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Plan

1. Definition of a photonic nanojet (PNJ)

2. PNJ steering by computed amplitude and phase of illumination

3. Phase-only PNJ steering

4. PNJs as scanning optical probes
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Photonic nanojets (PNJs)

A photograph of an actual PNJ emerging behind an
8µm SiO2 micro-disk illuminated at 532nm.
Liu, Physica E 73 (2015) 226—234, rotated.

Definition of a PNJ and related quantities. The full
width at half maximum (FWHM) amplitude contour
is w.r.t. the amplitude of the total electric field.
Karamehmedović et al., Opt. Express, 2022.

▶ allow highly localized measurement and excitation

▶ promising for label-free optical far-field super-resolution microscopy

▶ applicable also in fluorescence and Raman microscopy

▶ nanolithography; particle trapping; optical tweezers

▶ PNJ scanning with no opto-mechanical intervention?
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PNJ steering by computed illumination of fixed
micro-element

Karamehmedović et al., Opt. Express, 2022.
▶ we consider the time-harmonic (e jωt), 2D TE case
▶ λ0: operating wavelength; k0 = 2π/λ0: wavenumber
▶ inverse problem approach: given E tot, find E inc

▶ define

χL(x) =

{
1, x ∈ L,

0 otherwise,
k(x) = k0[1 + χL(x)(nL − 1)], x ∈ R2.

▶ assume
(∆ + k(x)2)E tot(x) = f (x), x ∈ R2,

E tot(x) = ξ(x), x ∈ C .

}
(1)

with f supported outside S 6 / 33



PNJ steering by computed illumination of fixed
micro-element

Karamehmedović et al., Opt. Express, 2022.

▶ setting E tot = E inc + E sca with (∆ + k2
0 )E

inc(x) = f (x) in R2, we get

(∆ + k2
0 )E

tot(x) = f (x) + (k2
0 − k(x)2)E tot(x)

= (∆ + k2
0 )E

inc − αχL(x)E
tot(x), x ∈ R2,

where α = k2
0 (n

2
L − 1)

▶ thus
(∆ + k2

0 )E
sca(x) = −αχL(x)E

tot(x), x ∈ R2
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PNJ steering by computed illumination of fixed
micro-element

Karamehmedović et al., Opt. Express, 2022.

▶ since E sca must also satisfy the Sommerfeld radiation condition, this leads to

E sca(x) = −αΦ0 ∗ (χLE
tot)(x) = −α

∫
y∈L

Φ0(x− y)E tot(y)dy, x ∈ R2,

and hence to the Lippmann-Schwinger equation

E inc(x) = E tot(x)−E sca(x) = E tot(x)+α

∫
y∈L

Φ0(x−y)E tot(y)dy, x ∈ R2. (2)

Here L1loc(R
2) ∋ Φ0(x) = (j/4)H

(2)
0 (k0|x|) is the unique radially outgoing fundamental

solution of the Helmholtz operator ∆ + k2
0 in R2, and H

(2)
0 is the Hankel function of

the second kind and order zero. 8 / 33



PNJ steering by computed illumination of fixed
micro-element

1. Define a neighborhood S of the micro-element L such that the desired PNJ is
included in S . Pick a curve C ⊂ S and a function ξ on C that represent the
desired PNJ well via the second condition in (1). Also, pick a curve Γ ⊂ S \ L at
which the tailored incident field is to be computed.

2. Solve the system in (1) (numerically) for the desired E tot in S, recalling the
assumption that f ≡ 0 in S . Prepare a program that approximates the
numerical values of E tot in L and at Γ.

3. Compute the incident field E inc at Γ using (2) and the program from the
previous step.

4. Illuminate the micro-element using a source f supported outside S, and that
radiates a field approximating E inc at Γ.

9 / 33



PNJ steering by computed illumination of fixed
micro-element

λ0 = 532 nm, nL = 1.4607 (SiO2 micro-element), Rlens = 4 µm

Karamehmedović et al., Opt. Express, 2022. 10 / 33



PNJ steering by computed illumination of fixed
micro-element

λ0 = 532 nm, nL = 1.4607 (SiO2 micro-element), alens = 8 µm

Karamehmedović et al., Opt. Express, 2022. 11 / 33



PNJ steering by computed illumination of fixed
micro-element

UPW illumination
along the negative y -axis

λ0 = 532 nm, nL = 1.4607 (SiO2 micro-element), alens = 8 µm

Karamehmedović et al., Opt. Express, 2022. 12 / 33



Achieving the amplitude and phase profiles of E inc at Γ
▶ using phase filters or computer-generated holograms (CGHs) implemented with

digital micromirror devices (DMDs) or liquid crystal spatial light modulators
(SLMs)

▶ example:

1. start with a Gaussian beam u0(x) = A0 exp(−|x|2/w2
0 ) with horizontal

polarization along the horizontal direction
2. a half-wave plate (HWP) rotates the polarization of the beam 45 deg so

that it has equal components of magnitude A0/
√
2 in the horizontal (Ĥ)

and vertical (V̂ ) direction
3. the first SLM imprints a phase φ1(x) to the horizontal component,

u(x) =
1
√
2
u0(x)(e

iφ1(x)Ĥ + V̂ ).

4. a linear polarizer (LP) at 45 deg followed by a HWP modify the beam
amplitude to A0(exp(iϕ1(x)) + 1)/2 with the polarization state set to
horizontal

5. the second SLM imprints a phase φ2(x) such that, finally,

u(x) = u0(x) cos
(φ1(x)

2

)
exp i

(φ1(x) + 2φ2(x)

2

)
▶ 8-bit SLMs can in principle produce phase distributions φ1, φ2 discretized in

steps of 2π rad/255≈24.6 mrad (≈1.4 deg)
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PNJ steering by computed illumination of fixed
micro-element

Left: circular micro-element, right: square micro-element.

Mean relative error for circular micro-element: 9.9% for theoretical and SLM incident
fields.

Mean relative error for square micro-element: 1.5% for theoretical and 2.7% for SLM
incident fields.

Karamehmedović et al., Opt. Express, 2022. 14 / 33



PNJ steering by computed illumination of fixed
micro-element

Left: circular micro-element, right: square micro-element.

circular micro-lens circular micro-lens (SLM) square micro-lens square micro-lens (SLM)
mean waist width 0.88λ0 0.88λ0 0.70λ0 0.70λ0
mean decay length 2.22λ0 2.24λ0 1.58λ0 1.60λ0

Karamehmedović et al., Opt. Express, 2022.
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Phase-only PNJ steering
Karamehmedović and Glückstad, Opt. Express, 2023.

Fixed Gaussian laser beam (paraxial approximation):

E laser(x , y) =

√
w0

w(x)
e−y2/w(x)2−jk(x,y)x−jk(x,y)y2/2R(x)+jη(x)/2.

Here k(x , y) is the wavenumber satisfying

k(x , y) =

{
2π/λ0 outside micro-element,

(2π/λ0)nℓ inside micro-element;

w(x) is the beam radius given by

w(x) = w0

√
1 +

(
x − p0

x0

)2

; (3)
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Phase-only PNJ steering
Karamehmedović and Glückstad, Opt. Express, 2023.

Fixed Gaussian laser beam (paraxial approximation):

E laser(x , y) =

√
w0

w(x)
e−y2/w(x)2−jk(x,y)x−jk(x,y)y2/2R(x)+jη(x)/2.

p0 = −Rℓ = −2.5 µm is the beam focus along the x-axis; w0 = 2λ0 = 1.064 µm is
the beam waist radius (the beam radius at focus x = p0); R(x) is the beam wavefront
curvature radius given by

R(x) = (x − p0)

(
1 +

(
x0

x − p0

)2
)

; (4)

η(x) is the Gouy phase given by

η(x) = arctan

(
x − p0

x0

)
; (5)
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Phase-only PNJ steering

Karamehmedović and Glückstad, Opt. Express, 2023.

Fixed Gaussian laser beam (paraxial approximation):

E laser(x , y) =

√
w0

w(x)
e−y2/w(x)2−jk(x,y)x−jk(x,y)y2/2R(x)+jη(x)/2.

... and finally

x0 =
k(x , y)w2

0

2
. (6)
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Phase-only PNJ steering

Karamehmedović and Glückstad, Opt. Express, 2023.

Phase-modulated incident field:

E inc(x , y) = e jφ(y)E laser(x , y)

Transversal phase shift:
φ(y) = ℓy + qy2

The parameters ℓ and q impose a transverse linear and quadratic phase modulation,
respectively, of the incident Gaussian beam.
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Phase-only PNJ steering
Karamehmedović and Glückstad, Opt. Express, 2023.

▶ a simple empirical PNJ steering algorithm

▶ interpolate a pre-computed table (ℓ, q) ↔ (rPNJ, θPNJ):

1. compute the total near fields for (ℓ, q) over some chosen grid;
2. for each (ℓ, q) find the resulting PNJ coordinates (rPNJ, θPNJ)
3. find a fit vector function F (rPNJ, θPNJ) for the mapping

(rPNJ, θPNJ) 7→ (ℓ, q) over an appropriate dynamical range
4. given desired PNJ coordinates (rPNJ, θPNJ), estimate the corresponding

(ℓ, q) ≈ F (rPNJ, θPNJ) and apply the transverse phase modulation
exp j(ℓy + qy2) to the incident Gaussian beam
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Phase-only PNJ steering
Karamehmedović and Glückstad, Opt. Express, 2023.

λ0 = 532 nm, nℓ = 1.49, Rℓ = 2.5 µm

▶ lossless

▶ uses only one SLM/phase mask
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Phase-only PNJ steering
Karamehmedović and Glückstad, Opt. Express, 2023.

q(rPNJ) ≈ 1.251 · r2PNJ − 9.704 · rPNJ + 20.43
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Phase-only PNJ steering

Karamehmedović and Glückstad, Opt. Express, 2023.
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Phase-only PNJ steering
Karamehmedović and Glückstad, Opt. Express, 2023.
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PNJ as a scanning optical probe
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Vertical super-resolution: thin films

Left: Probing a two-layered thin film on a substrate with a steerable PNJ produced by
a 2D circular cross-section homogeneous dielectric (SiO2) micro-element. The far field
amplitude is sampled at ±3.8 deg from the negative y -axis, as sketched. The thick
black points in the figure sketch the PNJ probe positions (separation λ0/2 = 266 nm).
Right: Computed near-field images at the indicated PNJ radial shifts ϱ. The thick
black lines show the material interfaces.

λ0 = 532 nm, nHfO2
= 1.9044, nSiO2

= 1.4607, nSi = 4.1520, kSi = 0.051787

Karamehmedović et al., Proc. SPIE, 2022.
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Vertical super-resolution: thin films

▶ d(ϱ) =
(
|E far

direct;ϱ|/1.1|E
far
second;ϱ|

)4
if

the second peak in |E far
ϱ | is within

±1.5 deg from negative y -axis

▶ d(ϱ) = 0 otherwise

▶ 6.4% relative error using 266 nm
steps in PNJ scanning

▶ this function attains values greater than 1 precisely when the measured
direct-transmission far field is stronger than all far-field side lobes within ±3.8
deg from direct transmission, and when furthermore the most dominant side
lobe is within ±1.5 deg from direct transmission

▶ the magnitude and direction of the far field are linked to the Fresnel reflections
and the shape of the wavefront at the interface. A nearly planar wavefront at
the interface results in a high direct transmission far-field value. Thus, we
choose to interpret the case with dominant direct-transmission and
near-direct-transmission far field as the PNJ hitting a material interface.

▶ vertical resolution limit in air: 2λ0/NA2 ≈ 1180 nm for NA= 0.95 and λ0 = 532
nm (Novotny and Hecht, Principles of Nano-Optics, 2019.)

Karamehmedović et al., Proc. SPIE, 2022.
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Lateral super-resolution: isolated particles

Left: Scanning an area containing a nanoparticle using a PNJ probe produced by a 2D
homogeneous dielectric (SiO2) micro-element with a square 8 µm cross-section. The
nanoparticle is marked with the thick point. The grid of thin points shows the PNJ
probing positions (x- and y -separation 250 nm). The far field amplitude is sampled at
±45 deg from the negative y -axis, as displayed. Right: The resulting localization of
the nanoparticle (outlined in black).

λ0 = 532 nm, nAu = 0.54386, kAu = 2.2309
Rpart = 100 nm, xpart = 2 µm, ypart = −6 µm

E far
part;(x,y) : the far field of particle illuminated by sample-free PNJ field at (x , y)

E far
0;(x,y) : the far field of sample-free PNJ field at (x , y)

d(x , y) =
∥ |E far

part;(x,y)
| − |E far

0;(x,y)
| ∥2

∥ |E far
0;(x,y)

| ∥2
.

Karamehmedović et al., Proc. SPIE, 2022.
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Lateral super-resolution: isolated particles

A zoomed-in image of the gold nanoparticle (outlined in black) computed using a finer
(50 nm) PNJ probe grid. Distance of NP center from micro-element: 2 µm.

Approximate PNJ probe dimensions: waist width 0.70λ0 ≈ 372 nm, decay length
1.58λ0 ≈ 841 nm.

Lateral resolution (Abbe) limit in air: λ0/2NA= 280 nm for NA= 0.95 and λ0 = 532
nm. (Born and Wolf, Principles of Optics, 1997.)

Karamehmedović et al., Proc. SPIE, 2022.
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Lateral super-resolution: isolated particles

A zoomed-in image of the gold nanoparticle (outlined in black) computed using a 30
nm PNJ probe grid and a square SiO2 micro-element with side length 16 µm.
Distance of NP center from micro-element: 1.25 µm.

Lateral resolution (Abbe) limit in air: λ0/2NA= 280 nm for NA= 0.95 and λ0 = 532
nm. (Born and Wolf, Principles of Optics, 1997.)
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Resolving sub-classical lateral gaps
Karamehmedović and Hansen, Bremen Zoom Workshop 2023.

▶ 2D TE; λ0 = 532 nm;

▶ square SiO2 micro-element; alens = 15 µm;

▶ two circular gold (Au) nanoparticles; RNP = 100 nm; dgap = 200 nm;
dAbbe = 280 nm;

▶ (xNP, yNP) = (±200 nm,−8.5 µm);

▶ PNJ scanning in 25 nm increments along the line L, parallel with the x-axis and
1 µm away from the micro-element
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Resolving sub-classical lateral gaps
Karamehmedović and Hansen, Bremen Zoom Workshop 2023.

▶ for each PNJ illumination, |Efar,NP|(θ) and |Efar,0|(θ) are collected over the
angle range ±45◦ from the negative y -axis, in 1◦ increments

▶ indicator function:

d =
∥|Efar,NP| − |Efar,0|∥2

∥Efar,0∥2
≈

√√√√∑91
i=1(|Efar,NP|(θi )− |Efar,0|(θi ))2∑91

i=1 |Efar,0|(θi )2
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Conclusion

▶ achieved PNJ steering using (phase-only) computed illumination of a fixed
homogeneous micro-element

▶ consistently narrow PNJ, large range of achievable PNJ positions

▶ the computed illumination can be realized using, e.g., one or two SLMs

▶ rapid scanning with a highly localized optical probe with no mechanical
adjustment or translation of optical components or of the sample

▶ preliminary numerical results on super-resolution
detection/measurement/imaging using PNJ scanning and far-field
measurements (vertical as well as lateral)

▶ uncertainty quantification of practically achievable structured illumination of the
micro-element

▶ larger micro-element may give a narrower PNJ and better resolution

▶ better indicator functions d

▶ imaging technique extendible to the 3D case
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