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A B S T R A C T

Inspection of confined spaces poses a series of health risks to human surveyors, and therefore a need for robotic
solutions arises. In this paper, we design and demonstrate a real-time system for collecting 3D structural
and visual data from a series of inspection points within a prior map of a confined space. The system
consists of a GPU accelerated 3D point cloud registration and a visual inertial odometry estimate fused in
an Unscented Kalman Filter. Using the state-of-the-art deep learning-based feature descriptors, FCGF –and the
robust Teaser++ 3D registration algorithm– point clouds from a narrow field of view, time-of-flight, camera
can be registered to a prior map of the environment, to provide accurate cm-level absolute pose estimates. The
uncertainty of the system is furthermore estimated on the basis of the novel GPU-based Stein ICP algorithm.
Visual defects, represented by augmented reality fiducial markers, are automatically detected during inspection,
and their positions are estimated in the map frame of the confined space. The performance of the system has
been evaluated in realtime onboard a small UAV, within a mock-up model of a water ballast tank from a
marine vessel, where the UAV was able to navigate and inspect the ambiguous and featureless environment.
All defects were estimated within +/−10 cm of their actual position.
1. Introduction

Inspection of dark and confined spaces can be a challenging task for
both human and robotic applications [1]. Inspections of these spaces
are performed mainly by humans due to the often complex structures
and limitations of current robotic capabilities. The environment can
often be considered dangerous due to the variability in atmospheric
conditions, the risk of falling, and the often unknown integrity of the
structure. Likewise, this line of work can also be tiresome and dirty,
further increasing the risk of human error, such as missing critical de-
fects. Therefore, it is important to minimize human involvement during
inspection of confined and structurally complex spaces, to eliminate
human risk, and to maximize repeatability of inspections. The repeata-
bility of an automated inspection solution can also allow analysis of the
trend of defects in critical areas.

For the inspection of the water ballast tanks, three modes of opera-
tion are of interest, namely (1) Mapping and exploration of the environ-
ment, (2) Visual close-up inspections, and (3) Contact-based thickness
measurement of the metal structure. The authors of [2] have shown
how water ballast tanks can be mapped using an exploration-based
approach where unknown spaces are used as an element in the RRT
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cost function. Therefore, the focus of this paper is on autonomously
performing visual inspections in an already known environment. The
environment can be known from either the CAD drawings of the ship
or from the construction of a map as shown in [2].

The goal of this paper is to autonomously fly an inspection mission
in a water ballast tank, using an unmanned aerial system as shown in
Fig. 1, while collecting inspection data in the process. The proposed
inspection system to solve this problem can be seen in Fig. 2, where
this paper covers the entire pipeline except the data evaluation part.
In-depth research on deep learning-based detection and evaluation of
images collected from the UAV is covered by [3,4].

Most autonomous systems require a good localization module, and
this will therefore be the backbone of our system. A large part of our
proposed inspection system is dedicated to both localizing the UAV
itself, but also localizing detected defects. Localizing within structured,
confined, and ambiguous spaces poses a range of challenges. These
spaces often contain low lighting conditions and poor visual features,
therefore limiting visual tracking or recognition. Likewise, the nature
of industrial man-made spaces is often built with a certain repeatable
pattern in mind, challenging classical 3D geometric pattern recognition
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Fig. 1. The Unmanned Aerial Vehicle used in the experiments of the autonomous
inspection system. A simulated defect is depicted as an AR tag in the next ballast tank
compartment.

and subsequent data association. The inspection pipeline handles a
range of these challenges by utilizing prior information from the CAD
drawing of the industrial space, which in this case is the water ballast
tanks of marine vessels. The pipeline, furthermore, uses a Kalman fused
combination of Visual Inertial Odometry and 3D deep learning-based
geometric features, collected, respectively, from an Intel T265 stereo
camera [5] and L515 ToF camera [6].

It is important to note that the designed inspection system has the
potential to be utilized on various kind of robotic platforms, where in
this paper we have tested the pipeline on a small Unmanned Aerial
Vehicle (UAV). Therefore, the purpose of the UAV is to visit planed
inspection points inside the ballast tank and collect image data of
defects. In this paper, the defects are marked using wall-mounted
ArTags, at typical positions of structural stress concentration.

Part of the localization system has been tested offline in [7],
whereas this paper focus on real time execution of a whole automatic
inspection pipeline. This work, therefore, does not require a human in
command during inspection, compared to the previous work where a
human was still in control of the robot. Due to less requirements for
real-time performance as well as the classification societies require-
ments for final decision by humans, the last part of the pipeline –i.e. the
automatic evaluation of the inspection data– should still be performed
offline using machine learning-based methods as described in [3,4].

The main contributions of this work are as follows.

1. The tangible deployment of Graphics Processing Units (GPUs)
in conjunction with deep learning techniques for precise lo-
calization, capitalizing on 3D geometric data, that enables the
autonomous operation of inspection robots within environments
which lack distinctive features.

2. Proving that a faster but inferior deep geometric feature de-
scriptor is sufficient for the accurate online localization of aerial
inspection robots under the condition that the system includes
a robust registration algorithm capable of providing accurate
transformations even in the presence of high percentage of out-
liers.

3. The employment, for the first time, of a state-of-the art 3D reg-
istration uncertainty estimation algorithm –Stein ICP, originally
designed for 3D point cloud matching– in an online GPU-based
robot localization system.

1.1. Related work

Entering confined spaces is considered a high-risk operation for hu-
mans, and therefore the need to use robots has emerged. The most com-
mon approaches are submerged Remotely Operated Vehicles (ROV),
2

Magnetic Crawlers, or Unmanned Wheeled Robots, and to some extent,
Aerial Systems.

Research on ROV applications, such as [8–10], has focused mainly
on inspecting the exterior of the hull. This has been done by submerging
the vehicle near the vessel and either manually controlling the ROV
or by using wheel encoder data and to some degree visual odometry.
For the confined spaces in the ballast tanks, ROVs are, however, not
considered as a viable solution. The ballast tanks are rarely filled with
water, and visibility of the water in the tanks is often limited due to
impurities in the water such as mud and marine growth.

The authors in [11,12] have investigated the usage of crawlers
and small legged robots for inspection of marine vessels. The authors
of [11] have designed a magnetic track wheel robot, which is capable of
autonomously building a mosaic image of a vertical inspection run on a
planar surface of the cargo bay. This design is limited by a simple odom-
etry localization system, but also by its ability to traverse obstructions
in the ballast tanks such as ladders, beams, and bulkheads. Instead, a
small legged robot was designed in [12], which uses electromagnets
on its feet, and is able to traverse tight areas and obstacles, as long as
they are magnetic. To our knowledge, they do, however, not provide a
localization or navigation system for autonomous control of the robot.
The authors of [13] build on a similar magnetic approach as [11], but
uses an external pose estimate for reference, which is not considered
possible for the complex and confined space of the water ballast tanks.

The challenges of traversing confined spaces using aerial systems
have been described in [3,14], where they mention reliable absolute
localization and lack of remote control as some of the major difficulties.
It is therefore clear that some level of autonomy is required for the
UAV. The authors of [15,16] solve the localization issue by implement-
ing Ultra Wide Band (UWB) satellites inside the confined space to give
them an absolute global coordinate system for the UAV. This proves to
provide accurate results, but installing UWB electronic hardware in the
water ballast tanks is in our case not considered a viable solution. Other
aerial systems such as [17,18] use cameras and touch-based sensors
to demonstrate the ability to traverse small man-way-sized ventilation
shafts, but have not focused on collecting inspection data during their
flight. The authors of [7] used point clouds from time-of-flight(ToF)
cameras combined with the well-known Fast Point Feature Histograms
(FPFH) [19] to perform scan to map registrations. However the FPFH
descriptors performed poorly in these structured environments, com-
pared to deep learning-based geometric feature descriptors, due to
the high level of structural similarity. The authors of [20] provide a
path planning solution for autonomous inspection of the outside of
marine hulls, using multiple UAVs to first perform a general inspection
and secondly a close-up inspection of detected defects. The system
was not tested on real vessels or in more constricted environments
such as confined spaces but, rather, in simulated environments. Other
research [21] has focused on exploration and mapping of the environ-
ment using a combination of Simultaneous Localization and Mapping
(SLAM) and Convolutional Neural Networks (CNN). This research was
conducted using a similar sized UAV as ours, but was however only
tested in a well lit office environment.

The authors of [22] used LIDARs, cameras, and IMU data from the
onboard AscTec flight controller to navigate around the cargo hull of a
large marine vessel. The UAV used a 2D lidar to estimate the distance
to the surrounding walls and a 1D lidar to estimate the altitude inside
the cargo hull. The system was tested within both the cargo hull and
the top-side ballast tanks, but a user was still required to give high-
level commands to the UAV through a base station using a joystick.
The system was further expanded in [23] to use multi-threaded Binary
descriptor-based Image MOSaicing (BIMOS) to create a single overview
image of the inspection surface, using ORB features and Keyframes.

The research carried out in [24] implements an autonomous Un-
manned Aerial Fire Detection System, for marine vessels. It can navi-
gate inside the main areas of the ship, such as corridors and doorways,

by utilizing a prior map of the environment. A particle-filter-based
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Fig. 2. Overview of the inspection system running onboard the UAV. 3D point cloud registrations between a known map and scan from the L515 sensor are fused with a VIO
velocity estimate in an UKF to give an absolute pose estimate in the map frame. A defect detection system is continuously evaluating image data from the sensor to provide an
estimate of defects within the map.
localization algorithm was used to localize the UAV in a generated 3D
octomap. They are able to localize the fire using a thermal camera, but
point to some failures and limitations due to drifting odometry and poor
3D registrations between the sensor-scan and the prior map.

In [25] the authors used a UAV to explore an underground mine
environment, to locate objects of interest, which in their case were
humans in need of rescue. The solution is based on the fusion of LiDAR
data with thermal vision frames and inertial measurements. The system
proved capable of autonomously navigating the mine environment,
however, the repeatable structure and ambiguity of the ballast tanks
do not allow for a simple transfer of the system to new domains.

In summary, existing research is still needed for autonomous con-
fined space inspection of water ballast tanks, which present unique
challenges that motivate our work.

2. System description

2.1. Unmanned Aerial Vehicle

To test the entire inspection navigation pipeline, an Unmanned
Aerial Vehicle (UAV) is custom built to be able to enter through the
man-way in the water ballast tanks. The UAV shown in Fig. 1 is based
on the specifications in Table 1. It consist of a Lynxmotion Crazy2Fly
Drone frame equipped with a Pixhawk 4 Mini Flight Controller Unit
(FCU), an Aeeon PICO-WHU4 I5 PC, and a Nvidia Jetson Xavier NX
that functions as the GPU of the system. A protection cage is in-
stalled around the UAV to protect the propellers from potential impacts
with the surrounding environment. The cage of the UAV increases the
footprint of the UAV to 500 × 500 mm, with a height of 140 mm.

The UAV is also equipped with an Intel L515 Time-of-Flight camera
and two Intel T265 VIO cameras. The front facing T265 is acting as
the VIO input to the localization system, where as the down-facing
camera is completely decoupled from the localization system, to only
provide the ground truth estimate from a series of AR tags installed
on the bottom of the tank. The UAV uses the two onboard computers
to process sensor data and communicate with the onboard FCU. The
main computer is the AAEON PICO-WHU4, and the second processing
unit is the Nvidia Jetson NX development board. The onboard PICO PC
handles the communication to the FCU and drives the data collection
of the T265 and L515 cameras. The L515 point cloud is down-sampled
using a voxel grid of 0.05 m, and the point cloud is then transmitted
to the Nvidia Jetson over a cabled Ethernet connection. The Nvidia
Jetson handles the majority of the localization pipeline by utilizing
the Graphical Processing Unit. The latter system also runs the 3D
registration part of the Localization pipeline, where especially the
3

Table 1
Specifications of the UAV used throughout the experiments.
Aerial Platform

Base frame Lynxmotion Crazy2Fly
Protection cage Custom design
Propellers Quad, 9", (HQPROP 9 × 4.5)
Dimensions H: 140 mm, W: 500 mm, L: 500 mm
Weight 2.5 kg including a 4 s battery
FCU Pixhawk 4 Mini, Px4 v.1.10 Firmware

Onboard Sensors

VIO Intel T265 camera (Front-facing)
Point cloud Intel L515 ToF camera
Inspection cam. Intel L515 color camera
Ground truth Intel T265 camera (Downward-facing)

Onboard Compute units

Onboard PC AAEON PICO-WHU4 (Intel I5, 8th gen)
GPU Nvidia Jetson NX (16 Gb memory)

correspondence search and feature descriptors benefit from the parallel
computation power. The low-level control of the UAV is done by the
FCU Pixhawk 4 Mini [26], running the PX4 1.10 software stack, where
the communication to the AAEON PC is carried out by wired RS232
connection. The PC sends 20 Hz pose estimates and waypoints to the
FCU, which then ensures the robot is on the commanded position with
an acceptance threshold set to +/- 10 cm. The PICO and the Jetson run
Ubuntu 18.04 with ROS Melodic [27], where the PICO PC is running
as the ROS master and the Nvidia Jetson as a secondary device, with a
wired Ethernet connection. The defects, represented as April Tags, are
detected using the ROS package AprilTag 3 visual fiducial detector [28]
on the PICO PC using the RGB image stream from the L515. Using the
camera matrix, the 2D April tag is transformed into the 3D position of
the camera frame and then transformed into the map frame using the
absolute pose estimate from the localization pipeline. It is important to
note that no April tags are used for the actual localization part of our
system.

2.2. Environment

The proposed system has the potential to operate in a wide range
of confined spaces, but the focus of this paper has been to verify the
system in a water ballast tank of a marine vessel. To enable rapid
development and testing –and due to temporary access restrictions to
vessels– a mock-up model of a topside ballast tank has been used for
the experiments. A map of the ballast tank is represented as the gray
point cloud shown in Fig. 3, where as a photo of the inside of the tank
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Fig. 3. Illustration of the mock-up model of the water ballast tank, shown as the gray
point cloud. An example of an aligned sensor scan is depicted with orange points. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 4. Photo of the interior of the mock-up model of the water ballast tank, without
the mounted ground truth tags and defects.

Fig. 5. Undistorted image with the floor mounted ground truth tags visible, captured
from the down-facing T265 camera. The tags are only used for the ground truth
estimation and not for the actual localization pipeline.

is captured in Fig. 4. The ballast tank consists of two compartments
with a bulkhead/webframe as the divider. A registered scan from the
4

Fig. 6. Example of an April Tag defect detected by the Camera.

L515 is shown as the orange point cloud in the figure. A simplified top-
down view of the ballast tank is also depicted with black bold lines in
Fig. 10. The bounding box of the ballast tank is 5.2 × 3.0 × 1.8 meter.
To provide a reasonable ground truth estimate, a series of April Tags
are mounted on the floor of the ballast tank, as shown in Fig. 5. The
positions of these tags were first manually mapped and then used in the
localization part of the TagSLAM package [29], to provide the ground
truth pose of the UAV.

The defects the UAV needs to detect and localize are represented
by 6 April Tags mounted on the walls within the tank, and in the field
of view of the camera at the specified inspection points, as shown in
Fig. 6. Inspection points are defined based on known areas of the ship
that must be inspected according to the shipping regulations. These
inspection points are often areas that are prone to deterioration or
failure, due to the high material stresses within the structure of the
ship.

3. Inspection pipeline

To autonomously perform the inspection, the system is designed
as shown in Fig. 2. During startup of the UAV, a list of inspection
waypoints is loaded onto the onboard PC and a point cloud map of
the environment, with its extracted geometric features, is loaded into
the GPU memory of the Nvidia Jetson.

3.1. Inspection waypoint execution

The map of the environment is provided based on the CAD drawings
of the ship and an inspection path can be generated for the UAV
based on inspection points. For older vessels where the CAD draw-
ings might not be readily available, a map of the environment could
be obtained manually from the 2D drawings or by either using 3D
surveying (large 3D scanners) or post processing (Full Bundle Adjust-
ment and Dense 3D reconstruction) from currently manually operated
UAVs. A lower-resolution map could also furthermore be obtained from
UAVs equipped with 3D spinning LiDARs combined with methods such
as [30–32]. Inspection points, or areas, are defined in the inspection
specifications of the classification societies [33], and are often based on
areas of high stress concentration or exposure to buckling, resulting in
an increased risk of corrosion. The generated route from the inspection
points is, thereafter, executed by the UAV using the Pixhawk FCU using
the localization pipeline of Section 3.2 as its absolute pose estimate.
During the inspection execution, the UAV will arrive at a series of
inspection points, where along its path it will look for defects and
collect visual data in the form of RGB images and surface point clouds
for any detected defects. The RGB images and surface point clouds will
later serve as the evaluation and decision base for onshore inspection
personnel. While not included in this paper, for the sake of conciseness,
we have in the past automated the evaluation of corrosion or defects
using different machine learning methods as investigated by [3,4].
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Fig. 7. Localization pipeline.

.2. Localization pipeline

A major part of an autonomous inspection system is its localization
ipeline, as illustrated in Fig. 7. The pipeline can be divided in three
ections; a 3D registration module, Visual Inertial Odometry (VIO), and
astly a filtering step. The 3D registration module generates an absolute
ose estimate by registering the sensor scan (point cloud) to the map
f the environment. The VIO provides a relative odometry estimate,
here in our case the velocity is used as a state update in our filtering

tep. The filtering module of the pipeline first removes poor absolute
ose estimates from the 3D registration based on a motion filtering
hreshold, and then fuses the inlier pose estimates with the velocity
stimate from the VIO, in an Unscented Kalman Filter (UKF).

.2.1. Localization based on 3D registration
Due to the fact that the intended environments (i.e. ballast tanks of

arine vessels) for this system are visually featureless, the localization
ipeline in this work relies on 3D registration of –live acquired– 3D
cans with pre-existing 3D models. While pair-wise registration is usu-
lly employed for 3D point cloud registration tasks [34], the algorithms
roposed in the literature, mainly variants of ICP, are not suitable for
mplementation on an inspection UAV, due to the ICP’s requirement of
pproximate prior knowledge of the model/target pose, the problem of
ocal minima and due to its inability of providing uncertainty estimates
see Section 3.2.4) which is a must have for appropriate state estima-
ion. Therefore, we follow the approach of feature based 3D registration
nd specifically we employ deep learning feature extraction. Then we
tilize a robust registration system, which is designed to accurately
5

rovide correspondences even in the presence of significantly more
outliers than inliers. Finally, since the output of the 3D registration is
used for state estimation, we integrated a state of the art method for
uncertainty estimation of 3D pointcloud registrations, allowing us to
overcome a common problem of the 3D registration, i.e. uncertainty
underestimation [35].

3.2.1.1 Feature extraction and data association The first step in the 3D
registration module of the localization pipeline is to extract geometric
features both in the map and in the sensor scan. Hand-crafted features
have been very successful in providing some specific qualities, e.g. ro-
tational invariance. A typical example is the FPFH [19] algorithm (and
its predecessor PFH) which use a histogram of surrounding 3D points
to calculate correspondences invariant to changes in orientation. We
have tested such approaches in [7] and it was concluded that they do
not perform well and are therefore not included in this investigation.

To overcome the tradeoff between these different handcrafted fea-
tures, we can employ learned features which, despite being less explain-
able, incorporate multiple qualities present in several custom designed
features. Two such approaches are presented in this work, Smooth-
Net [36] which can achieve high accuracy but is computationally
expensive –therefore used as a baseline– and FCGF [37] which is fit
for online execution, albeit with less accuracy. We will briefly present
both of the approaches for completeness.

SmoothNet is a deep learning-based descriptor with a focus on
robustness as well as rotational and isometry invariance. Rather than
implementing an end to end trainable network it has two distinct
parts; (a) the ’’preprocessing’’ of a pointcloud using Local Reference
frames (LRF) and smoothed density value (SDV) representation and (b)
the fully convolutional part, which encodes a descriptor. To achieve
rotational invariance, the neighborhoods of randomly selected points
in the pointclouds are structured in SDVs with LRFs defined by the
neighborhoods themselves. Finally, the compact representation (3D
SDV voxel grid) is fed into a siamese network to produce a descriptor.

In terms of the specific implementation of Smoothnet as a base-
line for our system, the interest points were selected randomly —
approximately 50% of all points in the map and 25% of the sensor
point cloud. By randomly selecting points in both clouds, we limit the
computational load while maintaining a high probability of acquiring
correspondences.

As proven in our previous work on pre-recorded datasets [7,38],
Smoothnet is able to provide superior results in our application domain
(WBT of large vessels) which however comes at a significant computa-
tional cost. The cost is such that the approach could not be used for
the online localization of our robot; a fully autonomous, self sufficient,
power and time limited inspection robot in real-life. While there is
a fair argument to be made about the usage of Smoothnet on larger
robots (e.g. a tethered aerial robot), we found that the method used in
our robot, i.e. FCGF, is an order of magnitude more computationally
efficient and that with the appropriate outlier rejection and robust
estimation the system can provide adequate results.

The computational efficiency of FCGF stems from its structure,
which is a one-pass 3D fully convolutional network, relying on sparse
tensors and sparse convolutions. Additionally, FCGF does not rely on
low-level pre-processing of the input point clouds. Technically, the
FCGF is a ResUNet (or Deep Residual UNET) architecture that uses
skipped connections and residual blocks to extract fully convolutional
descriptor features. By replacing the bridge of the UNET with residual
blocks, the network is minimal in terms of parameters.

The most important contribution of the FCGF is the usage of
‘‘hardest-contrastive’’ losses. The contrastive loss is defined as follows:
Similar features –or positive– should be as close as possible in the
output feature dimension, and dissimilar features –or negative– must
be at least a margin away. Instead of accumulating pairs of features
(either positive or negative), the idea of hardest contrastive loss is to
structure quadruplets using a positive pair with their ‘‘hardest’’ (or
closer) negatives. This procedure is called hard negative mining. In the
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case of triplets (positive–positive–negative) rather than pairs, ‘‘hardest-
triplet’’ losses can be structured. In our paper the network is setup
to use standard metric learning losses based on ‘‘hardest-contrastive’’
losses.

The extracted features (whether Smoothnet or FCGF) are then
searched for correspondences to features in the map using the GPU
based KNN algorithm Facebook AI Similarity Search (FAISS) [39].

3.2.1.2. Registration
The extracted and associated geometric features from the scan and

the map, are prone to a notable number of outliers due to the ambiguity
of the environment. We, therefore, employ the robust 3D registra-
tion algorithm TEASER++ [40,41], which allow for outlier rejection.
TEASER++ is able to provide an accurate transformation between two
corresponding point sets, even in the presence of a high percentage of
outliers. The following brief description of the registration algorithm
was also described in [7], where the equations are largely based on the
work from the authors of TEASER++ [40].

For ideal cases, where the 3D-point correspondence list contains
zero outliers, the 3D registration can be defined as the following
nonlinear least square solution:

min
𝑠>0,𝐑∈𝑆𝑂(3),𝑡∈R3

𝑁
∑

𝑖=1

1
𝜎2𝑖

‖

‖

𝐛𝑖 − 𝑠𝐑𝐚𝑖 − 𝑡‖
‖

2 , (1)

where minimization is performed over the scale 𝑠, the rotation R, and
the translation 𝑡.

For our case with the ballast tanks, we can assume a metric environ-
ment with no significant scale changes between the scan and the map,
and the scale factor 𝑠 can therefore be fixed to 1. The total number of
correspondence points are denoted as N, and a and b represent two
vectors of the corresponding pairs between the map and the sensor
point cloud.

To include robustness of measurement noise in point clouds, a
Gaussian noise with isotropic covariance described by 𝜎2 is included. So
far we have assumed correct corresponding points, however, for most
real-world cases, correspondences with zero outliers cannot be safely
assumed [40] and therefore robust registration can be performed using
a Truncated Least Squares function as stated by Eq. (2):

min
𝑠>0,𝐑∈𝑆𝑂(3),𝑡∈R3

𝑁
∑

𝑖=1
min

(

1
𝛽2𝑖

‖

‖

𝐛𝑖 − 𝑠𝐑𝐚𝑖 − 𝑡‖
‖

2 , 𝑐2
)

(2)

Eq. (2) provides a least squares solution to measurements with minimal
residuals (no greater than 𝑐2), where 𝛽𝑖 represents a given limit for the
noise. This noise limit is either set as the maximum error allowed for an
inlier or 3 standard deviations. Any measurements with large residuals
(more than 𝑐2) are disregarded. In the experimental setup, 𝑐 is set to
1. In order to simplify the solution, TEASER++ separates rotation and
translation, as shown by Eqs. (3) and (4) respectively.

�̂� = arg min
𝐑∈𝑆𝑂(3)

𝑁
∑

𝑖𝑗=1
min

⎛

⎜

⎜

⎝

‖

‖

‖

�̄�𝑖𝑗 − �̂�𝐑�̄�𝑖𝑗
‖

‖

‖

𝛿2𝑖𝑗
, 𝑐2

⎞

⎟

⎟

⎠

(3)

To determine the estimated rotation �̂�, the first step is to minimize
the distance between corresponding points, expressed as �̄�𝑖𝑗 and �̄�𝑖𝑗 ,
with a defined noise limit of 𝛿𝑖𝑗 . Once the rotation is estimated, the
translation can be calculated using Eq. (4). The translation is obtained
on a component-wise basis, meaning the entries 𝑡1, 𝑡2, 𝑡3 of 𝐭 are calcu-
lated individually. Similar to the previous equations, any measurements
with large residuals (more than 𝑐2) are discarded.

𝑡𝑗 = arg min
𝑡𝑗

𝑁
∑

𝑖=1
min

⎛

⎜

⎜

⎜

⎝

(𝑡𝑗 −
[

𝐛𝑖 − �̂��̂�𝐚𝑖
]

𝑗
)2

𝛽2𝑖
, 𝑐2

⎞

⎟

⎟

⎟

⎠

(4)

An analytic derivation of the aforementioned formulation can be found
in [40].
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Fig. 8. Stein vs ICP point cloud registration. Red is the raw scan point cloud, green
is the ground truth, yellow is p2p-ICP and blue is the Stein ICP pipeline. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

The transformation from the global TEASER registration is then
compared with the roll and pitch attitude of the UAV. If the registration
is offset by a given threshold, the registration is rejected, and the 3D
registration pipeline is rerun with a new point-cloud scan from the
sensor. If the registration is within a ±5 degree limit of the measured
roll and pitch angle of the UAV, the uncertainty of the registration can
then be calculated, along with a refinement step of the registration.

3.2.1.3. Uncertainty estimation
To estimate the uncertainty, different methods are available with

different properties. The uncertainty of the final 3D registration can be
estimated using efficient closed form solutions, such as CELLO [42,43],
which provides a computationally fast solution, but sensor noise is
not adequately captured, and the method has been shown in exper-
imental trials by [44] to underestimate the covariance. The authors
of [44] improved the work of [43], but the results still showed an
underestimate of the covariance. Stein-ICP [35] can provide a better
covariance estimation than previous methods, using a sampling-based
approach but, therefore, also has a lower computational efficiency than
closed form solutions. However, Stein-ICP can be parallelized to run on
a GPU for optimal time efficiency. Stein-ICP proved to provide good
covariance estimations and is therefore used as the method of choice
for this paper.

Stein-ICP initializes a set of K randomly generated particles within
some set of 6D pose boundaries. For the use case with the UAV we
can limit the initial distribution of the points on the roll and pitch
axis, since we know these from the IMU of the onboard FCU. Using
an accurate IMU, one could also exclude these two degrees of freedom;
however, due to some uncertainty and noise in the IMU measurements
on the UAV, we still include the roll and pitch degrees of freedom
in our experiments. Each particle represents the transformation of
sampled points from a source point cloud, which in our case is the
sensor scan. For all points in each transformed batch, the corresponding
closest point in a reference cloud (map) is determined based on the
nearest neighboring points in the 3D space. Mean gradients are then
estimated for all matching pairs belonging to each K particles. Next,
the Stein variational gradients [35,45] are obtained independently for
translations and rotations, which, in turn, are then used to update
each particle. This estimation is repeated for 𝑇 iterations, producing
an adjusted set of K particles that represent the posterior distribution.
The distribution of the K particles can be used as a discrete estimation
of the uncertainty and ambiguity of the environment for each degree of
freedom in the registration. Using the Kernel Density Estimation (KDE)
method on the distribution, the best registration can be selected. An
inherent feature of Stein-ICP is that it can also apply a small refinement
of the registration, which is utilized to obtain a more accurate local
registration than the one provided by the global TEASER registration
algorithm.
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Fig. 9. The position and angle error of p2p-ICP registration (deterministic) compared
to statistics (mean and STD) of stein ICP (1000 runs).

3.2.1.4. Registration quality
After the uncertainty and refinement step have been performed, the

quality of the registration is calculated. The quality estimation is based
on the overlapping points between the map and the transformed sensor
scan, where overlaps are considered if points are within the resolution
of the voxel down sampling of the point clouds. The threshold for the
experiments is set to reject registrations below 75% of overlapping
points. This allows for some inconsistency between the map and the
scan point cloud, which could be due to areas with severe buckling or
structural revisions not applied to the CAD drawings of the vessel.

3.2.2. Visual inertial odometry
To aid the localization system with pose updates between absolute

pose estimates, a relative pose system is introduced, namely Visual
Inertial Odometry. The system in the experiments uses the front facing
Intel T265 camera, with a proprietary VIO algorithm, which provides
a pose and velocity message. For our absolute localization system we
use the velocity message as the input to our Extended Kalman Filter.

3.2.3. Filtering
Outliers are removed from the absolute pose estimate using a mo-

tion filter that is based on a maximum velocity threshold of the pose
estimate compared to the previous pose update. The filtered pose and
covariance matrix is then used in an UKF [46,47] along with the
VIO pose and covariance matrix. The UKF is a non-linear filtering
algorithm, and is well described in [46], and thus only a high-level
explanation will be given here. It is based on the unscented transform
(UT) technique for propagating a mean and its covariance through a
nonlinear transformation, and the UKF is proposed as an improvement
to the well-known linear EKF. Instead of the linearization required by
the EKF, the UT approximate method is used in the UKF. A set of
weighted sigma points are chosen based on the mean and covariance
of a prior state. Each of these points are transformed to a new state
using the non linear function in the UKF. The predicted mean and
7

covariance are then calculated on the basis of the newly transformed
Fig. 10. Top down view of the trajectory of a single inspection run in the mock up
model of the water ballast tank. The thick black lines indicate the walls of the tank.
The dotted black line is the actual trajectory of the UAV. The blue points indicate the
estimated position of defects and the red circles their actual position. The red stars
mark the way-points the UAV has to visit on its inspection run. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

points. The added value of UKF compared to EKF is that it better
represents non-Gaussian noise in the system [48].

3.2.4. Stein-ICP vs P2P-ICP
Fig. 8 illustrates a point cloud registration for a single scan using

standard Point-2-Point (P2P) ICP [49,50] and our 3D registration part
of the pipeline. P2P-ICP settles at a local minima, with the y- and 𝑧-
xis being correct, but with an incorrect registration of 1.8 meters on
he 𝑥-axis, as can be seen in Fig. 9. With the current settings of Stein-

ICP, p2p-ICP is more than 100 times faster than Stein-ICP, however the
structural ambiguity of our environment results in p2p-icp settling into
the incorrect local minima. Besides ICP’s large incorrect registration on
the 𝑥-axis, ICP also fails to provide a covariance or uncertainty estimate
of the registration, which the main benefit of using Stein-ICP in this
paper. Based on our experience, another benefit of Stein ICP vs ICP
is its ability to additionally provide refinement in slightly erroneous
registrations provided by TEASER++.

4. Experimental results

Due to limited access to real ships during the COVID-19 pandemic,
experiments were carried out in a mock-up model of a water ballast
tank. A series of flights with different inspection points and paths
within the mock-up model were carried out. The average flight time
of each inspection mission was 2 min, 15 s with a standard deviation
of 9 s. For ease of reading, a single flight is described in this section.

The path of an inspection flight can be seen as a top view and
side view in Fig. 10, where the UAV enters the ballast tank through
the man-way in the wall on the left. Hereafter, the inspection mission
begins, with its first waypoint being (1,1,1). The UAV then visits the
predefined interest points, marked as red stars, looking for defects at
the inspection point itself and along its path, shown as the dotted black
line. Fig. 10 also shows the estimation of the tags/defects illustrated as

the blue points, where the equivalent ground truth is shown as a red
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Fig. 11. Box plot of the position error for each of the 6 defects located in the tank.

Fig. 12. Error of localization pipeline. Vertical dotted lines indicate an absolute pose
update with a correction to the position of the robot.

circle. As can be seen in the figure, some position error in the estimate
of the defect location is still present, where this error is shown as a
box plot for each of the 6 defects in Fig. 11. All the defects were on
average estimated within +/- 10 cm of their actual 3D position From
Fig. 11 it can also be seen that the errors are generally low, but points
3 and 4 have a larger variation on the 𝑥-axis than the rest. This is
caused by both an imprecise and varying timestamp provided by the
L515, and the points being in the FOV even at large distances, which
in turn exaggerate small camera calibration errors. An increasing error
also arises during long time intervals between absolute updates from
the localization system. The position of the specific points can be seen
in Fig. 10.

The error of the absolute localization pipeline can be seen in Fig. 12,
where the blue line indicates the output of the entire pipeline. The 3D
registration estimate using FCGF, Teaser++ and Stein-ICP is shown as
red stars, and depicts the absolute error of the pure 3D registration
element in the pipeline. All 3D registrations are estimated every 2 s
8

Table 2
Mean and standard deviation of absolute pose estimations using different feature
descriptors. Filtered depicts the results from the UKF fusion of FCGF+Stein and VIO.

Mean [m] 3DSmoothNet FCGF FCGF+Stein Filtered

x −0.67 −1.09 −0.60 −0.24
y −0.08 0.13 0.13 0.04
z −0.08 −0.01 −0.06 −0.02

Std. Dev [m]

x 1.43 1.86 1.72 0.80
y 0.47 0.69 0.51 0.04
z 0.70 1.03 0.21 0.04

(0.5 Hz), whereas the UKF, which fuses the VIO with the 3D registra-
tion pose estimate, runs at 30 Hz. The intermittent output from the
Teaser++ registration algorithm, in Fig. 7, using either SmoothNet or
FCGF as its feature descriptors, are shown as the purple and black
crosses, respectively. The SmoothNet feature descriptor was unable
to run reliably in real time on the Jetson NX, and was therefore
subsequently added using a ROS-bag file on a desktop PC. The FCGF
feature descriptor was used in the pipeline during the flight as shown
in the figure. The results from [7,38] however indicate that SmoothNet
would be slower than FCGF by more than a factor of 10 if running on
the Jetson. The computational time for each absolute pose update is
on average 1.85 s. The mean accuracy and standard deviation of each
feature descriptor, together with the output of the filtered output pose,
can be seen in Table 2. From the table it can also be seen that Stein-
ICP corrects some of the x-position error from the raw FCGF-Teaser++
output, as was also shown in Section 3.2.4.

The vertical dashed lines indicate an absolute pose update of the
UKF from the 3D registration part of the pipeline. The varying intervals
between the lines is due to the rejection of low-quality 3D registrations
based on the overlapping points between the map and scan.

To estimate the ground truth of the UAV, a series of closely spaced
April Tags are mounted at known locations on the floor of the ballast
tank. The ground-truth tags are only mounted on the floor in order to
avoid providing artificial visual feature points for the forward looking
VIO camera. Using the image stream from the downward-facing T265
camera, the localization part of the TagSLAM package [29], can be used
to provide a ground-truth estimate. The downward-facing camera data
and the derived ground-truth estimate are not used in the localization
pipeline but only serve as a method for comparing the performance of
our absolute localization estimate. Due to the limited space inside the
ballast tanks, a motion camera system such as VICON was not deemed
a viable solution as a ground-truth estimate.

To represent the defects within the tank, six AR tags are mounted
on the walls. Tags are recognized using the image stream from the L515
color camera, which serves as the inspection camera of the UAV. When
a tag/defect is detected, the inspection system will save a point cloud
and image of the defect and estimate the defects absolute position in
the map frame.

5. Conclusions

In this paper an autonomous system was designed to inspect known
confined spaces and tested within a mock-up model of a water ballast
tank. Our method supplemented a standard Visual Inertial Odome-
try(VIO) with state-of-the-art deep learning-based feature descriptors
on 3D point cloud scans acquired using a time-of-flight camera. By
registering scans from the camera to a prior map of the environment,
our system was able to accurately localize itself, as well as simulated
defects within the confined and dark environment, with an accuracy
of +/- 10 cm. Specifically, the system achieves this level of accuracy
by utilizing the cutting-edge GPU-accelerated FCGF feature descrip-
tor, as well as the GPU-based correspondence search (FAISS) and the
fast Teaser++ registration algorithm. This combination proves capable
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of ensuring accurate online localization for aerial inspection robots,
even when confronted with a high percentage of outliers. A UKF was
furthermore implemented by fusing VIO with the 3D registration to
provide a fast and accurate absolute pose in the map frame. Another
crucial aspect of our work was the use of the GPU-accelerated Stein
ICP algorithm, which was able to provide a UKF with the required
6-dof uncertainty estimate for the highly ambiguous and structured
environment. A simple inspection path was created, based on structural
interest points within the structure, as the foundation for the waypoint
execution system. The entire system was tested in real time on a small
UAV platform without the need for external human input during the
inspection execution. Using the 3D registration and Visual Inertial
Odometry, the UAV was able to accurately navigate and inspect the
ambiguous and featureless environment of the water ballast tanks and,
moreover, locate and estimate the position of the installed defects,
within +/- 10 cm. The position of the defects were accurately reported
within the map frame to be used for further evaluation by the hu-
man surveyor. Additionally, this work proves via experimental results
that an inferior but significantly more computationally efficient 3D
description algorithm (FCGF) when paired with robust outlier rejection
(Teaser++) and accurate uncertainty estimation (Stein-ICP) can replace
a better performing 3D description algorithm (3DSmoothnet), allowing
for online execution on light-weight UAVs.

Future work on the system includes the retraining of the feature
descriptor on large real-world datasets that are domain specific. Ad-
ditional work could include the employment of the 3D processing
presented in this work as a 3D deformation detection to further assist
the classification of vessels.
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