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Abstract
Flow based deformation cytometry has shown potential for cell classification. We demonstrate the principle with an injection 
moulded microfluidic chip from which we capture videos of adult and fetal red blood cells, as they are being deformed in 
a microfluidic chip. Using a deep neural network - SlowFast - that takes the temporal behavior into account, we are able to 
discriminate between the cells with high accuracy. The accuracy was larger for adult blood cells than for fetal blood cells. 
However, no significant difference was observed between donors of the two types.

Keywords Red blood cell · Microfluidic flow cytometry · Deformation · Neural network · SlowFast

1 Introduction

Several blood diseases - or complications - exist, where it 
is prudent to differentiate between blood cells of fetal and 
adult origin. The main motivation behind this study is Feto-
Maternal Hemorrhage (FMH). It is a common pregnancy 
complication where the fetus bleeds into the maternal 
circulation. Several methods of diagnosis currently exist, 
including the Betke-Kleihauer test and flow cytometry 
(Linderkamp et al. 1986b). The Betke-Kleihauer test and 
flow cytometry discriminate between maternal and fetal red  
blood cells (RBCs) by utilizing the difference in the chemi- 
cal properties of fetal and adult hemoglobin in the former, 

and either the RhD phenotype or the different phenotypes 
of fetal and adult hemoglobin in the latter. In this context, 
we note that traditional flow cytometry equipment is highly 
specialized and expensive and therefore not in general avail-
able to practitioners caring for pregnant women. Work by 
Linderkamp et al. (1983) established that the mean volume 
of maternal and fetal (in a neonatal setting) RBCs differ 
significantly, with the average volume of fetal RBCs being 
21% greater than that of maternal. Linderkamp et al. (1986a) 
later showed that the extensional and bending moduli of neo-
natal RBCs were smaller than for maternal. These differ-
ences in size and mechanical properties might under certain 
setups be utilized as class discriminatory features. We use 
a previously reported experimental setup with a modified 
microfluidic chip design (Berg-Sørensen et al. 2019) for 
flow deformation of fetal and maternal RBCs and capture 
the dynamic properties by video. To extract the discrimina-
tory features we utilize a deep convolutional neural network 
(CNN) designed for video recognition, as the expression of 
the mechanical properties is inherently temporal, and pos-
sibly not sufficiently represented in still images.

The potential for using deformation for classifying cells 
in a flow cytometry setting was first shown by Lincoln 
et al.  (2004). The method was further expanded by Hur 
et al.  (2011), who demonstrated that the microfluidic prop-
erties could directly be used for sorting. The introduction 
of deformability cytometry in real time (Otto et al. 2015) 
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further demonstrated the strength of microfluidic deform-
ability to distinguish different cells types and was also later 
applied to cell samples from blood (Toepfner et al. 2018; 
Kubánková et al. 2021). Other research groups have pre-
sented protocols for the construction of such equipment, in 
a different approach but with comparable characteristics in 
applicability (Lei et al. 2018). A novelty presented in the 
present work is the application of injection molded micro-
fluidic chips, ensuring repeatability of microfluidic devices 
prepared by a production ready method.

Single-cell classification in free flow cytometry has been 
demonstrated in (Gopakumar et al. 2017) using neural net-
works. In (Bento et al. 2018) a thorough analysis of dif-
ferent chip designs was performed while (Gu et al. 2019) 
demonstrated sorting and classification based on fluores-
cent signals from a microfluidic setting. The so-called real-
time deformability cytometry (RT-DC) mentioned above 
has later been supplemented with fluorescence modalities, 
surface acoustic waves, and deep neural networks to carry 
out actual sorting (Nawaz et al. 2020). In (Berg-Sørensen 
et al. 2019), the potential of using deformation and classi-
fication with simple image features was explored. This was 
later demonstrated in more detail in (Rizzuto et al. 2021), 
where the authors couple deformation with analysis using 
a simple neural network. In (Lamoureux et al. 2021) the 
authors present results for sorting of healthy RBC’s based 
on deformability using static image data and Deep Learning. 
Additionally (Eskesen and Friis 2019) showed the efficacy 
of a single shot detector (SSD) network for RBC classifica-
tion on still images from the same dataset as that analyzed 
here. In this work, we expand on the methodology by using 
a more advanced analysis of the images that directly takes 
the temporal dimension into account. This is done by utiliz-
ing a neural network architecture previously shown to have 
high accuracy in classifying videos of human activities and 
applying them to the analysis of RBC deformation.

2  Methods

2.1  Experimental assay

The experiment is conducted by optical video-microscopy 
of flow in a microfluidic device. The microfluidic device 
consists of two sets of four channels (1-4) leading to a 
common outlet channel. The four channels are designed 
with different widths of a microfluidic constriction. An 
overview of the device structure is seen in Fig. 1A. In 
contrast to the more preliminary work reported previously 
(Berg-Sørensen et al. 2019), all channels are defined at a 
single and shallow depth of 10 µm. The altered design was 
chosen to ensure that the main fraction of individual cells 
stay within the focal plane when imaged with the optical 

microscope. The main channels have a cross-section  
of 50 x 10 µm2 while the microfluidic constrictions  
 used in the experiments reported here have a minimum 
width of 5 µm which was only present in the type 4 chan-
nels (Fig. 1B). Other channels of the device have mini-
mum widths of either 10 � m or 15 � m. This design allows 
for the chip to potentially be used with other, larger, cell 
types. A nickel shim for injection molding was fabricated 
using standard clean room processes (Utko et al. 2011). 
The devices were injection molded with the COC poly-
mer  TOPAS® grade 5013 following the same procedure 
as described in (Berg-Sørensen et al. 2019). The micro-
fluidic device is primed with ethanol at high pressure and 
then filled with an aqueous buffer (CellStab, see details 
below). Subsequently, 2.6 µl of whole blood is diluted in 
1 ml ID-Cellstab® (Biorad, Switzerland), of which 20 µl 
is added to the LUER well of the microfluidic device. 
The anonymized whole blood samples are obtained from 
the blood bank at Rigshospitalet, Copenhagen University 

Fig. 1  Illustration of the setup for optical video-microscopy of flow 
in a microfluidic chip. Part A provides an overview of the molded 
microfluidic device with channels for fluidics and for hydrodynamic 
deformation of the cells. It consist of two sets of four channels (1-4) 
and two waste outlets. Only the channel of type 4 were used in the 
experiments reported here. The mirror-design was chosen in order 
to achieve the most from a preprepared shim for the top part of the 
chip, containing 12 LUER fittings. Part B shows the constricted area 
in channel 4 with a width of 5µm. This is the place the red blood cells 
are imaged under flow. Part C illustrates the entire setup and how the 
microfluidic device is placed within a standard bright field inverted 
optical microscope equipped with a 100x oil immersion objective 
and a high speed camera with corresponding acquisition software. As 
explained, the chip is mounted manually using steering pins in a cus-
tom-made holder on the microscope. The device is connected to the 
pressure control and visualized after manual refocusing of the micro-
scope to achieve the best possible image contrast
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Hospital, either as 1 ml samples from donations by regular 
blood donors giving informed consent for research (whole 
blood with anti-coagulant EDTA) or as anonymized 1 ml 
samples from the umbilical cord of delivered placentas, 
drawn as a standard quality control procedure in the hos-
pital (whole blood with anti-coagulant heparin). A given 
microfluidic chip has been used for samples from up to 20 
donors. Between each new sample, the chip is rinsed thor-
oughly with CellStab. For each donor the subsequent first 
analysis provided an average count of 150 cells, giving a 
gross total of almost 30000 cells investigated.

2.2  Instrument details

The microscope is an inverted Leica DMI 3000B micro-
scope (Leica Microsystems GmbH, Germany) with 100x 
oil immersion objective (Leica HCX PL FLUOTAR, 
100x/1.30), equipped with an AOS S-motion high-speed 
camera. Recordings were carried out with camera specifi-
cations as follows: Frame-rate 500 fps, resolution 800 x 150 
pixels, shutter time 25 µs, contrast 8 bit mid. The flow is 
induced by a Fluigent MFCS-EZ pump (Fluigent, France), 
from which a pressure of 6 mbar is applied to the microflu-
idic channel subject to study. With these settings, and blood 
samples as described above, a throughput of around 2 cells/s 
was obtained.

For the details of the image- and video-analysis per-
formed, it is important to realize that the microfluidic chips 
with samples are mounted manually, in a custom-made 
holder with steering pins, yet not with micrometer accu-
racy. Similarly, the focusing of the microscope is carried 
out manually.

An overview of the entire setup is shown in Fig. 1C.

2.3  Data preparation and preprocessing

From each sequence (donor), we draw 100 random samples 
to compute an approximation of a median image. Prior to 
that, each sample was smoothed with a Gaussian kernel to 
remove noise. Each image in the sequence was then further 
smoothed and binarized, by subtracting the median image 
and subsequently thresholding on the absolute values in the 
resulting image. Since the channel and background are both 
temporally invariant, the method yields a binary image with 
only the RBCs present in the foreground. Specifically we 
considered |Ii,j| > 5 as foreground/RBC, where I denotes the 
matrix representation of the grayscale image after median 
image subtraction. This method proved robust as the subtrac-
tion of the image’s own temporal median made it largely 
invariant to different imaging conditions. We considered 
each foreground region with a pixel area larger than 50 as 
representing an RBC. This initial process is visualised in 
Fig. 2.

From each region, we extract the center and surround-
ing bounding box. To represent the path of each cell as a 
video, we first considered the initial image in the sequence. 
Each RBC presenting region in that image is paired with the 
region in the subsequent image with the largest shared area. 
This procedure is carried out for all images in the sequence 
to produce the subsequences containing RBCs. A video is 
then captured around the path of each RBC by cropping an 
area of 50x50 pixels around the center of the RBC, such 
that we minimize the amount of channel visible through the 
video. The motivation for this is to prevent the neural net-
work from overfitting on slight variations in the positioning 
of the channel. The path of an adult and a fetal RBC through 
the channel subsequent to the preprocessing is seen in Fig. 3. 
The underlying videos 1 and 2 are available as Supplemen-
tary information.

2.4  Neural network

The neural network used in this study was picked due to its 
explicit handling of the temporal information contained in 
the image sequences. It was theorized that the deformation 
of specific blood samples over time was integral to the type 
of cell, hence validating a focus on the time aspect of the 
dataset. The SlowFast (Feichtenhofer et al. 2018) architec-
ture applied gets its name from its two pathways. A "Slow" 
pathway emphasizes the extraction of spatial features from 
the image sequences, and a "Fast" pathway samples a high 
temporal resolution input stream to capture motion-related 
context. A graphical representation of the sentiment behind 
the architecture can be seen in Fig. 4.

Both pathways are built from 3D ResNet (He et al. 2015) 
blocks that can handle video input data. In the slow path-
way, a temporal stride is defined. It controls the number 
of frames being processed, meaning the pathway processes 

Fig. 2  Image of red blood cells. Top image is after application of 
Gaussian Filter. Middle image is generated by first sampling 100 
images from the same donor and using them to calculate the median 
for each pixel and then subtracting that from the top picture. The bot-
tom image is a binarized version of the middle with threshold set at 
|Ii,j| > 5 where I denotes the matrix representation of the image
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only one out of a number of frames. The key concept of the 
slow pathway is utilizing a large temporal stride, i.e., few of 
the images of the total image sequence enter the pathway. 
The focus of the pathway is thus on the spatial structure 
of the blood cell, capturing non-dynamic features. In this 
study, � = 8 is applied, i.e., only every 8th image enters the 
slow path. The fast pathway is the temporal light-weight 
opposition to the spatial slow pathway. The structure tries 
to capture movement-related information by processing a far 
greater fraction of the input images. This fraction is speci-
fied by the frame rate ratio, where � = 8 is used here, i.e. 
the fast pathway processes 8 images pr. 1 image processed 
by the slow pathway. This is done to achieve a dense repre-
sentation along the temporal dimension to capture the red 
blood cells’ deformation and flow-related information. The 
number of parameters in the fast pathway is set to be � =

1

8
 

that of the slow pathway. This is based on the feature space 
for the topology of the blood cell being substantially more 
complex than the feature space for the blood cell movement. 
Throughout the network structure, the information is propa-
gated from the fast to the slow pathway to ensure coherence 
between the two representations. An illustrative example is 
provided in Fig. 3. This model was chosen for its high per-
formance on industry-standard video classification datasets 
and relatively low computational complexity (Feichtenhofer 
et al. 2018).

2.5  Training

For training, the data was partitioned into 5 disjoint sets of 
approximately similar size. Since the data consists of several 
RBCs from each donor we chose to create the splits such 
that each donor was present in only one set. Four of the sets 

Fig. 3  Video data of randomly selected adult RBC (Top) and fetal 
RBC (Bottom) in the format fed to the Neural Network. Of the origi-
nal image of the full channel a box with 25 pixels from all sides of 
the RBC is cut. Subsequently each image is zero-padded to ensure 
size conformity. On each of these 8 images we observe the cells 

starting to enter the inlet and experiencing the first deformation. The 
figure also shows which frames enter the slow and fast pathway as 
described in Section 2.4 for classification. Further details of the archi-
tecture of the Neural Network are described there as well

Fig. 4  Schematic of the SlowFast CNN architecture. To the right the 
fast pathway, with connections at each block to the slow pathway 
(left). The schematic depicts the architecture outlined in (Feichten-
hofer et al. 2018) and is based on their depiction
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were allocated as validation sets and one test set. An over-
view of the allocation of donors and cells at the class level 
can be seen in Table 1 for the 4 training/validation splits 
and in Table 2 for the test set. Each split was generated such 
that the total number of cells (fetal and adult) consisted of 
approximately 20% of the total number (27226) under the 
aforementioned restriction on each donor.

Training was carried out with 4-fold cross-validation 
using early stopping, which means that each model was 
trained on 3

5
 (3 of the disjoint sets). At every second epoch, 

the model was evaluated on the fourth disjoint validation set 
allowing training to terminate once no further improvement 
on the validation set was observed. An epoch is defined by 
exposing the network to all training data one time. Since it 
leads to inefficient training to only make a gradient descent 
step once the entire training data has been evaluated, we 
use mini-batch learning with a batch size of 8. We used the 
SlowFast architecture (Feichtenhofer et al. 2018) with the 
ResNet 101 depth (He et al. 2015). The network(s) were 
trained using Stochastic Gradient Descent (SGD) with a 
learning rate scheme as specified by Loshchilov and Hutter 
for SGD with Warm Restart (Loshchilov and Hutter 2016). 
The maximum number of epochs used in the implementation 
of the learning rate scheme was 250. The maximum number 
of epochs was observed to be 246 (fold 4), while the mini-
mum was 228 (fold 3), thus fairly close to the predefined 

maximum. We used the PyTorch implementation of SGD 
(PyTorch Contributors 2022b) allowing for momentum, 
chosen to be 0.9. Training also included a dropout rate of 
0.5 and was performed on a 12GB Titan XP GPU. As a loss 
function, we used a cross-entropy loss, a standard choice for 
binary classification (PyTorch Contributors 2022a). Meth-
ods of cropping, flipping, as well as temporal sampling dif-
fered at training and inference time. For further details see 
(Feichtenhofer et al. 2018) (Section 4).

3  Results

In Table 3 we see that the neural network was able to correctly 
classify the majority of cells with reasonably low deviation in 
the performance of each cross-validation fold model. The con-
fusion matrix Fig. 5 however, shows that there is some class 
discrepancy: the model favours the adult RBC’s, which are the 
most prevalent in the data set. The per class sensitivity (recall) 
was 91.6% and 85.7% for adult and fetal cells, respectively, 
further highlighting this class imbalance.

3.1  Donor effect

We observed some variation between donors, as evident 
from Fig. 6. The spread equivalently varied between the 
classes. For adult donors, the highest (average) accuracy was 
92.5% with a lowest of 85.9%, thus a difference of 6.4%. 
For the fetal donors, the highest accuracy was 91.5% with 
a low of 86.6% and thus a difference of 4.9%, see Table 4. 

Table 1  Overview of the allocation of data into the 4 disjoint train-
ing/validation sets. The percentages in parenthesis denote the fraction 
of the total number present across the 5 splits - i.e including the test 

set. F denotes fetal, and A adult donor. The number of cells in each 
set refers to the RBCs taken from the donors present in each split

Set 1 Set 2 Set 3 Set 4

Num. Donors 32 (19.51%) 34 (20.73%) 32 (19.51%) 34 (20.73%)
Num. Donors (F) 12 (18.46%) 13 (20%) 17 (26.15%) 10 (15.38%)
Num. Donors (A) 20 (20.2%) 21 (21.21%) 15 (15.15%) 24 (24.24%)
Num. Cells 5240 (19.25%) 5613 (20.62%) 5250 (19.28%) 5585 (20.51%)
Num. Cells (F) 1976 (18.64%) 2233 (21.06%) 2707 (25.53%) 1553 (14.65%)
Num. Cells (A) 3264 (19.64%) 3380 (20.33%) 2543 (15.3%) 4032 (24.26%)

Table 2  Overview of the allocation of data into the test split. The per-
centages in parenthesis denote the fraction of the total number pre-
sent across the 5 splits - i.e including the 4 validation/training splits. 
F denotes fetal, and A adult donor

Test

Num. Donors 32 (19.51%)
Num. Donors (F) 13 (20%)
Num. Donors (A) 19 (19.19%)
Num. Cells 5538 (20.34%)
Num. Cells (F) 2134 (20.13%)
Num. Cells (A) 3404 (20.48%)

Table 3  Summary metrics for 
overall performance on the test 
set including 95% confidence 
intervals. These are calculated 
under the assumption that 
each measure follows a normal 
distribution. AUC = Area 
Under the Curve

Metric Score (%)

AUC 90.360 ± 0.330
Sensitivity 88.637 ± 0.366
Accuracy 89.315 ± 0.361
Precision 86.466 ± 0.549
f1 86.072 ± 0.459



 Biomedical Microdevices            (2024) 26:5 

1 3

    5  Page 6 of 9

We specifically note that the class performance discrepancy 
is no longer present when each donor is weighted equally.

In Table 3 the metrics were calculated without regard to 
individual donors. Here the accuracy is first calculated for 
each donor and subsequently averaged. To estimate whether 

a donor effect was potentially significant, we consider the 
following Mixed Linear Model

Here, Ad,f  denotes the accuracy for donor D for cross- 
validation fold f. Dd denotes the Donors and � the correspond- 
ing fixed effect, and F denotes the cross-validation folds, 
included as a random effect a. We used the "lmer" func-
tion from the R package lmerTest version 3.1-3 (Kuznetsova 
et al. 2020). The variance of the random effect was not found 
to be significant (P = 0.226) , cf. Table 5. Subsequently the 
fixed effects part in Eq. 1 was analysed, using the built-in R 
function for "anova" in R version 4.0.3. The ANOVA table 

(1)

Ad,f = � + �(Dd) + a(Ff ) + �d,f ,

d ∈ {1,… , 32}, f ∈ {1,… , 4}

a(F) ∼ N(0, �2

A
), �d,f ∼ N(0, �2).Fig. 5  Confusion matrix for evaluation of the 4 networks on the test 

set. Each entry denotes the mean of that entry across the 4 cross vali-
dation folds. The diagonal denotes correct classifications, bottom left 
denotes misclassifications of fetal cells as adult, and top right denotes 
misclassifications of adult cells as fetal

Fig. 6  Bar plot over per donor accuracy. Fetal donors are in orange and adult in blue. 95% confidence intervals are indicated with the line on top 
of each bar and calculated with basis in a normal distribution

Table 4  Summary measures of donor specific performance in the test 
set. First accuracy is calculated for each donor individually by aver-
aging across the 4 networks from each of the cross-validation folds. 
We report the lowest, highest and combined average of these. Note 
that this entails that each donor is weighted equally in these summary 
measures, which is not the case in Table 3

Lowest (average) 
accuracy

Mean (donor) 
accuracy

Highest 
(average) 
accuracy

Adult 0.859 0.891 0.925
Fetal 0.866 0.893 0.915
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can be seen in Table 6. We note that the donor effect was 
not found to be significant (P = 0.853) . Further, a two-way 
ANOVA test with results presented in Table 7 substantiates 
the claim that there is no significant difference (P = 0.750) 
between the performance of the model for the two types of 
donors.

3.2  Estimating data set size implications

A common drawback of Deep Learning is the necessity for 
vast amounts of training data. The common notion is that the 
addition of (quality) data should almost guarantee an improve-
ment in the model’s performance. To estimate the impact of 
the scale of the data set on this problem, we perform a ver-
sion of "ramping". Particularly, we seek to understand how 
the model’s performance scales with the size of the dataset. In 
order to keep the methodology intact, we allocate 10% of the 
(training) data as a validation set to allow for early stopping. 
Subsequently, we train models on {10%, 20%,… 100%} of the 
remaining training data, where 100% corresponds to 70% of 
the total data set. Each model can then be evaluated on the test 
set. The results can be seen in Fig. 7.

It shows that only little improvement is obtained after 
the inclusion of more than 50% of the total data. We also 
note a slight decline at 70%. However, both this sensitivity 
(0.882) and the sensitivity at 60% i.e 0.889 (corresponding 
to the amount of data used in the cross-validation training) 
are within the confidence intervals presented in Table 3.

4  Discussion

We have presented a method for discriminating between 
adult and fetal blood cells by exploiting their differences in 
mechanical properties. We sought to capture these using a 
deep CNN. First, we showed in Table 3 that the deformation  
the RBCs experienced through the channel contained a cer-
tain amount of discriminatory information achieving an 
accuracy of 89.315%. However, the performance was not 
homogeneous between the two classes and does not reach 
the level required for direct clinical applicability. We showed 
that the network performed significantly better on adult 
cells. This discrepancy may be due to the skewed nature of 
the data set, see Table 1, as adult cells made up 61 % of the 
total available data.

Additionally we present results in Fig. 7 for simulated 
states of data availability, under the same global class distribu-
tion as in the full data set. These results showed that a limited -  
and statistically insignificant - gain in performance was  
achieved after the inclusion of 56% of the data. We therefore 

Table 5  ANOVA-like table 
for random effect a in Eq. (1). 
NPar denotes the number of 
parameters, AIC the Akaike 
Information Criterion, LRT 
the likelihood ratio test, Df the 
number of degrees of freedom 
and P(> 𝜒2) the p-value. Note 
here that since variance is only 
defined for non-negative values, 
and we are hence testing on the 
edge of the parameter space, the 
p-value has been divided by 2

Random Effect a(F)
Estimated Variance 0.0000379
NPar 33
Log Likelihood 150.0592
AIC -234.1184
LRT 0.5662952
Df 1
P(> 𝜒2) 0.22585

Table 6  ANOVA Table for fixed effects �, � in  Eq. (1)  without the 
random effect a, which was found to not be significant, cf. Table 5. 
Df denotes the number of degrees of freedom and P(> F) the p-value

Df Squared Error Mean Squared 
Error

F-Statistic P(> F)

�(D) 31 0.03599925 0.001161266 0.7174617 0.8528163
� 96 0.15538328 0.001618576 - -

Table 7  ANOVA Table providing two way ANOVA for test of differ-
ence in mean for the per donor performance of the two classes. Note 
here that �(M) denotes the difference of the adult class from the fetal, 
that has been subsumed into the intercept. Df denotes the number of 
degrees of freedom and P(> F) the p-value

Df Squared Error Mean Squared Error F-Statistic P(> F)

�(M) 1 0.0000309 0.00003088 0.1033 0.7501
� 30 0.0089689 0.00029896 - -

Fig. 7  Performance of classifier on the test set as measured by sensi-
tivity, as a function of available data. The performance is measured 
for single models trained on {7%, 14%,… , 70%} of the total available 
data. 10% of the data is used to allow for early stopping, while the 
remaining 20% is allocated in the test set. The mean is calculated by 
averaging the per class sensitivities
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propose two interpretations. First, no additional discrimina-
tive features were found in the last 14% of the data, i.e., the 
model would not be able to learn anything relevant from 
it to increase performance on the test set. This is possibly 
supported by the low variance of the 4-fold cross validation 
results presented in Table 3. A second interpretation would 
be, that a deeper model - a model that contains more param-
eters - might yield improved results on this data.

We partitioned the data such that each donor was only present 
in one of the (disjoint) sets. The immediate motivation for this 
choice was to ensure that the results remained unaffected by 
potential correlations in the behavior of cells from one donor. 
It was not the purpose of this study to investigate if there lies 
some discriminative information within a sample as a whole. 
This means that we did not analyze whether a donor - or group-
ings within the set of donors, other than fetal and adult - could 
be identified by the deformations of the RBCs. Such correlation 
structures could also arise from flaws in the experimental setup. 
Thus, the choice of making the sets disjoint in this way was also 
highly motivated by the possibility of limiting the influence of 
such flaws. The final motivation for this choice was to better 
approximate how this method would perform in practice where a 
new patient could not possibly be present in the data set prior to 
inference. Furthermore, including each donor in training would 
severely limit the practical applications of this method.

Finally we shall comment on the data representation. 
Fetal and maternal RBCs differ in both size and deforma-
tive moduli (Linderkamp et al. 1986a). These are only fully 
represented in 3 dimensions since an RBC is not symmetric 
over all axes. In this work, we represent the structure in a 
shallow channel in 2-dimensional space where a consider-
able fraction of the cell volume is within the focal depth of 
the imaging objective. Still, certain discriminatory infor-
mation present in 3 dimensions may not remain present in 
the projection onto 2 dimensions. Essentially, this means 
that certain deformations of the RBC may not be visible 
from the angle we observe from. For the temporal side of 
the data representation we note, that previous attempts at 
using still images from the same dataset for RBC classifica-
tion (Eskesen and Friis 2019), yielded a mean accuracy of 
70.18 %. Compared to the results presented in Table 3 we 
show that the inclusion of temporal information provides a 
significant performance increase.
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