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Abstract

A major step in the planning process of passenger railway operators is the assignment of
rolling stock, i.e., train units, to the trips of the timetable. A wide variety of mathematical
optimization models have been proposed to support this task, which we discuss and argue to
be justified in order to deal with operational differences between railway operators, and hence
different planning requirements, in the best possible way. Our investigation focuses on two
commonly used models, the Composition model and the Hypergraph model, that were developed
for Netherlands Railways (NS) and DB Fernverkehr AG (DB), respectively. We compare these
models in a rolling stock scheduling setting similar to that of NS, which we show to be strongly
NP-hard, and propose different variants of the Hypergraph model to tune the model to the
NS setting. We prove that, in this setting, the linear programming bounds of both models are
equally strong as long as a Hypergraph model variant is chosen that is sufficiently expressive.
However, through a numerical evaluation on NS instances, we show that the Composition model
is generally more compact in practice and can find optimal solutions in the shortest running
time.

Keywords— Rolling Stock Scheduling, Public Transport Optimization, Integer Programming

1 Introduction

Decision support tools based on optimization methods have proven their value throughout different stages in
the planning process of passenger railway operators. One of the problems that have benefited substantially
from mathematical optimization methods is that of rolling stock scheduling, in which rolling stock is assigned
to the trips in the timetable. Optimization methods have shown to reduce the cost of rolling stock schedules
for passenger railway operators, while at the same time increasing passenger satisfaction by offering a better
match of supply and passenger demand. Indeed, such improvements have been documented for the rolling
stock operations at both NS and DB, and they have been presented in the finals of two INFORMS Edelman
competitions, see Kroon et al. (2009) and Borndorfer et al. (2021).

The literature offers a diverse set of models for rolling stock scheduling. To a large extent, this diversity
of models is due to the differences between the studied railway companies, both in terms of the available
rolling stock and the operational constraints. Examples include differences in the planning horizon, being
cyclical or non-cyclical, the extent to which maintenance of train units needs to be taken into account in
the planning stage, and the feasibility or infeasibility of deadhead trips. As a result, different concepts and
ideas have been used to model these problems, and, likewise, different solution techniques were applied, such
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as the use of a commercial mixed-integer linear programming (MILP) solver (Fioole et al. 2006), column
generation (Borndorfer et al. 2016, Lusby et al. 2017), Lagrangian relaxation (Cacchiani, Caprara, and Toth
2013) and heuristics (Cacchiani, Caprara, and Toth 2019, Hoogervorst et al. 2021).

The literature on rolling stock scheduling can be categorized into several streams. FEach of these streams
focuses on a particular rolling stock scheduling setting, and this setting is often represented by a common
base model. An example is the stream of papers focusing on the setting of NS, see, e.g., Wagenaar, Kroon,
and Schmidt (2017) and Kroon, Maréti, and Nielsen (2015), which build on the model of Fioole et al. (2006).
Similarly, multiple papers focus on the Train Unit Assignment Problem (TUAP) as proposed by Cacchiani,
Caprara, and Toth (2010) and the Hypergraph model setting as introduced by Borndorfer et al. (2016).

While many of the core ideas in these streams are similar, subtle or not-so-subtle differences in the
problem setting often lead to substantial formulation differences and even the need for applying different
solution methods. Given a (new) rolling stock scheduling problem, it is then often unclear which of the
existing models and solution approaches is the most suitable one. In fact, little is known about the relative
performance of different models for specific scenarios. A notable exception is the comparison by Haahr et al.
(2016) between the models of Fioole et al. (2006) and Lusby et al. (2017) in a setting that includes instances
of NS and the Copenhagen Suburban Railway Operator DSB S-tog. However, this comparison was based
solely on numerical results and not on analytic arguments.

In this paper, we survey the rolling stock scheduling models of the literature and give insight into their
relative performance by comparing two commonly used flow-based rolling stock scheduling models: the
Composition model of Fioole et al. (2006) and the Hypergraph model of Borndorfer et al. (2016). Our con-
tributions in this paper are fivefold. First, we categorize the models that have been proposed in the literature
for rolling stock scheduling based on the operational context that they consider. Second, we analytically
compare the linear programming bounds provided by the Composition model and the Hypergraph model.
It turns out that the Composition model does not match the bounds provided by the Hypergraph model
in general, but it does so very well for the problems for which it was developed, namely, in a rolling stock
context similar to the one at NS. Third, we propose for the comparison several new variants of the Hyper-
graph model that implement different trade-offs between model conciseness and accuracy in an attempt to
tune the model to the NS setting. Fourth, we compare the two models through numerical experiments for
instances of NS that are typically solved by the Composition model. The Composition model turns out to
be best suited for these instances. Fifth, we prove that the rolling stock scheduling problem is NP-hard in
the strong sense, even in the NS setting and for a rolling stock fleet consisting of a single train unit type.

The paper is organized as follows. In Section 2, we give a general description of the rolling stock scheduling
problem. In Section 3, we categorize the existing rolling stock scheduling models based on several problem
features. We perform an analytical comparison of the Composition model and the Hypergraph model in
Section 4, in which we also define some new variants of the Hypergraph model and perform a complexity
analysis. We perform a numerical comparison between the Composition model and the Hypergraph model
in Section 5. Finally, we conclude the paper in Section 6.

2 The Rolling Stock Scheduling Problem

In the Rolling Stock Scheduling Problem (RSSP), rolling stock is assigned to the trips in the timetable. Each
trip indicates that a train drives from a departure station to an arrival station, with a fixed departure and
arrival time. Some of the trips are naturally joined together into timetable services, which define a train
service between two terminal stations of a railway line. At these terminal stations, rolling stock then moves
from one timetable service to another through so-called turnings.

The rolling stock that is available to operate the trips differs per railway operator. In the RSSP, we
assume rolling stock that is composed of self-propelled bi-directional train units, so without a separate
locomotive, as is the case for many European passenger railway operators. These train units can, generally,
be coupled together to form compositions, which differentiates rolling stock scheduling from, e.g., vehicle
or aircraft scheduling. Combining train units allows for more passenger transportation capacity on a trip.
Moreover, it generally requires less energy, crew members, and infrastructure capacity to run a train of



multiple coupled units than running each of the units individually.

The compositions of train units are generally not fixed throughout the day, but can be changed at some of
the stations at which a train stops. This allows adjusting the offered capacity to varying passenger numbers
over the day. Composition changes may happen at either some in-between station or a terminal station of
the timetable service. Adding train units to a composition is often referred to as coupling of train units,
while removing train units is referred to as uncoupling of train units. Jointly, such coupling and uncoupling
actions are referred to as shunting of train units. When train units are uncoupled from a composition, they
are often parked at a shunting yard, in which case we speak about the pulling in and pulling out of train
units to or from the shunting yard or depot.

When determining how a train unit moves from one trip to another, we need to satisfy business rules
that are dependent on the operator. In some cases, trips have an assigned successor trip and train units
can only move from the predecessor trip to the successor trip, unless the train unit is uncoupled from the
composition. This is especially the case when two trips are part of the same timetable service. In other cases,
train units can move between any trips as long as this is possible with respect to the time and the location
of the trips. In particular, deadheading, i.e., running the train without any passengers, may be allowed to
move from the arrival station of one trip to the departure station of the other.

Additional conditions may need to be satisfied when determining the trips that a train unit can operate
during the planning horizon. For example, maintenance restrictions often need to be satisfied, such as a
maximum distance between two consecutive maintenance appointments. In addition, restrictions generally
apply to the compositions that are allowed for trips and the ways in which these compositions can be changed.
The length of a composition can, for example, be limited by the platform length of the stations that are
passed, while coupling and uncoupling can often only happen at one side of the composition due to the
station layout.

In the RSSP, we are now asked to find an assignment of the available train units to the trips in the
timetable. The path for each train unit that is implied by this assignment should satisfy all the above-
mentioned constraints. In addition, the composition that is chosen for each trip in this assignment should
be feasible, as well as the ways in which the compositions are changed at stations. The result of the RSSP
is referred to as a rotation, or circulation, for the rolling stock units.

An example of a rolling stock circulation as can be encountered at NS is shown in Figure 1, which shows
an optimal solution of instance DDZ of the test set to be discussed in Section 5. Each colored node on
the left-hand side of this figure corresponds to a train unit that is available at the start of the day, the
color indicating the type of this train unit. Similarly, the nodes on the right-hand side indicate train units
ending the day. All in-between nodes represent the operation of a trip by train unit(s), where the size of the
node stands for the number of train units that are part of the composition that operates the trip. The arcs
between the train units show how train units move from trip to trip, such that a path corresponds to the
trips operated by a single train unit over the day.

A few things can be noted in the instance that are typical of instances of NS. First, most trips have a
successor trip on which all train units of the composition continue, meaning that shunting only happens at
a limited number of places. Moreover, many trips in the morning peak are operated by double train unit
compositions, followed by trips operated by single train units around noon with lower demand. The long
arcs that cross this period represent parking at some depot, from which the units are pulled out later to
service the afternoon peak with many double train unit compositions again. After the afternoon peak, a lot
of the train units are uncoupled again and either parked at the shunting yard overnight or used within a
single train unit composition during this period with lower demand. Clearly, the crucial point in such an
instance is to get the shifting of units right in order to service the demand in the most efficient way.

3 Feature-Driven Model Comparison
The planning process of a railway passenger operator is generally composed of a number of planning steps

that are carried out sequentially. In each of these steps, a single operational problem is considered and the
solution of this problem is the input to the next planning step. An overview of the typical planning steps
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Figure 1: Example of a rolling stock circulation.

is given by, among others, Huisman et al. (2005) and Caprara et al. (2007). In both of these papers, rolling
stock scheduling is assumed to be performed after a timetable has been found and before the crew, i.e.,
drivers and guards, are scheduled. In this paper, we thus focus solely on the rolling stock scheduling step.

Over the years, multiple models have been proposed for the rolling stock scheduling problem. To a
large extent, the differences between these models are the result of differences in the operational contexts
of the various passenger railway operators. These arise, e.g., from differences in the available rolling stock
fleet, as well as from differences in the national (infrastructural) context. In the remainder of this section,
we categorize the available models according to five main features of the operational context that these
models consider. Moreover, we identify streams of papers in case multiple papers share the same core model.
In this way, we complement the model classifications that were provided earlier by Thorlacius, Larsen,
and Laumanns (2015) and Schlechte et al. (2023). We limit our categorization to models for rolling stock
scheduling that focus on a passenger, as opposed to freight, railway context and in which train units, as
opposed to locomotives and carriages, are considered. Moreover, we focus our categorization on papers
considering rolling stock scheduling within a network, as opposed to a single-line, context. A schematic
overview of our categorization is given in Table 1.

3.1 Compositions

A first difference between the models concerns the level of detail that is considered in modeling the com-
positions into which train units can be coupled. On the one hand, Cacchiani, Caprara, and Toth (2010),
Lusby et al. (2017), Lin and Kwan (2016), and Cadarso and Marin (2011) consider only the number of train
units of each type in a composition, but not the order of train units within a composition. Such models are
mainly used in a setting where there is only a single train unit type or when the compositions are short and
where uncoupling and coupling can happen on both sides of the composition.

Models taking into account the exact order of the train units within a composition include those of Fioole
et al. (2006) and Peeters and Kroon (2008). Note that these models do not track the individual train units
but do track what type of train unit is in each position of the composition. Taking into account the order
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of train units is important in these operational contexts, as coupling and uncoupling of train units is often
only allowed on one side of the composition due to the station layout. Hence, it is necessary to track the
order of train units in the composition to determine if a certain train unit can be coupled or uncoupled. A
similar restriction is taken into account by Lin and Kwan (2014), who determine the order of the train units
in a composition in a second optimization step after determining in a first optimization step how many train
units of each type are in a composition.

Finally, Borndorfer et al. (2016) do not only take the order of train units in a composition into account,
but also the orientation of the train units themselves, i.e., which side of each train unit is facing in the direction
of travel. This is done as infrastructure requirements in the setting of DB prevent some orientations of the
train units in a composition and as the orientation of the individual train units is of importance for the seat
reservations due to 1st and 2nd class being on opposite sides of train units. Note that the models of Fioole
et al. (2006) and Peeters and Kroon (2008) extend canonically to take orientations into account by creating
a separate composition for each possible combination of orientations of the train units.

3.2 Rolling Stock Turnings

A second distinction between the models is in the way that turnings between trips are handled. On the
one hand, these turnings can be determined in advance. In that case, each trip has a fixed follow-on trip,
unless all train units of the trip are parked at the station after the trip. All train units that are part of
the composition on the predecessor trip then move to the fixed successor trip or are uncoupled from the
composition and can only be coupled to another trip after some fixed reallocation time. Such a setting is
considered, e.g., by Fioole et al. (2006) and Lusby et al. (2017). Fixing the turnings is especially common
in high-density networks, where there are limited possibilities to execute shunting at the stations.

Alternatively, determining the rolling stock turnings can be part of the decisions that are made in
the model. Examples include the models of Cacchiani, Caprara, and Toth (2010), Giacco, D’Ariano, and
Pacciarelli (2014), Lin and Kwan (2014), and Borndérfer et al. (2016). For these models, possible turnings are
determined based on business rules that state which turnings are feasible and acceptable for the operators.
The model can then determine which of these turnings to take. Note that in such settings each train unit in
the composition can often follow its own turning, meaning that a composition is split into smaller parts that
each turn to a different trip. The advantage of allowing for flexible turning possibilities is that more efficient
rolling stock circulations can be found, although often at the expense of more irregular turning patterns at
the stations.

Another difference, which is strongly related to the understanding of turnings within the models, is
the inclusion of deadheading trips. In some models, such as those of Fioole et al. (2006) and Lusby et al.
(2017), deadheading is not directly considered. Instead, deadheading can only occur in those models in
case it has been planned beforehand. Models that do allow to assign deadheading within the model include
those of Giacco, D’Ariano, and Pacciarelli (2014), Cadarso and Marin (2011), Borndoérfer et al. (2016), and
Wagenaar, Kroon, and Fragkos (2017). In these models, deadheading can be used either to move between
trips in a turning or to move to a maintenance location. As can be seen in Table 1, such flexibility in
assigning deadheading trips is strongly linked to the flexibility in turning in the models, where all but one
of the models that allow for flexibility in deadheading also do so in the turnings.

3.3 Maintenance Requirements

An important restriction when scheduling the rolling stock at many railway operators is that maintenance
requirements need to be satisfied. Such requirements ensure that enough maintenance is performed to
adhere to safety and quality standards. Some papers, like those of Fioole et al. (2006), Nielsen, Kroon, and
Maréti (2012), Cadarso and Marin (2011), and Cacchiani et al. (2012), do not consider any maintenance
requirements. In such models, it is often assumed, either implicitly or explicitly, that maintenance can
be scheduled after a circulation has been found. This is, for example, the case when maintenance can be
executed during the evening hours when only few trains are operated. Alternatively, maintenance may be



scheduled closer to the day of operation during the time that a train unit is parked at the shunting yard of
a station (see, e.g., Maré6ti and Kroon 2005).

Other papers have considered distance or time-based maintenance requirements, where train units need
to undergo maintenance after a certain amount of use. These include the models of Cacchiani, Caprara, and
Toth (2010), Borndorfer et al. (2016), Lusby et al. (2017), Grimm et al. (2019), and Grimm, Borndoérfer,
and Bushe (2023). The approach taken to include such requirements differs between these models. While
Lusby et al. (2017) and Grimm, Borndorfer, and Bushe (2023) consider an individual path for each train
unit through the network, Borndorfer et al. (2016) consider an additional resource flow to keep track of the
distance traveled by each train unit. An almost identical approach to the latter one is chosen in Giacco,
D’Ariano, and Pacciarelli (2014), who investigate the benefit of additional deadheading options to reach
maintenance facilities in order to decrease the total maintenance hours of a rotation. A different point of
view is taken by Cacchiani, Caprara, and Toth (2010), who require that a certain fraction of the found train
unit paths through the network allow for a maintenance activity. The approach of Grimm et al. (2019) is
instead based an a cutting plane algorithm that cuts of rotations that violate maintenance constraints during
the solution process.

A further type of maintenance requirement is considered by Wagenaar, Kroon, and Schmidt (2017),
where some of the train units have a fixed maintenance appointment. Such an appointment specifies both
the location and time at which the maintenance takes place and is usually planned close to the day of
operation. Wagenaar, Kroon, and Schmidt (2017) propose and compare three different models for rolling
stock rescheduling to ensure that train units make these appointments.

3.4 Passenger Capacity

Another difference between the models is the way in which the passenger demand is taken into account. On
the one hand, passenger demand can be enforced through a constraint on the required passenger capacity, i.e.,
a minimum number of seats per trip. This is done by, e.g., Cacchiani, Caprara, and Toth (2010), Borndorfer
et al. (2016), Lin and Kwan (2016), and Thorlacius, Larsen, and Laumanns (2015). In these models, the
main focus is then on minimizing the costs of the railway operator given these capacity constraints. However,
many of these models can easily be extended to also include passenger demand as an objective.

Alternatively, some models deal with passenger demand by also considering shortages of capacity. Ex-
amples include the models of Fioole et al. (2006), Cadarso and Marin (2011), and Lusby et al. (2017), where
any shortages of seats compared to the expected passenger demands are penalized in the objective function.
Note that these papers use fixed passenger demands, where the flow of passengers does not change based on
the chosen rolling stock assignment. Kroon, Maré6ti, and Nielsen (2015) instead consider flexible passenger
flows for a rescheduling setting in which the capacity of some trains may not be sufficient to accommodate all
passengers. As the interaction between rolling stock assignment and passenger flows is hard to handle in an
integrated MILP model, these authors consider an iterative framework to solve this problem that alternates
between rolling stock rescheduling and the rerouting of passengers.

3.5 Other Model Differences

The characterization above is certainly not complete concerning the differences between the models. In
Table 1, we state a few other differences.

The first is the inclusion of some form of robustness, which ensures that a good rolling stock circulation
is found even when some of the details regarding the rolling stock scheduling problem are uncertain. For
example, Cacchiani et al. (2012) propose a robust two-stage optimization model to better deal with large
disruptions. In this way, a rolling stock circulation is found that can be rescheduled well when such a large
disruption occurs. Also Cadarso and Marin (2014) look at the robustness of solutions, where they focus
on creating a circulation that is likely to be robust in execution. They do this by, e.g., penalizing shunting
operations that are likely difficult to execute and by penalizing the expected delay that follows from a certain
shunting action.



Another difference concerns the inclusion of regularity, i.e., the uniformity of the rolling stock plan over
different days in the planning horizon; this is particularly relevant in case the timetable is (largely) periodic.
Borndorfer et al. (2017), e.g., focus on the regularity of turnings by penalizing in the objective function cases
in which a different turning is chosen between the same trips on different days of the planning horizon. Gao
et al. (2020) instead include a hard constraint, which requires that a trip that is operated on both days of
a two-day planning horizon is executed by the same train sequence. For a railway operator, inclusion of
such regularity requirements, e.g., allows for a more compact representation of the circulation and makes
rescheduling over multiple days easier.

3.6 Discussion

The categorization in Table 1 shows that a number of streams can be identified in the literature, within
which the papers use a similar base model and focus on a similar problem setting. For example, numerous
papers use the Composition model as introduced in Fioole et al. (2006) and share a problem setting that
considers the ordering of train units in compositions, fixed turnings between trips and the inclusion of
passenger demand in the objective. Other common streams include the papers using the Hypergraph model
introduced in Borndorfer et al. (2016), sharing a problem setting in which the orientation of train units in
a composition and flexible turnings are considered, and those using the model for the TUAP introduced in
Cacchiani, Caprara, and Toth (2010), sharing a problem setting that focuses on the number of train units
of each type in a composition and has flexible turnings.

The presence of these streams in the literature shows that the developed models have been highly
adapted to their problem setting. However, similarities can also be seen between the streams. For example,
the Hypergraph model stream generalizes the properties of the Composition model and TUAP model on
many of the problem characteristics, e.g., considering the most detailed tracking of compositions. In addition,
variations have been considered of the models which bridge some of the gaps between the different streams.
An example includes the inclusion of deadheading in the Composition model in Wagenaar, Kroon, and
Fragkos (2017), bringing it closer to models that do consider deadheading. A natural question would therefore
be how these models relate to each other analytically.

To the best knowledge of the authors, little is generally known on the relative performance of the models
and their theoretical applicability to problem settings that are different than the one for which they were
proposed. The only exception includes the numerical comparison made by Haahr et al. (2016) between
the Composition model and model proposed by Lusby et al. (2017). Therefore, we focus in this paper on
gaining insight on the performance of two models that can be associated to a stream in the literature: the
Composition model and the Hypergraph model. Such a comparison can both give theoretical insights for
researchers working on rolling stock scheduling, as well as help practitioners choose an appropriate model to
solve rolling stock scheduling problems.

4 Analytic Model Comparison

In this section, we analytically relate the Composition model as proposed by Fioole et al. (2006) and the
Hypergraph model as proposed by Borndorfer et al. (2016). The notation used in our comparison is listed
in Table 2. Our analysis will revolve around the problem characteristics that we discussed in Section 3,
and one of our goals is to identify the relevant factors and their influence. This is somewhat challenging, as
both approaches are general in the sense that they can be, and have been, adapted to different scenarios as
discussed in Section 3, such that it is not so clear what “the Composition model” or, to a broader extent,
“the Hypergraph model” actually is. We therefore discuss several model variants. But whatever variant
is considered, the models have been developed for specific settings, in which, inevitably, their particular
strengths and weaknesses surface. Indeed, we will argue that the Composition model is preferable to the
Hypergraph model in a setting like the one at NS, in which potential advantages of the Hypergraph model do
not materialize. Our point is that there is no “best model” that suits all rolling stock scheduling problems,
it is, rather to the contrary, important to choose the right model for a particular application.



Symbol Meaning

teT timetabled trip

ceC connection between two trips

pe P train composition

tt,t departure, arrival (event) associated with trip ¢

n € [Nmax] position in train composition

reR train unit type

de D depot (to park train units)

G=(V,H) hypergraph with event-activity nodes V and hyperarcs H; we write H(G) = H etc.

G' = (V,B) base graph with event-activity nodes V' and train unit activity arcs B

Hi,H>2 hyperarcs consisting of one or more than one base arc

A=Hip set of all pull-in/out, parking, and direct connection arcs w.r.t. a model

by train unit balance at node v

hD,hA,HD,HA,C model variants: h/H/C = small/full/composition hypergraph, D/A = depot/direct connections
Gum hypergraph variants, M € {hD, HD,hA  HA, C}

Pa path in Gnp, Gup represented by direct connection arc a in Gnha, Gua

A closure of (all possible) direct connection arcs

G5 Guz hypergraph variants with all possible direct connection arcs

xz, hyperflow in G and corresponding base flow in G’

V5Y set of depot nodes Vp () of type r(v) up to and including node v € Vp (w.r.t. time)
0, first node in V;” for depot node v € Vp (inventory start)

Hf, H; set of composition change hyperarcs that imply a pull-out/in of a train unit from depot node v
vy, number of train units of type r pulled out/pulled in because of hyperarc he HT U H~
1P IP model associated with model M, M € {hD, HD, hA, HA, C}

Pip(M), PLp(M) integer and fractional polytope associated with model IPy, M € {hD, HD,hA HA, C}
vip (M), vip (M) optimal objective/LP relaxation value associated with model IPy, M € {hD,hA, HD, HA, C}

Table 2: List of symbols used in the analytic comparison. We use indices to denote subsets, e.g.,
P, € P is the set of compositions for train t € T'.

4.1 Flows in Graph-Based Hypergraphs

Rolling stock scheduling problems can be modeled in terms of hyperflows. To this purpose, we consider
graph-based directed hypergraphs G = (V,H). They consist of nodes V and hyperarcs H, where each
hyperarc is a union of disjoint arcs from an underlying directed base graph G’ = (V, B) on the same set of
nodes. Let us denote by H; € H the hyperarcs that consist of a single arc (and are hence standard arcs), and
by Hs2 = H\H; all genuine hyperarcs. If each arc in the base graph models a movement of an individual
train unit, a path a sequence of such movements, and a flow the movement of a fleet of train units, then
a hyperarc in an associated graph-based hypergraph models the joint movement of several train units in a
train composition, and a hyperflow the movement of a fleet in compositions. A hyperflow is thus a vector
z € RY that satisfies flow conservation constraints z(6%(v)) — z(6~(v)) = b, at every node v subject to
node balances b,; here and elsewhere we write (H') = >}, _;, @ for H < H. These node balances will
be mostly 0, but can also model surplus and deficit train unit inventories. As each hyperarc is a union of
standard arcs, a hyperflow  in G defines a flow 2’ in G’ by breaking the hyperarcs into arcs as
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w.r.t. the same node balances. Hence, every hyperflow in a graph-based hypergraph decomposes into paths
(in the base graph), just like a standard flow.



4.2 The NS Setting: Basic Assumptions

To model a rolling stock scheduling problem in terms of graph-based hyperflows, one introduces nodes that
identify the types, positions, and orientations of the train units in a train composition of a particular trip,
and hyperarcs that describe the movements and turns of the train units in these compositions, connecting
appropriate pairs of nodes. One possible choice (to be discussed later) are nodes of the form v = (t*,r,n),
where t € T denotes the trip, + or — departure or arrival, r € R the train unit type, and n € [nmpax] the train
unit position in the composition. Here, nyax is the maximum number of train units in a composition. Some
companies like DB also use an orientation o € {tick, tock}, where tick denotes a forward and tock a backward
orientation w.r.t. the driving direction. Trip hyperarcs can then connect appropriate departure and arrival
nodes of a trip, and turn hyperarcs can connect arrival and departure nodes of a trip and a follow-on trip.
How this general idea is implemented depends on the scenario at hand. We consider in this paper an
“NS setting”, that restricts train unit movements on connections between timetabled trips in a way that is
tailored to the situation at Netherlands Railways. Namely, an NS setting has the following basic properties:

i) Deadheading can only occur when an explicit “dummy trip” has been added to the timetable before-
hand.

ii) Train units can (only) be coupled to or uncoupled from trains via depots at stations, i.e., train units
that are uncoupled move into the depot, and train units that are coupled to a compostion come out
of the depot.

iii) Most trips have exactly one follow-on, and exactly one predecessor trip; a pair of such trips forms a
so-called 1-to-1 connection.

iv) There are (a few) trips whose composition can be split into at most two parts, or joined from at
most two parts; such trips then have at most one predecessor/successor trip, respectively. The first-
mentioned trips form what we call a 1-to-2 or a 2-to-1 connection, and it is not allowed to join a split,
or to split a join, i.e., 1-to-2 and 2-to-1 connections must be disjoint.

The above properties lead to a set of defined connections between trips, which we will denote by C.

The NS setting aims at a service that operates several lines (at high frequencies) that give rise to
sequences of follow-on trips. Train units are coupled to and uncoupled from the trains at relatively many
stations to adjust for capacity needs, parking them at the stations in sidings for later reuse. At a few places,
trains are split or joined. If deadhead trips are necessary, they are added manually as “dummy trips”.

4.3 Modelling Rolling Stock Rotations by Hyperflows

A typical turn in an NS setting is a connection that involves some train units that continue with the follow-on
trip(s), some that pull-in to the station, and some that pull-out, usually, but not necessarily, only one of
the latter two. These activities belong together and can be modeled in terms of a single hyperarc. A more
compact alternative that we will use in this paper is to break off the pull-in and pull-out activities and model
them by separate arcs. To this purpose, one sets up a station timeline for each train unit type, with a node
for each possible arrival of a pull-in activity and each possible departure of a pull-out activity. We then add
pull-in arcs that connect appropriate arrival nodes to the timeline, pull-out arcs that connect the timeline
to appropriate departure nodes, and parking arcs that connect timeline nodes that are subsequent in time,
including an initial and a terminal node that represent the start and end inventory. We call such a timeline
a depot, and there is one depot for each train unit type at every station. We denote the set of all depots by
D. Note that the train unit flow on parking arcs must be allowed to take general non-negative integer values,
which makes train unit tracking impossible. We remark, though, that train unit tracking can be handled by
introducing separate parking tracks for individual train units, but this blows up the model and introduces
degeneracy, and we will not consider this option in this paper.

The model resulting from the above construction is illustrated in Figure 2a and denoted Gyp. Here, h
stands for a “small hypergraph”, and D for train unit transfers via a depot. There are two trips (Trip 1
and 2), which can be serviced by a single train unit composition of a blue train unit, a single train unit

10



(C) GHD (d) GHA

Figure 2: Illustration of hypergraph variants: h = small hypergraph, H = full hypergraph, D =
depot connections, A = direct connections.

composition of a red train unit, or a double train unit composition of two red train units. These options
are modeled by blue standard arcs, red standard arcs, and red hyperarcs, respectively. Trip 1 is connected
to Trip 2 by arcs and hyperarcs that model straight continuations of these compositions. There is also the
option to operate Trip 1 with a red double train unit composition, and to continue with a red single train
unit composition. In this case, the red train unit at (the lower) position 2 pulls out via a standard arc to be
parked at the depot. Or the other way round, we arrive with a red single train unit composition, and pull a
red train unit out of the red depot to continue with a red double train unit composition.

This model Gy,p has some problems to control the feasibility and cost of train unit transfers to and
from a depot, namely, that one can pull-in and out from any matching depot node, which might not be
feasible in practice. For instance, in the example in Figure 2a, we cannot forbid that the red double train
unit composition is continued with the turn for the red single train unit composition and that Trip 2 is
afterwards continued with the red double train unit composition, which can be achieved by using a pull-out
and successive pull-in of the second train unit. In practice, this might be an option that a railway operator
wants to rule out. If such a situation arises, one can resort to direct connections without any depot, as
illustrated in Figure 2b. This model variant is denoted by Gpna, where A stands for transfers via “direct
connection arcs”. In this model variant, depot nodes are only needed for the start and end inventories;
we omit these nodes in the model snippets in our illustrations. Of course, the gain of control by direct
connections increases the model size.

There is another issue with the small Hypergraph models Gy,. that is illustrated in Figure 3a for the
direct arc connection case Gpa. In this instance of, say, Situation 1, the two train units of the pure red
composition can continue in various compositions, all of which are purely red. In the small Hypergraph
model, however, there is an option to pull a blue train unit from the depot to continue with one red train
unit in a mixed composition (whose actual predecessor composition is not shown). In this Situation 1, the
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(¢) Coupling Situation 2 for Gyp. (d) Coupling Situation 2 for Gyp.

Figure 3: Coupling situations in full and small Hypergraph models.

model accommodates an illegal coupling that produces an infeasible solution, i.e., the small Hypergraph
model is not correct. But even if this is allowed in, say, an extended Situation 1’, a problem to express
coupling costs in terms of arc costs comes up, because the initial and terminal composition of a composition
change arc is unknown. For example, the top red arc in Figure 3a represents three transitions of a red train
unit between three different pairs of compositions, namely, between two red single train unit compositions,
between a red single and a mixed double train unit composition, and between a red double and a red single
train unit composition. Because of the first transition, this arc can bear no coupling costs at all. If such
costs accrue in the other two transitions, they must be associated with complementing pull-in and pull-out
arcs, i.e., the coupling costs must be sums of costs associated with pull-in and pull-out arcs, and these costs
must be the same for all their target compositions. This “additive” coupling cost model is restrictive and,
if applied conservatively, leads to an underestimation of true coupling costs.! It will turn out that such
situations exist in real-world scenarios; in fact, Situation 1 in Figure 3a comes directly from our test set.

These problems of the small Hypergraph models can be eliminated by using separate copies of nodes for
each composition, i.e., by using node labels v = (t*,p,r,n) that are extended by a composition coordinate
p € P, for all feasible compositions P; for trip ¢t. This results in two more model variants that use train unit
transfers via depots and via direct connection arcs, as illustrated in Figure 2c¢ and Figure 2d, respectively.
These models are denoted as Ggp and Gpa, where H denotes a “full hypergraph”. They give complete
control over the feasibility and costs of composition changes, but they are also larger. Compare, e.g.,
the small Hypergraph model snippets for Situation 1’ in Figure 3a with its full hypergraph counterpart
in Figure 3b, in which the above-discussed transition of the red train unit is modeled by three separate
arcs. One can, of course, mix these variants and resort to a composition expanded hypergraph only where
necessary, as has been done, e.g., by Reuther (2017), but we will not do that in this paper for the sake of
simplicity of exposition.

Figure 3 also illustrates a third and final problem with fractional hyperflows in the small Hypergraph
models, i.e., with the LP relaxation associated with these models. The snippets in Figure 3¢ and Figure 3d
contain connections in which the mixed double train unit compositions must continue, while the pure red
double train unit compositions are turned into mixed ones by uncoupling a train unit (in the example the
second one) and replacing it by one of the other type that is pulled-out of the depot and coupled either
to the front or to the back. If that happens, coupling costs have to be paid that are assigned in the full
Hypergraph model to the respective composition change arcs, see Figure 3d. These costs can be avoided in

1For two train units, one can put coupling costs on depot arcs, but this does not work for longer compositions.
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the small Hypergraph model by a suitably chosen fractional hyperflow, see the bold (hyper)arcs in Figure 3c.
Namely, 0.5 times the two pure compositions can be connected to 0.5 times the two mixed compositions
without paying coupling costs on pull-out/in arcs.

For all four hypergraph variants Gy, M € {HD, HA hD,hA}, the rolling stock scheduling problem can
be formulated as the following minimum cost hyperflow problem:

(IPy) min c’x

(i) (6~ (v)) — x(6T (v)) = by VveV

(ii) 2(Hy) =1 VteT

(iii) z(H.) =1 VeeC

(iv) x=0

(v) zh <1 Y he H\Hp
(vi) x integer

Here, x is the train unit hyperflow; it is binary, except possibly on the parking arcs in the depot timelines,
which we denote by Hp. (IPy) (i) are the flow conservation constraints; the node balances are all zero
except for the beginning and the end of the depot timelines, where the balances are used to model train
unit inventories. (IPy) (ii) are the flow constraints; they ensure that every timetabled trip is serviced by
a train of a single configuration. (IPy) (iii) is special for our NS setting; it ensures a unique composition
change for each connection and, in particular, that in each connection at least one train unit continues with
a follow-on trip. We will discuss their relevance later. (IPy) (iv) are the non-negativity constraints, (v) the
upper bounds; note that there is no upper bound on the parking arcs Hp in the depot timelines. Finally,
(vii) are the integrality constraints, and the objective minimizes the cost over the hyperarcs.

4.4 Modelling Rolling Stock Rotations by Composition Changes

The Composition model can be derived from the full Hypergraph model Gyp by (i) contracting all nodes
that differ only w.r.t. the composition, which contracts genuine hyperarcs into sets of parallel arcs that are
then no longer node disjoint, (ii) deleting all but one of such parallel arcs, and (iii) deleting all arcs incident
to the depot timelines, leaving the depot nodes isolated. Note that the initial node contraction in step (i)
can produce parallel pull-in and pull-out arcs, which are all deleted in step (iii). Figure 4 illustrates this
construction to obtain the Composition model for a regular 1-to-1 connection, where the depot nodes are
just placeholders for their timestamps.

The above construction contracts sets of arrival/departure nodes associated with a composition p into
a single node, trip hyperarcs and turn hyperarcs for 1-to-1 connections into standard arcs that connect
the associated compositions, and, finally, turn hyperarcs of 1-to-2 or 2-to-1 connections into hyperarcs that
consists of two arcs that meet in a common node, i.e., these arcs are no longer node disjoint. We denote the
resulting hypergraph by G¢. In this model, most hyperarcs will actually be arcs, only the turn hyperarcs
for 1-to-2 and 2-to-1 connections are genuine (and, as mentioned above, non-graph based) hyperarcs. Each
turn can involve a composition change, which in turn can involve pull-outs or pull-ins of train units. These
pull-outs must of course be possible, i.e., the respective train units must be available. To ensure that, one
associates with every depot node v, for train units of type r = r(v), the set VD@ of all depot nodes that
precede v in time, up to the initial inventory node that we denote by 0,. Moreover, one associates to v sets
of composition change (hyper)arcs H; and H, that imply a pull-out and pull-in of v} € Ny train units of
type r from or to this depot, respectively. With this notation, the number of available train units at depot
node v is by, — ZheHj vi T + ZheH; vy xp, which must not be negative.

The rolling stock scheduling problem can be formulated in terms of the Composition model as the
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Figure 4: Ilustration of the Composition model (hyper)graph.

following integer program:

(IP¢) min ¢’z
(i) (67 (vp)) —2(67 (vp)) = 0 VpeP:67(p),0"(p) # I
(ii) z(Hy) =1 VteT
(iii) x(He) =1 VecelC
(iv) bo, — >, vizp+ >, vixp =0 Yv e Vp,r =r(v)
heH, heH;
(v) z=0
(vi) x binary

Here, = is the composition hyperflow, which is binary. (IP¢) (i) are the flow conservation constraints
for all nodes v, that arise from a contraction of a composition p; some of these composition nodes have no
predecessors or successors and hence no flow conservation is enforced for them. (IP¢) (ii) and (iii) ensure
the selection of a unique composition for every trip and a unique composition change for follow-on trips in
connections; note that H; consists of arcs, while H, can contain hyperarcs for 1-to-2 and 2-to-1 connections.
(IP¢) (iv) is the cut constraint described above that makes sure that the number of train units of type r(v)
doesn’t exhaust the inventory at depot node v; note that one can enforce a certain end inventory by an
artificial parking trip at the end of a timeline that consumes the required number of train units, such that
no special constraint needs to be introduced. (IP¢) (v) and (vi) are the non-negativity and the integrality
constraints, respectively.

4.5 The NS Setting: Model Harmonization

In order to compare all models on a fair basis, we extend the NS setting by the following further assumptions:

v) The cost of a direct connection arc a in the connection arc models Gpa and Gua is equal to the sum
of the costs of the path p, that it represents in the depot models Gi,p and Gup, i.e., ¢, = ¢(p,) for
all such arcs.

vi) There are no parking costs, and the costs of pull-in and pull-out arcs can be associated in a unique
way with composition change hyperarcs, i.e., all costs can be associated with trip and composition
change hyperarcs.

This is reasonable because the depot connection models Gyp and Gyp, and even more the Composition
model G¢, can not deal with costs that make finer distinctions. Let all other objective values be defined
in the canonical way. When considering small Hypergraph models, which can not handle general costs for
composition changes, we make an additional assumption:

vii) The costs of hyperarcs in the composition expanded Hypergraph models Gup and Gya do not depend
on the composition, i.e., the costs of two hyperarcs whose nodes differ only by compositions are the
same.
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Assumption vii) is made for the sake of the theoretical analysis. It is not always satisfied in our test set and
its violation results in an underestimation of composition change costs in the small Hypergraph models.

The logic of the Composition model with its joins and splits via a depot is such that a train unit, once
it has pulled-in to the depot, is available for arbitrary future pull-outs, i.e., the composition model does not
have control over parked train units, and exactly the same holds for the depot connection variants of the
Hypergraph model. This is different in the arc connection variants of the Hypergraph model, which can
allow or forbid connections via the depot by introducing or not introducing the associated arc connections.
These models are therefore stronger in this respect. To level the playing field, we consider the set A as the
closure of all possible arc connections, i.e., all arcs a that shortcut a path p,, and denote the associated arc
connection models by G,z and Gz. We will call such a setting unrestricted.

4.6 Model Comparison

Denote by Pip(M) and Prp(M) the integer polyhedron and the LP relaxation, respectively, associated with
model M € {hD,hA HD, HA, C}, and by v1p(M) and vp(M) their optimal objective values.

Theorem 1. In an NS setting it holds for MP € {LP,IP} that

a) e
Z/MP(HA) = Z/MP(HD) =) Z/MP(C)
c) VI V/ d)
b)
I/Mp(hA) = I/MP(hD).

Here, a) and b) hold with equality if A = A, i.e., if the setting is unrestricted. Moreover, a) and e) hold
independently of assumption vii).

Proof.

a) A < A implies vyp(HA) > vyp(HA), hence it suffices to show that a) holds with equality for this
case. Given that, let MP = LP and y € Pp(HA). For each (hyper)arc h € H(Gup), define

" Yh, hGH\HD
h=
Zpaahya) hEHDv

i.e., route the flow y, on a direct connection arc a along the pull-in, parking, and pull-out arcs of the
associated path p,. Then x belongs to Prp(HD) and, by assumption vii), produces the same cost as
y. As this argument works also for integer y, which produces an integer z, the case MP = IP holds as
well.

b) Analogous to a).

¢) Let y € PLp(HA) and denote for a (hyper)arc h € H(Gna) by HF the set of (hyper)arcs in H(Gpa)
that project w.r.t. composition onto h, i.e., these hyperarcs are copies of h that (possibly) connect
different compositions. For h € H(Gya), define

Th = Z Yg,

P
geH

i.e., aggregate the flow values on all copies. Then z belongs to Prp(hA) and, by assumption v),
produces the same cost as y. As this argument works also for integer y, which produces an integer x,
the case MP = IP holds as well. Finally, note that assumption vii) was not used.

d) Analogous to c).

e) We note that the hyperarcs of the two models are in 1-1 correspondence. Any hyperflow y in Pp(HD)
gives rise to a feasible composition flow z = ym g, by simply omitting the depot arcs, and any
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composition flow z € Pp(C) can be extended to a hyperflow in Gup by supplementing the appropriate
pull-outs, parkings, and pull-ins, which can be done because of the max-flow min-cut Theorem. By
assumption vi), these flows have the same costs. As this argument works also for integer y, which
produces an integer z, the case MP = IP holds as well. Assumption vii) was again not used.

O

We already gave examples that the inequalities ¢) and d) can be strict, i.e., the small Hypergraph models
are in general weaker than the full, composition extended ones. In fact, we showed that they can allow for
infeasible solutions and underestimate coupling costs, i.e., they are genuine (over-)relaxations. In reality, at
least in our test set, the difference is not as bad as one might expect, but not because these effects are rare,
just because their overall cost impact is small. In fact, the situations depicted in the snippets in Figure 3a
and Figure 3d are frequent in our test set.

We note the following consequence of Theorem 1.

Corollary 2. In an NS setting it holds for MP € {LP,IP} that
Pyp (HA) |z = Pup(HD) iy, = Pup(C).

In other words, the Composition model is the projection of the unrestricted full Hypergraph model onto
the subspace of non-depot hyperarcs, both in an LP and an IP sense. This is remarkable, as projections of
polyhedra involve a Fourier-Motzkin elimination, that usually does not result in an explicitly known descrip-
tion, not to speak of a description that is combinatorially meaningful. In this case, the projection eliminates
the train unit flow for depot connections, and replaces primal flow conservation by a dual formulation in
terms of cuts.

4.7 The Connection Constraints

Theorem 1 hinges on the presence of the flow constraints IPy; (iii) that stipulate the choice of exactly one
composition change on every connection in all models. This constraint is special for the NS setting and the
Composition model but uncommon in the literature on the Hypergraph model. If this constraint is omitted
from the Hypergraph models (it cannot be omitted from the Composition model), they lose theoretical
strength, as the example in Figure 5 shows. In the Composition model, the mixed composition can only
continue or split one train unit off, but the mixed composition cannot be turned around. This is, however,
possible in the Hypergraph model (in the version without connection constraints) by sending both train
units to the depot, and pulling out two new train units to assemble the reverse composition without using a
composition change hyperarc. While initially surprising, these connection constraints actually turn out to be
redundant in our real-world test set, i.e., the instances are somewhat restrictive and simply do not contain
reasonable options to not use exactly one composition change.

4.8 The NS Setting: Complexity

The NS setting is sufficiently restrictive to suggest that it might have a different computational complexity
than general multicommodity flow problems. This question has been considered by Alfieri et al. (2006), who
show the NP-hardness of a version of the problem in which feasible compositions are defined implicitly by
numerical passenger demands. They provide a reduction from numerical three-dimensional matching that
relies on an overall exact match of train capacities and demands, which is a rare scenario, and, as this
argument involves numbers, does not show strong NP-hardness. The proof also uses a very large number of
train unit types (2n + 1 types for 3n trains and 6n trips), whereas in reality, the number of train unit types
is a small constant. In fact, Alfieri et al. (2006) consider a problem with two train unit types, and the same
holds for all the real world instances of our computational study. Alfieri et al. (2006) also consider a version
with explicit compositions that is identical with our setting, but do not study its complexity. As the number
of explicit compositions is in general not polynomial in numerical demand data, the complexity status of this
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Figure 5: Omitting the flow constraints on composition changes weakens the Hypergraph models.

problem is not necessarily the same, and has therefore, to the best of our knowledge, not been determined
up to now. On the other hand, Alfieri et al. (2006) show that the problem can be solved in polynomial time
if all parameters except the number of trips are constant. We will show now that the problem with explicit
compositions is NP-hard in the NS-setting, in fact, that it is NP-hard in the strong sense, even for a train
unit fleet consisting out of a single train unit type.

Theorem 3. The Rolling Stock Scheduling Problem in the NS setting (NS-RSSP) is strongly NP-hard, even
for a single train unit type.

Proof. The proof is by reduction from 3SAT. Consider an instance A, ; C;,C; = \/JEJ sign;; £; of 3SAT
with clauses Cj, ¢ € I, and literals ¢;, j € J, that can be negated or unnegated according to their sign sign;
each clause containing three of them, i.e., |J;| = 3. Let I = [m] and J = [n].

In the corresponding NS-RSSP, all train units are of the same type. There is a “clause train” that
operates for each clause C; a gadget of four trips t“tart to,s to,, and tend that commute between two stations
A and B, see Figure 6 for an illustration. These trlps are follow-on trlps of each other in the given order
and, moreover, & is the follow-on trip of ted, 1 <i < m. Trip t*"* must be operated by a unique single
train unit composition by a “clause train unit”. The follow-on trip ¢, and its follow-on trip ¢ deal with
the satisfaction of clause C;, which we will attribute to one of its three literals (if two literals satisfy a clause,
one of them can be chosen arbitrarily). This satisfying literal must be set to true if it is unnegated and
to false if it is negated. Consider first the unnegated literals of clause C;. One of these literals can satisfy
the clause or none of them does. For the first case, provided C; contains an unnegated literal, there is a
double train unit composition that pulls-in a second train unit (which will come from a “true rotation” of
associated literal train units) in addition to the clause train unit. For the second case, there is a single train
unit composition on which the clause train unit continues; if C; does not contain unnegated literals, this
single train unit composition is the only one for trip ¢¢,. These (one or two) compositions are successors of
the single train unit composition on tsgf“. The same compositions are available for the trip ¢5., only this
time the double train unit composition represents the satisfaction of clause C; by a negated literal (train
unit). Now the construction is such that the double train unit composition on ¢, must be followed by the
single train unit composition on ¢, and the single train unit composition on ¢, by the double train unit
composition on t5. s.t. exactly one of the two double train unit compositions is chosen. Finally, the (two or
one, depending on whether C; contains a negated literal or not) compositions for ¢ are both linked to a

2]7

unique single train unit composition on tcnd forcing the clause train unit to proceed through all four clause
trips in sequence, and on to the next clause trip ¢39° (if it exists).

There is also a “literal train” for every literal ¢;. Its trips also commute between stations A and B.
There is an initial trip tbta” followed by a sequence of follow-on trips through several gadgets, namely, one
gadget for every clause C’ in which /; appears. Each of these gadgets operates two trips ¢;; and ¢;; that

operate at the same times as the claube trips ¢, and {5, to which they correspond (we write t; mstead of
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Gadget for C;

tg,c, for lighter notation). These clause gadget trips are followed by a final trip t?;ld. Each trip of such a
literal train must be operated by one out of two double train unit compositions, which represent the setting
of literal £; to true or false. With one exception in every set of clause gadget trips, the true composition of a
literal trip is only linked to the true composition of the follow-on trip, and the false composition to the false
composition of the follow-on trip, such that the two train units of the literal train must follow either an all
true or an all false rotation. The one exception in every set of clause gadget trips depends on whether literal
¢; appears in clause C; in unnegated or negated form. Suppose the first; then ¢; can satisfy clause Cj if it is
set to true. To model this option, there is an additional single train unit composition for trip ¢;;, that allows
one of the literal train units to pull-out for the time of trip ¢;;, which is also the time of the clause trip ¢¢;,
and to pull-in to the double train unit composition that satisfies this clause. After the trip, the train unit
must pull-out of the clause composition again, and return to the literal double train unit composition for
trip ¢}; to continue. If literal /; appears in clause C; in negated form, it can satisfy the clause if it is set to
false. In this case, trip ¢;; offers a single train unit composition that allows a literal train unit to pull-out
into the double train unit composition for trip ¢ that satisfies clause C;. The following double train unit
composition for the follow-on trip in the next clause gadget, or in the final trip t?’;‘d, forces the train unit to
return to the literal rotation of its truth value.

In this way, a satisfying truth assignment gives rise to a feasible rolling stock rotation schedule, and the
converse also holds. The construction is polynomial and does not involve any numbers. O

18



The proof is illustrated in Figure 6. Stations A and B appear alternatingly in this figure. At the top and
bottom are the four trips of two clauses C; and Cj, respectively. In the middle are the trips of the associated
literal gadgets. Here, the literal /; is unnegated in clause C;, and negated in clause C;. This can be seen by
looking at the associated pull-in and pull-out movements, where pull-outs and corresponding pull-ins occur
to trip ¢c, and trip tg,.

5 Numeric Model Comparison

In this section, we complement the analytic comparison of the Composition model and the different variants
of the Hypergraph model by a numerical comparison on a set of real-world instances from NS. We are
particularly interested in evaluating the performance of the linear programming bound provided by these
models and their relative performance in terms of the time required to find (near-)optimal solutions. In the
remainder of this section, we first introduce the test set and then discuss the numerical results.

5.1 Instances

Our test set is based on the 2018 timetable operated by NS, which is the largest passenger railway operator in
the Netherlands. Figure 7 illustrates the network. NS operates both intercity services and regional (sprinter)
services, where the latter generally stop at each encountered station along a railway line. Both intercity and
sprinter trains operate in a relatively high frequency, with usually 2 to 4 trains per hour for each timetable
service.

Instance |T| |R| |P|
FLIRT(-AN) 584 (+1) 2 14
SGM(-AN) 758 2 14
SLT 1681 2 14
DDZ(-AN) 419 2 6

VIRM(-AN) 1300 2 10
ICM 1222 2 30

(a) Statistics of the considered instances.

Parameter Value
Mileage 0.1
Seat shortage 0.2
Shunting 10

Ending deviation 10000

(b) Parameters of the objective function.

Figure 7: Overview of the Dutch railway network Table 3: Test set statistics.

We create rolling stock scheduling instances by considering different rolling stock fleets. At NS, train unit
types are categorized into so-called train unit families. Only train unit types that belong to the same family
can be combined in a composition. We consider train units of six families: FLIRT, SGM, SLT, DDZ, VIRM,
and ICM. The first three families are used to operate sprinter trains, while the latter three are (mainly) used
for intercity services. All train unit families are composed of two different rolling stock types, i.e., contain
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train units of two types. Instances are then created by only considering those trips in the timetable that
have, in an earlier step, been designated to be operated by train units of the considered family. For the train
unit families FLIRT, SGM, DDZ, and VIRM, we have two slightly different input specifications available,
especially deviating in the number of train units that should end at each station, leading to a total of 10
instances. Each instance is named according to the train unit family it represents, and the two different
instances for the FLIRT, SGM, DDZ, and VIRM families are distinguished by adding “-AN” as a subscript
in the name for each second instance.

Summary statistics about the instances are shown in Table 3a, where the number of trips in the instance,
the number of considered rolling stock types, and the number of possible compositions are given. Moreover,
the underlying trips in the instances are visualized in Figure 8. Based on the summary statistics, DDZ(-
AN), FLIRT (-AN) and SGM(-AN) are the smallest instances as they consider the fewest number of trips. In
addition, it can be seen from the visualizations that the trips operated by SGM train units geographically
decompose into two parts and that the DDZ instance largely focuses on one corridor in the country. The
SLT instance is the largest in the number of trips and can be seen from the visualization to cover a large
part of the Netherlands. On the other hand, ICM train units can be coupled in longer compositions of
up to five train units, giving a larger number of possible compositions than in the other instances. The
VIRM(-AN) instance is in between the SLT and ICM instance in terms of the number of trips and can be
seen to especially cover services in the south and western parts of the country.

The parameters used for the objective function can be found in Table 3b. The first two parameters relate
to the operated compositions. These define the costs per traveled kilometer of a carriage and per seat that
is short compared to the expected number of passengers, respectively. Note that these costs can be directly
associated with composition hyperarcs in the Hypergraph model variants and with composition variables in
the Composition model. The third parameter relates to the cost of performing a shunting action, which is
incurred if either coupling or uncoupling occurs during a connection. These costs can be directly associated
with composition change variables in the Composition model, as well as with composition change hyperarcs
in the full Hypergraph model variants due to both the predecessor composition and successor composition
of such a hyperarc being known in these variants. The latter is not possible in the small Hypergraph model
variants, meaning that these models generally underestimate the true shunting cost. The fourth parameter
defines the cost of a deviation from the number of train units, of a given rolling stock type, that are expected
to end at a station. These costs can be easily taken into account in all models by including extra variables
that measure the deviation to the ending node balances.

5.2 Results

For the numerical comparison, we implemented all models as pure MILP models and solved them with the
CPLEX 20.1.0 general-purpose MILP solver. We have chosen this approach, over using the exact solution
methodology used to solve the Composition model and Hypergraph model at the two companies, as both
are highly specialized for the individual company’s needs. Moreover, the column generation methodology
developed for the Hypergraph model does not easily translate to all the variants of this model.

Model Sizes The size of the resulting MILP models, in terms of the number of variables and constraints,
is given in Table 4 and illustrated in Figure 9 for each of the NS instances.

It can be seen that the small Hypergraph models hA and hD have the fewest number of constraints,
where the direct connection model hA is slightly smaller than the depot model hD. The smaller number of
constraints for these models can be explained by the contraction of nodes leading to fewer flow conservation
constraints, where the direct connections in hA additionally prevent the constraints needed to model the
flow in the depot. The Composition model C is close in the number of constraints to the small Hypergraph
models due to modeling flow conservation on the composition instead of train unit level. The full Hypergraph
models HA and HD are clearly the largest in terms of the number of constraints, which can be explained
by the duplication of nodes for the positions in the compositions and the corresponding duplication of flow
conservation constraints. This especially leads to a large number of constraints for the ICM instance, which
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(e) VIRM (f) ICM

Figure 8: Visualization of the timetables underlying the NS instances. Each plot shows the trips
in the timetable in space (horizontal axes) and time (vertical axis). Moreover, the color of a line
indicates the cheapest composition from the set of suitable compositions to operate the trip in the

timetable and the line’s thickness indicates this composition’s size.
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allows for a larger number of possible compositions per trip.

Compared to the number of constraints, the differences between the models are more pronounced for
the number of variables. Note that the y-axis is given on a logarithmic scale in Figure 9a. First, it can be
seen that the models that track connections directly (hA and HA) are significantly larger than those models
that use a depot representation (hD and HD) or track the inventories implicitly (C). This effect is especially
clear for the ICM instance, which allows for longer compositions and thus provides more direct connection
possibilities. Clearly, the more explicit the rolling stock connections are handled, the larger the model grows
in terms of the number of variables. Second, it can be seen that the full Hypergraph models HD and HA
use about 1.1 — 1.3 and 1.6 — 2.8 as many variables as their direct counterparts hD and hA, respectively,
and even more for instance ICM. Hence, the duplication of nodes over compositions leads to a considerable
increase in the number of hyperarcs, in particular when there are many feasible compositions as in the ICM
instance. Overall, it can be concluded that hA is the smallest model on all instances in terms of the number
of variables, closely followed by the Composition model. The full Hypergraph model HD lags not far behind,
followed by a relatively large gap towards the Hypergraph models hD and HD that use direct connections.

Table 4: Size of the Composition and Hypergraph models, expressed in the number of variables
(Var.) and constraints (Cons.), for each of the NS instances.

C HD hD HA hA
instance Var. Cons. Var. Cons. Var. Cons. Var. Cons. Var. Cons.
FLIRT-AN 7561 7941 8244 11757 7346 6803 15267 11151 9602 5671
FLIRT 7579 7944 8291 11783 7347 6795 15764 11182 9657 5668
SGM-AN 12899 12418 14875 20511 12360 10320 53238 19699 22891 8843
SGM 12899 12418 14875 20513 12360 10322 53296 19699 22887 8843
SLT 21531 22818 23499 33794 20837 19678 58477 31668 32161 16366
DDZ-AN 5905 5386 7135 7775 5549 4653 30048 7328 13174 3868
DDZ 7961 8075 9298 12061 7410 6703 36050 10769 16148 5073
VIRM-AN 18717 17590 22778 27121 18128 15606 109903 25627 39413 13153
VIRM 20477 18780 24975 29582 19665 16351 120768 27995 43949 13805
ICM 42449 29431 60551 67746 34014 17182 2320477 66231 158006 14855

Obtained Bounds The objective value and linear programming relaxation bound obtained by each
model are given in Table 5 and plotted in Figure 10 for each of the NS instances. The colors in Table 5
group together models that obtain the same values for a given instance.

Our results show that the Composition model and the full Hypergraph models (HA and HD) produce
the same IP and LP relaxation values for all instances, see the blue values/bars. This equality between the
obtained values for C and HD directly follows from Theorem 1, and so does the equality between HA and the
other models, as the NS instances generally satisfy A = A. One can also see that the integrality gap is very
small for all instances for these models, where in absolute terms the difference is often smaller than the cost
of 1-2 extra shunting actions. In particular, the optimality gap is zero for six of the ten instances (FLIRT,
SGM, SLT, DDZ-AN, DDZ, and VIRM), showing that the LP relaxation gives a very tight approximation of
the integer program. Some differences between the instances are revealed though by looking at the relative
integrality gaps. FLIRT-AN has the largest integrality gap of 1%, followed by VIRM-AN with 0.44%, the
remaining instances have gaps below 1%,. These differences generally seem to be very instance specific,
where larger integrality gaps are especially seen when mixing fractional compositions (e.g., a half red and a
half blue composition) leads to a better match between capacity and demand for a given set of trips.

When looking at the small Hypergraph models (cyan values/bars), it can be seen that these always
produce weaker IP and LP results. This means that these models produce IP solutions that are not feasible
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Figure 9: Model sizes for all models and instances.

Table 5: Obtained linear programming relaxation (LP) and integer objective (MILP) value for the
Composition and Hypergraph models for each of the NS instances.

C HD hD HA hA
instance LP MILP LP MILP LP MILP LP MILP LP MILP
FLIRT-AN 18805.3 18992.2 18805.3 18992.2 18306.2 18306.2 18805.3 18992.2 18306.2 18306.2
FLIRT 17074.4 170744 17074.4 17074.4 16820.8 16820.8 17074.4 17074.4 16820.8 16820.8
SGM-AN 19630.3 19646.8 19630.3 19646.8 18924.4 18939.8 19630.3 19646.8 18924.4 18939.8
SGM 18998.6 18998.6 18998.6 18998.6 18290.8 18299.7 18998.6 18998.6 18290.8 18299.7
SLT 35291.7 35291.7 35291.7 35291.7 34339.3 34392.1 35291.7 35291.7 34339.3 34392.1
DDZ-AN 20040.2 20040.2 20040.2 20040.2 19526.4 19580.2 20040.2 20040.2 19526.4 19580.2
DDZ 18427.4 18427.4 184274 184274 17913.6 17957.4 18427.4 18427.4 17913.6 17957.4
VIRM-AN  98297.4 98732.7 98297.4 98732.7 95476.8 96503.9 98297.4 98732.7 95476.8 96503.9
VIRM 86941.0 86947.4 86941.0 86947.4 84028.7 84459.2 86941.0 86947.4 84028.7 84459.2
ICM 39851.4 39885.7 39851.4 39885.7 30623.4 37011.4 39851.4 39885.7 300641.2 37032.2
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Figure 10: Comparing optimal solution values for all models and instances.

within the Composition model, indicating that the inequalities in Theorem 1 are indeed often strict for
real-life instances. Looking at the relative gaps reported in Figure 10b, it can be seen that the relative
gap to the other models is especially big for the ICM instance. This is also the only instance for which we
see a difference between the values of the hD and hA models. This higher gap and difference between the
models can likely be explained by the longer compositions that can be formed in this instance, allowing more
composition changes to be formed that are illegal in the other models. Looking at the size of the optimality
gaps, it is harder to make a comparison to the other models. While the optimality gap is clearly larger for
the ICM instance for both hA and hD, an integer LP relaxation solution is found by both models for the
instance FLIRT.

Further insight into how the small and full Hypergraph models compare to each other is given by Table 6,
where the different cost components are shown, i.e., composition and coupling costs for each solution of
the respective model. These results are visualized in Figure 11a and Figure 11b. Here, Figure 11a gives
the composition and coupling cost for the small Hypergraph models and, on top of that, the additional
composition and coupling costs in the full Hypergraph models. The difference is further investigated in
11b, where the distribution of additionally required composition and coupling cost for a solution to the full
Hypergraph models compared to the small models is given. Two conclusions can be drawn immediately. The
first is that the LP relaxation’s coupling cost is a very sound approximation of the IP’s coupling cost as it
differs only in 5 out of 20 cases, with a maximum absolute deviation of only 30. The second is that the small
Hypergraph models underestimate the coupling costs resulting from the Composition model, respectively,
the full Hypergraph models by a significant amount. Indeed, the solutions to the small Hypergraph models
spend at most ~ 3.29,, for coupling while the solutions to the full models spend at least ~ 2.4% for coupling.
Regarding the composition costs required to operate an instance, it can be seen that the smaller models do
give a sound approximation.

When looking at the found integrality gaps, two instances stand out. FLIRT-AN is the instance with the
largest integrality gap for the full Hypergraph models while there is no integrality gap for the small models.
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Table 6: Cost components of the solutions to the linear programming relaxation (LP) and integer
program (MILP) of the Composition and Hypergraph models for each of the NS instances.

hA, hD C,HA, HD
LP MILP LP MILP
Instance Comp. Coup. Comp. Coup. Comp. Coup. Comp. Coup.
FLIRT-AN 18256.2 50.0 18256.2 50.0 185354  270.0 18722.2  270.0
FLIRT 16760.8 60.0 16760.8 60.0 16784.4 290.0 16784.4  290.0
SGM-AN 18894.4 30.0 18909.8 30.0 19016.9 613.3 19026.8 620.0
SGM 18250.8 40.0 18259.7 40.0 18378.6  620.0 18378.6  620.0
SLT 34229.3  110.0 34282.1 110.0 34451.7  840.0 34451.7  840.0
DDZ-AN 19516.4 10.0 19570.2 10.0 19570.2  470.0 19570.2  470.0
DDZ 17913.6 0.0 179574 0.0 17957.4  470.0 17957.4  470.0
VIRM-AN 95306.7 170.0 96323.9 180.0 96254.2 2043.2 96712.7 2020.0
VIRM 83858.7 170.0 84289.2 170.0 84921.0 2020.0 84957.4 1990.0
ICM 36530.0 111.2 36922.2 110.0 38080.1 1771.3 38095.7 1790.0
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Figure 11: Analyzing the cost components of vy (h-) and vy (H-).
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Further analysis showed that this larger gap is particularly the result of two sequences of connected trips,
which both contain a trip during the rush hour with a high seat shortage when operated in a single train
unit composition. Unless uncoupling can be done afterwards, these trips would force the whole sequences to
be operated in a double train unit composition. It turns out that such uncoupling actions are not optimal
in the C, HA, and HD models due to the train unit ending inventories. However, their LP relaxations
can operate these sequences with a fractional train unit composition, thus resulting in significantly lower
composition costs for the LP models and a relatively large optimality gap. The second instance that stands
out in Figure 10b is VIRM-AN. A closer examination reveals that the solutions to the LP-relaxations of the
full and small Hypergraph models require different amounts of coupling, which leads to a larger amount of
deviating compositions between the LP and the IP solutions. This explains the gap between the objective
function values.

Computation Time Lastly, we look at the computation time required to solve each of the models and
their corresponding linear programming relaxation. The results for each of the NS instances are given in
Table 7 and visualized in Figure 12. The computations were performed on an Intel® Core(TM) i7-9700K
CPU @ 3.60GHz with 8 cores and 8 threads.

Table 7: Computation time in seconds for solving the linear programming relaxation (LP) and
integer program (MILP) of the Composition and Hypergraph models for each of the NS instances.

C HD hD HA hA
instance Lp MILP LP MILP LP MILP LP MILP LP MILP
FLIRT-AN 0.02 0.09 0.05 0.12 0.17 0.33  0.05 0.38 0.09 0.25
FLIRT 0.02 0.09 0.03 0.10 0.10 0.33 0.03 0.40 0.10 0.25
SGM-AN 0.09 0.33 0.18 0.41 0.31 0.92 0.27 1.49 0.32 1.43
SGM 0.07 0.21 0.11 0.31 0.30 0.82 0.27 1.01 0.30 0.93
SLT 0.12 0.19 0.16 0.38 0.55 1.43  0.32 1.55 0.59 1.87
DDZ-AN 0.05 0.10 0.12 0.26 0.11 0.54 0.12 1.07 0.14 0.94
DDZ 0.25 0.11 0.05 0.22 0.12 0.44 0.13 1.07 0.13 0.71
VIRM-AN 0.35 1.50 0.73 214 1.09 5.16  0.97 8.74 0.50 7.84
VIRM 0.34 0.99 0.73 1.41 0.86 59.54  1.02 7.59 0.56 5.49
ICM 2.92 4.28 5.45 7.35 1.89 35.18 93.86 2502.83 3.21 143.28

Most instances can be solved quickly by all of the models, where the computation time required to
solve the linear programming relaxation and integer program is below 10 seconds for all instances except
ICM. Especially the sprinter instances FLIRT(-AN), SGM(-AN), and SLT can be solved quickly, with a
computation time of less than 2 seconds for all of the models. The instance that stands out as the hardest
is the intercity ICM instance, for which a longer computation time can both be seen when solving the
linear programming relaxations and integer programs. This can likely be explained by the larger number of
compositions possible for this instance. Especially the longer computation time of the HA model should be
noted, which is in line with the large size of this model for the ICM instance.

When comparing the models, it can be seen that the Composition model has the lowest computation time
for solving the integer program for all instances, and often has one of the lowest solving times when solving the
linear programming relaxation. Closest in computation time for the integer program is the full Hypergraph
model HD. That this model also performs well is likely due to it providing the same linear programming
bound as the Composition model and its relatively compact size in terms of variables, even though it is
significantly larger in terms of the number of constraints. It can be seen that the small Hypergraph models
often perform well in terms of solving the linear programming relaxation, but lack behind more significantly
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Figure 12: Comparing computation times for all models and instances.

for the integer programs. This is especially the case for the larger ICM instance. The computation times of
the non-contracted model HA are overall the longest, which is in line with the larger size of this model. As
noted before, especially the long solution time for the ICM instance is notable for this model.

Another interesting observation from our results is the relatively large computation time of the linear
programming relaxation compared to the full integer program. This can be explained by the results we
found on the strength of the linear programming relaxation, meaning that branching is often not or only
to a limited degree required when solving the integer program. The only exception to this is for the ICM
instance, for which we also see a significantly larger gap for some of the models between the time needed to
solve the linear programming relaxation and the integer program.

Discussion Overall, the numerical results show that the Composition model performs best for our test
instances. It has the lowest computation time for solving the integer program for all instances and has an
LP relaxation computation time that is among the best for most instances. Moreover, it provides the same
linear programming bound as the full Hypergraph models but is more compact than these models, in terms
of both the number of constraints and variables. This difference in size, and computation time, is especially
apparent when comparing to the HD model for the larger ICM instance. While the small Hypergraph models
are generally also compact in size, our results show that these models provide integer solutions that are not
feasible in practice for the NS instances.

6 Conclusion

In this paper, we compared models that have been proposed for the scheduling of rolling stock at passenger
railway operators. Through a literature review, we have shown how models differ due to differences in the
operational settings of railway operators, particularly leading to differences in the handling of compositions,
turnings, maintenance requirements, and passenger demand. Our literature review also shows that a number
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of clear streams can be identified in the literature, which either make use of the same core model or focus
on the same problem setting.

In an analytic comparison, we further analyzed the core models used in two streams of the literature: the
Composition model that has been proposed for the setting of Netherlands Railways (NS) and the Hypergraph
model that has been proposed for the setting of DB Fernverkehr AG (DB). In our theoretical analysis,
we focused on the rolling stock scheduling setting of NS, suggesting different variants of the Hypergraph
model to vary the compactness and expressiveness of this model. We show that the linear programming
relaxation provided by the Composition model is not necessarily the tightest of all models, but that the
linear programming relaxations of all high quality models are equivalent in many cases of practical relevance,
even if not all sufficient equivalence conditions are met.

Lastly, we have compared the performance of the Composition model and the different variants of the
Hypergraph model numerically on real-world instances of NS, which represent different rolling stock sub-
fleets. Our analysis shows that the Composition model combines compactness, especially in terms of the
number of variables, with a very tight linear programming bound. These results are also reflected in the
computation times, which are overall the lowest for the Composition model. However, some of the variants
of the Hypergraph model also solve quickly on all instances. Clear differences exist though between the
Hypergraph model variants.

Our results show that many factors are of importance when solving rolling stock scheduling problems.
Solving such problems thus requires a careful selection and tuning of a most appropriate model, where the
appropriateness of a model depends strongly on the operational setting. Our analysis particularly shows the
analytic and numerical relations between two commonly used models within the context of the NS setting. A
similar analysis could clarify the relations between other rolling stock scheduling models, and study different
operational contexts.
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