3. Regularization schemes are used on 𝑤𝑖 and
𝑠𝑘 to obtain 𝑤̂𝑖 and 𝑠̂𝑘, respectively, which are then used for computing
the objective; see Section 2.3 for detail. The relative density of the
microstructure is found from,

𝜌 = 1 −
𝑁𝑤
∏

𝑖=1
(1 −𝑤𝑖). (2)

The near stiffness-optimal orthotropic rectangular-hole microstruc-
ture single-scale material model is considered for the microstruc-
ture due to its single-scale superior design freedom and further de-
homogenization properties. The material is similar to the well-known
orthogonal rank-3 multi-scale material (see formulation in [20]); how-
ever, consisting of a rectangular cuboid cavity with the relative dimen-
sions (1 − 𝑤1) × (1 − 𝑤2) × (1 − 𝑤3), hence the surrounding walls, or
plates (referred to as laminates), have the relative thickness 𝑤1, 𝑤2,
and 𝑤3. Therefore, 𝑁𝑤 = 3 and due to the orthogonality only one set
of Euler angles are needed to realize the orientations such that 𝑁𝜃 = 3.
The microstructure is illustrated in Fig. 2. A detailed description of
the rectangular-hole microstructure is found in Appendix A. The elastic
properties are determined by numerical homogenization. The homoge-
nized constitutive matrix 𝐂̃𝐻 ∈ R6×6 (Voigt notation) is obtained in the
microscopic reference frame, only dependent on 𝑤𝑖. The microstructure
design is expanded to include geometric rotations by,

𝐂̃𝐻 (𝑤𝑖, 𝜃𝑗 , 𝑠𝑘) = 𝐓(𝜃𝑗 )𝐂𝐻 (𝑤𝑖, 𝑠𝑘)𝐓⊤(𝜃𝑗 ). (3)

Here 𝐓 ∈ R6×6 is the orthogonal transformation matrix of the 𝐑 ∈ R3×3

proper orthogonal rotation matrix, determined by 𝜃𝑗 , as detailed in
Appendix A.

Additionally, an isotropic Hashin–Shtrikman (HS) upper-bound mi-
crostructure [28] is considered as a reference to the orthotropic mi-
crostructure. The HS microstructure is realized as a quasi-periodic
microstructure with six uniform laminates [29], 𝑁𝑤 = 6, and 𝑁𝜃 = 0.
Due to the uniform laminates, 𝑤𝑖 is an irrelevant design parameter from
a multi-scale HS optimization perspective. The microstructure density,
(2), is instead a much more reasonable design parameter and is thus
used as the effective design parameter. A detailed description of the

isotropic HS model is found in Appendix B.
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As a representation of large-scale topology optimization, the well-
nown Solid Isotropic Microstructure with Penalization (SIMP) [30]
odel is used for benchmarking. Like the isotropic HS microstructure,

he density parameter is considered the design variable with 𝑁𝑤 = 1
and 𝑁𝜃 = 0. The auxiliary variable 𝑠𝑘 is not necessary for this model
and hence excluded, whereas the design variable is regularized based
on the same robust formulation as applied to 𝑠𝑘. A detailed description
of the SIMP model is found in Appendix C.

A comparison of specific Young’s moduli is seen in Fig. 3. The spe-
cific Young’s modulus is calculated by evaluating the compliance tensor
obtained from (3) in relation to the relative density. A slight difference
is seen between the rank-3 and rectangular-hole microstructures, which
is attributed to the single-scale representation of the rectangular-hole
microstructure. It is seen that the two isotropic materials are penalized,
compared to the orthotropic materials. Note that isotropic Hashin–
Shtrikman Poisson’s ratio is also dependent on 𝜌, resulting in further
penalization of the constitutive tensor. The two orthotropic materials
are seen to have a high range of design freedom, from the quasi-
linear specific modulus, hence making them extremely efficient for
stiffness-specific multi-scale topology optimization.

2.2. Homogenization-based topology optimization problem

For the homogenization-based topology optimization Problem, the
three different sets of design variables are defined as three design
vectors for all elements in 𝛺𝐴,

𝐱 = {𝒘,𝜽, 𝒔}. (4)

The compliance minimization problem is defined with the objec-
tive function 𝑓 (𝐱), a weighted sum of the compliance,  (𝒘,𝜽, 𝒔), and
two regularization penalty functions; orientation 𝜃(𝜽), and relative
thickness, 𝑠(𝒔). The compliance is computed as,

 =
𝑀
∑

𝑖
𝐟⊤𝑖 𝐮𝑖, (5)

where index 𝑖 refers to one of the 𝑀 load cases, 𝐟𝑖, and 𝐮𝑖 is the finite
element load and displacement vectors obtained from the solution of
the linear finite element problems

𝐊(𝒘,𝜽, 𝒔)𝐮𝑖 = 𝐟𝑖, (6)

where 𝐊 is the finite element stiffness matrix based on (3). Remark that
the microstructure description is maintained for the multiple load case
formulation. The optimization problem is defined as,

min
𝐱

∶ 𝑓 (𝐱) = 𝛾1 (𝒘,𝜽, 𝒔) + 𝛾2𝜃(𝜽) + 𝛾3𝑠(𝒔),

s.t. ∶ 𝐊(𝒘,𝜽, 𝒔)𝐮 = 𝐟 ,
∶ 𝑔(𝒘, 𝒔) ≤ 0,

(7)
4

∶ 𝐱 ≤ 𝐱 ≤ 𝐱.
The compliance objective is scaled by the compliance of a solid design
domain (𝒘 = 𝟏), by considering 𝛾1 = 1∕ (0). The two penalty functions
re scaled by 𝛾2 and 𝛾3, respectively, and 𝜃(𝜽) is computed as an aggre-

gated sum of the dot products between neighboring element lamination
normals, whereas 𝑠(𝒔) is computed as an aggregation of all elements
with a non-zero volume fraction. A detailed description of the penalty
functions is found in Section 2.4. The optimization problem is subjected
to an inequality constraint 𝑔(𝒘, 𝒔) associated with the macroscopic
volume fractions, detailed in Section 2.5. Finally, the design variables
are subjected to box constraints, 𝐱 and 𝐱. A set of outer move limits
re imposed on the design variable changes, which limits the change
etween design iterations as 𝐱move = {{0.1}, {0.05}, {0.2}}, for 𝒘, 𝜽, and

𝒔, respectively. Sensitivities with respect to the optimization problem
are found using the discrete adjoint method.

2.3. Regularization

Regularization schemes are often used to avoid nonphysical behav-
ior and control length scale. In this work, additional regularization is
applied to the relative thicknesses to avoid low-density material and
control the lower bound on the thicknesses. This approach is similar
to Jensen et al. [19] but extended both to 3D unstructured grids and
capabilities to control the number of active layers. This regularization,
as stated before, is based on the material indicator fields, which work
both laminate-wise (𝑁𝑠 = 𝑁𝑤) i.e. 𝑘 = 𝑖 or material-wise (𝑁𝑠 =
) i.e. 𝑘 = 1. 𝑠𝑘 is compounded with 𝑤𝑖. The variables 𝑤𝑖 and 𝑠𝑘
re filtered using the PDE-filter [31] with filter radii 𝑅𝑤 and 𝑅𝑠 to
btain 𝑤̃𝑖 and 𝑠̃𝑘, respectively, similarly to [19]. The SIMP density
esign variable is filtered with the filter radii 𝑅𝜌. The PDE-filter is
mplemented with Robin boundary conditions on 𝜕𝛺𝐴 [32] to avoid the
se of padded design domains, unless 𝜕𝛺𝐴 = 𝜕𝛺𝑃 for which Neumann
oundary conditions are used. The indicator field, 𝑠̃𝑘, is transformed to
smooth unit step 𝑠̄𝑚𝑘 using a smooth Heaviside projection following the
odified robust approach [33] with step approximation parameter 𝛽𝑠

nd threshold values 𝜂𝑚𝑠 . Here 𝑚 ∈ {𝑒, 𝑖, 𝑑} indicate eroded, intermediate,
nd dilated fields. The steepness parameter, 𝛽𝑠, is continued from 𝛽𝑠 =
.1 to 𝛽𝑠 = 64, to ensure a discrete indicator field, every 20th design
teration with an update exponent of 1.5. The threshold values is chosen
s 𝜂𝑖𝑠 = 0.5, 𝜂𝑑𝑠 = 𝜂𝑖𝑠−0.01 and 𝜂𝑒𝑠 = 𝜂𝑖𝑠+0.01 to ensure a minimum length
cale and numerical stability [19,33]. 𝑠̄𝑚𝑘 is obtained by

̄𝑚𝑘 = 𝐻(𝑠̃𝑘, 𝛽𝑠, 𝜂𝑚𝑠 ), (8)

here 𝐻 ∈ [0, 1] is a smooth Heaviside function,

(𝑥, 𝛽, 𝜂) =
tanh (𝛽𝜂) + tanh (𝛽 (𝑥 − 𝜂))

. (9)

tanh (𝛽𝜂) + tanh (𝛽 (1 − 𝜂))
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In a previous 2D application [19] of the material indicator field,
the field was enforced as a material-wise indicator to advance mi-
crostructural stability as the critical member length is minimized this
way. However, in 3D, enforcing all laminates to be active to advance
stability is unnecessary. Hence it is desirable to let the number of
active laminates be controlled by the user, which also enables more
direct manipulation of the infill layout. To this end, let 𝜂𝑎 = 𝑁𝑎∕𝑁𝑠
be a fraction of active laminates in the microstructure, where 𝑁𝑎 ∈
{0, 𝑁𝑠} is the required number of active laminates. Let 𝐴 ∈ [0, 1] be
a normalized 2-norm function of the number of active laminates in an
element microstructure,

𝐴(𝒔̄𝑚) = 𝑁−1∕2
𝑠 ‖𝒔̄𝑚‖2, 𝒔̄𝑚 = {𝑠̄𝑚1 ,… , 𝑠̄𝑚𝑘 }, (10)

The smooth Heaviside function is now used to project 𝐴 at point 𝜂𝑎 to
determine if the microstructure has 𝑁𝑎 active laminates,

𝐴̄(𝒔̄𝑚) = 𝐻
(

𝐴(𝒔̄𝑚), 𝛽𝑎, 𝜂𝑎
)

, (11)

where 𝐴̄ ∈ [0, 1] is the indicator quantity and 𝛽𝑎 = 24 is the steepness
parameter. 𝛽𝑎 is chosen as a compromise between numerical stability
and discreetness, without continuation like 𝛽𝑠. Finally, 𝐴̄ is used as an
indicator design variable penalty scalar,

̂𝑚𝑘 = 𝑠̄𝑚𝑘 𝐴̄(𝒔̄𝑚). (12)

Now, the material indicator field will be directly penalized if the active
laminates requirement count is not satisfied. Note that setting 𝑁𝑎 = 𝑁𝑠,
corresponds to setting 𝑁𝑠 = 1.

The computation of the constitutive matrix, in (3), is now performed
for 𝑤̂𝑒

𝑖 , which is obtained from the eroded field 𝑠̂𝑒𝑘 as follows

𝑤̂𝑒
𝑖 = 𝑠̂𝑒𝑘 𝑤̃𝑖. (13)

2.4. Penalization

To ensure smooth orientation in the subsequent mapping proce-
dure and prevent the presence of extensive regions with low material
density, the two previously introduced penalty functions are employed
in the objective. The penalty functions are based on those presented
in [19,20], for 𝜃 ∈ [0, 1], and 𝑠 ∈ [0, 1], respectively, but are here
extended to also allow for unstructured grids.

To ensure smooth orientations fields, an element penalization func-
tion 𝑓

𝑖 ∈ [0, 1]𝑁𝑓 , where 𝑁𝑓 is the number of element pairs, is
introduced to penalize the difference between the 𝑖th laminate normal
of the element neighboring 𝑓 th surface pair, 𝑎 and 𝑏, respectively. Let
𝑑𝑖 be the dot product between laminate normal 𝑎 and 𝑏,

𝑑𝑖({𝜽𝑖}𝑓 ) = 𝐧𝑖(𝜽𝑎𝑖 ) ⋅ 𝐧𝑖(𝜽
𝑏
𝑖 ), {𝜽𝑖}𝑓 = {𝜽𝑎𝑖 ,𝜽

𝑏
𝑖 }, 𝜽𝑖 = {𝜃1,… , 𝜃𝑗}, (14)

where 𝐧𝑖 ∈ R3 is the laminate surface normal, see Appendix A for
definition. 𝑓

𝑖 must take the minimum value when the neighboring
laminates are orthogonal or parallel, i.e., 𝑑 = {−1, 0, 1}, and the
maximum value when the neighboring laminates are separated by 𝜋∕4,
i.e. 𝑑 = ±

√

2∕2. Finally, 𝑓
𝑖 is aggregated and normalized with respect

to all laminates and element pairs to 𝜃 ,

𝜃(𝜽) = 1
3𝑁𝑓

𝑁𝑓
∑

𝑓=1

𝑁𝑤
∑

𝑖=1
𝑓
𝑖 ({𝜽𝑖}

𝑓 ), with,

𝑓
𝑖 ({𝜽𝑖}

𝑓 ) = 4𝑑𝑖({𝜽𝑖}𝑓 )2 − 4𝑑𝑖({𝜽𝑖}𝑓 )4.

(15)

In order to avoid large regions of the design domain where the
icrostructure wall thickness obtains the minimum thickness, i.e., 𝑤𝑖 =

𝑤min, the sum of volumes of the material indicator fields is mini-
mized [27]. Let 𝑠 ∈ [0, 1] be defined as,

𝑠(𝒔) = 1
𝑉𝛺𝐴

𝑁𝑠

𝑁𝑠
∑

𝑘=1
∫𝛺𝐴

𝑠̂𝑒𝑘 d𝛺𝐴, (16)

here 𝑉𝛺𝐴
is the total volume of 𝛺𝐴. Hence 𝑠 = 1 if all elements have

𝑠

5

aterial, and if  = 0 none have.
2.5. Volume constraint

The optimization problem is subjected to a macroscopic volume
fraction constraint that is imposed on the dilated design,

𝑔(𝒘, 𝒔) = 𝑉 𝑑

𝑉𝛺𝐴
𝑓 𝑑 − 1, where, 𝑓𝑑 = 𝑉 𝑑

𝑉 𝑖 𝑓
𝑖, with,

𝑉 𝑚 = ∫𝛺𝐴

𝜌(𝑤̂𝑚
𝑖 )d𝛺𝐴.

(17)

where 𝑓 𝑖 is the specified intermediate volume fraction, and 𝑓 𝑑 is the
dilated volume fraction which is updated every 20 design iterations to
ensure that the volume of the intermediate design meets 𝑓 𝑖.

3. Frame field-aligned de-homogenization

The microstructure design can be approximated on a single scale us-
ing a de-homogenization approach. In general, any de-homogenization
process operates by employing a set of vector fields to represent mi-
crostructure orientations,  =

{

𝐧(𝜽1),… ,𝐧(𝜽𝑁𝑤
)
}

, and a set of scalar
ields representing laminate thicknesses,  = {𝑤1,… , 𝑤𝑁𝑤

}. The
oal of the process is first to find a geometric description that aligns
ith  at every point in 𝛺. Then, create a volumetric solid from the
eometric description, representing  . In the case of the rectangular-
ole microstructure, the set of orientations  is often referred to as a
rame-Field, since the orthonormal microstructure orientations locally
ead to a set of basis vectors, or a frame. In this work, the stream
urface de-homogenization procedure [34] is used and extended in the
ollowing ways: Improvements have been made to the thickness of
ach surface in the final structure; the outer hull briefly mentioned
y [34] is now default, and used to define the outer shape; surface
recision now adapts to embedded error metrics and along structural
oundaries; frame field implementation have been extended to accept
nstructured meshes. The following sections briefly summarize the
riginal procedure and highlight modifications.

The stream surface de-homogenization procedure is a three-stage
rocess illustrated in Fig. 4. The element-wise constant  and 
rom (7) are passed as volume-weighted average node data from the
riginal finite element grid to start the de-homogenization procedure
llustrated in Fig. 4(a). This input data is used to generate a super-
et of surfaces, , perpendicular to  , densely covering 𝛺 (Fig. 4(b)).

From the super-set, a set of uniformly distributed surfaces, opt, can
be selected (Fig. 4(c)). Finally, a volumetric solid domain 𝛺𝑆 ⊆ 𝛺 is
reated from opt, and the corresponding  (Fig. 4(d)). 𝛺𝑆 can then
e meshed for mechanical analysis and processed for manufacturing.

.1. Generation of member super-set

A stream surfaces approach will only require local separation of
he frame field. Each stream surface can be constructed from the well-
stablished theory of surface tracing in a vector field. As was the case
f Stutz et al. [25], a Runge–Kutta method of fourth order (RK4) [35]
s used to construct the stream surfaces. An outline of the method and
ny modifications is given below, however, see the paper by Stutz et al.
25] for the full algorithmic details.

A surface, defined by points 𝐩, is started at a random seed point 𝑝𝑆 ,
here a random laminate normal is chosen to represent the normal
f the surface, 𝐧𝑆 . The surface is generated as an expanding front,
here all points added to the surface will be used to create new points.
ach new point position is estimated by selecting a random direction
erpendicular to the current surface normal and using the Runge–Kutta
ethod to follow the orientation field [25]. This allows the surfaces

o be densely generated in 𝛺, stopping when the laminate thickness
alls under the void threshold (𝑤 ) or the local density exceeds the
min



Thin-Walled Structures 195 (2024) 111427P.D.L. Jensen et al.
Fig. 4. Illustration of a hollow sphere example’s stream surface de-homogenization procedure. (a) naive illustration of the frame field  in the form of point-wise tangent planes
to the laminate frame normals. The first laminate is normal to the surface of the sphere, while the two other laminates are tangential to the sphere surface and a fixed plane.
The red, blue, and green colors of the tangent planes represent the thickness of  . (b) shows the full set of surfaces, , generated from  , which densely contains the whole
domain. (c) shows a selected set of surfaces opt with uniform spacing. (d) shows how a selected set of surfaces opt is merged together into a volumetric solid based on the
relative thicknesses  .
solid threshold (𝜌max). The solid and void thresholds are defined by the
parameter 𝜂𝑆 , such that 𝜂𝑆 = 𝑤min and 𝜌max = 1 − 𝜂𝑆 . Thus, a new
point 𝑝𝑖 with associated normal 𝐧𝑖 is only added to the surface, if the
evaluated layer thickness, 𝑤𝑖, and local density satisfy the following,

𝑤𝑖 = (𝑝𝑖,𝐧𝑖) ≥ 𝑤min,

𝜌(𝑝𝑖) ≤ 𝜌max.
(18)

Solid regions are afterward appended to the volumetric solid as 𝑤𝑖 = 1.
The void region is explicitly defined in the solution of (7); however,
the solid region is not explicitly defined and is thus an estimate.
Furthermore, if the surface differs significantly from a plane locally,
the surface tracing is also discontinued to prevent surface splitting and
to maintain a smooth, continuous surfaces. New points are added to
the surface by selecting a random direction orthogonal to the surface
normal at the parent point and the RK4 method is used to determine
the location of the new point, such that the surface follows the frame
field locally. In order to improve the spatial consistency of points, all
nearby points are used to estimate the position of the new point.

In the work of Stutz et al. [25] the surface generation was based on
a uniform step size. In this work, an adaptive step size is used instead.
The surface’s point density can adapt to various domain changes using
the Dormand-Prince method of 5th order with a 4th order embedded
error measure [36]. This is particularly useful for complex unstructured
geometries, where domain features can easily disturb a smooth strain
field. As described by Stutz et al. [25], a vast super-set of surfaces
should be constructed. Estimates of how many surfaces should be
created based on the expected complexity of the final structure can be
found in that paper.

3.2. Selection of surfaces

Given the generated super-set of 𝑁𝑆 surfaces, , constructed as ex-
plained above, Stutz et al. [25] provide the specifications for selecting
a uniformly distributed sub-set opt ⊆ . For completeness, a short
overview of the selection method as described in [25] is given below.

Given a desired minimal feature thickness, 𝛿min, each surface will
activate some region of 𝛺. Hence, opt must be selected such that
the surfaces are uniformly distributed. At the same time, the volume
fraction is satisfied in order to comply with the solution of (7). The set
opt is obtained by minimizing an energy  over binary design variables
𝝎 ∈ {0, 1} that will be assigned to the stream surfaces. Note if the
surface selection strictly abides by the solution of (7), 𝑁 → ∞ and
𝛿min → 𝑤min𝜆, where the local surface spacing 𝜆 → 0, however, this is
not practical. Thus selecting 0 < 𝛿min will dissociate the solution of (7)
with the de-homogenization solution.
6

Let 𝐈 ∈ {0, 1}𝑁 be an indicator function used to determine if a point
is activated for a given surface 𝑆 can be described by,

𝐈𝑆,𝐧(𝐩) =
{

1, if 𝐧 ∕∕ 𝐧 ∧ ‖𝐩 − 𝑆‖ < 𝜆
2 ,

0, otherwise.
(19)

where ‘‘∕∕’’ indicates parallelism.
Stutz et al. [25] defined a binary optimization problem that is solved

in 2 steps. First, a relaxed continuous problem is solved to find a set of
continuous weights 𝝎̃ ∈ [0, 1] used to restrict the solution space.

min
𝝎̃

∶ (𝝎̃) = ∫𝛺

‖

‖

‖

‖

‖

∑

𝑆∈
𝜔̃𝑆𝐈(𝐩) − 𝟏

‖

‖

‖

‖

‖𝐿1

d𝐩,

s.t. ∶ 𝜔̃𝑆 = 1, 𝑆 ∈
{

𝑓
}

.

(20)

Here 𝑓 is a set of fixed surfaces that can manually be added to 𝛺.
Based on the restricted solution space, the binary problem could be
solved to find the selected list of surfaces 𝝎.

min
𝝎

∶ (𝝎) = ∫𝛺

‖

‖

‖

‖

‖

∑

𝑆∈
𝜔𝑆𝐈(𝐩) − 𝟏

‖

‖

‖

‖

‖𝐿1

d𝐩,

s.t. ∶ 𝜔𝑆 = 0, 𝑆 ∈
{

 ∣ 𝜔̃𝑆 = 0
}

,

∶ 𝜔𝑆 = 1, 𝑆 ∈
{

 ∣ 𝜔̃𝑆 = 1
}

,

∶ 𝜔𝑆 = 1, 𝑆 ∈
{

𝑓
}

.

(21)

The addition of 𝑓 has been used to add an enveloping membrane
around the material in 𝛺. This membrane will ensure the connection
between internal members while providing a high-quality definition of
the outer shape.

3.3. Volumetric synthesis

The optimized selected set of surfaces opt is defined as point clouds.
However, the surfaces must be merged together into a volumetric
structure in 𝛺𝑆 for practical applications of the procedure. The process
for constructing the volumetric model was described in detail [25];
however, in this work, the construction is notably different in relation
to the thickness of each surface. The original approach assumed that
the final structure adhered very closely to the target spacing. That
was not always true, especially close to boundary conditions where
the structural members often converge. If the spacing locally is larger
than the target spacing, then surfaces are too thin, which can be
a problem for manufacturing, stability, etc. If the spacing is locally
smaller than the target spacing, then too much material is allocated to
the region. In order to correct this, the distances are computed between
neighboring surfaces with approximately the same orientation and scale
the thicknesses of the surfaces according to the computed distances.
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4. Implementation on complex unstructured geometries

The topology optimization problems is implemented in a PETSc-
based 3D unstructured topology optimization framework [37–39]. The
finite element system is solved using a geometric multigrid precondi-
tioned Flexible Generalized Minimal RESidual method [40–42]. The
optimization problem is solved in a nested form, using an implementa-
tion of the Method of Moving Asymptotes (MMA) [5,43]. The finite
element mesh is generated with isoparametric hexahedral tri-linear
elements for advantageous accuracy and performance. The hierarchy
of meshes necessary for the geometric multigrid preconditioner is all
generated using the meshing software Coreform Trelis Pro [44]. In
order to get good multigrid performance, the geometric multigrid levels
are obtained on the same Cartesian grid alignment. The weights for
the prolongations are computed using the trilinear finite element shape
functions for fine grid mesh nodes lying within the coarse mesh and an
inverse weighting scheme for fine grid nodes lying outside the bounding
box of the coarse grid. The multigrid preconditioner utilizes four steps
of either SOR or Chebyshev smoothing, and the coarse grid correction
is obtained using a parallel LU solver. The optimization results are
obtained on the DTU Sophia cluster with two AMD EPYC 7351 16-
Core processors and 128 GB memory per node. The stream-surface
de-homogenization is implemented primarily as a C++ framework. The
framework is written with explicit support for the Message Passing
Interface (MPI). However, the selection problem is solved through a
Branch-and-Bound algorithm, implemented in a Matlab-based library
for convex optimization CVX, using the commercial Mosek solver [45,
46]. Combining surfaces together into a volumetric structure is done in
a mostly single-threaded C++ program.

In order to run a mechanical analysis of the post-processed vol-
umetric structures the geometry is meshed with Coreform Trelis Pro
again using isoparametric hexahedral tri-linear elements. Due to the ge-
ometric complexity of the volumetric structures, an algebraic multigrid
solver is used to solve the linear elasticity problem for post-analysis.

5. Numerical examples

Three examples are considered to verify the procedure: a standard
Michell cantilever, the Lotte Tower, and the GE Jet Engine Bracket.
All three examples are illustrated in Fig. 5 including the load cases,
boundary conditions, passive domain, and design domain. The active
design domain, 𝛺𝐴, is shown in transparent gray color, while the
assive domain, 𝛺𝑃 , is shown in green color. The load cases and bound-
ry cases are only applied to 𝜕𝛺𝑃 . The loads are applied as surface

tractions shown as arrows on the respective surfaces. The boundary
conditions are also only applied over surfaces. 𝛺 is discretized with the
mesh  and  𝜌 for the multiscale optimization and large-scale SIMP
optimization, with average element sizes ℎ and ℎ𝜌, respectively. 𝛺𝑆 is
discretized with the mesh  𝑆 for the post-analysis, with an average
element size ℎ𝑆 = 5∕4𝛿min. The meshes and following results of the
examples are available for download as Exodus II formats with side
sets for applied load cases and boundary conditions. The files can be
found at [47].

The filter radii are defined as 𝑅𝑤 = 2ℎ and 𝑅𝑠 = 6ℎ, and 𝑅𝜌 =
2.5ℎ𝜌 for the multiscale optimization and large-scale SIMP optimization
problems, respectively.

The design variables are initialized uniformly with 𝑤𝑖 = 1 − (1 −
𝑓 𝑖)1∕𝑁𝑤 , 𝑠𝑘 = 1.0, and 𝜃𝑗 = 0 (Cartesian aligned normals) if nothing
else is specified for the examples. The lower bound for 𝑤𝑖 is defined
as 𝑤min = 0.05 to ensure manufacturability, and the upper bound is
𝑤max = 1.0. The number of indicator variables is set to the number of
physical thickness variables for all examples, 𝑁𝑠 = 𝑁𝑤.

As described in Section 3.1, point densities on the stream-surfaces
vary. Hence a minimal and maximal point spacing is set to 0.5ℎ and 2ℎ
respectively, ensuring to capture enough detail from an unstructured
grid with varying irregular discretization sizes. The point spacing is
7

m

therefore dependent on the complexity of  . Here it should be noted
that the Lotte Tower required a significantly higher point density, due
to the level of detail combined with the aspect ratio. Here, the minimal
point spacing was set to 0.2ℎ.

The optimization allows a maximum of 400 iterations. The multi-
cale optimization is conducted on a single compute node (32 cores).
n contrast, the large-scale SIMP optimization problems for the Michell
antilever, Lotte Tower, and GE Jet Engine Bracket are executed on
6 nodes (1152 cores), 9 nodes (288 cores), and 22 nodes (704 cores),
espectively. The variation in the number of nodes corresponds approx-
mately to grid sizes employed for each problem. For the parallel com-
utations of the stream-surface de-homogenization, a single compute
ode comprising 32 cores is employed.

The two penalty function weights are 𝛾2 = 1.0 and 𝛾3 = 0.05 for all
xamples, which are chosen based on extensive numerical experiments.
he optimized compliance is denoted as  ∗, while the compliance
ound from de-homogenization is denoted as  𝑆 . The wall clock time,
wall, and the total CPU time 𝑇CPU, measured as [hh:mm:ss], are re-
orted with the results, and a complete overview is seen in Tables D.7
nd D.8. Furthermore, since the volume cannot be guaranteed to be
onserved for the de-homogenization designs, a weighted compliance
easure, 𝜍, is used to evaluate the designs. 𝜍 is found by multiplying

he compliance with the volume fraction:

=  𝑓 (22)

t should be noted that this measure is nonlinear. Therefore, when com-
aring de-homogenization results with optimization results, the greater
he deviation in volume fraction, the less reliable 𝜍 is. Additionally,
he comparison is not fully ‘‘fair’’ as the quantities being compared are
ot obtained on the exact same mesh discretization, since there is no
traightforward way to refine the optimized multiscale result on  to
 𝑆 without introducing interpolation errors. Moreover, it should be
noted that  𝑆 has a lower mesh quality compared to  and  𝜌 due
to the high level of mesh conformality with hexahedral elements.

The computational time for de-homogenization only accounts for
the de-homogenization procedure presented here and does not include
the time required for post-evaluation.

5.1. Michell cantilever

The Michell cantilever is used as a benchmark model to compare
to previous works of Groen et al. [20], and Stutz et al. [25] (the
results are also listed in Table E.9). The cantilever has dimensions of
(2 × 1 × 1) [m]. The cantilever domain is extended with a passive back
late with dimensions of (1∕24 × 1 × 1) [m], where the cantilever is
lamped at the end. The front of the cantilever is loaded by a surface-
raction of 𝐹 = {0,−36, 0}⊤

[

N∕m2] on the passive domain with a size of
(1×2×2)∕24 [m]. The domain is discretized with 𝑁𝑒 = 225, 792 elements
713,097 degrees of freedom (dof)), corresponding to an element side
ength of ℎ = 1∕48 [m]. The mesh is similar to the one used in [20,25],
xcept for the passive back plate. Similarly, the SIMP benchmark model
s obtained with 𝑁𝑒 = 115, 605, 504 elements (349, 069, 875 degrees of
reedom), corresponding to an element size of ℎ𝜌 = 1∕384 [m]. The
olume fraction of the design domain is set as 𝑓 𝑖 = 0.1. The cantilever is
e-homogenized with a minimal feature thickness of 𝛿min = 5∕778 [m].

The optimization results are presented in Table 1, while the de-
omogenized results are shown in Table 2. The relative differences in
olume fraction, denoted as 𝛿(𝑓 ∗), and weighted compliance, denoted
s 𝛿(𝜍∗), are provided with respect to the multi-scale solution. Addition-
lly, the relative difference in weighted compliance, 𝛿 (𝜍𝜌), compared to
he large-scale SIMP solution, is also reported.

The first example provides a direct comparison to the solution
resented in [20,25], where there is no restriction on the required
umber of active laminates, i.e., 𝑁𝑎 = 0. A simplified representation
f the optimized result is shown in Fig. 6(a), where the element-wise

icrostructure is illustrated using plates. The plates are oriented based
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Fig. 5. Numerical examples: The gray semi-transparent regions represent the active design domains, 𝛺𝐴, while the passive domains, 𝛺𝑃 , are represented in green. Boundary
conditions are exclusively applied to 𝛺𝑃 , with surface tractions indicated by arrows. (a) The Michell cantilever: The domain is extended with a passive back plate where the
cantilever is clamped at the end. The front of the cantilever is loaded with a surface traction. (b) The Lotte tower: The domain is designed as a square that morphs into a circle
from the bottom to the top. Both the square and the circle have the same surface area. The tower includes passive domains at the top and bottom. The bottom surface is fixed,
while a tangential surface traction is applied to the side of the top passive domain. (c) The GE Jet Engine Bracket: The domain is modeled after a jet engine bracket, secured
by four passive bolt connections represented as solid fixed rings. Four load cases are applied to a passive shaft with artificially higher stiffness (light green color). The shaft is
connected to the design domain through passive solid rings.
Table 1
Michell Cantilever topology optimization results. For each model, the following is reported; Optimized compliance of full and active domain
( ∗,  ∗

𝐴 ), Weighted compliance (𝜍∗), Final penalization on angles and relative thickness (𝜃 , 𝑠), Time spent (𝑇wall, 𝑇CPU).

Model  ∗  ∗
𝐴 𝜍∗ 𝜃 𝑠 𝑇wall 𝑇CPU

𝑁𝑎 = 0 237.964 229.915 23.796 4.060 × 10−3 0.178 00∶25∶43 13∶39∶18
𝑁𝑎 = 2 247.003 238.107 24.700 5.021 × 10−3 0.242 00∶23∶48 12∶38∶20
𝑁𝑎 = 3 259.141 249.940 25.914 3.791 × 10−3 0.234 00∶24∶52 13∶12∶21

HS Iso. 251.588 241.396 25.159 – 0.104 00∶23∶57 12∶41∶33
SIMP 247.875 237.643 24.788 – – 03∶55∶10 4510∶58∶55
on the microstructure’s normal direction and are colored based on their
relative thickness. Shades of red indicate 𝑤̂1, shades of blue indicate 𝑤̂2,
and shades of green indicate 𝑤̂3. If 𝑤̂𝑖 = 0, the plate is removed. This
illustration provides a basic visualization of the de-homogenization
result. It can be observed that high-relative thickness horizontal plates
form at the top and bottom, supported by low-relative thickness vertical
plates in the middle region, which is consistent with the solution pre-
sented in [20,25]. In Fig. 6(b), the volume-synthesized de-homogenized
result is shown before 𝛺𝑃 is inserted. The volume is semi-transparent to
indicate the internal structure. After inserting 𝛺𝑃 and discretizing the
geometry, the mesh  𝑆 is shown in Fig. 6(c), with a plot of the strain
energy density, 𝑊 = log10

∑𝑀
𝑖 𝑊𝑖, of the structure cut in half displayed

in Fig. 6(e). The strain energy density, 𝑊 , is uniform within the internal
structure, except for regions of interactions and boundaries, which is
an expected result of the de-homogenization process. The relatively
uniform distribution of 𝑊 indicates that the optimized solution is well-
recovered in these regions since the optimality condition demands an
even strain energy density distribution. At intersections, the smooth
geometry becomes increasingly disrupted, displaying irregularities and
discontinuities, resulting in stress raisers and increased values of 𝑊 , as
highlighted in Fig. 6(e). A significant amount of low-energy material is
observed at the boundaries, such as the hull or surface edge regions.
This is a direct result of the underlying microstructure model, which
assumes infinite periodicity, perfect bonding, and separation of length
scale. Hence, if 𝛿min → ∞, this issue should be alleviated. It should be
noted that, as shown in Table 2, excluding the hull, i.e., having open
walled structures, results in very poor weighted compliance.

The compliance is measured as the global compliance on 𝛺, but for
a comparison with [20,25], it is necessary to compare the compliance
of 𝛺𝐴, denoted as 𝐴. From the optimization problem, 𝐴 is found to
be very similar to [20], with only a 1% difference, which is acceptable
considering that the problem formulation is not exactly the same. The
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obtained result was achieved almost 23 times faster in terms of wall
clock time; however, the CPU time is 23.5% slower than [20], which
could be attributed to an insufficient parallel setup and the added
complexity with respect to the unstructured mesh setup.

Comparing 𝜍𝑆𝐴 , it is observed to be 2%–3% larger than in [20,25].
However, the volume fraction derived in [25] is violated by almost
20%, and in [20] by 7%, whereas in this work, the volume fraction is
violated by less than 2%. The wall time for de-homogenization matches
that of [20], but it is almost four times faster than in [25]. This increase
in computational efficiency is despite changes made to achieve a more
robust de-homogenization procedure, such as the addition of an outer
hull, which clearly has a computational cost as can be seen in Table 2.
The unsorted and unstructured nature of  and  also contributes to an
increase in computational complexity. Furthermore, it should be noted
that computational time in the de-homogenization procedure from [20]
does not depend on 𝛿min, whereas in [25] and this method, it has an
impact.

It is remarkable that the de-homogenized structures perform well
despite the extreme violation of scale separation. When using a half-
minimal feature thickness, the performance increases significantly, as
evident from the results. The structure can be seen in Fig. 6(f), where
the finer periodicity is highlighted. However, it is important to note
that achieving this finer resolution comes at a higher computational
cost. Additionally, the requirements for post-processing also increase
drastically, which should be taken into consideration.

By forcing more active microstructure layers with 𝑁𝑎 = 2 and 𝑁𝑎 =
3, it is evident that the stiffness performance of the structure decreases
due to the added layer requirement. However, it is also observed
that the additional surfaces contribute to an infill that causes a more
stable structure. This can be seen in Figs. 6(g) and 6(i), where critical
members are reduced compared to the previous case. This indicates
that the added layers help to distribute the loads and improve the
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Fig. 6. Michell cantilever results. (a) A simplified representation of the multi-scale solution, where the three differently colored plates represent 𝑤1, 𝑤2, and 𝑤3. (b) The
semi-transparent stream surfaces from the de-homogenization approach. (c) Finite element mesh of the de-homogenization result with 𝛺𝑃 inserted. (d) Strain energy density plot of
the de-homogenization result. Blue indicates no loading, while yellow indicates maximum loading. (e) Half-clip of the 𝑁𝑎 = 0 de-homogenization result. The internal open surface
is highlighted. (f) Half-clip of the 𝑁𝑎 = 0 (0.5, 𝛿min) de-homogenization result. (g) and (h) Half-clip of the 𝑁𝑎 = 2 de-homogenization result, where (h) exploits symmetry after
de-homogenization. (i) Quarter-clip of the 𝑁𝑎 = 2 de-homogenization result.
Table 2
Michell Cantilever de-Homogenization results. For each model, the following is reported; Compliance of full and active domain ( 𝑆 ,  𝑆

𝐴 ),
Volume fraction of design (𝑓𝑆 ), Weighted compliance of full and active domain (𝜍𝑆 ,  𝑆

𝐴 ), Relative difference to optimized design in volume
and weighted compliance (𝛿(𝑓 ∗), 𝛿(𝜍∗)), Relative difference to SIMP design in weighted compliance (𝛿(𝜍𝜌)), Time spent (𝑇 𝑆

wall, 𝑇
𝑆
CPU).

Model  𝑆  𝑆
𝐴 𝑓𝑆 𝜍𝑆 𝛿(𝑓 ∗) 𝛿(𝜍∗) 𝛿 (𝜍𝜌) 𝑇 𝑆

wall 𝑇 𝑆
CPU

𝑁𝑎 = 0 266.283 257.514 0.098 26.132 −1.86 9.82 5.43 00:26:50 06:06:11
𝑁𝑎 = 0 (No hull) 301.036 290.556 0.096 28.834 −4.22 21.17 16.32 00:13:45 03:59:40
𝑁𝑎 = 0 (0.5 𝛿min) 272.510 263.323 0.093 25.303 −7.15 6.33 2.08 01:55:54 13:40:47
𝑁𝑎 = 0 (Sym.) 245.523 237.544 0.099 24.255 −1.21 1.93 −2.15 – –

𝑁𝑎 = 2 339.711 330.644 0.081 27.514 −19.01 11.39 11.00 00:26:40 06:41:55
𝑁𝑎 = 2 (Sym.) 314.064 305.584 0.082 25.810 −17.82 4.50 4.13 – –

𝑁𝑎 = 3 333.497 323.839 0.086 28.556 −14.37 10.20 15.20 00:26:14 07:35:46
𝑁𝑎 = 3 (Sym.) 303.572 294.735 0.088 26.841 −11.58 3.58 8.29 – –
overall stability of the structure. Furthermore, this also demonstrates
how the infill functions as a direct structural member, contributing to
a manufacturable design.

In Fig. 6(g), it can be observed that many surfaces have open ends,
which can lead to stress raisers and reduced structural performance.
Ideally, the surfaces should meet to form a more continuous structure.
However, the stream surface-based de-homogenization method in this
study does not allow for such surface connections, as the surfaces are
generated from random seeding and selected based on their spacing.
To address this issue, symmetry can be exploited in the case of the
Michell Cantilever. By reflecting the upper part of the de-homogenized
structure in the middle 𝑥𝑧-plane, a more connected and continuous
structure can be obtained, as shown in Fig. 6(h). This symmetry explo-
ration improves the overall performance of the structure, leading to a
reduction in weighted compliance, as shown in Table 2. This symmetry
exploration approach can also be applied to the 𝑁𝑎 = 0 and 𝑁𝑎 = 3
models, resulting in a similar reduction in weighted compliance. By
choosing the ‘‘better’’ half of the structure to reflect, i.e. the half with
9

the best local weighted compliance, the overall performance can be
further improved, leading to a reduction in weighted compliance of up
to 7%.

According to Tables 1 and 2, it is evident that the de-homogenized
result outperforms the HS optimization result. This outcome aligns
with expectations when comparing an isotropic material model with
a laminated orthotropic material model. Similar findings were also
observed in a previous study by Jensen et al. [19]. Furthermore, by
imposing a minimum wall thickness, a lower material density limit
of 𝜌 = 0.265 is achieved, resulting in a design that approaches a
nearly binary configuration, with only filtering artifacts causing porous
design areas. Considering these factors, a direct comparison between
de-homogenization and post-evaluation of HS results is not attempted.

When comparing the large-scale SIMP result to the de-homogenized
result, it is found that they achieve similar weighted compliance.
However, the de-homogenized result is obtained approximately 200
times faster than the large-scale SIMP result. Fig. D.14(a) illustrates
the SIMP result, and it is noted that the result bears similarities to
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Fig. 7. The initial guess for the optimization problem is based on the principal stress directions from a solid isotropic state. Due to the global torsion stress state, the normal
direction related to 𝑤2 is radial to the tower’s center axis, while the normals related to 𝑤1 and 𝑤3 are tangential and form a helix with an angle of 𝜋∕4 to the tower’s center axis.
Table 3
Lotte Tower topology optimization results. For each model, the following is reported; Compliance of the design ( ∗), Weighted compliance
(𝜍∗), Final penalization on angles and relative thickness (𝜃 , 𝑠), Time spent (𝑇wall, 𝑇CPU).
Model  ∗ 𝜍∗ 𝜃 𝑠 𝑇wall 𝑇CPU

𝑁𝑎 = 0 150.491 × 10−3 15.049 × 10−3 105.970 × 10−4 86.454 × 10−3 00∶55∶18 29∶24∶33
𝑁𝑎 = 0 (SG) 150.435 × 10−3 15.044 × 10−3 94.670 × 10−4 86.578 × 10−3 00∶56∶38 30∶09∶05

𝑁𝑎 = 2 151.922 × 10−3 15.192 × 10−3 114.380 × 10−4 123.133 × 10−3 00∶48∶01 25∶32∶06

𝑁𝑎 = 3 154.611 × 10−3 15.461 × 10−3 106.330 × 10−4 201.049 × 10−3 00∶47∶35 25∶18∶26

HS Iso. 158.725 × 10−3 15.873 × 10−3 – 104.260 × 10−3 00∶43∶47 23∶16∶59
SIMP 150.447 × 10−3 15.045 × 10−3 – – 02∶28∶09 710∶26∶04
the 𝑁𝑎 = 2 de-homogenized result, indicating that the de-homogenized
structure captures essential features of the SIMP optimization result.

5.2. Lotte tower

The second example is a Lotte Tower model resembling the one
found in [48]. However; in this work, the tower is only half the height
with the approximate box dimensions of (1 × 1 × 4) [m]. It is designed
as a square that morphs into a circle from the bottom to the top. The
square and the circle have the same surface area of 1 [m]2. The tower
includes passive domains at the top and bottom with a height of 0.1 [m].
The passive bottom surface is fixed, while a tangential surface-traction
of 𝐹 = 0.1

[

N∕m2] is applied to the side of the top passive domain.
Hence the tower is twisted. The volume fraction is set to 𝑓 𝑖 = 0.1.
In contrast to [48], this tower is discretized as a solid, resulting in
an unstructured mesh. The domain is discretized with 𝑁𝑒 = 416, 232
elements (1, 291, 950 dof), corresponding to approximately an element
side length of ℎ = 1∕40 [m]. The reference large-scale SIMP solution
is discretized with 𝑁𝑒 = 26, 641, 472 elements (80, 607, 987 dof), corre-
sponding to approximately an element side length of ℎ𝜌 = 1∕160 [m].
The de-homogenized Lotte Tower has a minimal feature thickness of
𝛿min = 1∕128 [m].

Four modeling cases of the Lotte Tower are considered, including
two cases with a 𝑁𝑎 = 0 layer restriction, where one is obtained by
an initial guess (denoted SG) for the Euler angles 𝜽. The other two
cases have layer restrictions of 𝑁𝑎 = 2 and 𝑁𝑎 = 3. The initial guess,
SG, is obtained by recovering the principal stress directions from a
solid isotropic state. Obtaining a good initial guess this way in 3D is
intrinsically difficult since the principal stress directions are not unique.
However, for this torsion case, there is only one globally dominant
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stress state. As a result, the normal directions related to 𝑤2 are radial
to the tower’s center axis, while the normals related to 𝑤1 and 𝑤3 are
tangential and form a helix with an angle of 𝜋∕4 to the tower’s center
axis. Consequently, the initial guess has a singularity line in the center
axis of the tower. The initial guess is depicted in Fig. 7.

The natural solution to this torsion problem is a closed circular-like
hollow tube; however, due to the bounding geometry, a perfect straight
cylinder is not possible. For a perfect hollow cylinder (with solid walls)
with the given volume fraction, the theoretical compliance is found
to be 𝐽 = 141.096 × 10−3 (see [24,49]). However, to achieve this
theoretical compliance, a minimum length-scale of approximately 1.6ℎ
is required, in addition to the actual cylinder shape. Therefore, for the
homogenization-based topology optimization problem, it is not possible
to create an encapsulating solid structure with the given minimum
length-scale. However, for the large-scale SIMP problem, a minimum
required length-scale of approximately 6.5ℎ𝜌 exists, making it feasible
to construct a solid closed-walled structure.

The optimization result are stated in Table 3 where no significant
difference in compliance values between the two cases with 𝑁𝑎 = 0 is
observed. However, the layup differs, as depicted in Figs. 8(a) and 8(c),
for 𝑁𝑎 = 0 without and with an orientation initial guess, respectively.

Both solutions result in a circular-like hollow tube with a thickness
corresponding to the minimum length-scale. Consequently, the material
density is relatively high at the circumference of the tower. However, as
the tower transitions from a circular to a square shape, the corners have
lower density to alleviate the effects of the coarse mesh discretization,
since maintaining a perfect circular shape becomes unfeasible. In fact,
as observed in the SIMP solution (see Fig. D.14(c)), the final topology
undergoes a transformation from a circle to a superellipse, achieving
a compliance value very close to that of the multiscale solution (and
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Fig. 8. Lotte Tower 𝑁𝑎 = 0 results. (a) 𝑁𝑎 = 0 multi-scale optimization result from a uniform initial guess, resulting in a connecting seam where layers 𝑤1 and 𝑤2 meet. (c)
𝑁𝑎 = 0 SG multi-scale optimization result from a uniform initial guess. (b) and (d) de-homogenized result of (a) and (c), respectively.
Fig. 9. Lotte Tower results. (a) and (b) Half-clip of the outer surface of 𝑁𝑎 = 0 and 𝑁𝑎 = 0 SG, respectively. The relatively small radial macroscopic feature size makes it
challenging to achieve multiple radial surfaces without an extremely small feature size. (c) and (d) Half-clip of the outer surface of the de-homogenized result for 𝑁𝑎 = 2 and
𝑁𝑎 = 3, respectively, where the internal surfaces are evident.
to the theoretical). Therefore, with a finer mesh discretization for
the multiscale optimization solution, a similar final shape would be
expected, considering the comparable compliance attained by the SIMP
approach.

The main difference between the two 𝑁𝑎 = 0 cases is that the
SG case primarily consists of the 𝑤2 layer, whose orientation remains
nearly unchanged from the initial guess, which is expected. However,
for the uniform initial guess, the layup consists of the 𝑤1 and 𝑤2 layers
connected by a seam, as highlighted in Fig. 8(a). The presence of the
seam is a result of the microstructure orthogonality constraint when
transitioning between the 𝑤1 and 𝑤2 layers for a smooth connection.
In the cases of 𝑁𝑎 = 2 and 𝑁𝑎 = 3, a helix pattern is formed (similar
to the orientation initial guess), with one or two additional layers,
respectively. These additional layers have a minimum thickness of 𝑤min,
resulting in only a slight increase in compliance. This also indicates a
more non-unique solution.
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The de-homogenization problem is similar to the torsion sphere
problem discussed in previous works such as [20,25]. This problem is
inherently challenging, as the stream surface, when tracing the cylinder
shape, needs to meet itself, resulting in a semi-closed stream surface.
However, due to interpolation errors and numerical integration, the
shape may undergo slight morphing. The de-homogenized result can
be seen in Table 4, while the structure of the two cases with 𝑁𝑎 = 0
can be observed in Figs. 8(b) and 8(d), respectively, along with their
corresponding cross-sections in Figs. 9(a) and 9(b). The structures for
𝑁𝑎 = 2 and 𝑁𝑎 = 3 are shown in Figs. 9(c) and 9(d), respectively.

From Table 4, it is seen that the volume fraction is violated by
more than 25%, which makes the structural performance comparison
somewhat ambiguous. The volume violation is a result of a combination
of several factors, including the presence of high-density material, the
enforcement of a closed hull, and a relatively small overall feature
size on  compared to the minimum feature size on  𝑆 , leading to
excessive local surface spacing (periodicity) in the radial direction of
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Table 4
Lotte Tower de-homogenization results. For each model, the following is reported; Compliance of the design ( 𝑆 ), Volume fraction of design
(𝑓𝑆 ), Weighted compliance (𝜍𝑆 ), Relative difference to optimized design in volume and weighted compliance (𝛿(𝑓 ∗), 𝛿(𝜍∗)), Relative difference
to SIMP design in weighted compliance (𝛿(𝜍𝜌)), Time spent (𝑇 𝑆

wall, 𝑇
𝑆
CPU).

Model  𝑆 𝑓𝑆 𝜍𝑆 𝛿(𝑓 ∗) 𝛿(𝜍∗) 𝛿 (𝜍𝜌) 𝑇 𝑆
wall 𝑇 𝑆

CPU

𝑁𝑎 = 0 138.971 × 10−3 0.129195 17.954 × 10−3 29.20 19.30 19.34 01:03:59 14:24:40
𝑁𝑎 = 0 SG 140.189 × 10−3 0.127029 17.808 × 10−3 27.03 18.37 18.37 00:52:25 14:55:54

𝑁𝑎 = 2 131.937 × 10−3 0.126765 16.725 × 10−3 26.77 10.09 11.17 01:09:18 24:18:40

𝑁𝑎 = 3 116.642 × 10−3 0.137771 16.070 × 10−3 37.77 3.94 6.81 02:20:44 61:25:10
the tower. To capture the radial local surface spacing, a much smaller
𝛿min is required, which becomes impractical. This observation is also
upported by the fact that 𝜍𝑆 approaches 𝜍∗ for 𝑁𝑎 = 2 and 𝑁𝑎 = 3,

as the overall feature size for the additional layers allows for a suitable
local surface spacing, as seen in Figs. 9(c) and 9(d).

The main difference between the two 𝑁𝑎 = 0 cases lies in compu-
tational time, with SG being twice as fast, which is a direct result of
the smoother surface generation in the SG case. This difference can be
attributed to the fact that  is smoother for SG, making the surface
tracing process more straightforward.

Additionally, all four cases exhibit higher strain energy density
near the corners of the tower, resulting from the macroscopic length
scale that does not allow for perfectly rounded corners, leading to less
efficient designs. Furthermore, Fig. 8(b) shows an overloaded patch on
the cylinder wall where the wall segment is thinner. This anomaly is
not found in the optimized solution but can be attributed to imperfec-
tions that can arise due to the heuristic nature of the stream surface
de-homogenization procedure.

The enhanced mechanical stability of the results obtained for 𝑁𝑎 > 1
becomes visible when considering the structures with 𝑁𝑎 = 2 and
𝑁𝑎 = 3. However, to evaluate the actual stability performance of the
structure, a linear buckling analysis (LBA) is performed on  𝑆 . In this
analysis, the following generalized eigenvalue problem is solved;
(

𝐊 + 𝜆ℎ𝐆(𝐮)
)

𝜳ℎ = 0, ℎ ∈ {1,… , 𝑁𝜆}. (23)

Here, 𝐆 is the stress stiffness matrix dependent on the displacement
field 𝐮, 𝜆1 is the smallest eigenvalue (i.e., the critical buckling load
factor or BLF), and 𝜳 1 is the associated eigenvector, representing
the buckling mode. The LBA is implemented within the aforemen-
tioned topology optimization framework using the Scalable Library for
Eigenvalue Problem Computations (SLEPc) [50] framework, with an
implementation inspiration form [51,52].

The LBA problem is solved for 𝑁𝜆 = 24. The first BLF and the
corresponding first eigenvector 𝜳 1 is shown in Fig. 10. All BLFs are
plotted in Fig. D.15.

It is observed that the BLFs increase by an order of magnitude when
considering 𝑁𝑎 = 2 and 𝑁𝑎 = 3, compared to the single layer case
𝑁𝑎 = 0, this is also to be expected based on the work of [53], where
isotropic infill is exploited for stability. Fig. 10 illustrates the buckling
behavior, where for 𝑁𝑎 = 0, the inner part of the tower experiences
a global buckling mode, whereas for 𝑁𝑎 = 2 and 𝑁𝑎 = 3, the modes
are localized. In fact, the appearance of semi-global modes only occurs
after the first 8 and 14 modes for 𝑁𝑎 = 2 and 𝑁𝑎 = 3, respectively.
Many of these localized modes seem to be influenced by imperfections
in the surfaces, leading to local stress raisers. Therefore, a post-cleanup
of the surfaces could potentially further increase the BLFs.

This small study clearly demonstrates the added indirect benefits of
incorporating layer restrictions in the optimization problem, as it en-
ables infill with stability considerations in the de-homogenized results.
This approach is thus more computationally efficient compared to ex-
plicitly including buckling constraints in the optimization problem, as
buckling constraints can be computationally expensive to include [52].
However, it should be noted that the layer restrictions themselves are
not considered as direct buckling constraints, and therefore, this small
study only serves as an initial exploration into the indirect advantages
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associated with multi-layer conditions.
5.3. GE jet engine bracket

To demonstrate the capabilities of the proposed de-homogenization
methodology on a more complex problem, the GE Jet engine bracket
[54] is considered as an engineering case study. The original bracket
description can be found in [55], with some modifications made to the
model used in this study, which is similar to the one described in [39].
The bracket has approximate dimensions of 178 × 106 × 62 [mm]. It
is subjected to four load cases (𝐹1 - 𝐹4). Additionally, for this study,
two single load cases with 𝐹2 and 𝐹4 are considered. These cases are
denoted as LCA, LC2, and LC4, representing the multiple load case
and the single load cases, respectively. The loads are applied to a
passive shaft (light green colored in Fig. 5) with artificially higher
stiffness (10 times higher) to transfer the loads accurately. The bracket
is fixed at the four bolt connections. The shaft and bolt connections
are modeled with passive rings connected to the design domain. The
allowed total volume fraction is 𝑓 𝑖 = 0.137, corresponding to a total
weight of 300

[

g
]

of 𝛺. The bracket model is discretized using 𝑁𝑒 =
1, 185, 879 elements (3, 718, 200 degrees of freedom), resulting in an
approximate element side length of ℎ = 0.8 [mm]. The corresponding
large-scale SIMP model is discretized using 𝑁𝑒 = 63, 940, 348 elements
(194, 309, 049 degrees of freedom), with an approximate element side
length of ℎ = 0.2 [mm]. The bracket is analyzed both without and
with different layer restrictions. The layer restrictions configurations
and resulting optimization results are presented in Table 5.

In Table 5, it can be observed that the computational cost for the
bracket optimization is higher compared to the two previous examples,
mainly due to the increased number of finite elements. The multiple
load case example (LCA) has a higher computational cost than the
others due to the four right-hand side solves required each iteration.
The slower computation time can be attributed, in part, to the chal-
lenges associated with generating a high-quality mesh for complex
geometries with increased detail. It is difficult to obtain a conforming
coarse hexahedral mesh of high quality, which adds complexity to
the geometric multigrid levels as well. The lower-quality mesh also
contributes to fluctuating computational times.

The introduction of layer restrictions has a minor impact on the
compliance, indicating a high degree of non-uniqueness in the solu-
tions. This non-uniqueness is particularly evident in LC4.

Density plots of the bracket structures are shown in Fig. 11(a),
12(a), and 13(a) for LCA with 𝑁𝑎 = 2, LC2 with 𝑁𝑎 = 3, and LC4 with
𝑁𝑎 = 2, respectively. The density values are visualized as streamlines,
which also provide information about the surface normals. It can
be observed that the densities are relatively higher in LC2 and LC4
compared to LCA. The streamlines represent the individual orientation
fields, resulting in patches of smooth fields being visible.

The de-homogenized bracket structures have a minimum length
scale of 𝛿min = 0.25 [mm]. The results of the de-homogenization process
are presented in Table 6 and Fig. 11, 12, and 13 for 𝑁𝑎 = 2 and 3, while
for 𝑁𝑎 = 0 is seen in Fig. D.16. The strain energy density distribution
is seen in Fig. D.17.

Similar to the Lotte Tower example, the de-homogenized bracket
exhibits a behavior influenced by the overall feature size and period-
icity, particularly in the case of 𝑁𝑎 = 0. This behavior arises due to
the relatively high density, which adversely affects the accuracy of the

volume fraction obtained from the de-homogenization method.
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Fig. 10. First BLF and buckling mode of the four Lotte Tower cases: (a) and (b) The 𝑁𝑎 = 0 and 𝑁𝑎 = 0 SG cases, respectively. Almost similar global modes are obtained. The
inner surface is thinner than the outer; hence the buckling mode is located there. (c) and (d) The 𝑁𝑎 = 2 and 𝑁𝑎 = 3 cases, respectively. The additional surface makes critical
members shorter, resulting in localized modes.
Table 5
Bracket topology optimization results. For each model, the following is reported; Compliance of the design ( ∗), Weighted compliance (𝜍∗),
Final penalization on angles and relative thickness (𝜃 , 𝑠), Time spent (𝑇wall, 𝑇CPU).
Model  ∗ 𝜍∗ 𝜃 𝑠 𝑇wall 𝑇CPU

LCA 𝑁𝑎 = 0 359.379 × 102 49.283 × 102 134.600 × 10−4 121.584 × 10−3 08∶04∶38 5685∶10∶53
LCA 𝑁𝑎 = 3 366.333 × 102 50.237 × 102 105.620 × 10−4 203.994 × 10−3 08∶00∶20 5634∶44∶03

LCA HS Iso. 371.319 × 102 50.921 × 102 – 142.520 × 10−3 09∶30∶50 304∶22∶40
LCA SIMP 381.955 × 102 52.379 × 102 – – 14∶34∶41 10260∶52∶01

LC2 𝑁𝑎 = 0 807.740 × 101 110.769 × 101 68.660 × 10−4 81.673 × 10−3 03∶10∶25 101∶29∶58
LC2 𝑁𝑎 = 3 820.471 × 101 112.515 × 101 68.890 × 10−4 157.640 × 10−3 03∶05∶05 98∶39∶20

LC2 HS Iso. 815.085 × 101 111.777 × 101 – 139.690 × 10−3 02∶46∶30 88∶44∶19
LC2 SIMP 845.269 × 101 115.916 × 101 – – 07∶02∶43 4941∶11∶27

LC4 𝑁𝑎 = 0 196.507 × 101 26.948 × 101 54.400 × 10−4 76.255 × 10−3 03∶01∶32 96∶46∶08
LC4 𝑁𝑎 = 2 196.870 × 101 26.998 × 101 42.330 × 10−4 112.847 × 10−3 04∶49∶54 154∶33∶39

LC4 HS Iso. 195.473 × 101 26.806 × 101 – 139.82 × 10−3 02∶34∶30 82∶20∶03
LC4 SIMP 202.571 × 101 27.780 × 101 – – 05∶57∶16 4189∶58∶03
Table 6
Bracket de-homogenization results. For each model, the following is reported; Compliance of the design ( 𝑆 ), Volume fraction of design (𝑓𝑆 ),
Weighted compliance (𝜍𝑆 ), Relative difference to optimized design in volume and weighted compliance (𝛿(𝑓 ∗), 𝛿(𝜍∗)), Relative difference to
SIMP design in weighted compliance (𝛿(𝜍𝜌)), Time spent (𝑇 𝑆

wall, 𝑇
𝑆
CPU).

Model  𝑆 𝑓𝑆 𝜍𝑆 𝛿(𝑓 ∗) 𝛿(𝜍∗) 𝛿 (𝜍𝜌) 𝑇 𝑆
wall 𝑇 𝑆

CPU

LCA 𝑁𝑎 = 0 628.538 × 102 0.118 74.021 × 102 −14.12 50.68 45.36 03:25:30 39:24:57
LCA 𝑁𝑎 = 3 458.084 × 102 0.128 58.420 × 102 −7.00 18.93 14.73 02:35:54 51:21:13

LC2 𝑁𝑎 = 0 1232.162 × 101 0.117 144.725 × 101 −14.35 30.66 24.85 03:13:05 51:57:43
LC2 𝑁𝑎 = 3 909.225 × 101 0.135 122.276 × 101 −1.93 8.68 5.49 05:15:04 59:31:55

LC4 𝑁𝑎 = 0 302.207 × 101 0.111 33.518 × 101 −19.12 24.38 20.66 03:26:40 54:16:00
LC4 𝑁𝑎 = 2 226.603 × 101 0.126 28.625 × 101 −7.88 6.03 3.04 04:10:57 56:47:26
However, considering the additional stability benefits associated
with 𝑁𝑎 > 1, it is more reasonable from an engineering perspective to
consider these models. Furthermore, it is evident from the results that
the structural components have an infill-like internal structure which is
beneficial for additive manufacturing. In these cases, both the volume
fraction and weighted compliance are within 10% of the optimized
results for the single load case problems. This implies that compared
to the reference large-scale SIMP model, a computational speedup of
almost 30 can be achieved by using an even finer length scale.

A speedup of 30 is relatively low compared to what has been
observed in previous de-homogenization results. The complexity of the
13
grid has led to lower-quality multigrid levels in the homogenization-
based model, while the fine discretization of the large-scale SIMP model
allows for more and higher-quality multigrid levels. However, the
computational complexity is still significantly higher for the large-scale
SIMP model. The grid complexity has also affected the surface gener-
ation and synthesis of the volumetric solid in the de-homogenization
process, as shown in Table D.8.

The larger discrepancy for de-homogenization results of the multiple
load case problems can be caused by the fact that the underlying
microstructure model is non-optimal for multiple load cases problems,
leading to a more complex frame field with the limited orientations and
layers, as also seen in 2D [19]. Ideally, a rank-6 microstructure should
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Fig. 11. Bracket LCA 𝑁𝑎 = 3. (a) Streamline plot of layer normals colored according to the microstructure density. (b) The de-homogenized result. (c) The outer top surface is
removed to expose the internal structure.
Fig. 12. Bracket LC2 𝑁𝑎 = 3. (a) Streamline plot of layer normals colored according to the microstructure density. (b) The de-homogenized result. (c) The outer top surface is
removed to expose the internal structure.
Fig. 13. Bracket LC4 𝑁𝑎 = 2. (a) Streamline plot of layer normals colored according to the microstructure density. (b) The de-homogenized result. (c) The outer top surface is
removed to expose the internal structure.
be considered for multiple load case problems, however, imposing man-
ufacturability constraints in the sense of minimum wall (lamination)
thickness will also be a problem for higher rank microstructure.

6. Discussion and concluding remarks

This work presents a stream surface-based de-homogenization topol-
ogy optimization procedure tailored for complex geometries on un-
structured finite element grids using a rectangular-hole microstructure
as the base material. The capabilities of the proposed procedure are
demonstrated through three different examples with varying levels of
complexity.
14
The structural performance of the de-homogenized designs aligns
well with current state-of-the-art methods, however, the proposed ap-
proach provides a significant reduction in computational time, achiev-
ing de-homogenized results more than 20 times faster than previous
published methods.

The proposed method displays minor discrepancies between the
mapped results and the underlying multi-scale solution. In ideal con-
ditions, the discrepancies are within 2% for both volume fraction
and weighted compliance, whereas for the more complex examples
with large periodicity to feature size ratios, i.e., separation of scale is
violated, the discrepancies vary from 2% to 38% in volume fraction
and 4% to 50% in weighted compliance. However, when multiple
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layers are active and thus the separation of scale is satisfied the
discrepancies were reduced to under 8% and 10% for volume fraction
and weighted compliance, respectively. Apart from the lack of scale
separation, the discrepancies can be attributed to several factors. First,
the grid discretization size and quality are not uniform, as ensuring
this is challenging, if not impossible for complex geometries. Second,
the relatively large minimal feature size compared to the dimensions
of 𝛺 limits the separation of scales and affects the target periodicity.
While using a smaller minimal feature size can enhance the solution, it
is not practical for post-evaluation and possible manufacturing in most
cases. Remark, that it should be possible to control the length scale
for each layer ensuring the target periodicity, however, this is left for
future work.

An additional user-controlled functionality allows the number of ac-
tive layers to be varied. It is demonstrated that requiring multiple active
layers ensures that the mapped solution becomes more mechanically
stable, resulting in a significant increase in the critical buckling load
factor without any additional computational expense. For the case of
the Lotte Tower the BLF was observed to increase with an order of
magnitude. The control of active layers also provides direct control over
the internal structure, i.e., infill, which demonstrates that the infill is
incorporated as a structural component. Hence, enabling direct control
over the active layers presents a promising approach for enhancing
manufacturability. Future research should focus on expanding the layer
control capability to encompass local volume fraction control of the
infill, addressing overhang limitations, and incorporating features such
as powder and resin evacuation holes. These advancements will further
improve the manufacturability of the de-homogenization procedure.

To benchmark the proposed approach, a large-scale SIMP model
obtained using supercomputing was used. The computational efficiency
of the proposed method ranged from just below 10 times to over
250 times faster for single-load case problems. The multi-scale opti-
mization step is the most computationally expensive, primarily due
to the challenges in obtaining a high-quality coarse hexahedral dis-
cretization. The use of tetrahedrals could be explored as an alternative,
although it has not been attempted due to the inferiority of this element
when using linear interpolation. The variation in speed-up observed
is largely influenced by the heuristic nature of the stream surface-
based de-homogenization step, which could be mitigated through more
problem-specific parameter tuning.

In summary, the proposed approach achieves promising results for
complex, engineering-relevant examples, with volume fractions and
weighted compliance values within 5% of the large-scale SIMP model
obtained at a fraction of the computational cost. The study also iden-
tifies the need to extend the multi-scale optimization procedure with
either rank-4 or rank-6 base materials to handle multiple load-case
problems, which is left for future work.
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ppendix A. Rectangular-hole microstructures

The rectangular-hole microstructure consists of three orthogonal
eriodic walls, referred to as laminates for convenience. The walls
re defined by a stiff isotropic material represented by (+), while the

surrounding void is defined by compliant isotropic material represented
by (−), hence mimicking a void material. Hence the local elasticity
varies between the two linear-elastic material phases with Young’s
moduli 𝐸+ and 𝐸−. Both phases have an identical Poisson’s ratio 𝜈.
The relative thickness for the stiff material phases is given by the
relative thickness parameters 𝑤𝑛, respectively. With 𝑤𝑛 ∈ [0, 1], 𝑛 ∈
{1, 2, 3}. The elastic properties of the microstructure in the 𝒚 reference
frame is only dependent on thickness parameters. Furthermore, the
microstructure volume fraction, 𝜌, is found as

𝜌 = 1 − (1 −𝑤1)(1 −𝑤2)(1 −𝑤3). (A.1)

Due to the lack of a closed-form solution to the homogenized
elasticity tensor of this microstructure for freely varying thickness
parameters, the homogenized elasticity tensor can be computed with
numerical homogenization as proposed by [10]. The homogenized
elasticity tensor is computed from 6 independent unit strain fields using
periodic boundary conditions.

The numerical homogenization is obtained with a PETSc-based
homogenization code from [51], much similar to the publicly available
MATLAB code by [56]. A mesh of 40 × 40 × 40 tri-linear hexahedral
finite elements is considered to compute the homogenized elasticity
matrix 𝐂𝐻 ∈ R6×6 (Voigt notation), as a data set {𝐂𝐻}𝑖𝑗𝑘 for (𝑖, 𝑗, 𝑘) ∈
1,… , 21}3 different linear combinations of the relative thickness pa-

rameters {𝑤𝑛}𝑖𝑗𝑘. Symmetry can be exploited so only a small subset of
the combinations needs to be computed.

A continuous function of the homogenized elasticity matrix as a
function of the three relative thickness parameters is obtained from a
tri-linear interpolation function with

𝐂𝐻 (𝑤𝑛) = 
(

{𝐂𝐻}𝑖𝑗𝑘, {𝑤𝑛}𝑖𝑗𝑘, 𝑤𝑛
)

, (A.2)

where  is a tri-linear interpolation function. Resulting in a proper data
driven constitutive function.

𝐂𝐻 (𝑤𝑛) is aligned with microscopic reference frame 𝒚. As the elastic
property is directionally dependent, the design space of the microstruc-
ture is expanded to geometric rotations of the microscopic reference
frame 𝒚, with respect to 𝒙. Let 𝐑 ∈ R3×3 be a proper orthogonal rotation

atrix,

=
⎡

⎢

⎢

⎣

𝑐2𝑐3 𝑐3𝑠1𝑠2 − 𝑐1𝑠3 𝑐1𝑐3𝑠2 + 𝑠1𝑠3
𝑐2𝑠3 𝑠1𝑠2𝑠3 + 𝑐1𝑐3 𝑐1𝑠2𝑠3 − 𝑐3𝑠1
−𝑠2 𝑠1𝑐2 𝑐1𝑐2

⎤

⎥

⎥

⎦

, (A.3)

here 𝑐𝑛 = cos(𝜃𝑛) and 𝑠𝑛 = sin(𝜃𝑛), for 𝑛 ∈ {1, 2, 3}. With 𝜃𝑛 ∈
−4𝜋, 4𝜋], 𝑛 ∈ {1, 2, 3} are the frame orientation angles, about 𝑥3, 𝑥2,
nd 𝑥1, respectively. Then let 𝐓 ∈ R6×6 be a transformation matrix, for
nstance found in [57], and shown here for convenience,

=
[

𝐓11 𝐓12
]

, (A.4)
𝐓21 𝐓22
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Fig. D.14. Large-scale SIMP optimization result at 𝜌 > 0.5. (a)–(b) Michell cantilever (with slice cut reviling the internal structure). (c) Lotte tower. (d) Bracket LCA. (e) Bracket
LC2. (f) Bracket LC4.
Fig. D.15. Plot of the 24 buckling load factors (BLFs) of the linear buckling analysis of the Lotte tower with different layer configurations.
𝐓11 =
⎡

⎢

⎢

⎣

(𝐧1)21 (𝐧2)21 (𝐧3)21
(𝐧1)22 (𝐧2)22 (𝐧3)22
(𝐧1)23 (𝐧2)23 (𝐧3)23

⎤

⎥

⎥

⎦

, (A.5)

𝐓12 =
⎡

⎢

⎢

⎣

2(𝐧2)1(𝐧3)1 2(𝐧3)1(𝐧1)1 2(𝐧1)1(𝐧2)1
2(𝐧2)2(𝐧3)2 2(𝐧3)2(𝐧1)2 2(𝐧1)2(𝐧2)2
2(𝐧2)3(𝐧3)3 2(𝐧3)3(𝐧1)3 2(𝐧1)3(𝐧2)3

⎤

⎥

⎥

⎦

, (A.6)

𝐓21 =
⎡

⎢

⎢

(𝐧1)2(𝐧1)3 (𝐧2)2(𝐧2)3 (𝐧3)2(𝐧3)3
(𝐧1)3(𝐧1)1 (𝐧2)3(𝐧2)1 (𝐧3)3(𝐧3)1

⎤

⎥

⎥

, (A.7)
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⎣ (𝐧1)1(𝐧1)2 (𝐧2)1(𝐧2)2 (𝐧3)1(𝐧3)2 ⎦
𝐓22 =

⎡

⎢

⎢

⎢

⎣

(𝐧2)2(𝐧3)3 + (𝐧2)3(𝐧3)2 (𝐧1)2(𝐧3)3 + (𝐧1)3(𝐧3)2 (𝐧1)2(𝐧2)3 + (𝐧1)3(𝐧2)2
(𝐧2)1(𝐧3)3 + (𝐧2)3(𝐧3)1 (𝐧1)1(𝐧3)3 + (𝐧1)3(𝐧3)1 (𝐧1)1(𝐧2)3 + (𝐧1)3(𝐧2)1
(𝐧2)1(𝐧3)2 + (𝐧2)2(𝐧3)1 (𝐧1)1(𝐧3)2 + (𝐧1)2(𝐧3)1 (𝐧1)1(𝐧2)2 + (𝐧1)2(𝐧2)1

⎤

⎥

⎥

⎥

⎦

.

(A.8)

where 𝐧𝑛 ∈ R3, for 𝑛 ∈ {1, 2, 3}, are the transformed normals aligned
with 𝒚 to the three orthogonal laminates, defined as 𝐧𝑛 = 𝐑𝐞𝑛, where
𝐞 ∈ R3, be the 𝑛th unit vector. Hence 𝐑 is mapped to 𝐓, so that 𝐂𝐻 (𝐰)
𝑛
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Fig. D.16. De-homogenized result of (a),(d) Bracket LCA 𝑁𝑎 = 0. (b),(e) Bracket LC2 𝑁𝑎 = 0. (c),(f) Bracket LC4 𝑁𝑎 = 0. (d)-(f) The outer top surface is removed to expose the
internal structure.

Fig. D.17. Strain energy density distribution of the de-homogenized result of (a),(d) Bracket LCA 𝑁𝑎 = 3. (b),(e) Bracket LC2 𝑁𝑎 = 3. (c),(f) Bracket LC4 𝑁𝑎 = 2. (d)-(f) The outer
top surface is removed to expose the internal structure.
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Table D.7
Total overview of the computational performance of each example. For each example the number of elements (in millions) of the homogenized
and de-homogenized design in addition to the SIMP design (𝑁𝐻

𝑒 , 𝑁𝐷
𝑒 and 𝑁𝑆𝐼𝑀𝑃

𝑒 respectively) is reported. Additionally the CPU time for the
homogenization and de-homogenization (𝑇CPU, 𝑇 S

CPU). Finally the combined CPU time for the homogenization and de-homogenization (𝑇 Tot
CPU), is

compared to the SIMP solution (𝑇 SIMP
CPU ) and the speed-up is reported (𝑆). The timings is reported as [hh:mm:ss].

Model 𝑁H
𝑒 𝑁D

𝑒 𝑁SIMP
𝑒 𝑇CPU 𝑇 S

CPU 𝑇 Tot
CPU 𝑇 SIMP

CPU 𝑆

Cantilever 𝑁𝑎 = 0 0.23 2.69 115.61 13∶39∶18 06∶06∶11 19∶45∶29 4510∶58∶55 228×
Cantilever 𝑁𝑎 = 0 (No hull) 0.23 2.53 115.61 13∶39∶18 03∶59∶40 17∶38∶58 4510∶58∶55 256×
Cantilever 𝑁𝑎 = 0 (0.5𝛿min) 0.23 19.48 115.61 13∶39∶18 13∶40∶47 27∶20∶05 4510∶58∶55 165×
Cantilever 𝑁𝑎 = 0 (Sym.) 0.23 2.99 115.61 13∶39∶18 −∶ − ∶− −∶ − ∶− 4510∶58∶55 –
Cantilever 𝑁𝑎 = 2 0.23 2.76 115.61 12∶38∶20 06∶41∶55 19∶20∶15 4510∶58∶55 233×
Cantilever 𝑁𝑎 = 2 (Sym.) 0.23 3.08 115.61 12∶38∶20 −∶ − ∶− −∶ − ∶− 4510∶58∶55 –
Cantilever 𝑁𝑎 = 3 0.23 2.71 115.61 13∶12∶21 07∶35∶46 20∶48∶07 4510∶58∶55 217×
Cantilever 𝑁𝑎 = 3 (Sym.) 0.23 3.06 115.61 13∶12∶21 −∶ − ∶− −∶ − ∶− 4510∶58∶55 –

Lotte 𝑁𝑎 = 0 0.42 4.63 26.64 29∶24∶33 14∶24∶40 43∶49∶13 710∶26∶04 16×
Lotte 𝑁𝑎 = 0 (SG) 0.42 4.60 26.64 30∶09∶05 14∶55∶54 45∶04∶59 710∶26∶04 16×
Lotte 𝑁𝑎 = 2 0.42 4.77 26.64 25∶32∶06 24∶18∶40 49∶50∶46 710∶26∶04 14×
Lotte 𝑁𝑎 = 3 0.42 5.09 26.64 25∶18∶26 61∶25∶10 86∶43∶36 710∶26∶04 8×

Bracket LCA 𝑁𝑎 = 0 1.19 14.64 63.94 5685∶10∶53 39∶24∶57 5724∶35∶50 10260∶52∶01 2×
Bracket LCA 𝑁𝑎 = 3 1.19 16.29 63.94 5634∶44∶03 51∶21∶13 5686∶05∶16 10260∶52∶01 2×
Bracket LC2 𝑁𝑎 = 0 1.19 13.58 63.94 101∶29∶58 51∶57∶43 153∶27∶41 4941∶11∶27 32×
Bracket LC2 𝑁𝑎 = 3 1.19 14.64 63.94 98∶39∶20 59∶31∶55 158∶11∶15 4941∶11∶27 31×
Bracket LC4 𝑁𝑎 = 0 1.19 13.21 63.94 96∶46∶08 54∶16∶00 151∶02∶08 4189∶58∶03 28×
Bracket LC4 𝑁𝑎 = 2 1.19 14.18 63.94 154∶33∶39 56∶47∶26 211∶21∶05 4189∶58∶03 20×
Table D.8
Total overview of the wall time spent of each example. This table reports the wall time spent for the homogenization (𝑇wall), all stages of
the de-homogenization algorithm (𝑇 Gen

wall , 𝑇
Opt
wall, 𝑇

SS
wall, 𝑇

Syn
wall) and the total wall time (𝑇 Tot

wall). Additionally, the wall time for SIMP is reported. The
timings is reported as [hh:mm:ss].

Model 𝑇wall 𝑇 Gen
wall 𝑇 Opt

wall 𝑇 SS
wall 𝑇 Syn

wall 𝑇 Tot
wall 𝑇 SIMP

wall

Cantilever 𝑁𝑎 = 0 00∶25∶43 00∶08∶07 00∶01∶40 00∶01∶17 00∶15∶45 00∶52∶33 03∶55∶10
Cantilever 𝑁𝑎 = 0 (No hull) 00∶25∶43 00∶05∶48 00∶00∶39 00∶00∶50 00∶06∶26 00∶39∶28 03∶55∶10
Cantilever 𝑁𝑎 = 0 (0.5𝛿min) 00∶25∶43 00∶16∶21 00∶46∶05 00∶01∶20 00∶52∶07 02∶21∶37 03∶55∶10
Cantilever 𝑁𝑎 = 0 (Sym.) 00∶25∶43 −∶ − ∶− −∶ − ∶− −∶ − ∶− −∶ − ∶− −∶ − ∶− 03∶55∶10
Cantilever 𝑁𝑎 = 2 00∶23∶48 00∶10∶01 00∶06∶10 00∶01∶10 00∶09∶18 00∶50∶28 03∶55∶10
Cantilever 𝑁𝑎 = 2 (Sym.) 00∶23∶48 −∶ − ∶− −∶ − ∶− −∶ − ∶− −∶ − ∶− −∶ − ∶− 03∶55∶10
Cantilever 𝑁𝑎 = 3 00∶24∶52 00∶11∶19 00∶01∶22 00∶01∶21 00∶12∶11 00∶51∶06 03∶55∶10
Cantilever 𝑁𝑎 = 3 (Sym.) 00∶24∶52 −∶ − ∶− −∶ − ∶− −∶ − ∶− −∶ − ∶− −∶ − ∶− 03∶55∶10

Lotte 𝑁𝑎 = 0 00∶55∶18 00∶21∶31 00∶02∶24 00∶00∶28 00∶39∶35 01∶59∶17 02∶28∶09
Lotte 𝑁𝑎 = 0 (SG) 00∶56∶38 00∶24∶21 00∶03∶26 00∶00∶31 00∶24∶05 01∶49∶03 02∶28∶09
Lotte 𝑁𝑎 = 2 00∶48∶01 00∶38∶56 00∶00∶25 00∶03∶18 00∶26∶38 01∶57∶19 02∶28∶09
Lotte 𝑁𝑎 = 3 00∶47∶35 01∶42∶28 00∶01∶27 00∶09∶11 00∶27∶36 03∶08∶19 02∶28∶09

Bracket LCA 𝑁𝑎 = 0 08∶04∶38 00∶53∶45 01∶28∶50 00∶10∶51 00∶52∶02 11∶30∶08 14∶34∶41
Bracket LCA 𝑁𝑎 = 3 08∶00∶20 01∶14∶27 00∶06∶27 00∶13∶59 01∶00∶59 10∶36∶14 14∶34∶41
Bracket LC2 𝑁𝑎 = 0 03∶10∶25 01∶10∶56 00∶02∶05 00∶13∶02 01∶47∶01 06∶23∶30 07∶02∶43
Bracket LC2 𝑁𝑎 = 3 03∶05∶05 01∶24∶43 00∶51∶00 00∶03∶17 02∶56∶03 08∶20∶09 07∶02∶43
Bracket LC4 𝑁𝑎 = 0 03∶01∶32 01∶12∶21 00∶07∶39 00∶15∶13 01∶51∶26 06∶28∶12 05∶57∶16
Bracket LC4 𝑁𝑎 = 2 04∶49∶54 01∶13∶43 00∶09∶00 00∶13∶05 02∶35∶07 09∶00∶51 05∶57∶16
.

Table E.9
Benchmark result of the Michell cantilever from Groen et al. [20], and Stutz et al. [25]

Model  𝑓 𝜍 𝑇wall

Groen et al. [20] homogenization 226.68 0.100 22.67 09∶45∶35
Groen et al. [20]
de-homogenization

235.96 0.107 25.32 00∶45∶39

Stutz et al. [25]
de-homogenization

215.65 0.119 25.62 00∶50∶27

can be freely rotated in 3D space,

𝐂̃𝐻 (𝑤𝑛, 𝜃𝑛) = 𝐓(𝜃𝑛)𝐂𝐻 (𝑤𝑛)𝐓⊤ (𝜃𝑛). (A.9)

Here 𝐂̃𝐻 is the rotated homogenized elasticity matrix.

Appendix B. Two material isotropic Hashin–Shtrikman bounds

The isotropic Hashin–Shtrikman (HS) upper-bound [28] of a two-
phase material. The effective bulk, 𝐾, and shear, 𝐺, modulus from a
18
two-material compound is expressed in the following from,

𝐾∗ = 𝐾1 +
1 − 𝜚1

1
𝐾2−𝐾1

+ 3𝜚1
3𝐾1+4𝐺1

, (B.1)

𝐺∗ = 𝐺1 +
1 − 𝜚1

1
𝐺2−𝐺1

+ 6(𝐾1+2𝐺1)𝜚1
5𝐺1(3𝐾1+4𝐺1)

, (B.2)

where the subscripts indicate the two isotropic linear elastic materials.
𝜚1 is the relative material fraction of material 1 in relation to material
2. With the known relationship between Young’s, shear, bulk modulus
and Poisson’s ratio for isotropic materials,

𝐸 = 2𝐺(1 − 𝜈) = 3𝐾(1 − 2𝜈). (B.3)

The effective Young’s modulus and Poisson’s ratio are expressed as for
two materials.

𝐸∗ = 9𝐾∗𝐺∗
, 𝜈∗ = 3𝐾∗ − 2𝐺∗

. (B.4)

3𝐾∗ + 𝐺∗ 2(3𝐾∗ + 𝐺∗)



Thin-Walled Structures 195 (2024) 111427P.D.L. Jensen et al.
Appendix C. SIMP model

The Solid Isotropic Microstructure with Penalization (SIMP) [30]
model is defined with the following effective Young’s modulus,

𝐸∗ = 𝐸min +
(

𝐸0 − 𝐸min
)

𝜌𝑝 (C.1)

where 𝐸0 is the Young’s modulus of the base material and 𝐸min Young’s
modulus of the void material. The porous material is penalized with
𝑝 = 3.

Appendix D. Additional results

The following appendix presents additional results from the three
examples, including Large-scale SIMP optimization results shown in
Fig. D.14, the buckling load factors plot for the Lotte tower in Fig. D.15,
de-homogenized results of the 𝑁𝑎 = 0 Bracket in Fig. D.16, strain
energy density plots of the Bracket in Fig. D.17, and comprehensive
overviews of computational performance in Table D.7 and wall time
spent in Table D.8.

Appendix E. Michell cantilever benchmark result

The Michell cantilever benchmark result is seen in Table E.9.
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