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A B S T R A C T   

Automation is playing an increasingly significant role in synthetic biology. Groundbreaking technologies, 
developed over the past 20 years, have enormously accelerated the construction of efficient microbial cell fac-
tories. Integrating state-of-the-art tools (e.g. for genome engineering and analytical techniques) into the design- 
build-test-learn cycle (DBTLc) will shift the metabolic engineering paradigm from an almost artisanal labor to-
wards a fully automated workflow. Here, we provide a perspective on how a fully automated DBTLc could be 
harnessed to construct the next-generation bacterial cell factories in a fast, high-throughput fashion. Innovative 
toolsets and approaches that pushed the boundaries in each segment of the cycle are reviewed to this end. We 
also present the most recent efforts on automation of the DBTLc, which heralds a fully autonomous pipeline for 
synthetic biology in the near future.   

1. Introduction 

Supported by synthetic biology (SynBio), metabolic engineering has 
shifted from the traditional, trial-and-error approaches in the late 1990 s 
and early 2000 s towards a truly rational effort. This transition has been 
promoted by novel tools, e.g. advanced genome editing protocols, multi- 
part gene and genome assembly, genome-scale metabolic re-
constructions and high-throughput phenotype analysis. Virtually all of 
these techniques are still implemented step-by-step, performed in a 
manual and iterative — almost artisanal — fashion. Manual labor is a 
major source of non-systematic errors, leading to disproportionate 
resource consumption and considerable production of wastes, imprecise 
designs, non-scalable, laboratory-specific techniques and selective data 
recording [1]. Automated processes, rapidly emerging across fields, 
became an alternative to overcome these limitations. Automation rou-
tines in biotechnology are supported by robotics, DNA sequencing, data 
processing and artificial intelligence (AI) — as well as standardization of 

biological parts. These developments will not only speed up workflows 
and increase reproducibility, but they will also enable new applications 
of metabolic engineering beyond the customary handful of target mol-
ecules [2]. When systematically adopted, these approaches can help to 
bridge the gap between (i) design and construction of genetic circuits 
encoding defined metabolic modules, (ii) combinatorial, multipart DNA 
assembly and (iii) performance analysis, for the time being, carried out 
individually. Automation will also accelerate re-design of genetic cir-
cuits, adopting alternative genetic parts to enhance performance. 

In the broad engineering field, computer-aided design and analysis is 
known as design automation. This concept has been extended to SynBio as 
bio-design automation (BDA) [3]. Here, a particular input (e.g. blueprint 
of a metabolic pathway, plasmid or synthetic construct) is transformed 
into a physical entity [e.g. a biological chassis (see Fig. 1 for a glossary of 
relevant terms) equipped with the information needed to produce a 
protein or metabolite of interest]. BDA has been implemented at each 
step of the design-build-testing-learn cycle (DBTLc) to enable fully 
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engineered biological hosts. BDA broadened the scope of these efforts, e. 
g. towards preparing and testing DNA libraries encompassing several 
thousand building-blocks or standardizing complex genetic architec-
tures. These developments enabled multi-part, high-throughput assem-
bly on a scale that would not have been possible otherwise. Analytical 
techniques are also available to assay metabolites, proteins and com-
pounds of interest in the engineered hosts [4] carrying natural or syn-
thetic pathways [5] to test the performance of genetic constructs [6]. 
Finally, results gathered at each of the stages above are processed with 
machine learning (ML) algorithms deployed to decide on the subsequent 
DBTLc rounds. DBA strategies (and, more recently, ML tools), com-
plemented by novel SynBio approaches in each DBTL module, are sup-
porting a transition from an artisanal exercise towards a fully 
standardized, iterative workflow. Such shift will trigger a significant 
reduction in the costs associated with each operational stage, and will 
improve productivity, reproducibility and precision [7]. These have 
been major difficulties hampering a true bioeconomy, whereby goods 
are sustainably produced with microbial cell factories from renewable 
feedstocks. 

Against this background, in this review major breakthroughs over 
the last two decades towards bringing the DBTLc to a fully automated 
routine are discussed, describing key milestones at each segment of the 
cycle. State-of-the-art studies that incorporate automation and ML 
methodologies are discussed in the context of metabolic engineering. We 
conclude by outlining current and future challenges in this ambition, 
and avenues whereby experimental procedures will become part of fully 
automated workflows are proposed. 

2. Paving the way towards automation in SynBio and metabolic 
engineering 

Most laboratory work is performed manually, with minimal incor-
poration of automation strategies. Despite the massive expansion of 
SynBio, metabolic engineering and systems biology, the transition from 
hand-work to high-throughput and robust automated procedures is still 
a meandering path. Breakthrough methodologies have been progres-
sively implemented into the DBTLc, contributing to the continuous 
improvement of biofoundries. Software tools, high-throughput DNA 
sequencing, omics technologies and ML approaches have pushed the 
boundaries for automation (Fig. 2). In the sections below, the key steps 
towards these goals are covered, from in silico design to in vivo imple-
mentation of genetic circuits in bacterial hosts, and the role of auto-
mation is illustrated with recent examples in the SynBio domain. 

3. Shaping and exploring metabolic networks in silico 

Computational design tools help drafting metabolic pathway designs 
de novo [8]. Repository databases can be used to select and assemble the 
pathway(s) of interest. Here, the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) is among the first knowledge-bases for systematic analysis 
of gene functions, cellular processes, chemical compounds and enzymes 
[9]. The Braunschweig Enzyme Database (BRENDA) provides enzyme/-
ligand information, and facilitates searches of functional and molecular 
parameters of enzymatic reactions [10]. MetaCyc joined only two years 
later as a catalog of metabolic reactions and enzymes in different mi-
croorganisms [11]. These databases are continuously updated and 
refined, making them a first-option in selecting activities and routes to 
implement in pathway design. 

Software packages, designed to harvest information from these da-
tabases and to identify feasible designs, contributed to rationally- 
designed metabolic architectures. OptKnock was among the first plat-
forms for gene knock-out strategies towards efficient bioproduction 
[12], usually by deleting genes encoding competing reactions and 
through manipulations that couple biomass formation with production 
[13,14]. Multiple in silico constraint-based strain design strategies and 
algorithms have been developed since [15]. Depending on the native 
metabolic complexity, identifying and blocking all potential competing 
routes could be challenging. Nearly complete cut sets have been 
implemented for metabolic engineering of Escherichia coli [16] and 
Pseudomonas putida [17,18]. The combinatorial space to connect an 
existing metabolic network with a desired product can also be navigated 
with RetroPath. This open-source and modular command line rational-
izes pathway choice by exploring all possible connections [19]. Next to 
this, candidate enzymes can be selected with Selenzyme, based on 
existing databases that evaluate sequence similarity and catalyzed re-
actions, among other parameters. Selenzyme has been already adopted 
in some automated biofoundry workflows [20]. Finally, and comple-
mentary to these developments, unmapped enzyme sequences for bio-
catalysis can be obtained from EnzymeMiner. This easy-to-use 
computational tool ranks sequences based on likelihood of catalytic 
activity and the possibility of producing the corresponding polypeptide 
as a soluble protein in E. coli [21]. 

After choosing the parts for a given metabolic design, the DNA 
encoding them has to be drafted and synthesized. GeneDesigner is among 
the first software packages for fast design of synthetic DNA. The addi-
tion, edition and blending of structural and regulatory elements (e.g. 
promoters, open reading frames and DNA parts) is facilitated through an 
intuitive interface, displaying a hierarchical DNA/protein map. Codon 
optimization and real-time calculation of oligonucleotide annealing 
temperatures, sequencing primer generator, inclusion of restriction sites 
and sequence-identity optimization complete the software features [22]. 
Some years later, software emerged for using formalized parts in scarless 
assembly techniques, e.g. GenoCAD [23,24]. Standardization has been 
key to these developments. BioBricks, for instance, are a set of reusable, 

Fig. 1. Key definitions used in this article in the context of automating the 
design-build-test-learn cycle (DBTLc) of Synthetic Biology. Each of these 
terms— from top to bottom—is linked to the stepwise process of rationally 
constructing microbial cell factories. The sequence starts with the selection of 
an adequate chassis (microbial host), and continues through DBTLc iterations, 
fueled by machine learning algorithms. Embedding these features in the setting 
of a biofoundry could help delivering the next generation of microbial 
cell factories. 
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standard DNA parts containing elementary functions that can be com-
bined in compatible vectors in a modular fashion [25]. Similarly, 
plasmid structures have been standardized through the Standard Euro-
pean Vector Architecture (SEVA) that enables exchangeability of multiple 
DNA modules (e.g. antibiotic selection markers and origins of replica-
tion) and constantly updated [26,27]. RBS Calculator and other tools can 
be used in these designs to predict the translation-initiation rate of each 
START codon and to optimize synthetic ribosome binding sites—thereby 
refining control over protein production [28]. 

The increased complexity of genetic circuits called for a readily- 
accessible biological language to represent and visualize in silico Syn-
Bio design, e.g. the Synthetic Biology Open Language (SBOL) [29]. This 
framework evolved in different versions, culminating in the updated 
SBOL2.3 [30]. Efforts to integrate more complex functions, blending 
fully programmable genetic circuits, gave rise to CELLO [31], a hard-
ware description language that builds on principles of electronic design. 
CELLO exploits the Verilog language, parsed through algorithms that 
create circuit diagrams, assign Boolean logic gates, balance constraints 
to build synthetic DNA and simulate circuit performance. The pipeline 
was applied to design 60 circuits in E. coli, and the cognate DNA frag-
ments (880,000 bp) were built as specified with no additional tuning 
required. Out of these 60 designs, 45 circuits performed correctly in 
every output state (up to 10 regulators and 55 independent functional 
parts), indicating that 92 % of the 412 output states functioned as pre-
dicted. An overview of the available in silico tools in this section is 
presented in Fig. 2 (Design). 

4. Building biological chassis by harnessing advanced SynBio 
tools 

Automated assembly pipelines require efficiency and versatility to-
wards incorporation of novel functions into the host of choice. 

Toolboxes have been developed during the last years to meet this gen-
eral criterion. Genome-wide modifications combine fast multi-part DNA 
assembly techniques and genome engineering methodologies [32,33]. A 
simple and efficient way to disrupt genes in E. coli was developed some 
20 years ago by making use of the λ Red recombinase functions. PCR 
products, containing an antibiotic marker and homology regions to the 
target gene or locus, are genomically integrated by the phage recom-
binase, interrupting the region to be eliminated [34]. Almost simulta-
neously, protocols to insert DNA fragments into the E. coli chromosome 
were developed based on homologous recombination [35]. An E. coli 
knock-out library (i.e. the KEIO collection) of strains harboring single 
deletions of all non-essential genes was created by combining these 
techniques [36,37]. The KEIO collection comprises E. coli mutants for 
303 genes, including 37 genes of unknown function. This resource 
enabled studying loss-of-function phenotypes to a scale never attempted 
before, providing key information when engineering E. coli strains for 
chemical production. λ Red-based recombination was tailored to use 
oligonucleotides instead of double-stranded DNA, which increased 
recombination efficiency and broadened the application spectrum [38]; 
multiplex automated genome engineering (MAGE) relies on these efforts 
[39]. 

A breakthrough in molecular biology has been the discovery of 
clustered regularly interspaced short palindromic repeats (CRISPR) and 
associated Cas proteins, repurposed for gene and genome editing pro-
tocols [40]. To expand the breadth of these applications, 
multiplex-editing techniques were implemented to engineer several sites 
in the eukaryotic genome simultaneously [41]. The same principles 
were combined with recombineering or homologous recombination to 
adapt CRISPR/Cas methodologies in prokaryotes [42], lacking 
non-homologous end joining [43–45]. The number of microbial species 
that can be genetically accessed with these toolsets continues to increase 
[46–49], incorporating non-traditional hosts to the list of chassis for 

Fig. 2. Timeline showing selected enabling technologies and approaches developed in the design-build-test-learn cycle of Synthetic Biology over the past 30 years 
(from left to right). The diagram illustrates some key breakthroughs in each stage of the design-build-test-learn cycle (DBTLc): Design (blue), Build (green), Test 
(orange) and Learn (purple). Each methodology is referred to (and explained in detail) in the text. Note that the list of examples is non-exhaustive due to space 
constraints; abbreviations are provided in the text. 
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metabolic engineering. Along the same line, base-editors were recently 
developed based on CRISPR/Cas technologies, enabling targeted and 
precise manipulations at single-base resolution [50–52]. Other tools 
have been engineered to control gene expression without altering 
chromosomal sequences. Synthetic small regulatory RNAs, for instance, 
lower expression by inhibiting translation [53], although multiplexing is 
to be demonstrated. Similarly, CRISPR interference (CRISPRi) decreases 
expression by blocking gene transcription [54–56]. CRISPR activation 
(CRISPRa), in contrast, boosts gene expression [57]. Upgraded 
CRISPR/Cas protocols are reported virtually on a weekly basis, 
including strategies for handling increasingly long DNA fragments 
(CRISPR RNA-guided integrases) [58], and it can be anticipated that 
these methodologies will become daily laboratory procedures in the 
near future. 

All of the protocols listed here rely on DNA assembly, and cloning 
strategies have been developed to assemble complex and large genetic 
constructs. The efficiency of seamless and sequence-independent stra-
tegies typically exceeds that of classical restriction/ligation protocols. 
For example, uracil-specific excision reagent (USER) cloning incorporates 
deoxyuridine into the 5′ prime ends of PCR products, followed by their 
excision to generate complementary overhangs that facilitate building- 
up long DNA sequences [59]. Gibson assembly was proposed for DNA 
synthesis in vitro, where overlapping DNA blocks are joined by the 
combined action of an exonuclease, a DNA polymerase and a ligase in a 
single isothermal step [60]. This technology was scaled for de novo as-
sembly of a synthetic Mycoplasma genitalium genome [61,62]. Although 
ligase chain reaction (LCR) was developed in the 1990 s, a 
high-throughput assembly methodology, multiplex LCR, has been opti-
mized to increase the number of DNA constructs that can be assembled 
[63]. Likewise, Golden Gate assembly harnesses type IIs restriction en-
zymes for joining DNA fragments [64]. Due to its high efficiency and 
owing to the adoption of modular cloning [65], Golden Gate assembly 
has become popular as it enables re-using and exchanging DNA parts 
between research groups. Modularity is particularly relevant for auto-
mating the construction of DNA large molecules—as epitomized by the 
automated assembly of 122 versions of 16 different gene clusters [66]. 
Fig. 2 (Build) summarizes the main SynBio technologies developed to 
this end. 

5. Omics methodologies as the core of the Test stage 

Multi-omics methodologies enable quantitative and qualitative 
analysis of each regulation layer in cellular systems (i.e. genes and ge-
nomes, transcripts, proteins, metabolites and metabolic fluxes distribu-
tion). A major driver of systems metabolic engineering is combining 
whole genome sequencing, measurement of cellular metabolite con-
centrations and identifying (potential) crosstalk between different strata 
of regulation [67]. Complex Omics approaches have evolved signifi-
cantly over the last 20 years, with next generation sequencing (NGS) 
technologies playing an important role in genomics [68]. The first DNA 
sequencing technique (Sanger) based on chain termination [69] was 
later automated to open the door for commercial sequencing at large 
scale. High-throughput sequencing was established by the late 1990 s, 
allowing the sequencing of whole genomes in a very short period. 
Pyrosequencing empowered sequencing of the whole M. genitalium 
genome [70]. Both NGS throughput and coverage expanded enor-
mously, and the cost per million bp has dropped accordingly [71]. Ion 
Torrent drastically increased NGS accuracy [72]. These sequencing 
platforms accelerated SynBio developments, especially when imple-
menting novel pathways that rely on long DNA segments. NanoPore, 
developed by the end of the last century [73], has experienced a tech-
nological boost in the last decade that overcomes several shortcomings. 
Hence, NanoPore offers high-throughput, real-time, long-read and 
large-scale DNA sequencing [74]. 

Transcriptomics began concomitantly with the advent of DNA 
microarrays to investigate changes in gene expression levels [75], and 

allowed for the study of global changes in mRNA abundances, e.g. E. coli 
under different stresses [76]. Thereafter, RNA sequencing (RNA-Seq) 
emerged as an approach to deduce and quantify the transcriptome 
making use of deep-sequencing technologies [77–79]. These methods 
can be harnessed for quality control of DNA designs, engineered path-
ways and strains [80], yet continuous mRNA decay can distort quanti-
fications and differential expression transcriptome analyses [81]. 
High-resolution transcriptomic profiling may include a combination of 
RNA-Seq and DNA microarrays [82]. Transcriptomes in individual 
bacteria were recently studied by implementing poly(A)-independent 
single-cell RNA-sequencing, which faithfully captured 
growth-dependent expression patterns in Salmonella and Pseudomonas 
cells across all RNA classes and genomic regions [83]. 

Moving from the transcript to the protein level, polypeptide detec-
tion and quantification provide a snapshot of the cell functionalities. 
Several techniques to detect and quantify proteins, starting with the 
foundational sodium dodecyl sulphate–polyacrylamide gel electropho-
resis (SDS-PAGE) technology [84], have been developed to this end. 
However, their throughput was not sufficient for the analysis of thou-
sands of proteins until mass spectrometry (MS) was introduced in pro-
teomics [85,86]. High sensitivity and accuracy was attained through 
targeted proteomics, aided by in silico prediction of fragments [87], using 
selected- and multiple-reaction monitoring (SRM/MRM) to detect indi-
vidual fragments after liquid chromatography (LC) separation [88–91]. 
This methodology also displays a broad dynamic range, spanning 
several orders of magnitude, crucial for simultaneous detection of many 
intracellular proteins. In combination with chemically-produced or 
concatenated peptides generated from synthetic genes, targeted prote-
omics enables absolute protein quantification [92,93]. Paired with these 
efforts, deconvolution of mixture spectra was tailored to improve pep-
tide identification, as a large amount of non-fragmented precursor ions 
are obtained upon acquiring MS/MS spectra. Data-dependent-analysis 
(DDA) was among the first approaches for effective spectra acquisition 
[94], selecting peaks with the highest intensities, followed by frag-
mentation and analysis of peptides within a specific mass range by 
tandem MS. Later, the introduction of data-independent-acquisition 
(DIA) enabled the isolation of a particular m/z window, conferring 
higher sensitivity and better reproducibility compared to DDA [95]. 
Recently, OpenSWATH leveraged acquisition power by implementing 
Sequential Window Acquisition of All Theoretical Mass Spectra 
(SWATH-MS) in an automated and high-throughput fashion [96,97]. 
The latest (and probably, the most robust) approach exploits deep neural 
networks combined with DIA [98], enabling deeper and 
highly-confident coverage when paired with rapid chromatographic 
methods. 

As indicated for transcriptomics, single-cell proteomics emerged as 
an attractive development, yet it was challenged by limited sensitivity. 
Traditional proteomics requires the polypeptides from a given cell 
population to be pooled and analyzed together, hence variations among 
individual cells in the sample are masked by population-wide effects. To 
overcome these limitations, novel approaches both with high sensitivity 
and multiplexing capacity have been proposed for single-cell proteomic 
analysis [99]. A pioneering study [100] reported on the combined 
exploration of the single-cell transcriptome and proteome of E. coli. 
Furthermore, these approaches can be further applied in more complex 
systems, as exemplified by mapping of query datasets on top of a 
reference proteome atlas [101]. 

Metabolomics provides another level of essential information about 
overall physiology, not only as an overview of metabolites present in the 
cell, but also informing on metabolite accumulation and depletion as a 
response to genetic and environmental perturbations. Hence, metab-
olomics aids the identification of potential bottlenecks in metabolic 
pathways. Arguably, metabolomics flourished with the implementation 
of high-pressure liquid chromatography (HPLC), which replaced thin- 
layer chromatography (TLC), and with the switch from ultraviolet and 
flame-ionization detection to tandem MS during the late 1980 s and 
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early 1990 s [102]. Even today, key improvements in this field are 
driven by continuous technological advances in LC and MS technologies, 
towards faster separation and higher sensitivity, resolution and dynamic 
detection ranges [103]. A major (and only partially solved) challenge is 
the fast and efficient quenching of samples needed to detect as many 
metabolites per sample as possible [104]. Due to the diverse chemical 
nature and differences in metabolite concentration levels across organ-
isms, measuring the complete metabolome through a single methodol-
ogy is still difficult. Dedicated methodologies have been developed 
according to the properties of the metabolites of interest. Workhorse 
technologies are LC, hydrophilic interaction LC [105], reversed phase 
ion pairing chromatography [106] and gas chromatography (GC) sep-
aration coupled to MS, and numerous special applications complement a 
detailed picture of the cell metabolome—e.g. nuclear magnetic reso-
nance (NMR) [107] or flow-injection (FIA)-MS [108–110]. Also, 
metabolomics can be targeted and non-targeted, each with inherent ad-
vantages and disadvantages. While non-targeted metabolomics detects 
all measurable metabolites in DIA, targeted metabolomics requires the 
prior selection of analytes of interest (i.e. "you only see what you are 
looking for"). Thus, non-targeted metabolomics detects more analytes 
and generates complex datasets, the analysis and interpretation of which 
are complex and time-consuming. Targeted metabolomics, on the other 
hand, makes use of SRM and is more sensitive and precise than 
non-targeted approaches [111]. Targeted methods generate 
easy-to-interpret datasets and relative and absolute quantification is 
feasible through the inclusion of internal standards. Recently, technical 
advances in high resolution tandem MS (HRMS) combined the strength 
of target and non-targeted metabolomics. Parallel, high-resolution 
acquisition of full-scan spectra facilitates metabolite discovery, identi-
fication and quantification [112,113]. The emergence of big data re-
positories for metabolite fragmentation spectra along with improved 
algorithms, e.g. spectral search and in silico tools, further facilitated 
identification in untargeted metabolomics [114–116]. While targeted 
metabolomics is (in general) a hypothesis-driven framework, untargeted 
metabolomics can reveal unexpected changes in the metabolism of 
engineered microorganisms [117]. Considering that much of microbial 
metabolism remains to be explored, the combination of metabolomic 
methodologies accelerates the DBTLc not only by highlighting the effect 
of modifications on the biochemical network, but also by providing 
fundamental information of the metabolome landscape of the host [118] 
that could fuel the next set of engineering efforts. 

Metabolite abundance is the consequence of fluxes operating in the 
system. Metabolic fluxes cannot be measured directly, but they can be 
assessed through changes in metabolite concentrations or by detecting 
isotope distribution upon feeding isotopic labeled precursors (e.g. 13C- 
labelled substrates). Fluxomics is based on the same detection methods 
as metabolomics, but also quantifying isotopologues (i.e. molecules 
sharing the same chemical structure but differing in their isotopic 
composition). The foundation for fluxomics was laid in the early 1990 s, 
when the first flux maps were determined based on flux balance analysis 
(FBA) [119,120], soon complemented by including isotope tracer ex-
periments [121]. For a long time, fluxomics was only performed by a few 
laboratories on a limited number of biological systems, as it required 
highly-specific expertise in computational and experimental workflows 
[122]. Over time, however, publicly-available and easy-to-use software 
allowed wide access to fluxomics protocols [123–127]. During the last 
decade, the incorporation of automated, downscaled fluxomics has 
made high-throughput approaches possible [128–130]. This scenario 
strongly advocates for fluxomics to become a central, widespread 
analytical approach to explore cell factory performance within the 
DBTLc in a routinely fashion. Fig. 2 (Test) covers the pivotal technolo-
gies developed in the omics field. 

6. Mechanistic modeling and machine learning to integrate 
Omics data in SynBio 

SynBio requires both mechanistic and ML models to learn from omics 
data, informing the next round of strain engineering in the DBTLc. 
Mechanistic models represent biological components and their in-
teractions, boosting interpretability, transparency and explainability. 
ML techniques identify features that differentiate strains and conditions, 
improving the accuracy of mechanistic models by pinpointing missing or 
inaccurate components or interactions, and ultimately guiding experi-
mental designs based on data, model topology and simulations. ML 
models may not be interpretable, transparent or entirely explainable, 
but they facilitate making sense of omics data and improving biological 
knowledge. An overview of the major breakthroughs in both mecha-
nistic modeling and ML in the context of SynBio is presented below and 
in a graphic visualization in Fig. 2 (Learn). 

7. Mechanistic modeling and machine learning for SynBio: past, 
present and the way ahead 

Analogous to models in physics and chemistry, the earliest models of 
biological systems included signaling [131] and gene expression net-
works [132], as well as metabolic reactions [133]. These interpretations 
took the form of ordinary and partial differential equations (ODEs and 
PDEs), and the most comprehensive models included network structure 
(i.e. topology, defined by how components interact), propensity for 
components to interact (i.e. thermodynamics) and rates at which they do 
so (i.e. kinetics). Kinetic models also combine mechanistic details (e.g. 
allosteric regulation) to provide accurate numerical simulations at both 
the biological component level and interaction rates; specifics of the 
kinetic formalism depend on the modeling framework [134]. Thus, ki-
netic models simulate the dynamics of a biological network and analyze 
the sensitivity of numerical simulations to model parameters [135]. 
However, a high level of detail requires significant amounts of (exper-
imentally-curated) data for model parameterization, e.g. enzyme ki-
netics, enzyme, substrate and product concentrations, and 
thermodynamic information. Generating the data necessary to param-
eterize a kinetic model is technically challenging and cost-prohibitive 
[136,137]. Also, the computational and algorithmic complexity of 
parameterizing and simulating kinetic models grows with model size, 
relegating the scope of kinetic modelling to individual or just a few 
pathways. Several approaches have been explored to overcome these 
challenges. Expanding the model size using simplified reaction mecha-
nisms allowed to identify computationally a minimal set of reactions 
capable to support bacterial growth and reactions to be modulated or 
knocked-out to overproduce a product of interest [138–140]. A different 
approach reduced the number of reactions while maintaining the scope 
of the model through model reduction [141–144]. Regardless of the 
method, the lack of available data and basic understanding of enzyme 
properties remain major bottlenecks towards full parametrization. In 
addition, most approaches implemented thus far result in 
context-specific models that may be difficult to extrapolate to other 
operational conditions. 

Constraint-based analysis overcomes the challenges of scale and data 
availability through the assumption that the system is at steady state. 
The problem then morphs from an ODE or PDE system to a set of linear 
equations that can be solved using optimization techniques, e.g. linear 
programming. Genome-scale metabolic models (GSMM) are recon-
structed based on the genome sequence of an organism [145,146] to 
calculate reaction and pathway fluxes based on mass balance (i.e. FBA) 
and enzyme capacity constraints [147,148]. Constraint-based recon-
struction and analysis (COBRA) became an essential tool to compute 
optimal operativity of biological components given a set of inputs and 
network topology [149]. Additional constraints, based on thermody-
namic and concentration data (i.e. thermodynamics-based FBA, tFBA), 
can be incorporated to refine flux allocation across the network [150]. A 
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plethora of constraint-based methods have been developed, including, 
just to name a few examples, flux variability analysis (FVA), parsimo-
nious flux balance analysis (pFBA) and the previously-mentioned Opt-
Knock [151,152]. The expanding palette of approaches accurately 
estimate ranges of steady-state reaction fluxes and compute optimal 
enzyme capacities to improve titers and yields. 

GSMMs are limited to reactions within metabolism, and tend to 
ignore material and energy costs required for gene expression and pro-
tein synthesis, particularly relevant for engineering efforts. To fill this 
gap, metabolic and expression models have been formulated for well- 
studied organisms, e.g. E. coli [153,154] and Corynebacterium gluta-
micum [155], and approaches in this direction can be expected for 
alternative bioproduction chassis, e.g. P. putida [156–160]. A milestone 
in metabolic and expression model formalism is the direct inclusion of 
enzyme production costs in the overall mass balance. This feature me-
diates better predictions of pathway utilization, based on the costs of 
synthesizing the enzymes therein. Unfortunately, such metabolic and 
expression models are computationally challenging to solve, and require 
additional parameters (e.g. RNA synthesis and degradation rates), some 
of which are yet to be experimentally determined. 

As indicated above, a shortcoming of constraint-based analysis is the 
inaccuracy of network-wide flux predictions. Metabolic flux analysis 
attempts to solve this problem by deriving fluxes from mass distribution 
vectors (MDVs), generated from isotope labeling experiments and 
assessed by LC-MS/MS or GC-MS [161,162]. Algorithm innovations, e.g. 
elementary metabolite units (EMU) [123], confidence interval estimation 
without exhaustive sampling [163], time-course data [164] and 
parallel-labeling experiments [165], rendered MFA computationally 
efficient for both 13C- and 15N-labeling tracer experiments. Thus, MFA 
can guide engineering strategies to divert fluxes into the desired prod-
ucts. Recent efforts expanded the size and scope of MFA to the 
genome-scale [148], e.g. by improving analytics to measure MDVs in 
reactions beyond central metabolism [166], model reduction strategies 
[144] and algorithms for genome-wide atom transfer prediction [167, 
168]. When combined, these developments improved the resolution and 
scope of fluxes calculated using the current MFA toolbox [169–173]. 

In parallel to mechanistic modeling, ML assimilated solutions to 
challenges in computer vision, natural language processing (NLP) and 
board and video games solved by deep learning (DL). Unlike linear 
classifiers, support vector machines (SVMs) or decision trees, DL has been 
shown to serve as an universal function approximator [174]—stacking 
layers of neural networks on top of one another to gain abstraction and 
representational power as a function of network depth. DL fell out of 
favor with the ML community in the late 1990 s, surpassing traditional 
algorithms across all computer vision, NLP and game benchmarks only 
when a combination of general (e.g. back propagation [175]) and 
domain-specific algorithmic innovations (along with computer hard-
ware improvements) was implemented to this end. Some of these in-
novations included convolution networks [176], image augmentation 
[177], attention [178] and NLP pre-training techniques [179]. In the 
biological domain, genomic and proteomic sequences are analogous to 
sequences of letters and therefore amenable to many of the NLP algo-
rithms. Important examples of this sort include sequence labeling in 
genomics [180,181], sequence-to-feature [182] and 
sequence-to-structure predictions in proteomics [183]. A major mile-
stone has been the direct prediction of protein structures from se-
quences, as AlphaFold2 [184] won the Critical Assessment of Structure 
Prediction Challenge (CASP14) by a large margin [185]. Similar bioin-
formatics tasks, involving inputs that can be modeled as those in com-
puter vision and NLP, will surely see comparable improvements in the 
future. 

The heterogeneity of omics data and the high degree of correlations 
between features render these datasets difficult for ML approaches. 
Unsupervised learning techniques that arrange and reduce dimension-
ality, e.g. K-means clustering [186], hierarchical clustering [187], 
principal component analysis (PCA) [188], independent component 

analysis (ICA) [189] and partial least squares (PLS) analysis [190], are 
workhorses for inferring class membership and omics dataset features. 
Classification algorithms, for instance, use transformed and reduced 
features as inputs to improve performance [191]. Alternatively, some 
omic data (e.g. metabolite concentrations) can be used to constrain 
mechanistic models and the simulation output (e.g. fluxes) can then be 
fed as inputs for classification algorithms [192]. Likewise, generative 
modeling [193] provides a framework for combining unsupervised 
dimensionality reduction with DL to infuse the benefits of abstraction 
and representation power (characteristic of DL) into unsupervised 
classification and feature importance identification [194]. Deep gener-
ative models, e.g. variational autoencoder (VAE, [195]) and generative 
adversarial network (GAN) [196], map data to probability dis-
tributions—and vice versa. The mapping process is analogous to a 
non-linear PCA, where high dimensional inputs are encoded to low 
dimensional latent spaces that can then be decoded to reconstruct the 
inputs. The latent space can be parameterized to capture both categor-
ical and continuous data factors [197]. In addition, latent spaces from 
different datasets can be combined using latent arithmetic to generate 
data points not seen in the training datasets [198]. Deep generative 
modeling using VAEs impacted single-cell RNA sequencing, with various 
studies demonstrating how experimental noise and batch effects can be 
corrected within and across experiments [199,200]. Applications of 
clustering and feature identification have seen recent advances in the 
associated algorithms [201], indicating that the use of generative 
modeling in unsupervised learning has much to offer for omic analysis in 
the SynBio community. 

Besides computer vision, NLP and games, DL enabled breakthroughs 
on ML tasks involving graphs. Graph neural networks (GNNs) operate 
directly on the graph structure through message passing, whereby node 
and relation attributes are propagated to their nearest neighbors for a 
selected number of iterations. Thus, it is possible to generate contextu-
alized features for node and graph classification, as well as link pre-
diction [113]. Two application domains with SynBio analogs include 
generating improved compound representations for drug discovery and 
product-recommendation systems. In the former, GNNs learn compound 
representations and similarity metrics between molecules from training 
data to yield more accurate property predictions [202] and to simulate 
chemical structures with desired properties [203]. In the latter, GNNs 
take advantage of the network formed between a given user’s pur-
chasing history and other customers purchasing history, to make rele-
vant recommendations of potential products [204]. In both cases, 
previous knowledge (e.g. chemical structure in drug development and 
past purchasing histories in recommendation systems) is contextualized 
with current data. Features of omic datasets are related through rich 
networks. Gene and metabolite set enrichment analyses exploit the hi-
erarchy and relations between genes, metabolites and biological pro-
cesses to infer significance at the pathway level [205,206]. GNNs are 
suited to take advantage of biological network knowledge when 
analyzing omics data, and preliminary efforts indicate that this will be 
an actively explored research topic in biology in the future [207]. 

The examples above advocate a role for learning approaches in the 
DBTLc, an iterative process by nature. The choice of variables that 
should be changed in strain engineering is a non-trivial task, involving 
balancing exploitation (i.e. optimizing towards the best producing strain) 
and exploration (i.e. testing a diverse range of variables to gain better 
understanding of the system). These efforts involve a search space that 
cannot be exhaustively navigated. ML approaches can inform the design 
of experiments at each DBTLc iteration by learning the correct balance 
between exploitation and exploration and suggesting a recommended 
subset of variables to test experimentally. The importance of active 
learning has been demonstrated in synthetic chemistry [208], cell-free 
systems [209] and pathway engineering in yeast [210], where a com-
bination of heuristics, mechanistic modeling and ML successfully fueled 
data-driven design of experiments. 
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8. Automation in the DBTLc for bacterial cell factory design 

To deliver the SynBio promise of supporting a true bioeconomy, 
efficient microbial cell factories are required in high demand to supply 
market needs [211,212]. Replacing fossil fuels-related products 
currently in use by biologically produced counterparts and developing 
new-to-Nature chemicals is a driving force that pushes both companies 
and research centers to create novel technologies. High-quality, fast 
construction of cell factories calls for incorporating automation plat-
forms to create phenotypes of interest in an effective and reliable way. 
Automated pipelines can be designed to increase throughput, reducing 
technical variability and improving data quality to this end. Such 
workflows find applications at each segment of the DBTLc—also con-
necting each cycle quadrant in the context of biofoundries [213], where 
pipelines of this sort will enable processing and analyzing hundreds to 
thousands of engineered strains. An integrated biofoundry requires 
operational flexibility, with easily reconfigurable systems to adapt to 
different biological systems while reducing human intervention [214]. 
In practical terms, this process involves deploying a robotic station 
equipped with liquid-handling mechanical arms to speed up workflows. 
State-of-the-art liquid handling devices are now able to pipette volumes 
within the micro- to milli-liter scale while providing the versatility 
required to build cell factories [215]. In the next section, the latest ex-
amples where automation was successfully incorporated into DBTLc 
workflows are discussed. 

9. Latest development in automated pipelines for cell factory 
construction and testing 

While some automated pipelines have only focused on an individual 
step within each DBTLc quadrant, others covered many steps simulta-
neously (Table 1). A recent study [216] illustrates the robustness of 
liquid-handling robots for high-throughput experiments. A flexible, 
open-source Python framework, PyHamilton, integrated complex liquid 
transfer patterns and systematized conventional laboratory procedures. 
The automated workflow was implemented to track up to 480 individual 
bacterial cultures — analyzing metabolic fitness landscapes across 100 
different conditions — towards optimizing recombinant protein pro-
duction. Another groundbreaking study showed how an integrated 
DBTLc pipeline can be adopted for optimizing bioproduction, as well as 
discovering novel metabolic pathway configurations. Here, 
(2 S)-pinocembrin (5,7-dihydroxyflavone) production by engineered E. 
coli strains was systematically optimized, reaching a flavonoid titer up to 
88 mg L–1 after screening 65 variants out of 23,328 possible metabolic 
designs [217]. The overall approach entailed in silico selection of 
promising enzyme candidates, pathway assembly (aided by robotics and 
supported by a statistical method), rapid testing of product titers and 
cycle iteration through computational tools and laboratory automation 
(Fig. 3). Amyris Inc. recently described LILA, an automated scientist to 
handle all design and optimization steps of the DBTLc. LILA generates 
metabolic routes, identifies genetic elements for perturbation and in-
forms (re-)design of microbial strains in a matter of seconds to minutes. 
Strains specified by LILA were built and phenotyped in a 
semi-automated in-house pipeline to yield the highest published titers 
for naringenin [218]. 

Rapid prototyping of engineered chassis in a semi-automated bio-
manufacturing process exploited a robotic platform to produce 17 
building blocks over 85 days [219]. A timed “pressure test” was reported 
[220], whereby 3 months were allocated to engineer 215 microbial cell 
factories in a biofoundry in five species (i.e. Saccharomyces cerevisiae, E. 
coli, Streptomyces albidoflavus, S. coelicolor and S. albovinaceus) to pro-
duce 10 molecules. Likewise, semi-automated pipelines screened 
monoterpenes synthase libraries to identify best candidate variants, 
supported by robotic liquid handling paired with GC-MS analysis and 
automated data extraction [221]. Merging an integrated robotic system 
and ML algorithms enabled optimization of lycopene production by 

engineered E. coli. In this case, gene expression within the carotenoid 
biosynthesis pathway was tuned with optimization routines (paired 
predictive model and Bayesian algorithms) that resulted in high lyco-
pene levels—while reducing the number of constructs to be evaluated to 
< 1 % of all 13,824 combinatorial possibilities. A pathway variant, 
leading to enhanced (1.7-fold) lycopene production increase was iso-
lated with this method [222]. In an elegant approach to cell-free bio-
production, an active learning strategy was applied to explore a broad 
combinatorial space of ca. 4,000,000 buffer compositions to maximize 
protein production [223]. Here, the authors merged exploitation (i.e. 
buffer combinations with a low prediction accuracy) and exploration (i.e. 
buffer combinations predicted to maximize protein yields) to improve 
the output and decrease the model uncertainty. A big data collection was 
used to train an ML algorithm, achieving high quality prediction and 
improving protein production by 34-fold with a low-cost, home-made 
lysate. 

10. Current DBTLc bottlenecks 

A number of bottlenecks need to be solved in automated SynBio 
pipelines (Fig. 4), associated with limitations in robotic equipment that 
restrict task performance. Regardless of technical limitations, these 
technologies are still rather expensive, and costs involved in automating 
an entire laboratory are simply not affordable for many institutes or 
even private companies [224]. In silico pathway design, gene part se-
lection, protein and enzymes engineering and de novo design of catalytic 
activities are individual DBTLc steps that suffer multiple limitations. 
Navigating the large catalog of genes and enzymes for designing a 
metabolic pathway can be a daunting task. Next, identifying suitable 
pathways is challenging as bacterial metabolism is inherently complex; 
crosstalk between routes (both native and engineered) is particularly 
difficult to predict [225]. Furthermore, the repertoire of hosts that can 
be used to create microbial cell factories is relatively limited, with < 10 
conventional organisms widely adopted for such purpose [226]. Like-
wise, more efficient and standardized DNA assembly techniques are 
required to unveil context dependency, another typical SynBio problem 
[227,228]. Toxicity of final product(s) or intermediates generated dur-
ing bioconversion is another major barrier in microbial engineering 
[229]. The engineered phenotypes must also be stable over time to 
permit scaling-up [230,231]. 

Once the cell factory is ready for testing, sample preparation and 
extraction methods come into place, and they are difficult to automate 
[232]. Moreover, some steps, e.g. culture inoculation, PCR amplifica-
tion, plasmid transformation, replica-plating, plasmid curation, sample 
centrifugation, filtration and cell lysis are usually done off-line and still 
require human intervention to different extents. Furthermore, as 
different companies are developing proprietary technologies, robotics 
parts are not interchangeable or adaptable to other devices, which 
hampers their integration into other workflows [233]. Data extraction 
and interpretation can be equally challenging, due to the vast amount of 
data generated in a typical high-throughput experiment [234]. Analyt-
ical tools and experimental designs used for specific omic disciplines 
often lack versatility for integration across multiple omics layers [5]. 

Finally, a major challenge is our inability to accurately predict 
phenotypes from first principles (e.g. DNA modifications), together 
using small-scale experiments to forecast the behavior of cell factories at 
a larger scale [235]. Metabolic reconstructions and gene expression 
models, deployed to infer complex phenotypes, are both computation-
ally demanding and call for the incorporation of additional parameters 
(e.g. RNA synthesis and degradation rates), which are difficult to obtain 
experimentally [236]. Linked to this effort, high-power computation is 
mandatory to model and predict the next-generation of microbial cell 
factories [237,238]. 
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Table 1 
Recent examples of automated Design-Build-Test-Learn workflows.  

Host or 
system 

Objective Relevant featuresa at phase: Reference 

Design Build Test Learn 

E. coli Systematic optimization of 
protein productionb (GFP and 
RFP) 

PyHamilton framework (Hamilton MicroLab 
STARlet 8-channel base model) 

Transformation and inoculation Media preparation 
Media-dispensing and dilution * 
Cultivation * 

Feedback controller algorithm [216] 

E. coli Mandelic and hydroxymandelic 
acid production 

128 enzymes selected from 88 species encoding 50 
different targets* 
111 new gene parts, along with 25 parts and 18 
plasmid backbones already in house * 
In silico tools: Retropath, RetroRules, Reaxys, 
Selenzyme, PartGenie, RBS calculator and 
PlasmidGenie 

λ Red recombineering 
CRISPR technologies 
In-Fusion cloning 
Robot-assisted ligase cycling 
reaction * 
Transformation, replica plating 
and plasmid curing 

Minion next-generation 
sequencing 
Cultivation * 
Enzymatic assays and pathway 
screening on a robot station * 
LC-TripleQuad–LC-MS/MS 
analysis 
LC-IMS QToF–LC-MS analysis 
GC-QToF–GC-MS analysis 

DoE analysis 
Ordinary least square contrast regression 
analysis 

[219] 

E. coli Monoterpenoid production Not indicated Megaprimer PCR 
In-Fusion cloning 
Transformation 

Media-dispensing and colony 
picking ** 
Growth, induction and 
incubation * 
Sanger sequencing * 
GC-QTOF analysis * 

Data analysis aided by machine learning 
(neural networks) * 

[221] 

E. coli Lycopene production Not indicated Promoter mutagenesis 
Golden Gate assembly * 
Transformation * 

Cell cultivation, colony picking 
and lycopene extraction * 
Colorimetric quantification of 
products 

Machine learning (Bayesian optimization and 
Gaussian process) * 

[222] 

E. coli Dodecanol production Combination and modulation of three acyl-CoA/ 
acyl-ACP reductases. In silico tools: J5, DeviceEditor, 
bioCAD, RBS calculator 

DNA purification assisted by 
NIMBUS size selection robot ** 
Gibson assembly 
Golden Gate assembly reaction 

MiSeq sequencing 
BioLector microbioreactor 
GC-MS analysis 
HPLC 
LC-MS/MS-QQQ analysis 

ML regression approaches: random forest, 
polynomial, multilayer perceptron, and the 
TPOT meta-learner. 
ML to improve prediction: Ensemble Model 
Partial correlation analysis to evaluate RBS 
calculation 

[250] 

Cell-free 
system 

Protein productionb (GFP) Not indicated Golden Gate assembly 
Transformation 

Cultivation, harvesting, lysate 
preparation, protein purification 
Cell-free reaction 
combinations * 

Machine learning models * [223]  

a Automated steps are highlighted in bold, indicating whether they are either fully automated (*) or semi-automated (** , requiring human intervention). Abbreviations: GFP, green fluorescent protein; RFP, red 
fluorescent protein; DoE, design of experiments; LC, liquid chromatography; MS, mass spectrometry; IMS, ion mobility spectrometry; GC, gas chromatography; QToF, quadrupole time-of-flight. 

b Green and red fluorescent proteins were used as model proteins for the optimization process. 
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Fig. 3. (A) Design-build-test-learn cycle (DBTLc) workflow illustrated for the production of (2 S)-pinocembrin in engineered strains of Escherichia coli MG1655. Each 
quadrant of the cycle lists tools applied to build cell factories tailored for the production of flavanone. (B) “Linearization” of the DBTLc pipeline applied to the 
example of panel (A). The workflow started with in silico design of cell factories (based on E. coli as the chassis), including factorial pathway assembly. Next, the in 
silico-designed gene circuits were assembled by a robotic platform that also carried out the amplification, purification and transformation of DNA parts into the host. 
This operation was followed by cultivation of the engineered bacteria, sampling and processing of the samples for LC-MS/HPLC analysis. The last step integrated the 
massive amount of data generated, together with training routines to predict how a new model will behave making use of statistical analysis and machine learning 
(ML) algorithms. These activities concluded the first iteration of the DBTLc, paving the way for the next round. 

Fig. 4. Some of the current bottlenecks to be addressed in the classic design-build-test-learn cycle (DBTLc) towards the development of next-generation microbial 
cell factories. 
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11. Discussion and outlook 

Automation of the DBTLc is bringing about a transition in the SynBio 
field. With novel technologies that allow generation of robust cell fac-
tories, incorporating automated steps into everyday laboratory work is 
no longer a dream. These developments have been triggered by the 
exponential increase of data that can be extracted from a single exper-
iment. Yet, the limited throughput in data handling and interpretation 
calls for methodologies that can accelerate the process. ML provides the 
required prediction power to achieve this goal [239]. Automated, 
high-throughput approaches to generate reliable data and ML algo-
rithms should be merged for rational design of cell factories endowed 
with a desired phenotype [240]. These developments can be expected 
over the next 10 years, as SynBio is blending mechanistic modeling and 
systems-level thinking to engineer biology. The most recent literature is 
brimming over with examples of mechanistic modeling and ML for omic 
analysis and experimental design, and a crossover of recent ML de-
velopments in computer vision, NLP, graphs and active learning into 
SynBio can be anticipated to support these efforts. 

The compendium of biological components and databases describing 
their potential interactions is rather incomplete. Knowledge gaps in 
understanding of biology limit the ability to engineer living cells, and 
learning causality from data is essential to bridge these gaps. Identifying 
correlations from (noisy and context-specific) experimental data [241], 
or ‘brute-force’ search strategies (not scalable to large networks) [242], 
are partial solutions in this direction. The work of Pearl [243] and other 
pioneers in the field have shaped the modern DL framework [244]. Yet, 
the detail and scope of in silico design and simulation are also limited. 
Whole-cell, multi-level models are available for a few model organisms 
[245], laying the path towards modelling cell dynamics over multiple 
regulation layers. However, models for multicellular entities and mi-
crobial communities that include biochemical dynamics (i.e. kinetics 
beyond steady-state conditions) are virtually absent. Furthermore, 
almost all models used in the SynBio community assume constant cell 
volume, often ignoring the spatial organization of cells and tissues, and 
neglect other physical, chemical or electrical phenomena. Recent de-
velopments in graph networks (GNs) [246] and physics-informed neural 
networks (PINNs) [247] provide avenues of exploration, previously 
applied to physics [248] or very simple biological systems. Both GNs and 
PINNs blend mechanistic details for interpretability and explainability 
while integrating the scalability and scope of DL. Further work, inte-
grating mechanistic modeling and DL, will enable more accurate designs 
and simulation in SynBio. 

We envision a fully automated DBTLc, characterized by high- 
throughput and iterative workflows, paving the way to the long- 
standing ambition of SynBio to program phenotypes of interest from 
first principles. Self-driving labs, combining fully-automated experi-
ments with AI to decide on the next set of experiments, may become a 
new paradigm of scientific research, as recently proposed [249]. The 
rational combination of individual approaches, as presented in this re-
view, will facilitate these developments, providing, at the same time, 
valuable fundamental information on biological systems to fuel engi-
neering efforts. 
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[56] Jakočiūnas T, Jensen MK, Keasling JD. System-level perturbations of cell 
metabolism using CRISPR/Cas9. Curr Opin Biotechnol 2017;46:134–40. https:// 
doi.org/10.1016/j.copbio.2017.03.014. 

[57] Dong C, Fontana J, Patel A, Carothers JM, Zalatan JG. Synthetic CRISPR-Cas gene 
activators for transcriptional reprogramming in bacteria. Nat Commun 2018;9: 
2489. https://doi.org/10.1038/s41467-018-04901-6. 

[58] Vo PLH, Ronda C, Klompe SE, Chen EE, Acree C, Wang HH, et al. CRISPR RNA- 
guided integrases for high-efficiency, multiplexed bacterial genome engineering. 
Nat Biotechnol 2021;39:480–9. https://doi.org/10.1038/s41587-020-00745-y. 

[59] Geu-Flores F, Nour-Eldin HH, Nielsen MT, Halkier BA. USER FUSION: a rapid and 
efficient method for simultaneous fusion and cloning of multiple PCR products. 
Nucleic Acids Res 2007;35:e55. https://doi.org/10.1093/nar/gkm106. 

[60] Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic 
assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009;6: 
343–5. https://doi.org/10.1038/nmeth.1318. 

[61] Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, 
Zaveri J, et al. Complete chemical synthesis, assembly, and cloning of a 
Mycoplasma genitalium genome. Science 2008;319:1215–20. https://doi.org/ 
10.1126/science.1151721. 

[62] Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, et al. One- 
step assembly in yeast of 25 overlapping DNA fragments to form a complete 
synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA 2008;105: 
20404–9. https://doi.org/10.1073/pnas.0811011106. 

[63] de Kok S, Stanton LH, Slaby T, Durot M, Holmes VF, Patel KG, et al. Rapid and 
reliable DNA assembly via ligase cycling reaction. ACS Synth Biol 2014;3:97–106. 
https://doi.org/10.1021/sb4001992. 

[64] Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method 
with high throughput capability. PLoS One 2008;3:e3647. https://doi.org/ 
10.1371/journal.pone.0003647. 

[65] Casini A, Storch M, Baldwin GS, Ellis T. Bricks and blueprints: methods and 
standards for DNA assembly. Nat Rev Mol Cell Biol 2015;16:568–76. https://doi. 
org/10.1038/nrm4014. 

[66] Smanski MJ, Bhatia S, Zhao D, Park YJ, Woodruff LBA, Giannoukos G, et al. 
Functional optimization of gene clusters by combinatorial design and assembly. 
Nat Biotechnol 2014;32:1241–9. https://doi.org/10.1038/nbt.3063. 

[67] Becker J, Wittmann C. From systems biology to metabolically engineered cells–an 
omics perspective on the development of industrial microbes. Curr Opin 
Microbiol 2018;45:180–8. https://doi.org/10.1016/j.mib.2018.06.001. 

[68] Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next- 
generation sequencing technologies. Nat Rev Genet 2016;17:333–51. https://doi. 
org/10.1038/nrg.2016.49. 

[69] Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating 
inhibitors. Proc Natl Acad Sci USA 1977;74:5463–7. https://doi.org/10.1073/ 
pnas.74.12.5463. 

[70] Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. 
Genome sequencing in microfabricated high-density picolitre reactors. Nature 
2005;437:376–80. https://doi.org/10.1038/nature03959. 

[71] Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, 
et al. Accurate whole human genome sequencing using reversible terminator 
chemistry. Nature 2008;456:53–9. https://doi.org/10.1038/nature07517. 

[72] Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An 
integrated semiconductor device enabling non-optical genome sequencing. 
Nature 2011;475:348–52. https://doi.org/10.1038/nature10242. 

[73] Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Characterization of 
individual polynucleotide molecules using a membrane channel. Proc Natl Acad 
Sci USA 1996;93:13770–3. https://doi.org/10.1073/pnas.93.24.13770. 

[74] Cherf GM, Lieberman KR, Rashid H, Lam CE, Karplus K, Akeson M. Automated 
forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat 
Biotechnol 2012;30:344–8. https://doi.org/10.1038/nbt.2147. 

[75] Floyd ET, DeLeo JM, Thompson EB. Sequential comparative hybridizations 
analyzed by computerized image processing can identify and quantitate regulated 
RNAs. DNA 1983;2:309–27. https://doi.org/10.1089/dna.1983.2.309. 

[76] Khodursky AB, Peter BJ, Cozzarelli NR, Botstein D, Brown PO, Yanofsky C. DNA 
microarray analysis of gene expression in response to physiological and genetic 
changes that affect tryptophan metabolism in Escherichia coli. Proc Natl Acad Sci 
USA 2000;97:12170–5. https://doi.org/10.1073/pnas.220414297. 

N. Gurdo et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S1871-6784(23)00002-X/sbref25
http://refhub.elsevier.com/S1871-6784(23)00002-X/sbref25
https://doi.org/10.1093/nar/gks1119
https://doi.org/10.1093/nar/gkac1059
https://doi.org/10.1038/nbt.1568
https://doi.org/10.1038/nbt.1568
https://doi.org/10.1515/jib-2019-0025
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1039/D0CS00155D
https://doi.org/10.1039/D0CS00155D
https://doi.org/10.1016/j.ymben.2020.10.002
https://doi.org/10.1016/j.ymben.2020.10.002
https://doi.org/10.1073/pnas.120163297
https://doi.org/10.1038/82449
https://doi.org/10.1038/82449
https://doi.org/10.1038/msb4100050
https://doi.org/10.1038/msb.2009.92
https://doi.org/10.1146/annurev.genet.36.061102.093104
https://doi.org/10.1146/annurev.genet.36.061102.093104
https://doi.org/10.1038/nature08187
https://doi.org/10.1126/science.1225829
https://doi.org/10.1126/science.1231143
https://doi.org/10.1126/science.1231143
https://doi.org/10.1016/s0378-1119(98)00130-9
https://doi.org/10.1016/s0378-1119(98)00130-9
https://doi.org/10.1038/nbt.3718
https://doi.org/10.1038/nbt.3718
https://doi.org/10.1128/aem.01248-15
https://doi.org/10.1038/srep19452
https://doi.org/10.1038/srep19452
https://doi.org/10.1016/j.tibtech.2021.08.003
https://doi.org/10.1111/1751-7915.13396
https://doi.org/10.1016/j.copbio.2019.12.007
https://doi.org/10.1016/j.mec.2020.e00126
https://doi.org/10.1038/s41587-020-0491-6
https://doi.org/10.1038/s41587-020-0491-6
https://doi.org/10.1038/nature17946
https://doi.org/10.1038/s41467-022-30780-z
https://doi.org/10.1038/s41467-022-30780-z
https://doi.org/10.1038/nbt.2461
https://doi.org/10.1016/j.cell.2013.02.022
https://doi.org/10.1016/j.cell.2013.02.022
https://doi.org/10.1111/1751-7915.13533
https://doi.org/10.1111/1751-7915.13533
https://doi.org/10.1016/j.copbio.2017.03.014
https://doi.org/10.1016/j.copbio.2017.03.014
https://doi.org/10.1038/s41467-018-04901-6
https://doi.org/10.1038/s41587-020-00745-y
https://doi.org/10.1093/nar/gkm106
https://doi.org/10.1038/nmeth.1318
https://doi.org/10.1126/science.1151721
https://doi.org/10.1126/science.1151721
https://doi.org/10.1073/pnas.0811011106
https://doi.org/10.1021/sb4001992
https://doi.org/10.1371/journal.pone.0003647
https://doi.org/10.1371/journal.pone.0003647
https://doi.org/10.1038/nrm4014
https://doi.org/10.1038/nrm4014
https://doi.org/10.1038/nbt.3063
https://doi.org/10.1016/j.mib.2018.06.001
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1038/nature03959
https://doi.org/10.1038/nature07517
https://doi.org/10.1038/nature10242
https://doi.org/10.1073/pnas.93.24.13770
https://doi.org/10.1038/nbt.2147
https://doi.org/10.1089/dna.1983.2.309
https://doi.org/10.1073/pnas.220414297


New BIOTECHNOLOGY 74 (2023) 1–15

12

[77] Bainbridge MN, Warren RL, Hirst M, Romanuik T, Zeng T, Go A, et al. Analysis of 
the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis 
approach. BMC Genom 2006;7:246. https://doi.org/10.1186/1471-2164-7-246. 

[78] Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The 
transcriptional landscape of the yeast genome defined by RNA sequencing. 
Science 2008;320:1344–9. https://doi.org/10.1126/science.1158441. 

[79] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. 
Nat Rev Genet 2009;10:57–63. https://doi.org/10.1038/nrg2484. 

[80] Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ, Taylor JM. Efficient 
experimental design and analysis strategies for the detection of differential 
expression using RNA-sequencing. BMC Genom 2012;13:484. https://doi.org/ 
10.1186/1471-2164-13-484. 

[81] Herzel L, Stanley JA, Yao CC, Li GW. Ubiquitous mRNA decay fragments in E. coli 
redefine the functional transcriptome. Nucleic Acids Res 2022;50:5029–46. 
https://doi.org/10.1093/nar/gkac295. 

[82] Kogenaru S, Yan Q, Guo Y, Wang N. RNA-seq and microarray complement each 
other in transcriptome profiling. BMC Genom 2012;13:629. https://doi.org/ 
10.1186/1471-2164-13-629. 

[83] Imdahl F, Vafadarnejad E, Homberger C, Saliba AE, Vogel J. Single-cell RNA- 
sequencing reports growth-condition-specific global transcriptomes of individual 
bacteria. Nat Microbiol 2020;5:1202–6. https://doi.org/10.1038/s41564-020- 
0774-1. 

[84] Laemmli UK. Cleavage of structural proteins during the assembly of the head of 
bacteriophage T4. Nature 1970;227:680–5. https://doi.org/10.1038/227680a0. 

[85] Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003;422: 
198–207. https://doi.org/10.1038/nature01511. 

[86] Silva JC, Denny R, Dorschel C, Gorenstein MV, Li GZ, Richardson K, et al. 
Simultaneous qualitative and quantitative analysis of the Escherichia coli 
proteome: a SWEET tale. Mol Cell Proteom 2006;5:589–607. https://doi.org/ 
10.1074/mcp.M500321-MCP200. 

[87] Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, et al. Computational 
prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 
2007;25:125–31. https://doi.org/10.1038/nbt1275. 

[88] Picotti P, Aebersold R. Selected reaction monitoring–based proteomics: 
workflows, potential, pitfalls and future directions. Nat Methods 2012;9:555–66. 
https://doi.org/10.1038/nmeth.2015. 

[89] Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R. Full dynamic range 
proteome analysis of S. cerevisiae by targeted proteomics. Cell 2009;138:795–806. 
https://doi.org/10.1016/j.cell.2009.05.051. 

[90] Redding-Johanson AM, Batth TS, Chan R, Krupa R, Szmidt HL, Adams PD, et al. 
Targeted proteomics for metabolic pathway optimization: application to terpene 
production. Metab Eng 2011;13:194–203. https://doi.org/10.1016/j. 
ymben.2010.12.005. 

[91] Lange V, Malmström JA, Didion J, King NL, Johansson BP, Schäfer J, et al. 
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