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ABSTRACT The development of CRISPR-Cas-based engineering technologies has
revolutionized the microbial biotechnology field. Over the years, the Class Il Type
Il CRISPR-Cas9 system has become the gold standard for genome editing in many
bacterial hosts. However, the Cas9 system does not allow efficient genomic integration
in Pseudomonas putida, an emerging Synthetic Biology host, without the assistance
of lambda-Red recombineering. In this work, we utilize the alternative Class | Type
I-C CRISPR-Cas3 system from Pseudomonas aeruginosa as a highly efficient genome
editing tool for P. putida and P. aeruginosa. This system consists of two vectors, one
encoding the Cas genes, CRISPR array and targeting spacer, and a second Standard
European Vector Architecture vector, containing the homologous repair template. Both
vectors are Golden Gate compatible for rapid cloning and are available with multiple
antibiotic markers, for application in various Gram-negative hosts and different designs.
By employing this Cas3 system, we successfully integrated an 820-bp cassette in the
genome of P. putida and performed several genomic deletions in P. aeruginosa within a
week, with an efficiency of >83% for both hosts. Moreover, by introducing a universal
self-targeting spacer, the Cas3 system rapidly cures all helper vectors, including itself,
from the host strain in a matter of days. As such, this system constitutes a valuable
engineering tool for Pseudomonas, to complement the existing range of Cas9-based
editing methods, and facilitates genomic engineering efforts of this important genus.

IMPORTANCE The CRISPR-Cas3 editing system as presented here facilitates the creation
of genomic alterations in Pseudomonas putida and Pseudomonas deruginosa in a
straightforward manner. By providing the Cas3 system as a vector set with Golden Gate
compatibility and different antibiotic markers, as well as by employing the established
Standard European Vector Architecture (SEVA) vector set to provide the homology repair
template, this system is flexible and can readily be ported to a multitude of Gram-nega-
tive hosts. Besides genome editing, the Cas3 system can also be used as an effective
and universal tool for vector curing. This is achieved by introducing a spacer that targets
the origin-of-transfer, present on the majority of established (SEVA) vectors. Based on
this, the Cas3 system efficiently removes up to three vectors in only a few days. As such,
this curing approach may also benefit other genomic engineering methods or remove
naturally occurring plasmids from bacteria.
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important groups of bacteria. This includes the well-known antibiotic resistant pathogen
Pseudomonas aeruginosa, which is responsible for infections in immunocompromised
patients (2), and the biochemical versatile species Pseudomonas putida involved in
industrial processing (3). Therefore, robust engineering tools for Pseudomonas cannot
only support fundamental discoveries but also modify pathogenicity, improve produc-
tion yield, and enable development of microbial cell factories (4, 5).

Diverse engineering systems are available to modify the genomes of Pseudomonas
species. While the transposon-based systems insert DNA sequences in a random (e.g.,
Tn5 transposon) or site-specific manner (e.g., Tn7 transposon) and cannot delete genes
(only disrupt them) (6, 7), the homologous recombination methods with integrative
plasmids, such as the two-step allelic exchange and I-Scel-mediated recombination,
require two rounds of selection using chromosomal markers with often low recombi-
nation frequency to achieve scarless genome editing (8, 9). More efficient recombineer-
ing methods using heterologous recombinases which catalyze recombination between
similar sequences (e.g., A Red and RecET recombinase systems) or between specific
recognition sites (e.g., Cre/lox and Flp/FRT systems) also involve an additional step for
integrated selection marker removal, extending the engineering time and often leaving a
scar behind in the genome (10-13).

In recent years, the CRISPR-Cas (clustered regularly interspaced short palindromic
repeats and CRISPR-associated proteins) systems have been proven to efficiently
engineer genomes in virtually all species (14-19). The systems comprise an RNA guide
called CRISPR RNA (crRNA) with sequence complementary to the target DNA (spacer),
guiding a nuclease to make a site-specific break. Since many bacteria lack non-homolo-
gous end joining (NHEJ) to repair this break, a DNA repair template has to be provided
to restore the defect by homologous recombination (20). Alternatively, the CRISPR-Cas
system can be used as a counter-selection tool after recombineering or homologous
recombination (21). Similar to other organisms, the most well-known engineering
systems for Pseudomonas are based on single-subunit Class Il CRISPR systems. These
include the Type Il CRISPR-Cas9 system of Streptococcus pyogenes (SpCas9) (21-27)
and the Type V CRISPR-Cas12a from Francisella novicida (FnCas12a) (23, 28). However,
one notable exception is P. putida, in which these CRISPR-Cas9-based systems with
homology-directed repair (HDR) show reduced efficiency for genomic integration. This
observation is probably due to the endogenous NHEJ of P. putida, which facilitates
evasion of the targeted modification (29). Consequently, CRISPR-Cas9-based systems are
solely used for deletion or as counter-selection tools in this host.

The Class | Type | system CRISPR-Cas3, on the other hand, consists of a multi-sub-
unit complex and has the advantage to be the most prevalent in nature, enabling
engineering with endogenous systems, and combines nuclease and helicase activities,
degrading DNA processively and thus allowing larger deletions (30, 31). Recently, Cs6rgd
et al. (31) exploited the Type I-C CRISPR-Cas3 system from P. geruginosa (PaeCas3c) for
heterologous genome engineering in various microbial species, obtaining genome-scale
deletions with random and programmed size and recombination efficiencies surpass-
ing those of the SpCas9-based system. Also, in combination with heterologous recom-
binases, the PaeCas3c CRISPR-Cas3 system has been successfully applied for genome
engineering in multiple Pseudomonas species (32). Moreover, CRISPR-Cas3 has been
introduced as the base editing tool COMUTER, for targeted in vivo mutagenesis in yeast
(33).

One major hurdle of CRISPR-Cas-assisted methods as well as other commonly used
engineering techniques is the use of auxiliary plasmids, which need to be removed
from the bacterial cells after engineering. Well-known curing systems rely on counter-
selectable markers, repeated passaging of the cells, the use of tractable vectors, DNA
intercalating agents, or conditional origins-of-replication (34-38). Nevertheless, these
methods are often time-consuming, laborious, and not effective in some bacteria; can
introduce off-target genomic mutations; or require specific vectors and conditions for
their functionality (38-42). To avoid these issues, CRISPR-Cas-based plasmid curing
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systems showed to be promising. Indeed, a recently developed CRISPR-Cas9-assisted
curing system (pFREE) showed efficiencies between 40% and 100% for the major classes
of vectors used in molecular biology, including Standard European Vector Architec-
ture (SEVA) vectors, by targeting conserved sequences within origins-of-replication in
multiple bacterial backgrounds (43, 44).

In this study, an efficient scarless genome editing and plasmid curing method
based on CRISPR-Cas3 was developed for Pseudomonas. The system consists of the
all-in-one pCas3cRh targeting plasmid designed by Csérgé et al. (31) combined with the
SEVA vectors for homologous directed repair and curing, resulting in a straightforward,
efficient, and universal system for genomic deletion and integration. The applicability of
the method is demonstrated in P. putida KT2440 and SEM11 (45) and P. aeruginosa PAO1.
Moreover, the system has been expanded by making it Golden Gate compatible, adding
several antibiotic markers, and including a fluorescent marker to facilitate the screening
procedure.

RESULTS AND DISCUSSION

An overview of the CRISPR-Cas3-based engineering approach for Pseudomo-
nas

A CRISPR-Cas3-based engineering method was developed, which enables the creation
of genomic deletions, insertions, or substitutions in the Pseudomonas genome in an
efficient and flexible manner. In general, the Cas genes (cas3, cas5, cas7, and cas8) and
crRNA with spacer sequence are all located on the pCas3cRh vector under the control
of the RhaRS/Pghasap inducible system. Guided by the crRNA, the Cas3 enzyme creates
a targeted cut in the genomic DNA upon induction with rhamnose. After cleavage, the
damaged genome will be restored by HDR to create the desired genomic modification.
To perform the HDR, a homology repair template is provided on vector pSEVA231 (Km?¥,
for P. putida) or pSEVA131 (Cb®, for P. aeruginosa). The design of the repair template
determines the prospective modification of the genome, namely, a deletion, insertion,
or substitution. It is important to note that any canonical SEVA vector can serve as a
carrier for the repair template, which allows the user to select a backbone with their
preferred antibiotic marker and origin of replication for the application in mind and
allows compatibility with any Gram-negative host (46). A notable exception are vectors
carrying the pRO1600/ColE1 origin of replication, as this is the replicative origin of the
pCas3cRh vector (Table S2). Finally, after verification of the correct genomic modification
with PCR and sequencing, the pCas3cRh and pSEVAX3-HDR vectors are cured from the
host by introduction of pSEVA52-oriT. This vector expresses a spacer sequence targeting
the oriT (origin-of-transfer) site, which is located on all SEVA plasmids (including itself) as
well as many other established vectors and will enable the swift restriction and removal
of the helper vectors (Fig. 1).

The CRISPR-Cas3-based engineering system enables efficient genomic
engineering of P. putida

In the following section, the engineering method will be described and illustrated in
detail by means of an integration example in P. putida KT2440 and P. putida SEM11. More
specifically, an expression construct consisting of Py4-BCD22-phi15lys(G3RQ) is integra-
ted in locus PP_5388 in both hosts, resulting in low, constitutive production of phi15
lysozyme (G3RQ) (Fig. 2) (47).

First, a PAM site is selected in proximity of the target, which will be the recognition
site of the Cas3 enzyme. In general, the recognition site of the Cas3 system is defined as a
5-AAG-3’ PAM with an upstream protospacer on the sense strand. However, in this work,
we use the inverted terminology consistent with the work of Csérgé et al. (31):a 5-TTC-3’
PAM in combination with a downstream protospacer located on the antisense strand.
The PAM sequence is preferably located within the sequence that is to be deleted or
substituted, or, in case of an integration, within 15 bp of the integration site. If no suitable
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FIG 1 General overview of the CRISPR-Cas3-based engineering method in Pseudomonas, as illustrated for P. putida. Day 1: the pCas3cRh vector with spacer
sequence (red) for the target site and pSEVA231 with the repair template for homology-directed repair (pSX3-HDR) are introduced in Pseudomonas by means
of electroporation. Days 2-3: on day 2, multiple colonies are inoculated together in growth medium supplemented with rhamnose to induce expression of the
Cas3 system. The Cas3 enzyme cleaves the genomic DNA at the target location, i.e., the protospacer (marked in red), after which the dsDNA break will be repaired
by homologous recombination using the repair template. After overnight induction, a dilution streak on lysogeny broth (LB) agar is performed on day 3. Day 4:
multiple single colonies of the dilution streak are analyzed by PCR and Sanger sequencing, to verify the presence of the desired genomic modification. Correct
mutants are grown overnight to start the vector curing process. Days 5-8: on day 5, the overnight cultures are transformed with pSEVA52-oriT (pS52-oriT), which
carries a CRISPR array with a spacer sequence targeting the origin-of-transfer broadly used on plasmids. Similar to that in days 2-3, expression of the Cas3 system
is induced on day 6, which will cleave all vectors and lead to efficient curing of the host strain. After a dilution streak on day 7 and overnight incubation, correct
vector curing is verified on day 8 by streaking individual colonies on all antibiotics separately that were used to select the vectors. A similar method is applied for
P. aeruginosa. However, no rhamnose is required to induce the system, and pSEVA131 is used for homology-directed repair.

PAM site is available in these regions, a site within the neighboring sequences of the
genomic modification can be used as well, but the PAM site (or protospacer sequence)
should be removed from the homology arms in later steps. The selected PAM site
determines the spacer sequence, which is located directly downstream of the TTC
trinucleotide, has a length of 34 bp, and should not have significant homology to
secondary sequences in the genome as predicted by Blastn. The selected spacer
sequence can be efficiently integrated in pCas3cRh by Golden Gate cloning with Type s
restriction enzyme Bsal, as explained in Materials and Methods. For the example of
integration in PP_5388 in P. putida, a PAM site was selected 1 bp upstream of the
intended integration site (Fig. 2b) and the downstream spacer 5-AGATCATGGTAACCCCG
GCCGCTGGAGCCATTTC-3" was successfully cloned into pCas3cRh to yield pCas3cRh-
PP_5388 (Tables S1 and S2; Fig. S7).

After construction of the pCas3cRh-spacer vector, a second vector with the repair
template needs to be assembled. Any canonical SEVA vector can be used for this
purpose; however, for this work, we selected pSEVA231 (P. putida) and pSEVA131 (P.
aeruginosa) due to their medium-copy number origin and appropriate resistance marker
for the respective isolates. For deletions, the repair template simply consists of two
joined homology arms, identical to the sequences directly up- and downstream of the
region to be deleted. For integration or substitution, on the other hand, the repair
template consists of the desired insertion or substitution, flanked by the up- and
downstream homology arms. Homology arms of around 500 bp are preferred. However,
shorter arms of £280 bp have shown to work as well. It is important to note that selected
recognition sites within the homology arms should be removed from the repair
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FIG 2 Genomic integration of expression cassette Pq4.-BCD22-phi15lys(G3RQ) in locus PP_5388 in P. putida. (a) Integration cassette P14.-BCD22-phi15lys(G3RQ)
has a total length of 820 bp. This phi15 lysozyme mutant G3RQ was optimized to inhibit the activity of the T7-like RNA polymerase (RNAP) of phage phi15, to
reduce basal expression of this RNAP in uninduced conditions, similarly to the established pET system (47). The PP_5388 was previously identified as a locus that

results in low expression levels of integrated sequences (48). As such, low levels of the phi15 lysozyme (G3RQ) will inhibit basal concentrations of the phi15 RNAP,

while leaving sufficient active RNAP molecules upon induction of the pET-like system. (b) The protospacer adjacent motive (PAM) site (indicated in bold) lies 1 bp

upstream of the integration site (triangle) where the expression cassette will be integrated. The protospacer sequence (highlighted in red) is defined as the first

34 bp directly downstream of the PAM site. After correct integration, the PAM and protospacer sequence will be separated from each other. Without the adjacent

PAM site, the protospacer is no longer a suitable cleavage site for the Cas3 enzyme complex.

template, either by deletion, PAM mutation, or protospacer/PAM interruption. For the
selected integration in PP_5388, homology arms of 550 bp each were amplified from the
genome of P. putida and ligated to flank the integration cassette in pSEVA23-PP_5388,
using Golden Gate cloning with Type IIs restriction enzyme Bsal (Fig 2a; Fig. S7, Tables S1
and S2). In this particular example, the integration site is located within the protospacer
region. As such, the protospacer/PAM sequence will be interrupted upon correct
integration and will no longer be cleaved by the Cas3 enzyme complex (Fig. 2b). If the
integration site was not located within the protospacer sequence, the PAM site should be
mutated in the repair template to avoid cleavage of the HDR vector and the genome
upon integration.

Following the vector construction, both the pCas3cRh-spacer and the template vector
are simultaneously introduced into the Pseudomonas host by co-electroporation. If
the efficiency of the co-electroporation is insufficient, the vectors can be introduced
consecutively by first introducing the repair template followed by pCas3cRh-spacer,
adding one additional day to the protocol. For the PP_5388 integration, both P. putida
KT2440 and P. putida SEM11 were successfully co-transformed with 0.25%10° and 2.5%10*
CFU/pg DNA, respectively, and no morphological differences of the colonies were
observed in comparison to electroporation with empty control vectors. Furthermore,
pCas3cRh-PP_5388 was also successfully introduced separately, indicating that little to
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no basal expression occurs from the Cas3 system in P. putida and that the RhaRS/PhqpaD
expression system is tightly regulated. To confirm this, 24 co-transformants of P. putida
KT2440 and P. putida SEM11 were analyzed by PCR with primers binding on the genome
outside the homology arms, showing that none of the co-transformants had the desired
insertion before induction of the CRISPR-Cas3 system (Fig. S1).

To induce the CRISPR-Cas3 system, several co-transformants were pooled and used
to inoculate 20 mL LB medium with the required antibiotics and 0.1% (wt/vol) rham-
nose. The cultures were then incubated overnight at the appropriate temperature. The
following day, a dilution streak of the induced overnight culture was performed on
agar plates with the appropriate antibiotics and grown until visible colony formation
the following day. For the PP_5388 integration example, again, 24 colonies of P. putida
KT2440 and P. putida SEM11 were subjected to PCR with primers binding outside the
homologous arms on the genome. Interestingly, after induction with rhamnose, 83% of P.
putida KT2440 colonies and 88% of P. putida SEM11 colonies showed an amplicon length
correlating to correct integration of the Py4-BCD22-phil5lys(G3RQ) cassette (Fig. 3a; Fig.
S2). In comparison for uninduced control samples, no integration was observed in any of
the screened P, putida KT2440 or P. putida SEM11 colonies (Fig. 3a; Fig. S2). As such, the
Cas3 system is able to efficiently perform genomic integrations in P. putida without the
assistance of any recombineering approaches as required for integration with the Cas9
system (23, 49).

To put these engineering efficiencies into perspective, the same integration in P
putida was created using traditional homologous recombination (HR). More specifically,
the two-vector system as described by Volke et al. (37) was employed, where the first
vector, carrying the homology arms and desired modification, fully integrates in the
genome in a first HR event. This event can be tracked by a green fluorescent reporter and
antibiotic resistance marker on the integration vector. Next, a second vector supplies the
I-Scel restriction enzyme, which will recognize and cut a unique restriction site within the
integrated vector and force the second HR event, resulting in the desired genomic
modification with loss of the fluorescent reporter and antibiotic marker. In this work, we
successfully constructed integration vector pSNW2-PP_5388-P;4.-BCD22-phi15lys(G3RQ),
which integrated in the P. putida KT2440 and P. putida SEM11 hosts after electroporation.
After overnight incubation of several transformants, the pSEVA62313S helper vector with
constitutive expression of I-Scel was introduced into the hosts by electroporation. As
recommended in the original protocol (37), the resulting colonies were transferred to a
fresh LB agar plate by streaking to avoid mixed-phenotype colonies. The resulting
colonies were screened for a successful second HR event by verifying the lack of green
fluorescence, followed by a PCR with the same genomic primers as for the CRISPR-Cas3-
based method. For P. putida KT2440, only one of 24 PCR-screened colonies contained a
correct integrant, while for P. putida SEM11, no correct integrants were obtained (0/24)
but it still appeared to have a mixed phenotype (Fig. 3a; Fig. S3). Therefore, the P. putida
SEM11 strain carrying pSNW2-PP_5388-P14-BCD22-phi15lys(G3RQ) and pSEVA62313S
helper vector was streaked twice more to allow additional time for the second HR event
to occur. After a second PCR screen, 21% (5/24) of the screened colonies showed an
amplicon length correlating to correct integration of the Pj4-BCD22-phil5lys(G3RQ)
cassette (Fig. 3a; Fig. S3). Overall, the engineering efficiencies obtained by homologous
recombination were much lower compared with the CRISPR-Cas3-based method and
required significantly more handling time, due to consecutive electroporation of the
vectors and multiple streaking steps.

The CRISPR-Cas3 system cures itself with high efficiency in P. putida using an
oriT-targeting spacer

After successful engineering of the host genome, cells need to be cured from the
pCas3cRh and repair template vector for downstream processing. A universal CRISPR-
Cas3-based curing concept was introduced, similar to the proven CRISPR-Cas9-based
curing method for Escherichia coli and P. putida, which makes use of spacers targeting
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FIG 3 (a) Engineering efficiencies of the integration of expression cassette P14.-BCD22-phi15lys(G3RQ) in locus PP_5388 of P. putida KT2440 and P. putida

SEM11 using the CRISPR-Cas3-based method (Cas3), with or without induction with rhamnose (+Rha), or via traditional homologous recombination (HR).

(b) After engineering of P. putida with pCas3cRh-PP_5388 and pSEVA23-PP_5388, the strains are cured from the engineering vector by serial passaging or by

CRISPR-Cas3-based curing using pSEVA52-oriT, with or without rhamnose induction (£Rha). As a negative control for the CRISPR-Cas3-based curing, an empty

PSEVA521 vector was used instead of pSEVA52-oriT.

conserved regions of plasmid, i.e., the origins-of-replication (oriR) (43). As the cells in this
work already contained the Cas3 system, it can simply be used to target itself by
introducing crRNA with a self-targeting spacer. To this end, a universal spacer was
designed, binding specifically to the oriT located on all SEVA plasmids and many other
commonly used vectors for genome engineering, including pCas3cRh. This oriT spacer
and crRNA were cloned into pSEVA521 under control of the Pgyqgap promoter (Tables S1
and S2; Fig. S7) and called pSEVA52-oriT.

The pSEVA52-oriT vector was introduced in the engineered P. putida KT-phi15lys and
P. putida S-phi15lys strains through electroporation, after which cells were plated on
LB agar supplemented with gentamicin (pCas3cRh-PP_5388) and tetracycline (pSEVA52-
oriT). In parallel, the same strains were electroporated with pSEVA521 as a negative
control. The following day, several colonies of each strain were grown in LB®™%0
medium with 0.1% (wt/vol) rhamnose to induce expression of the Cas3 system. After
a dilution streak on LB medium without any antibiotics and overnight incubation, 24
colonies of each condition were screened on gentamicin (pCas3cRh-PP_5388), kanamy-
cin (pSEVA23-PP_5388), and tetracycline (pSEVA52-oriT) to assess the curing efficiency.
In the presence of the oriT spacer, 91.6% and 66.7% of colonies were fully cured of
all vectors for P. putida KT2440 and P. putida SEM11, respectively (Fig. 3b). This is in
sharp contrast to the control samples with the empty pSEVA521 vector, of which all
of the screened colonies still contained at least two of the three vectors. Furthermore,
the engineered strains were also subjected to serial passaging for the same amount
of time as required for the CRISPR-Cas3-based curing. Four passages were performed
over 3 days, after which none of the screened colonies were cured from the pCas3cRh
and pSEVA23-PP_5388 vectors (Fig. 3b). These results show that the CRISPR-Cas3-system
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is able to efficiently target itself and other vectors in the same cell, with enhanced
efficiencies compared with the original CRISPR-Cas9-based curing approach (53% curing
efficiency in P. putida) (43).

After successful vector curing, two biological replicates of P. putida KT-phi15lys and
P. putida S-phi15lys were subjected to whole-genome sequencing. No deletions or
insertions were detected, except for four point mutations in the P. putida KT-phi15lys
replicates (Tables S5 and S6) and two-point mutations in both P. putida S-phil5lys
replicates (Tables S7 and S8). All observed mutations were located outside of the
integration cassette.

Application examples: efficient genomic deletion of three different targets in
P. aeruginosa

To show that the CRISPR-Cas3-based engineering method is also functional in other
hosts, three separate genomic deletions were created in the genome of P. aeruginosa
PAO1. More specifically, three sets of spacers and repair templates were designed to
delete the entire coding sequences of fleS, PA_2560, and prpL (Fig. 4a). After successful
construction of all six vectors, the corresponding pCas3cRh-spacer and pSEVA13-HDR
vectors were simultaneously introduced in P. aeruginosa PAO1. Surprisingly, visible
colonies only appeared after a 2-day incubation period for PA_2560 and prpL, while a
control electroporation with the empty pCas3cRh or pSEVA131 vector resulted in colony
formation overnight. For the fleS deletion, even after multiple days of incubation, no
colonies grew on plates of the co-electroporation and the pSEVA13-HDR and pCas3cRh
vectors had to be introduced consecutively. This is in sharp contrast to the results with P.
putida, where co-electroporation resulted in normal colony formation after a single night
of incubation.

This indicates that P. aeruginosa shows retarded cell growth after introducing the
engineering vectors, which points towards significant basal Cas3 expression from the
RhaRS/Pihaap system in this host. To confirm this hypothesis, the CRISPR-Cas3 system
was not induced with rhamnose, but the transformants were analyzed directly after
electroporation with PCR for the genomic deletion. Indeed, for all three deletions, at least
88% of the screened colonies already contained the desired deletion (Fig. 4b; Fig. S4 to
6). This confirms that in P. aeruginosa, the basal expression of the CRISPR-Cas3-system is
sufficient for genome engineering and rhamnose induction is not required. Other
inducible systems could be explored to create a more stringent regulation of the Cas3
system in P. aeruginosa.

After successful deletion of the targeted genes, all three deletion mutants were cured
from the respective pCas3cRh-spacer and pSEVA13-HDR vectors using the oriT-targeting
approach. The pSEVA52-oriT vector was introduced in all strains, after which the
transformants were grown overnight in antibiotic-free medium without rhamnose. The
following day, a dilution streak was performed and the resulting colonies were screened
for sensitivity against gentamycin (pCas3cRh-spacer), carbenicillin (pSEVA13-HDR), and
tetracycline (pSEVA52-oriT). Both the pCas3cRh-spacer and pSEVA52-oriT vectors were
cured very effectively, with a curing efficiency ranging from 64% to 100% (Fig. 4c). The
pSEVA13-HDR vectors, on the other hand, were still present in the majority of the
screened colonies, resulting in a rather low curing efficiency rates of 17%, 42%, and 50%
for the AfleS, AprplL, and APA_2560 mutants, respectively. This difference in curing
efficiency between the vectors could be explained by the fact that the pCas3cRh vector
exerts a negative selection pressure upon itself once pSEVA52-oriT is present, in contrast
to the other two vectors. Furthermore, the pSEVA52-oriT vector contains the low-copy
RK2 oriR, while the pSEVA13-HDR vector carries the medium-copy BBR1 oriR, which could
explain why the pSEVA52-oriT origin is more efficiently cured than its pSEVA13-HDR
counterpart. To further improve the flexibility of the system and the efficiencies achieved,
additional spacers could be included on pSEVA52-oriT to target a variety of oriRs, shown
to be effective in previous work (43).
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FIG 4 (a) Three separate genomic deletions are created in the P. aeruginosa PAO1 genome, namely, the entire coding regions of fleS, PA_2560, and prpL

(indicated in black). The position of the protospacer in the genes is marked in red, and the upstream and downstream homology arm are indicated in cyan and

ochre, respectively. (b) Engineering efficiency of the CRISPR-Cas3-based engineering method to create the fleS, PA_2560, and prpL deletions. (c) Curing efficiency
of the CRISPR-Cas3-based curing method for pCas3cRh-spacer, pSEVA13-HDR, and pSEVA52-oriT in the P. aeruginosa PAO1 AfleS, APA_2560, and AprpL deletion

mutants.

An easy-to-clone vector set with a broad range of antibiotic markers further
improves the CRISPR-Cas3-based engineering method

Two vector sets were created to facilitate cloning of the homology arms and to allow
compatibility of the CRISPR-Cas3 engineering system with different hosts or experi-
mental set-ups requiring different antibiotic selection markers. The first vector set for
HR cloning comprises five pSEVAX3-GG vectors, all encoding a Golden Gate cassette
and different antibiotic markers (Fig. 5a). The Golden Gate cassette consists of an
msfGFP (monomeric superfolder green fluorescent protein) reporter driven by a strong
constitutive promoter (P144) (50) and flanking Bsal recognition sites (Fig. 5¢). The second
vector set, on the other hand, is derived from pCas3cRh and holds five pCas3-Ab vectors
with different antibiotic markers (Fig. 5b). As such, the user has the possibility to select
their favorite vector combination for the genomic engineering experiment in mind.
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FIG 5 (a) Vector set of pSEVAX3-GG for Golden Gate cloning of the homology arms for CRISPR-Cas3 engineering. All vectors are identical, except for the

antibiotic selection marker. The vectors are equipped with a Golden Gate cassette, consisting of an msfGFP reporter flanked with Bsal recognition sites. (b) Vector

set of pCas3cRh-derived vectors for CRISPR-Cas3-based genome engineering. All vectors are identical, except for the antibiotic selection marker. (c) Golden Gate

assembly of the homology arms into pSEVAX3-GG vectors. The Golden Gate cassette with the msfGFP reporter is substituted for the homology arms for HDR

(teal and yellow). (d) LB agar plate on an ultrabright-LED transilluminator (470 nm): E. coli after transformation with assembled pSEVAX3-HDR vector (Golden Gate

reaction mix). Colonies which are false-positive and thus contain the original pSEVAX3-GG vector are easily identified by their msfGFP fluorescence (indicated

with a black arrow).

Conclusions and perspectives

A novel CRISPR-Cas3-assisted editing method is presented for Pseudomonas, showcasing
high efficiency for genomic integration or deletion in P. putida and P. aeruginosa (>83%).
The use of a second, universal SEVA vector for homology-directed repair along with the
relatively large targeting plasmid (11.5 kbp), enables to simplify the plasmid construction
and increase the efficiency compared to the one-vector system of Csorgo et al. (31).
Moreover, a vector set of both plasmids with multiple antibiotic markers allows for
application in various Gram-negative hosts and different designs. In addition, due to the
inherent ability of the Cas3 enzyme to cleave and thereby cure plasmids from the host
strain, a third plasmid containing a spacer that targets the oriT is introduced to rapidly
and effectively remove all helper vectors in only a few days, with up to 100% curing
efficiency. Although the curing concept is similar to previously described CRISPR-Cas9
system (43), enhanced efficiencies using the CRISPR-Cas3 system are obtained. As such,
the described approach is an elegant addition to the CRISPR-Cas-based engineering
toolbox for Pseudomonas. Besides exemplified cases, the protocol has been successfully
applied for multiple more cases, ranging from genomic insertions, substitutions and
deletions, including the deletion of a 10 kbp prophage region from the P. aeruginosa
PAO1 genome.

Apart from their use in genomic engineering, the pCas3-AbR and pSEVA52-oriT
vectors can be used as a stand-alone tool for vector curing of any synthetic or
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naturally-occurring plasmid in Pseudomonas. This can be achieved by introducing
multiple spacers targeting conserved sequences of plasmids, as described by Lauritsen et
al. (43). By integrating the oriT spacer on the pCas3-AbR vector under control of a strictly
regulated promoter, only a single vector would be required for curing purposes.

In future work, the possibilities of the Cas3 editing approach can be further explored,
e.g., by creating larger genomic alterations or by performing several genomic edits
simultaneously, by providing more than one spacer and repair template on the pCas3-
AbR and pSEVAX3-GG plasmids. Additionally, due to the flexibility of the proposed
vectors sets, namely the pSEVAX3-GG and pCas3-AbR sets, the functionality of the Cas3
approach can readily be investigated in related Pseudomonas species or other Gram-neg-
ative strains.

MATERIALS AND METHODS
Strains and media

All strains used in this work are listed in Table S3. Overall, vector construction was
performed in E. coli TOP10 and CRISPR-Cas3-based engineering was carried out in P.
putida KT2440, P. putida SEM11 and P. aeruginosa PAO1 (Table S3). All strains were
cultured in standard LB medium or agar, supplemented with the appropriate antibiotics:
Gm10 (E. coli and P. putida) or Gm50 (P. aeruginosa), Km50 (E. coli and P. putida), Ap100 (E.
coli), Cb200 (P. aeruginosa), Tc10 (E. coli and P. putida), or Tc60 (P. aeruginosa). P. putida was
incubated at 30°C, whereas E. coli and P. aeruginosa were incubated at 37°C.

Vector construction: pCas3cRh-spacer

A spacer sequence was identified in the target region and introduced in the pCas3cRh
vector by Golden Gate ligation. First, the spacer was created by annealing two primers: (i)
GAAAC-[spacer sequence]-G and (ii) GCGAC-[reverse complement of spacer sequence]-G.
The primers used in this work are listed in Table S1. The annealed primer pair (50 ng)
was combined with pCas3cRh (100 ng), T4 DNA ligase (1 U, Thermo Scientific), Bsal (10
U, Thermo Scientific), and 1x DNA ligation buffer (Thermo Scientific), after which the
reaction mixture was subjected to 30 restriction-ligation cycles (37°C for 2 min; 16°C
for 3 min). Next, the reaction mixture was introduced in E. coli TOP10 via heat-shock
transformation (51). After overnight incubation on LB®™° agar, multiple transformants
were screened for the presence of the spacer using DreamTaq Green PCR (Thermo
Scientific) with primers pCas3cRh_F/R (Table S1). Amplicons with the expected length
were Sanger sequenced (Eurofins Genomics, Germany), and corresponding vectors were
purified with the Genelet Miniprep Kit (Thermo Scientific) (Table S2).

Vector construction: pSEVAX3-HDR

The template for HDR is provided on pSEVA131 (P. aeruginosa) or pSEVA231 (P. putida),
further referred as pSEVAX31, and assembled by Golden Gate cloning. First, the upstream
and downstream homology arms (HA up and dn), desired insert (for integrations only),
and vector backbone were amplified with Phusion polymerase (Thermo Scientific) with
tailed primers, to introduce the Bsal recognition site and Bsal restriction site for Golden
Gate ligation (Table S1). Of note, instead of creating the homology arms by PCR, a gene
block containing the HDR template flanked by Bsal restriction sites can be synthesized
synthetically. The use of synthetic gene blocks might be advantageous for difficult-to-
clone fragments or for fragments that require (multiple) sequence alterations, e.g.,
PAM or protospacer sequence alteration in case of substitution or insertion or codon
optimization. All nucleotide sequences of used HAs and inserts in this work are provided
in Table S4. The Bsal restriction sites are designed to allow specific annealing of HA up -
(insert) — HA dn in the pSEVAX3 amplicon. The amplicons of the homology arms (50 ng)
each and insert (50 ng) were combined with the PCR-amplified pSEVAX3 backbone
(100 ng), T4 DNA ligase (1 U, Thermo Scientific), Bsal (10 U, Thermo Scientific), and 1x
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DNA ligation buffer (Thermo Scientific), after which the reaction mixture was subjected
to 50 restriction-ligation cycles (37°C for 2 min; 16°C for 3 min). Next, the reaction mixture
was introduced in E. coli TOP10 via heat-shock transformation (51). After overnight
incubation on LB"™° or LB*'® agar, multiple transformants were screened for the
presence of the template using DreamTaq Green PCR (Thermo Scientific) with primers
SEVA_PS1/2 (Table S1). Amplicons of the expected length were Sanger sequenced
(Eurofins Genomics, Germany), and the corresponding vectors were purified with the
Genelet Miniprep Kit (Thermo Scientific) (Table S2).

Vector construction: pSEVA52-oriT

Vector pSEVA52-oriT was constructed in two steps. First, a pCas3cRh vector with oriT
spacer was constructed as described above, with oriT_spacer_F/R (Tables S1 and S2).
Second, the Prpggap promoter and CRISPR array with oriT spacer were amplified from
pCas3cRh-oriT with tailed primers oriT_Cas3_F/R and the pSEVA521 backbone was
linearized with Phusion PCR (Thermo Scientific) with tailed primers oriTcas3_SEVA_F/R
(Table S1). Both amplicons were annealed by Golden Gate ligation, as described above
for the construction of pSEVAX3-HDR vectors. Multiple E. coli TOP10 transformants were
screened for the presence of the oriT CRISPR array using DreamTaq Green PCR (Thermo
Scientific) with primers SEVA_PS1/2 (Table S1). Amplicons of the expected length were
Sanger sequenced (Eurofins Genomics, Germany), and the final pSEVA52-oriT vector was
purified with the Genelet Miniprep Kit (Thermo Scientific) (Table S2).

Vector construction: pCas3-XX and pSEVAX3-GG vector sets

To create Cas3 bearing plasmids with different antibiotic selection markers (pCas3-Amp,
pCas3-Km, pCas3-Sm, pCas3-Gm, and pCas3-Apr; Table S2), pCas3cRh was amplified
with primer pair pCas3_Ab_F/R (Table S1) and the antibiotic selection cassettes were
amplified from canonical SEVA plasmids (46) with the primer pair Ab_F/R. The antibiotic
selection fragments were ligated with the pCas3cRh amplicon by USER cloning (52).
Following transformation of E. coli, colony PCR, and plasmid purification as described
above, correctness of plasmids was confirmed by whole plasmid sequencing (Plasmid-
saurus, Oregon, USA).

For the creation of the pSEVAX3-GG vector set, pSEVA131 was amplified with the
primer pair pSX31_GG_F/R, while a fragment carrying msfgfp under the constitutive
promoter 14g with BCD2 was amplified from pBG42 (50) with primer pair P14g-BCD2-
GFP_F/R. Fragments were merged by USER cloning into pSEVA13-GG, and the correct-
ness of the plasmid inserts was confirmed by Sanger sequencing with SEVA_PS1/2.
The overhangs created by Bsal were designed for optimal cloning efficiency (53).
Subsequently, the antibiotic cassette of the plasmid was exchanged by USER cloning to
create pSEVA23-GG, pSEVA43-GG, pSEVA63-GG, and pSEVA83-GG (Table S2). The vector,
linearized with the primer pair pSX31_Ab_F/R, was merged with the same fragments
used for antibiotic cassette exchange for pCas3cRh. Correct vector assembly was verified
with nanopore, whole plasmid sequencing. Finally, vectors pCas3-ApR and pSEVA83-GG
were subjected to full linearization with a tailed primer (ApR_Bsal_F/R) and religated with
USER cloning, to remove an undesired Bsal recognition site from the apR gene.

Electroporation

P. putida and P. aeruginosa were electroporated according to the protocol described by
Choi et al. (54). In brief, per sample, a 3-mL overnight culture was washed three to five
times with 2 mL sterile 10% (wt/wt) sucrose solution to create electrocompetent cells.
After the washing steps, 20-50 ng plasmid DNA was added to a 100-pL cell aliquot
and electroshocked at 200 ohm, 25 pF, and 1.8 kV or 2.0 kV for P. aeruginosa and P.
putida, respectively. For co-electroporations, 100 ng of each plasmid was added to the
cell aliquot together and electroshocked in the same manner. After cell recovery for
1.5 h in 900 pL LB or SOC medium at the appropriate temperature, different volumes
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of the aliquot (10 pL, 50 yL, 250 uL, and the rest) were plated on selective LB agar and
incubated overnight, unless specifically mentioned otherwise.

CRISPR-Cas3-based engineering and vector curing in P. putida

Overnight cultures of P. putida were co-electroporated with pCas3cRh-PP_5388 and
pSEVA23-PP_5388 as described above. After overnight incubation on LB*™%¢™° agar,
five colonies were inoculated together in 20 mL LB™%™ with 0.1% (wt/vol)
rhamnose (Merck, CAS no. 10030-85-0) for induction of the CRISPR-Cas3 system
and incubated overnight while shaking. The next day, a dilution streak of the
20 mL culture is performed on LB"™S™° agar and again incubated overnight,
after which 24 colonies were screened for correct genomic integration of the insert
with DreamTaq Green PCR (Thermo Scientific) with primers PP5388_up/dn (Table
S1). Amplicons of the expected length were Sanger sequenced (Eurofins Genomics,
Germany), and the corresponding colonies were cured from pCas3cRh-PP_5388 and
pSEVA23-PP_5388. For vector curing, overnight cultures were electroporated with
pSEVA521-oriT and the CRISPR-Cas3 system is induced as mentioned previously,
using overnight incubation with 0.1% (wt/vol) rhamnose followed by a dilution
streak on LB medium without antibiotics. From the resulting plates, 24 colonies
were streaked on LB, LB*™®, LB®'%, and LB™'"° and incubated overnight to assess the
successful vector curing by antibiotic sensitivity.

CRISPR-Cas3-based engineering and vector curing in P. aeruginosa

Overnight cultures of P. aeruginosa were co-electroporated with pCas3cRh-spacer and
pSEVA131-HDR as described above. For deletion of fleS, the co-electroporation did not
result in colony formation, such that pSEVA13-FleS and pCas3cRh-FleS were introduced
consecutively. After a 2-day incubation period on LB®%¢™'% agar, 14-24 colonies were
screened for correct genomic deletion of the target gene with DreamTaq Green PCR
(Thermo Scientific) with primers gene_up/dn (Table S1). Amplicons of the expected
length were Sanger sequenced (Eurofins Genomics, Germany), and the correspond-
ing colonies were cured from pCas3cRh-spacer and pSEVA13-HDR. For vector curing,
overnight cultures were electroporated with pSEVA52-oriT and incubated overnight. The
following day, 24 colonies were streaked on LB, LB®*?%, LB®™, and LB™® and incubated
overnight to assess successful vector curing by antibiotic sensitivity.

Whole-genome sequencing

The genomic DNA of the CRISPR-Cas3-engineered strains after vector curing was isolated
using the DNeasy UltraClean Microbial Kit (Qiagen, Germany) according to the manufac-
turer’s guidelines. The obtained DNA was sequenced with an Illumina platform (USA)
and an Oxford Nanopore Technologies platform (UK) for long-read DNA sequencing. The
lllumina DNA libraries were prepared using the lllumina DNA Prep Kit (USA) and the
Nextera DNA CD Indexes (lllumina, USA). The average length of the DNA libraries was
evaluated using Agilent Bioanalyzer 2100 and a High Sensitivity Kit (Agilent Technolo-
gies, USA), and the concentration of the DNA libraries was determined with a Qubit
device (Thermo Fisher Scientific, USA). Next, the samples were pooled together for
sequencing on the lllumina MiniSeq NGS platform. The MiniSeq Mid Output Kit (300
cycles) (Illumina, USA) was used for paired-end sequencing (2 x 150 bp), aiming for
800,000 reads per sample.

For Nanopore sequencing, the Rapid Barcoding Kit 24 V14 (Oxford Nanopore
Technologies, UK) was used for library preparation. A maximum of 24 samples were
pooled and sequenced on a R10.4.1 flowcell (Oxford Nanopore Technologies, UK). The
raw lllumina and Nanopore reads were trimmed with Trimmomatic (55) or Porechop
(56), respectively, after which they were assembled into complete circular genomes with
Unicycler (57). Large deletions were visualized in IGV after Bowtie2 assembly (58), and
single nucleotide polymorphism (SNP) analysis was performed with SNIPPY (59).
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