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A B S T R A C T

This paper presents an innovative numerical model to investigate buckling behaviour of bio-inspired con-
tinuously graded porous (CGP) nanocomposite cylindrical shells. It is postulated that the shell subjected
to combined lateral pressure and axial compressive load is constructed from metal foams with closed-cell
structures that possess graded internal pores, which exhibit three types of continuously graded porosity profiles
based on a power-law distribution. A scaling relation for the effective Young’s modulus of the cellular structure
determined by a variational finite element method (FEM) is used. The effective constitutive law of an elastic
isotropic metal matrix containing distributed elastic carbon-nanotubes (CNTs) is estimated in consideration
of the impact of CNTs agglomeration using a continuum model based on the Eshelby–Mori–Tanaka (EMT)
approach. In contrast to conventional approaches, the study employs Euler–Bernoulli beams to model stiffeners
within the CGP shells. This choice allows for a more realistic representation of stiffener effects, as opposed
to the prevalent approach of uniform smearing across the shell’s surface. The equilibrium equations of the
CGP shell, based on the Reddy higher-order shell theory (RHST), is obtained through the application of the
Euler equation. Subsequently, the equations for stability are obtained through the utilization of the variational
method. This study emphasizes the effects of geometrical parameters, porosity variability, and distribution
of CNTs on the buckling performance of the CGP shells. The intricate interplay between CNTs and porosity
distributions critically influences the stability behaviour of CGP shells. CNTs arrangement remarkably impacts
buckling behaviour at higher length-to-mean radius ratios, while symmetric porosity near the mid-surface
significantly enhances stiffness. These findings provide valuable insights for designing closed-cell cellular
stiffened shells with optimal porosity to enhance stability.
1. Introduction

Recently, concerns over the prospect of climate change and lim-
ited resources of materials and energy have stimulated a pressing
demand for the development of resilient and efficient lightweight struc-
tures with outstanding multi-functional properties. Moreover, recent
advances in high-tech industries require innovative engineering de-
signs to address the tunable multi-functional mechanical properties,
including high strength, stiffness, toughness, and energy absorption.
Porous cellular materials are one of the emerging lightweight materials
that can simultaneously fulfil multiple requirements from structural
stiffness to thermal insulation. For instance, a captivating potential of
sandwich porous metal foams shines in their role in creating the front
structure of high-speed trains, shown in Fig. 1. This application merges
lightweight design with structural integrity for pioneering the future
of swift and efficient rail travel. Metal foams are porous materials that
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find extensive application in automotive industry [1], energy storage
systems [2–4], civil constructions [5], biomedical engineering [6],
and aerospace engineering [7]. These materials can be classified into
two types, namely open-cell and closed-cell metal foams. The internal
pores of the latter exhibit interconnectivity while the former displays
significant separation via thin cell walls. This structural variation yields
significant differences in performance, leading to the optimal function
of one metal foam over the other depending on the specific application.

The vast majority of the available works on the metal foams have
been riveted on the uniform or random distribution of porosities. Re-
cent attention has been given to achieving economic multi-functionality
in metal foams through tailored control of internal pore size and den-
sity, in one or more directions, inspired by the concept of bio-inspired
functionally graded materials (FGMs) [8–10]. Biological materials uti-
lize diverse strategies to mitigate stress concentrations at interfaces,
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Fig. 1. (a) Prototype a 25-millimeter-thick layer made of porous foam. (b) Highly porous aluminum alloy foam used in the fabrication of the frontal structure of the
Intercity-Express-Train (ICE) train, jointly developed by Voith Engineering and the Fraunhofer Institute for Machine Tools and Forming Technology (IWU). [21,22].
including the implementation of gradual transitions in either chemical
compositions or microstructural characteristics [11]. This phenomenon
is exemplified in the squid beaks [12], which exhibit a gradual shift
from stiff to compliant materials, as well as in the variation of porosity
observed between trabecular and cortical bones [13]. This has led
to the emergence of the novel continuously graded porous (CGP)
structures comprised of metal foams. Various theoretical models have
been introduced to predict the vibrational and buckling behaviour
of CGP beams and plates [14–20]. However, despite the significant
importance of cylindrical shells in various engineering disciplines such
as mechanical, civil, ocean, and aeronautical engineering, there has
been a scarcity of research dedicated to studying the stability of CGP
shells.

In recent years, there has been a growing interest in investigating
the stability and buckling behaviour of bio-inspired FG shells and
plates, driven by their potential applications in diverse engineering
fields [23–28]. Duc et al. [29] conducted an investigation into the
nonlinear buckling and post-buckling analyses of stiffened truncated
conical sandwich shells. These shells were composed of functionally
graded (FG) face sheets and a CGP core, and rested on the Winkler–
Pasternak elastic foundation. The stability equations for the shell were
derived using the first-order shear deformation theory (FSDT), incor-
porating a von Karman–Donnell type of kinematic non-linearity. Zhou
et al. [30] conducted a nonlinear buckling analysis on cylindrical
shells composed of FG porous graphene platelet-reinforced composites,
considering pre-buckling effects and in-plane constraints. Their find-
ings indicate that the optimal material distribution for this type of
nanocomposite is a symmetrical distribution of both graphene platelets
and porosity throughout the thickness of the shell. Nam et al. [31]
conducted a study on the nonlinear buckling and post-buckling of cylin-
drical shells reinforced by orthogonal stiffeners resting on Pasternak
elastic foundations, utilizing classical shell theory as the basis for their
investigation. An investigation into the dynamic buckling analysis of a
truncated conical shell made of FGMs was conducted by Allahkarami
et al. [32]. The shell was embedded in an elastic foundation and
subjected to an excitation compressive load. The study utilized FSDT
to model the behaviour of the shell under these conditions. Twinkle
and Pitchaimani [33] presented the buckling and vibration charac-
teristics of cylindrical shells reinforced with CGP graphene platelets.
The effective mechanical properties of open-cell metal foams were
evaluated using a modified Halpin–Tsai micro-mechanics model, in
combination with an extended rule of mixture. A finite element model
was developed by Zghal and Dammak [34] to demonstrate the impact
of porosity parameter on the critical buckling responses of power-
based (P-FGM) and sigmoid (S-FGM) plates and spherical caps in FGMs.
This model was developed in the context of FSDT. The researchers
utilized this approach to investigate the relationship between porosity
parameter and buckling behaviour. Thai et al. [35] presented an ana-
lytical method for examining the nonlinear instability of eccentrically
2

stiffened FG sandwich truncated conical shells with porosity in the
presence of Pasternak elastic foundations. The approach employed is
based on displacement approach. A buckling analysis on a cylindrical
shell made of porous nanocomposite reinforced with graphene platelet
was conducted by Shahgholian et al. [36] based on the FSDT. The
researchers computed various mechanical properties, including the ef-
fective modulus of elasticity in the thickness direction, by applying the
modified Halpin–Tsai micro-mechanics approach. Additionally, they
utilized the rule of mixture to determine density and Poisson’s ratio.
Tao and Dai [37] carried out a geometrically nonlinear analysis on
sandwich FG cylindrical shells with a porous core to investigate their
post-buckling behaviour when subjected to central point loads and
uniform pressures. They used higher-order shear deformation theories
(HSDT) and a non-uniform rational B-spline (NURBS)-based isogeomet-
ric analysis (IGA) in combination with the modified arc-length method
of Crisfield. The study aimed to obtain load–deflection responses and
identify snap-through and snap-back post-buckling behaviours.

The constraints of the classical theories [38] and the FSDT [39–41]
stimulated scholars to develop a number of HSDT [42–44]. Among sev-
eral kinds of the HSDT, the Reddy higher order shell theory (RHST) [45,
46] with five unknowns is the most broadly employed theory in the
research of plate and shell structures due to adequate efficiency and
straightforwardness without any shear correction coefficient. A concise
review on the plate and shell laminate theories have been recently
presented by Sobhani Aragh et al. [47]. What is more, the shells
are commonly strengthened by stiffening components for the purpose
of improving load-carrying capacity with a relatively little additional
weight. Rings and stringers, which are circumferential and meridional
stiffeners, respectively, have widespread usage in a myriad of engi-
neering application [48]. When lightweight shells with porosities are
subjected to a mechanical loading, they might be buckled despite
comparatively increased critical buckling loading as a result of utilizing
stiffeners. Therefore, there is a necessity to investigate the buckling
behaviour of such structures for multi-purpose and cost-effective design
with improved performance.

Studies have shown that the mechanical properties of nanocom-
posites can be enhanced by integrating carbon-nanotubes (CNTs) into
metallic matrices. In the last years, the commonly-used techniques for
the fabrication of CNT–metal matrix composites have included spark
plasma sintering [49,50], hot isostatic pressing [51], microwave sinter-
ing [50], and electrochemical deposition [52]. Selective laser melting
(SLM) [53] and laser powder bed fusion (LPBF) [54] methods of
additive manufacturing (AM) have garnered significant attention due to
their ability to produce metallic parts with intricate geometries [55,56].
Advanced techniques enable the production of components directly
from 3-D CAD models through the selective melting and solidifica-
tion of thin layers of loose powder using high-energy laser beams in
a layer-by-layer manner. Gu et al. [57] utilized a laser-assisted am
technique known as SLM to produce nanocomposites composed of Al
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and CNTs that possess customized microstructures and impressive me-
chanical properties. Meanwhile, Yu et al. [58] achieved the successful
production of AlSi10Mg nanocomposites reinforced with multi-walled
carbon nanotubes (MWCNTs) at a mass fraction of 0.5% through the
utilization of SLM. In a recent work by Yin et al. [59], CNT/316L
stainless steel nanocomposites were fabricated by mixing 316L stainless
steel powders with various content ratios of CNT through ball milling
followed by LPBF. Analysis of the scanning electron microscopy (SEM)
images [60,61] revealed that the resulting nanocomposites exhibited
CNT aggregation, which resulted in localized areas of higher CNT con-
centration than the average volume fraction throughout the material.
In recent years, a substantial body of literature has been focused on
investigating the effects of nanomaterials, specifically CNTs, on the
structural behaviour of engineered systems [62–71]. Sobhani Aragh
et al. [72–74] conducted a study where they used the Eshelby–Mori–
Tanaka (EMT) approach, an effective homogenization technique, to
examine how the degree of CNT aggregation within the ceramic matrix
phase affects the mechanical response of nanocomposite shells. The
interested readers are encouraged to refer to Sobhani Aragh’s PhD
thesis [75] to find comprehensive details on various homogenization
techniques.

Motivated by the lack of research work on mechanical buckling of
CGP stiffened cylindrical shells strengthened by agglomerated CNTs,
this paper aims to bridge this gap by presenting an effective nu-
merical model to investigate buckling behaviour CGP nanocomposite
shells. The main contribution of this work is shed light on the effects
of porosities as well as CNTs distributions through the shell’s thick-
ness on the stability of the shell. Depending on how eccentrically the
stiffeners are positioned in relation to the mid-surface of the shell,
two types of stiffeners, i.e. internal and exterior, are considered. The
smeared stiffener method is employed under the premise of a tightly
spaced configuration of stiffeners. The EMT technique is utilized to
develop a continuum model for estimating the effective constitutive
law of an elastic isotropic metal matrix containing scattered elastic
inhomogeneities in the form of CNTs. The shell under combined lat-
eral pressure and axial compressive load is assumed to be composed
of closed-cell metal foams that possess graded internal pores, which
exhibit Classic, Symmetric, and Asymmetric distributions of porosity
based on a power-law distribution. A scaling correlation for the Young’s
modulus of closed-cell cellular solids is employed, which is obtained
through the application of a variational finite element method (FEM).

2. Methodology

The geometrical configuration of a CGP open cylindrical shell with
mean radius 𝑅, thickness h and length 𝐿, is shown in Fig. 2. The three
orthogonal displacements of an arbitrary point on the shell middle
surface in 𝛼1, 𝛼2, and 𝛼3 directions are represented as 𝑢1, 𝑢2 and 𝑢3,
respectively. The CGP nanocomposite shell is reinforced by eccentri-
cally closely spaced circular rings and longitudinal stringers with the
width and thickness of circular and longitudinal stiffeners 𝑑𝑟, ℎ𝑟 and
𝑑𝑠, ℎ𝑠, respectively. It is worth highlighting that the investigated shell
is subjected to a concurrent application of lateral pressure and axial
compressive load. In the present work, the shell is made of closed-cell
porous nanocomposite where the porosity coefficient and total volume
fraction of the CNTs are constant throughout the shell, however, they
smoothly vary along the thickness direction.

2.1. Micro-mechanical modelling of accumulated CNTs

As reported in several SEM images [61], CNTs highly tend to
agglomerate in the matrix phase, which can be attributed to their
low bending stiffness and high aspect ratio. In this part, the effective
mechanical characteristics of the nanocomposite shells are determined
using a two-parameter EMT model [72,73]. The primary limitation
of the original elastic inclusion theory proposed by Eshelby is that it
3

assumes the consideration of a solitary inclusion within a semi-infinite
elastic medium that is isotropic and homogeneous. This can be allevi-
ated by developing the Mori–Tanaka approach to consider the presence
of several inhomogeneities within in a finite region [77]. In other
words, the EMT method is primarily based on combining Eshelby’s
concept of equivalent elastic inclusions [78] with Mori–Tanaka’s idea
of average stress across the matrix phase [79]. Inclusions possessing
distinct material properties from the surrounding regions are identified
in areas exhibiting a high concentration of CNTs. The arrangement
of CNTs within a metal matrix phase is determined by their location
relative to the inclusions, either inside or outside. The overall volume
fraction of the reinforcing phase consisting of CNTs is divided into two
components

𝑉𝑐 = 𝑉𝑐
𝑖𝑛𝑐 + 𝑉𝑐

𝑚 (1)

where 𝑉𝑐 𝑖𝑛𝑐 and 𝑉𝑐𝑚 denote the volume fraction of CNTs situated in the
inclusions and distributed through the metal matrix phase, respectively.
The presence of agglomerated CNTs in a metal matrix results in the
deterioration of elastic properties within the resulting nanocomposite.
This phenomenon can be qualitatively explained by proposing two
accumulation parameters, denoted as 𝛿 and 𝛾, given by

𝛿 = 𝑉 𝑖𝑛𝑐

𝑉
, (2)

𝛾 =
𝑉𝑐 𝑖𝑛𝑐

𝑉𝑐
(3)

where 𝑉 𝑖𝑛𝑐 denotes the effective volume fraction of the inclusions, and
the parameter 𝛿 is the volume fraction of inclusions in relation to
the overall volume fraction V of the representation volume element
(RVE). Provided that parameter 𝛿 is equal to unity, the CNTs are
not accumulating in the metal matrix phase. In other words, there is
only one spherical inclusion, which practically coincides with the total
volume fraction. Moreover, an increase of the parameter 𝛿 leads to the
decline of the accumulation degree of CNTs. Moreover, the parameter
𝛾 specifies the ratio of CNTs volume fraction situated in the inclusions
to the total volume fraction of the CNTs. It is apparent that, when
𝛾 is equal to one, all CNTs are contained within the inclusions. It is
noteworthy to mention that a specific constraint must be satisfied in
order for the accumulation of CNTs to occur as

𝛾 > 𝛿 (4)

Mori and Tanaka [79] have developed an approach to evaluate the
effective stiffness tensor. The basic idea is to consider the interaction
between the inhomogeneities through their effect on the mean values
of the fields in the matrix phase. Benveniste’s revisitation [80] provides
the expression for the effective elastic tensor, which is as follows [81]

C = C𝑚 + 𝑓𝑐 <
(

C𝑚 − C𝑚
)

∶ A𝑀𝑇 >∶
[

𝑓𝑚I + 𝑓𝑐 < A𝑀𝑇 >
]−1 (5)

where

A𝑀𝑇=
[

I + S∶C𝑚
−1∶

(

C𝑐 − C𝑚
)]−1 (6)

where I denotes the fourth-order unit tensor, S represents the fourth-
order Eshelby tensor [78], which is specialized to the inhomogeneities
with cylindrical geometry, representative of the straight and long CNTs,
A𝑀𝑇 is a fourth-order tensor referred to as concentration factor, and
the brackets denote an average. The subscripts m and c stand for the
quantities of the matrix and the CNT reinforcing phase, respectively,
𝑓𝑚 and 𝑓𝑟 denote the volume fractions of the respective phases.

The effective bulk modulus 𝐾𝑖𝑛(𝛼3) and shear modulus 𝐺𝑖𝑛(𝛼3) of
spherical inclusions containing randomly arranged transversely isotropic
CNTs are calculated using the EMT method as

𝐾𝑖𝑛(𝛼3) = 𝐾𝑚 +
𝑓𝑐 (𝛼3)𝛾(𝛿𝑐 − 3𝐾𝑚𝛼𝑐 )

3(𝛿 − 𝑓𝑐 (𝛼3)𝛾 + 𝑓𝑐 (𝛼3)𝛾𝛼𝑐 )
(7)

𝐺𝑖𝑛(𝛼3) = 𝐺𝑚 +
𝑓𝑐 (𝛼3)𝛾(𝜂𝑐 − 2𝐺𝑚𝛽𝑐 ) (8)
2(𝛿 − 𝑓𝑐 (𝛼3)𝛾 + 𝑓𝑐 (𝛼3)𝛾𝛼𝑐 )
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Fig. 2. (a) Schematic configuration of a CGP shell strengthened by rings and stringers. (b) Cross-sectional image of the shell showing the varying pore size along the thickness
direction [76]. (c) Visual representation illustrating the arrangement of CNTs within inclusions and their dispersion throughout the metal matrix phase at the meso-scale.
Similarly, the effective bulk modulus 𝐾𝑜𝑢𝑡(𝛼3) and shear modulus
𝐺𝑜𝑢𝑡(𝛼3) of the metal matrix phase are elaborated as

𝐾𝑜𝑢𝑡(𝛼3) = 𝐾𝑚 +
𝑓𝑐 (𝛼3)(1 − 𝛾)(𝛿𝑐 − 3𝐾𝑚𝛼𝑐 )

3(1 − 𝛿 − 𝑓𝑐 (𝛼3)(1 − 𝛾) + 𝑓𝑐 (𝛼3)(1 − 𝛾)𝛼𝑐 )
(9)

𝐺𝑜𝑢𝑡(𝛼3) = 𝐺𝑚 +
𝑓𝑐 (𝛼3)(1 − 𝛾)(𝜂𝑐 − 2𝐺𝑚𝛽𝑐 )

2(1 − 𝛿 − 𝑓𝑐 (𝛼3)(1 − 𝛾) + 𝑓𝑐 (𝛼3)(1 − 𝛾)𝛽𝑐 )
(10)

where 𝐾𝑚 and 𝐺𝑚 represent the bulk and shear moduli of the metal
matrix, respectively, and 𝛼𝑐 , 𝛽𝑐 , 𝛿𝑐 , and 𝜂𝑐 are defined by

𝛼𝑐 =
3(𝐾𝑚 + 𝐺𝑚) + 𝑘𝑐 + 𝑙𝑐

3(𝐺𝑚 + 𝑘𝑐 )
(11)

𝛽𝑐 =
1
5

[

4𝐺𝑚 + 2𝑘𝑐 + 𝑙𝑐
3(𝐺𝑚 + 𝑘𝑐 )

+
4𝐺𝑚

𝐺𝑚 + 𝑝𝑐

+
2
[

𝐺𝑚(3𝐾𝑚 + 𝐺𝑚) + 𝐺𝑚(3𝐾𝑚 + 7𝐺𝑚)
]

𝐺𝑚(3𝐾𝑚 + 𝐺𝑚) + 𝑚𝑐 (3𝐾𝑚 + 7𝐺𝑚)

]

(12)

𝛿𝑐 =
1
3

[

𝑛𝑐 + 2𝑙𝑐 +
(2𝑘𝑐 + 𝑙𝑐 )(3𝐾𝑚 + 2𝐺𝑚 − 𝑙𝑐 )

𝐺𝑚 + 𝑘𝑐

]

(13)

𝜂𝑐 =
1
5

[

2
3
(𝑛𝑐 − 𝑙𝑐 ) +

8𝐺𝑚𝑝𝑐
𝐺𝑚 + 𝑝𝑐

+
2(𝑘𝑐 − 𝑙𝑐 )(2𝐺𝑚 + 𝑙𝑐 )

3(𝐺𝑚 + 𝑘𝑐 )

+
8𝑚𝑐𝐺𝑚(3𝐾𝑚 + 4𝐺𝑚)

3𝐾𝑚(𝑚𝑐 + 𝐺𝑚) + 𝐺𝑚(7𝑚𝑐 + 𝐺𝑚)

]

(14)

where 𝑘𝑐 , 𝑚𝑐 , 𝑛𝑐 and 𝑙𝑐 denote the Hill’s elastic moduli for the rein-
forcing phase. Ultimately, the effective bulk modulus and shear modu-
lus of the nanocomposite are obtained by

𝐾(𝛼3) = 𝐾𝑜𝑢𝑡(𝛼3)

⎡

⎢

⎢

⎢

⎣

1 +
𝛿
(

𝐾𝑚
𝐾𝑜𝑢𝑡(𝛼3)

− 1
)

1 + 𝜅1(𝑧)(1 − 𝛿)
(

𝐾𝑚
𝐾𝑜𝑢𝑡(𝛼3)

− 1
)

⎤

⎥

⎥

⎥

⎦

(15)

𝐺(𝛼3) = 𝐺𝑜𝑢𝑡(𝛼3)

⎡

⎢

⎢

⎢

⎣

1 +
𝛿
(

𝐺𝑚
𝐺𝑜𝑢𝑡(𝛼3)

− 1
)

1 + 𝜅2(𝛼3)(1 − 𝛿)
(

𝐺𝑚
𝐺𝑜𝑢𝑡(𝛼3)

− 1
)

⎤

⎥

⎥

⎥

⎦

(16)

where

𝜅1(𝛼3) =
1 + 𝑣𝑜𝑢𝑡(𝛼3) (17)
4

3(1 − 𝑣𝑜𝑢𝑡(𝛼3))
𝜅2(𝛼3) =
2(4 − 5𝑣𝑜𝑢𝑡(𝛼3))
3(1 − 𝑣𝑜𝑢𝑡(𝛼3))

(18)

in which 𝑣𝑜𝑢𝑡(𝛼3) represents the Poisson’s ratio of the metal matrix phase
as

𝑣𝑜𝑢𝑡(𝛼3) =
3𝐾𝑜𝑢𝑡(𝛼3) − 2𝐺𝑜𝑢𝑡(𝛼3)
2
[

3𝐾𝑜𝑢𝑡(𝛼3) + 𝐺𝑜𝑢𝑡(𝛼3)
] (19)

In above-mentioned formulations, 𝑓𝑐 (𝛼3) and 𝑓𝑚(𝛼3) are the volume
fraction of the CNTs and the metal phase, respectively, which fulfil the
expression of 𝑓𝑐 (𝛼3) + 𝑓𝑚(𝛼3) = 1. The CNTs volume fraction is defined
by a gradual change from the inner to the outer surface of the shell,
proposing that

𝑓𝑐 (𝛼3) = 𝑉 ∗
𝑐 𝑉𝑐 (𝛼3) (20)

where

𝑉 ∗
𝑐 =

[

𝜌𝑐
𝑤𝑐𝜌𝑚

−
𝜌𝑐
𝜌𝑚

+ 1
]−1

(21)

in which 𝑤𝑐 denotes the mass fraction of CNTs, 𝜌𝑐 and 𝜌𝑚 are density
of CNTs and matrix phase, respectively. 𝑉𝑐 (𝛼3) is the distribution of
CNTs along the thickness direction of the shell. This study considers the
various distributions of CNTs through the shell’s thickness, as classified
by Jalali et al. [82]. The profiles examined are Pyramid, Inverted
Pyramid, Sandglass, and Uniform.

2.2. Modelling of porosity dispersion

To improve the strength-to-weight ratio and energy absorbing ca-
pability of the structure, porous materials, such as metal foams, has
provided unique potential for a number of engineering applications.
In these state-of-the-art materials, embedding pores can significantly
decrease the structural weight whereas a loss of structural stiffness is
partially compensated by including a certain amount of CNTs. Cur-
rently, a new paradigm shift is taking place in designing of porous
composite materials from uniform dispersion to continuously graded
distribution of porosity. Consequently, tailoring the desired properties
of the CGP shell is achievable by employing an appropriate pattern for
the distribution of porosity through the shell’s thickness, in addition
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Fig. 3. Through-the-thickness variation of the function 𝜑𝛶 in Eq. (23) for three key material profiles and different values of the parameter 𝜉𝑝 (𝜁 = 2). The function 𝜑𝛶 governs
the graded porosity distribution in the radial direction of the shell using a power-law distribution. (a) Classical profile (𝑎 = 1, 𝑏 = 0). (b) Symmetric profile (𝑎 = 1, 𝑏 = 1). (c)
Asymmetric profile (𝑎 = 1, 𝑏 = 0.5).
to Eq. (20) for the smooth variation of CNTs. This study concentrates
on the closed-cell porous materials whose theoretical formulation for
deriving the mechanical properties are different from those of open-
cell materials. Nevertheless, this point has not been carefully notified
in some literature [83–85]. The elastic moduli and density of the shell
are estimated as

𝛶 (𝛼3) = 𝛶0 𝜑𝛶 (22)

where

𝜑𝛶 =
[

1 − 𝑎
(1
2
+

𝛼3
ℎ

)

+ 𝑏
( 1
2
+

𝛼3
ℎ

)𝜁]𝜉𝑝
(23)

𝜌(𝛼3) = 𝜌0 𝜑𝜌 (24)

where

𝜑𝜌 =
[

1 − 𝑎
( 1
2
+

𝛼3
ℎ

)

+ 𝑏
( 1
2
+

𝛼3
ℎ

)𝜁]𝜉𝑚
(25)

in which 𝛶 denotes either the effective Young’s modulus or shear
modulus of the nanocomposite shell and 𝜌 represents the effective
mass density. Subscripts 0 refers to the material properties of a per-
fect nanocomposite without any voids. 𝜉𝑝 and 𝜉𝑚 known as porosity
coefficient and mass density coefficient, respectively. The function 𝜑
5

𝛶

governs through-the-thickness variation of Young’s modulus, which
have values that range from 0 to 1. In other words, it dominates
the graded porosity distribution in the radial direction of the shell
using a power-law distribution. For example, three key material pro-
files through the radial (𝜂𝛼3 =

(

𝛼3 − 𝑅
)

∕ℎ) direction are illustrated
in Figs. 3a–3c. The classical profile through the radial direction is
presented as a case of the power-law distributions by setting 𝑎 = 1 and
𝑏 = 0. In Fig. 3a, the function 𝜑𝛶 increases through the thickness from 0
at 𝜂𝛼3 = −0.5 to 1 at 𝜂𝛼3 = 0.5 for different values of the parameter 𝜉𝑝. By
appropriate choice of the parameter 𝜉𝑝 the porosity distribution can be
regulated such that at 𝜂𝛼3 close to 𝜂𝛼3 = −0.5, by rising the parameter
𝜉𝑝 the rate of increase in Young’s modulus grows while this trend is
reversed at 𝜂𝛼3 close to 𝜂𝛼3 = 0.5. By adjusting the values of a, b, and
𝜁 , it is feasible to generate both symmetric and asymmetric profiles,
as illustrated in Figs. 3b and 3c. Symmetric porosity distribution is
achieved by setting 𝑎 = 1, 𝑏 = 1, and 𝜁 = 2 in Eq. (23). As can be seen
in Fig. 3b, the function 𝜑𝛶 on the inner surface is the same as that on
the outer surface (𝜑𝛶 = 1), however, the Young’s modulus drops with
an increase in the parameter 𝜉𝑝 and tends to 𝜑𝛶 = 0 for higher values
of parameter 𝜉𝑝. Fig. 3c demonstrates asymmetric profiles obtained by
setting 𝑎 = 1, 𝑏 = 0.5, and 𝜁 = 2. This figure shows a specific case
of the power-law distribution obtained by modifying the parameters
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Fig. 4. 3-D Gaussian random field closed-cell model. [86].

𝑎, 𝑏, and 𝜁 . This profile is characterized by the fact that on the inner
surface of shell we have a fixed value of 𝜑𝛶 = 1 while on the outer
surface the value of the function 𝜑𝛶 is restrained by the parameter 𝜉𝑝.
Moreover, the rate of growth in Young’s modulus grows by increasing
the parameter 𝜉𝑝 at 𝜂𝛼3 near the inner surface.

A statistical closed-cell model based on Gaussian random fields
(GRFs), which generates a substantial variation in cell sizes and shapes,
has been established, as shown in Fig. 4 [86]. To predict the Young’s
modulus, a variational FEM was used. Based on the results obtained, a
scaling relation can describe the Young’s modulus of the model as

𝐸(𝛼3) = 𝐸0

(

𝜌(𝛼3)∕𝜌0 + 0.121
1.121

)2.3
, 0.15 < 𝜌(𝛼3)∕𝜌0 < 1 (26)

which is employed to obtain mass density coefficient, 𝜉𝑚, as

𝜉𝑚 =
1.121

(

1 − 2.3
√

1 − 𝜉𝑝𝛶 (𝛼3)
)

𝛶 (𝛼3)
(27)

Note that 𝜉𝑝 = 0 corresponds to a case when no pore exists in the
nanocomposite while 𝜉𝑝 = 1 is physically meaningless. With an increase
in 𝜉𝑝, density and size of the pores in the material rise and, as a result,
modulus of elasticity and mass density of the nanocomposite reduce.
Furthermore, Poisson’s ratio of the CGP shell is expressed as

𝑣 = 0.221𝛽0 + 𝑣0
(

0.342𝛽02 − 1.21𝛽0 + 1
)

(28)

where 𝛽0 = 1 − 𝜌(𝛼3)∕𝜌0.

2.3. Fundamental formulations

Under the framework of the RHST, the displacements of a generic
point at distance 𝛼3 from the middle surface of the shell elaborated by
(𝑢1, 𝑢2, 𝑢3) are related to the middle surface displacement by

𝑈1(𝛼1, 𝛼2, 𝛼3) = 𝑢1(𝛼1, 𝛼2) + 𝛼3

(

𝜙1(𝛼1, 𝛼2) +
4

3ℎ2
𝛼3

2(𝜙1 + 𝜕𝑢3∕𝜕𝛼1)
)

𝑈2(𝛼1, 𝛼2, 𝛼3) = 𝑢2(𝛼1, 𝛼2) + 𝛼3

(

𝜙2(𝛼1, 𝛼2) +
4

3ℎ2
𝛼3

2(𝜙2 + 𝜕𝑢3∕𝑅𝜕𝛼2)
)

𝑈3(𝛼1, 𝛼2, 𝛼3) = 𝑢3(𝛼1, 𝛼2)

(29)

where 𝜙1 and 𝜙2 are rotations at mid-surface of the shell with respect
to 𝛼1 and 𝛼2. The nonlinear kinematic relations of the shell are defined
by
⎧

⎪

⎨

⎪

𝜀11
𝜀22
𝛾

⎫

⎪

⎬

⎪

=

⎧

⎪

⎨

⎪

𝜀(0)11
𝜀(0)22
(0)

⎫

⎪

⎬

⎪

+ 𝛼3

⎧

⎪

⎨

⎪

𝜀(1)11
𝜀(1)22
(1)

⎫

⎪

⎬

⎪

+ 𝛼3
3

⎧

⎪

⎨

⎪

𝜀(3)11
𝜀(3)22
(3)

⎫

⎪

⎬

⎪

(30)
6

⎩

12
⎭ ⎩

𝛾12 ⎭ ⎩

𝛾12 ⎭ ⎩

𝛾12 ⎭
{

𝛾13
𝛾23

}

=

{

𝛾 (0)13
𝛾 (0)23

}

+ 𝛼3
2

{

𝛾 (2)13
𝛾 (2)23

}

(31)

where

⎧

⎪

⎨

⎪

⎩

𝜀(0)11

𝜀(0)22

𝛾 (0)12

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝑢1,𝛼1 +𝑤2
0,𝛼1

2
𝑣2,𝛼2 + 𝛼3𝑅 + 𝑢23,𝛼22

𝑢1,𝛼2 + 𝑢2,𝛼1 + 𝑢3,𝛼1𝑢3,𝛼2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

𝜀(1)11

𝜀(1)22

𝛾 (1)12

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

𝜙1 ,𝛼1
𝜙2 ,𝛼2

𝜙1 ,𝛼2 + 𝜙2 ,𝛼1

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

𝜀(3)11

𝜀(3)22

𝛾 (3)12

⎫

⎪

⎬

⎪

⎭

= −𝐶1

⎧

⎪

⎨

⎪

⎩

𝜙1 ,𝛼1 + 𝑢3,𝛼1𝛼1
𝜙2 ,𝛼2 + 𝑢3,𝛼2𝛼2

𝜙1 ,𝛼2 + 𝜙2 ,𝛼1 + 2𝑢3,𝛼1𝛼2

⎫

⎪

⎬

⎪

⎭

{

𝛾 (0)13

𝛾 (0)23

}

=
{

𝜙1 + 𝑢3,𝛼1
𝜙2 + 𝑢3,𝛼2

}

{

𝛾 (1)13
𝛾 (1)23

}

= −3𝐶1

{

𝜙1 + 𝑢3,𝛼1
𝜙2 + 𝑢3,𝛼2

}

(32)

where 𝜀11 and 𝜀22 indicate the membrane strains, 𝛾12, 𝛾23, and 𝛾13
represent the transverse shear strains. In Eq. (32), a comma denotes
the partial differential operator. The constitutive equation of the shell
is given by

𝜎11 = 𝐾11𝜀11 +𝐾12𝜀22
𝜎22 = 𝐾21𝜀11 +𝐾22𝜀22
𝜏23 = 𝐾44𝛾23
𝜏13 = 𝐾55𝛾13
𝜏12 = 𝐾66𝛾12

(33)

in which 𝐾𝑖𝑗 are the elastic coefficients.

In most literature, the stiffener impact has been smeared over
the stiffener spacing, which implies that the impact of discrete ring
and stringers have not been accounted. Motivated by this, this paper
considers ring and stringers as Euler–Bernoulli beams. Moreover, taking
the Kirchhoff–Love assumptions into account, it is assumed that the
straightness of the normal to the ring and stringers is preserved even
after deformation. Consequently, the displacement fields of the stringer
and ring are given, respectively, by

�̄�1(𝛼1 , 𝛼2) = 𝑢𝑖1(𝛼1 , 𝛼2) − 𝛼3 𝑢
𝑖
3,𝛼1

(𝛼1 , 𝛼2)

�̄�3(𝛼1 , 𝛼2) = 𝑢𝑖3(𝛼1 , 𝛼2)
(34)

�̄�1(𝛼1 , 𝛼2) = 𝑢𝑖2(𝛼1 , 𝛼2) − 𝛼3 𝑢
𝑖
3,𝛼2

(𝛼1 , 𝛼2)

�̄�3(𝛼1 , 𝛼2) = 𝑢𝑖3(𝛼1 , 𝛼2)
(35)

where 𝑢𝑖1, 𝑢
𝑖
2, and 𝑢𝑖3 represent the components of displacement over the

thickness of the shell at the 𝑖th nodal position. Hence, the kinematic
relations for stiffeners are obtained

𝜀1 =
𝜕𝑢𝑖2
𝜕𝛼2

+ 1
2
(
𝜕𝑢𝑖3
𝜕𝛼2

)2 +
𝑢𝑖3
𝑅

− 𝛼3(
𝜕2𝑢𝑖3
𝜕𝛼22

)

𝜀2 =
𝜕𝑢𝑖

1

𝜕𝛼1
+ 1

2
(
𝜕𝑢𝑖3
𝜕𝛼1

)2 − 𝛼3(
𝜕2𝑢𝑖

3

𝜕𝛼12
)

(36)

where 𝜀1 and 𝜀2 denote the axial and circumferential strains. Conse-
quently, the strain energy for circumferential and axial stiffeners are
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𝑈

T
E
w
s
f
e

p
s
e
f
e

T
T

given by:

𝑈𝑟 =
1

2𝑊𝑟 ∫

𝐿

0 ∫

𝑅𝛷

0

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝑢𝑖3
𝑅

+ 1
2

(

𝜕𝑢𝑖3
𝜕𝛼2

)2

+ 𝐸𝑟𝐴𝑟

(

𝜕𝑢𝑖2
𝜕𝛼2

)

+ 𝐸𝑟

(

𝑏𝑟𝑑𝑟3

12
+
(

ℎ + ℎ𝑟
2

)2
𝐴𝑟

)(

𝜕2𝑢𝑖3
𝜕𝛼22

)2
⎞

⎟

⎟

⎠

2

− 𝐸𝑟𝐴𝑟(ℎ + ℎ𝑟)
(

𝜕2𝑢3𝑖

𝜕𝛼22

)

(

𝜕𝑢2𝑖

𝜕𝛼2
+ 1

2

(

𝜕𝑢3𝑖

𝜕𝛼2

)2

+
𝑢3𝑖

𝑅

)

+ 𝐺𝑟
ℎ𝑟𝑑𝑟3

3

(

𝜕2𝑢3𝑖

𝜕𝛼1𝜕𝛼2

)2]

𝑑𝛼2𝑑𝛼1

(37)

𝑠 =
1

2𝑊𝑠 ∫

𝐿

0 ∫

𝑅𝛷

0

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝐸𝑠𝐴𝑠

(

𝜕𝑢𝑖1
𝜕𝛼1

)

+ 1
2

(

𝜕𝑢𝑖3
𝜕𝛼1

)2

+ 𝐸𝑠

(

𝑏𝑠𝑑𝑠3

12
+
(

ℎ + ℎ𝑠
2

)2
𝐴𝑠

)(

𝜕2𝑢𝑖3
𝜕𝛼12

)2
⎞

⎟

⎟

⎠

2

− 𝐸𝑠𝐴𝑠(ℎ + ℎ𝑠)

(

𝜕2𝑢𝑖3
𝜕𝛼12

)

⎛

⎜

⎜

⎝

𝜕𝑢𝑖1
𝜕𝛼1

+ 1
2

(

𝜕𝑢𝑖3
𝜕𝛼1

)2
⎞

⎟

⎟

⎠

+ 𝐺𝑠
ℎ𝑠𝑑𝑠3

3

(

𝜕2𝑢𝑖3
𝜕𝛼1𝜕𝛼2

)2
⎤

⎥

⎥

⎦

𝑑𝛼2𝑑𝛼1

(38)

where 𝑊𝑟 and 𝑊𝑠 represent ring and stringer spacing, respectively,
and 𝛷 denotes shell angle. E is the effective Young’s modulus, and the
subscripts r and s stand for ring and stringer stiffeners, respectively.
Based on the stationary potential energy criterion, the equilibrium
equations of the shell under mechanical loadings can be derived. To
this end, first, the expression for the overall potential energy of the
shell, which is strengthened by ring and stringer stiffeners, is provided
as follows

𝛱 = 𝛺 + 𝑈𝑟 + 𝑈𝑠 + 𝑈𝑜 (39)

where 𝛺 denotes the potential energy of the mechanical loads, which
is defined as the negative value of the work performed by mechanical
loading during the deformation of the shell. Considering axial compres-
sive edge load 𝑁0𝛼1 and lateral pressure 𝑁0𝛼2 , the potential energy of
the loading is expressed by

𝛺 = 1
2 ∫

𝐿

0 ∫

𝑅𝛷

0

(

𝑁0𝛼1 +𝑁0𝛼2

)(

(𝑤,𝛼1 )
2 + (𝑣,𝛼1 )

2
)

𝑑𝛼2𝑑𝛼1 (40)

It is worthwhile noting that the impact of quadratic terms in Eq. (40) on
the buckling of short- or medium-length shells is trivial. In particular,
the reduction in length resulting from circumferential displacement
can be disregarded for stiffened shells having a length-to-radius ratio
ranging from 0.7 to 3 [87]. Furthermore, 𝑈𝑜 represents the total strain
energy of the shell provided by

𝑈𝑜 = ∫

𝐿

0 ∫

𝑅𝛷

0 ∫

ℎ2

−ℎ2
(𝜎11𝜀11 + 𝜎22𝜀22 + 𝜏12𝛾12 + 𝜏13𝛾13 + 𝜏23𝛾23)

× 𝑑𝛼3 𝑑𝛼2 𝑑𝛼1

(41)

he equilibrium equations of shell may be derived by employing the
uler equations. It can be stated that a loaded shell attains equilibrium
hen its total potential energy, denoted by 𝛱 , remains constant. This

tate of equilibrium is achieved when the integrand in the expression
or 𝛱 follows the Euler equations of the calculus of variations. The
quilibrium equations of the shell are given in Appendix A.

The equations governing the stability of shells are derived by ap-
lying the principle of minimum potential energy. The transition from
table to neutral equilibrium occurs when the total potential energy
xpression no longer represents a relative minimum. The criterion
or stability loss is met when the integrand in the second variation
xpression of 𝛱 satisfies the Euler equations of calculus of variations.
7

his procedure will be explained in detail in the following. Employing
aylor series, the expansion of 𝛱 about the equilibrium state is given

by

𝛥𝛱 = 𝛿𝛱 + 1
2
𝛿2𝛱 + 1

6
𝛿3𝛱 +⋯ (42)

The first variation 𝛿𝛱 is related to the equilibrium state. The stability
condition of the original configuration of the shell in the neighbour-
hood of the equilibrium state may be obtained by the sign of second
variation 𝛿2𝛱 . The condition 𝛿2𝛱 = 0 can be applied to determine the
stability equations of the buckling problem. To obtain the correspond-
ing expression for the second variation of the total potential energy,
let

𝑢1 = 𝑢1
0 + 𝑢1

1, 𝑢2 = 𝑢2
0 + 𝑢2

1, 𝑢3 = 𝑢3
0 + 𝑢3

1,

𝜙1 = 𝜙1
0 + 𝜙1

1, 𝜙2 = 𝜙2
0 + 𝜙2

1 (43)

where 𝑢10, 𝑢20, 𝑢30, 𝜙1
0, and 𝜙2

0 denote the displacement fields of the
equilibrium state. 𝑢11, 𝑢21, 𝑢31, 𝜙1

1, and 𝜙2
1 are a virtual increment

in the displacement fields, i.e. at the neighbourhood of the stable
equilibrium. The stress resultants are comprised of two components
that express the stable equilibrium and the neighbouring condition.
Additionally, the critical buckling is determined by mechanical loading
applied to the original shell configuration, provided that the variation
equation 𝛿2𝛱 = 0 is met. By calculating the second variation of the
potential and utilizing the Euler equations, the stability equations can
be derived, as presented in Appendix B.

3. Numerical solution

Since the stability equations of the shell, Eqs. (A.1)–(A.6), cannot
be solved analytically, consequently, an efficient combined numerical
technique is employed to determine the critical buckling load. To this
end, first, the Lev́y method is employed to seek a solution that satisfies
the simply supported boundary conditions, and thereby reduces the 2-D
problem to a 1-D problem with respect to the coordinate 𝛼1. Afterwards,
the generalized differential quadrature (GDQ) technique is used to
discretize the governing equations. It has been deemed that the forces
𝑁0

𝛼1𝛼1
and 𝑁0

𝛼2𝛼2
in 𝛼1 and 𝛼2 directions, respectively, may are given by

𝑁0
𝛼1𝛼1

= −
𝐹𝛼1
2𝜋𝑅

𝑁0
𝛼2𝛼2

= −𝐹𝛼2𝑅 𝜅 =
𝐹𝛼2

2𝜋𝑅2𝐹𝛼1

(44)

With consideration of the simply supported boundary conditions at the
two edges of the shells as:

𝑢12 = 𝑢13 = 𝑀1
𝛼1𝛼1

= 𝑁1
𝛼1𝛼1

= 𝜙1
2 = 0 𝑎𝑡 𝛼1 = 0, 𝐿 (45)

In the Lev́y procedure, the following representation of the displacement
are assumed

�̄�1 =
∞
∑

𝑛=1
𝑢1(𝛼1) sin(𝛽𝑚𝛼2)

�̄�2 =
∞
∑

𝑛=1
𝑢2(𝛼1) cos(𝛽𝑚𝛼2)

�̄�3 =
∞
∑

𝑛=1
𝑢3(𝛼1) sin(𝛽𝑚𝛼2)

�̄�1 =
∞
∑

𝑛=1
𝜙
1
(𝛼1) sin(𝛽𝑚𝛼2)

�̄�2 =
∞
∑

𝑛=1
𝜙
2
(𝛼1) cos(𝛽𝑚𝛼2)

(46)

where 𝛽𝑚 = 𝑚𝜋𝛷, and m =1, 2,… denotes the number of half waves
in 𝛼 -direction. The partial differential equations (PDEs) obtained by
2
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Table 1
Comparison of the critical buckling loads of thin unstiffened graded closed cylindrical shells with aligned and straight CNTs
(T= 300 K, 𝛷 = 2𝜋, ℎ = 1mm,𝑅∕ℎ = 100, 𝑍 = 𝐿2∕𝑅ℎ .

𝑉 ∗
𝑐 = 0.12 𝑉 ∗

𝑐 = 0.17 𝑉 ∗
𝑐 = 0.28

Uniform Sandglass Uniform Sandglass Uniform Sandglass

𝑍 = 100
Ref. [88] 18.75 21.81 30.43 35.53 37.77 47.18
Present work 19.82 22.93 31.572 36.45 39.01 48.80
𝑍 = 300
Ref. [88] 19.35 22.06 31.11 37.06 39.60 46.52
Present work 20.00 23.33 32.09 38.13 40.55 48.87
𝑍 = 500
Ref. [88] 18.72 21.37 30.57 35.14 37.31 45.99
Present work 19.91 22.14 32.11 36.46 38.29 46.80
substituting Eq. (46) into Eqs. (A.1)–(A.6) are discretized using the
GDQ method. The comprehensive overview of the GDQ approach can
be found in [75,89]. In compact vector notation, the discretized form
of PDEs obtained together with related boundary conditions elaborated
in Eq. (45) is expressed as
[[

𝐾𝑏𝑏
] [

𝐾𝑏𝑑
]

[

𝐾𝑑𝑏
] [

𝐾𝑑𝑑
]

]{

𝛿𝑏
𝛿𝑑

}

+ 𝐹
[

0 0
[𝐾𝑔1] [𝐾𝑔2]

]{

𝛿𝑏
𝛿𝑑

}

= 0 (47)

where the subscripts d and b represent domain and boundary, re-
spectively. Indeed, the sub-matrices [𝐾𝑏𝑏], [𝐾𝑏𝑑 ], [𝐾𝑑𝑏], and [𝐾𝑑𝑑 ] are
components of the stiffness matrix that pertain to boundary and domain
conditions. Furthermore, [𝐾𝑔1 ] and [𝐾𝑔2 ] are considered as sub-matrices
when taking into account the influence of external force and the
imposed conditions on the boundaries and domain. It should be noted
that 𝛿𝑏 and 𝛿𝑑 represent the degrees of freedom associated with the
boundary and domain, respectively. These degrees of freedom are
defined as follows
{

𝛿𝑑
}

=
{

𝑢1𝑖 𝑢2𝑖 𝑢3𝑖 𝜙
1𝑖

𝜙
2𝑖

}𝑇
𝑖 = 2,… , 𝑁 − 1 (48)

nd

𝛿𝑏
}

=
{{

𝛤1
} {

𝛤𝑁
}}𝑇 (49)

here

𝛤𝑖
}

=
{

𝑢1𝑖 𝑢2𝑖 𝑢3𝑖 𝜙
1𝑖

𝜙
2𝑖

}𝑇
𝑖 = 1, 𝑁 (50)

n order to convert Eq. (47) into the standard eigenvalue equation, it is
ecessary to eliminate the vector

{

𝛿𝑏
}

. The vector
{

𝛿𝑏
}

can be obtained
rom Eq. (47) using the following expression

𝛿𝑏
}

= [𝐾𝑏𝑏]−1[𝐾𝑏𝑑 ]
{

𝛿𝑑
}

(51)

y back-substituting Eq. (51) into Eq. (47), the following expression is
erived
𝐾𝑑𝑑 ]

{

𝛿𝑑
}

− [𝐾𝑑𝑏][𝐾𝑏𝑏]−1[𝐾𝑏𝑑 ]
{

𝛿𝑑
}

+ 𝐹
(

−[𝐾𝑔1][𝐾𝑑𝑏][𝐾𝑏𝑏]−1[𝐾𝑏𝑑 ]
{

𝛿𝑑
}

+ [𝐾𝑔2]
{

𝛿𝑑
})

= 0
(52)

q. (52) can be transformed into an eigenvalue problem in the follow-
ng manner

−[𝐾𝑔1][𝐾𝑑𝑏][𝐾𝑏𝑏]−1[𝐾𝑏𝑑 ] + [𝐾𝑔2]
)−1 (−[𝐾𝑑𝑏][𝐾𝑏𝑏]−1[𝐾𝑏𝑑 ]

+ [𝐾𝑑𝑑 ]
) {

𝛿𝑑
}

+ 𝐹
{

𝛿𝑑
}

= 0
(53)

ventually, the critical buckling load, denoted as F, is determined by
olving Eq. (53).

. Numerical results and discussion

.1. Validation

Due to lack of appropriate results for mechanical buckling of the
hell for direct comparison, validation of the present methodology is
arried out in two ways. Initially, in the context of continuously graded
losed cylindrical shells, the precision of the current numerical work
8

Table 2
Comparison of the critical buckling loads of unstiffened and stiffened isotropic closed
cylindrical shell (𝐿 = 𝑅 = 0.3).
𝑅∕ℎ Unstiffened Stiffened

Present work Ref. [90] Present work Ref. [90]

30 26.4529 26.2390 26.5272 26.3023
100 2.3891 2.3615 2.4076 2.3659
200 0.5981 0.5904 0.6086 0.5988
300 0.2663 0.2623 0.2730 0.2672

utilizing two-parameter EMT is evaluated against that presented in
Ref. [88] which employed an extended rule of mixture and graded
aligned, straight CNTs. In Table 1, Poly (methyl methacrylate), named
as PMMA, has been selected for the matrix phase while the (10,
10) SWCNTs have been considered as reinforcements. Moreover, at
a proposed temperature of 𝑇 = 300 K, which is equivalent to room
temperature, there are no thermal strains. As can be seen in this
table, there is an excellent agreement between the results verifying the
accuracy of the present numerical work. It is interesting to note that
for two types of CNTs profiles, the critical mechanical buckling load
determined using the EMT is higher than that determined using the
extended rule of mixture for various CNTs volume fractions.

Secondly, the results are contrasted with those obtained from iso-
tropic closed cylindrical shells. This study centres on the critical buck-
ling load of closed cylindrical shells made of alumina-based isotropic
material, both stiffened and unstiffened, as discussed in Ref. [90]. As
shown in Table 2, the results presented in this comparison for different
values of mid-radius to thickness are in good agreement.

4.2. Mechanical buckling analysis of porous nanocomposite shells

Having assessed the validity of the current methodology, a num-
ber of test cases including different class of structures, ranging from
closed to open CGP shells, with or without exterior and interior stiff-
ening elements, different geometrical parameters, and various types
of material profiles, are presented. The investigated shell experiences
a concurrent application of lateral pressure and axial compressive
load. The methodology developed here, indeed, has a broad variety of
applications and may be effectively used to do exploratory research on
many sorts of design. Aside from showcasing the potential application
to a range of design possibilities, this section intends to presenting the
high efficiency and fast rate of convergence of the method by presenting
the results to establish its very high accuracy and versatility.

For all findings discussed in this section, the buckling load intensity
factor (BLIF) is represented by

BLIF = 𝐹𝑐𝑟𝐿
2𝐷𝜋2 (54)

where 𝐷 = 𝐸𝑚ℎ3∕12
(

1 − 𝑣𝑚2) denotes the rigidity modulus of the
shell. The (10,10) SWCNTs as the reinforcement phase and copper
as the metal matrix [91,92] are selected. The material properties of

metal matrix (copper) are 𝐸𝑚 = 130 GPa and 𝑣𝑚 = 0.34. According
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Fig. 5. Buckling mode shapes of CGP shells with different shell angle for Classic porosity distribution and Sandglass CNTs profile (𝐿∕𝑅 = 1, 𝑅∕ℎ = 50, 𝑁𝑟 = 11, 𝑁𝑠 = 23). In this
example, the ABAQUS FE models use the first-order shell element S4R as a general-purpose shell element with six degrees of freedom per node. (a) 𝛷 = 3𝜋∕4. (b) 𝛷 = 𝜋. (c)
𝛷 = 3𝜋∕𝑅 = 2. (d) 𝛷 = 2𝜋.
to the molecular dynamics simulation results predicted by Shen and
Zhang [93], the material properties of the (10,10) SWCNTs are 𝐸𝑐

11

= 5.6466 TPa, 𝐸𝑐
22 = 7.06 TPa, 𝐺𝑐

12 = 1.9445 TPa, and 𝑣𝑐22 =
0.175 at room temperature (300 K) and the effective wall thickness is
0.067 nm satisfying the Vodenitcharova–Zhang criterion [94]. All the
computations reported in this section are carried out by considering
𝑉 ∗
𝑐 = 0.28 unless the otherwise mentioned.

The purpose of this part is to demonstrate the precision of the
approach via comparison with both benchmark data and FEM computa-
tions. In this work, ABAQUS FE code version 6.17 [95] is used. The FE
models use the first-order shell element S4R as a general-purpose shell
element with six degrees of freedom per node (three displacements and
three rotations). The mesh density is determined through a preliminary
convergence analysis, with an average component size of 5 mm. It
is of significance to mention that FE analyses have been conducted
employing both the shell element S4R and the solid continuum element
C3D8R. However, for the purpose of conciseness, the outcomes of the
continuum element have not been included in this work. It is crucial
to highlight that upon comparing the results of both element types,
the S4R element exhibits superior computational efficiency, but the dif-
ferences in outcomes are minimal. This determination is underpinned
by the understanding that using solid continuum elements becomes
progressively uneconomical when the R/h ratio surpasses 25 [96,97].
Table 3 presents a summary of the results obtained for the CGP shells
using the methodology proposed in this study and FEM. In contrast to
FEM, the discrepancies observed in the comparison remain negligible,
with a maximum deviation of approximately 1%. Figs. 5 and 6 show
different buckling mode shapes of the CGP shells with different number
of shell angle and stiffeners, respectively.

To attain an accurate BLIF of the CGP, a series of calculations are
conducted to ascertain the necessary quantity of grid points along the
9

longitudinal axis of the shell. A convergence study of the numerical
results for CGP shells with Sandglass CNTs profile is shown in Figs. 7
and 8 for different values of the mid-radius to thickness ratio, 𝑅∕ℎ, and
the aggregation parameter, 𝛾, respectively. The results are obtained by
setting 𝑎 = 1, 𝑏 = 1, 𝜁 = 2, and 𝜉𝑝 = 1. As observed in these figures, not
only the numerical method converges very fast as the number of grid
points in the longitudinal direction rises, but it also shows that using
only 9 number of grid points one can gain accurate BLIF for the shell. It
is worthwhile noting that with the escalation of the aggregation param-
eter, 𝛾, resulting in a reduction of the CNTs agglomeration within the
metal matrix, there is an observable enhancement in the convergence
behaviour.

Figs. 9a and 9b show the variation of the BLIF of the CGP shell with
the length-to-mean radius ratio, L/R, different types of CNTs distribu-
tion profiles, and porosity dispersion. It can be observed from these
figures that, on the one hand, the BLIF is significantly influenced in that
the BLIF increases steadily as L/R ratio becomes larger, manifesting that
a longer shell possesses a higher critical buckling load. On the other
hand, it is interesting to note that the through-thickness variation of
CNTs distribution according to the Sandglass type leads to a higher
BLIF among other CNTs dispersion types. Comparing Symmetric and
Asymmetric porosity distribution in Figs. 9a and 9b, respectively, shows
that the discrepancy between the Uniform and Pyramid types of CNTs
dispersion becomes more tangible for lower values of the L/R ratio.
Moreover, the type of CNTs distribution within the matrix through the
thickness of the shell has a noticeable impact of the BLIF in higher
values of the L/R ratio, irrespective of how the porosity is distributed
through the shell’s radial direction.

The effect of the parameter 𝜉𝑝 on the buckling behaviour of the
CGP stiffened shell is compared in Figs. 10a and 10b for different
porosity distribution profiles. The porosity distribution governed by
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Fig. 6. Buckling mode shapes of CGP shells with different number of stiffeners for Classic porosity distribution and Sandglass CNTs profile. (𝐿∕𝑅 = 1, 𝑅∕ℎ = 50, 𝛷 = 3𝜋∕2). (a)
𝑁𝑟 = 7, 𝑁𝑠 = 15. (b) 𝑁𝑟 = 11, 𝑁𝑠 = 23. (c) 𝑁𝑟 = 17, 𝑁𝑠 = 31. (d) 𝑁𝑟 = 23, 𝑁𝑠 = 35.
Table 3
Comparison of the critical buckling loads of stiffened CGP shells with different shell angle and mode shapes for Classic porosity
distribution and Sandglass profile (𝑅∕ℎ = 50, 𝐿∕𝑅 = 1, 𝑁𝑟 = 𝑁𝑠 = 25).

Angle 1st 3rd 5th 7th 9th

3𝜋∕4 Present work 190.4228 213.7297 248.0652 459.5321 464.4831
FEM 191.5183 215.0001 249.2951 460.4457 465.9151

𝜋 Present work 145.3471 162.1929 189.0039 357.8868 364.0761
FEM 146.8507 163.0004 189.9992 359.0158 365.5249

3𝜋∕2 Present work 97.9643 109.0456 128.7471 244.3276 250.7626
FEM 99.0002 110.2924 130.0025 245.3459 251.4428

2𝜋 Present work 73.7549 82.0260 97.2818 184.9379 189.4963
FEM 74.4490 83.0004 98.0249 185.7751 190.3751
Eq. (23) can be influenced through the appropriate choice of the
parameter 𝜉𝑝. It has been explained in Ref. [74] that the tendency of
CNTs to aggregate more in the inclusions has a detrimental impact
on the mechanical buckling behaviour of cylindrical shells. This trend
has been also observed in this figure. Comparing Figs. 10a and 10b
reveals that for different agglomeration degrees of CNTs within the
metal matrix, the porosity distributions symmetrically with respect to
the mid-surface of the shell has a remarkable impact on the buckling
behaviour of the CGP shell. However, when it comes to Classic porosity
distribution, the parameter 𝜉𝑝 has a negligible effect on the BLIF of the
CGP shell. Another point that can stand out from Fig. 10b is that the
change in the parameter 𝜉𝑝 and, as a result, the symmetric distribution
of the porosity is much more appreciable on the buckling behaviour
of the CGP shell when the agglomeration degree of the CNTs is more
sever. This will be more investigated in the next tables.

Effect of number of ring and stringer stiffeners on the buckling load
intensity factor of CGP shells with varying the parameter 𝜉𝑝 and the
length-to-mean radius ratio for Classic and Symmetric porosity Profiles
is investigated in Tables 4 and 5. Certain significant findings evident
from these tables are as follows: (i) For various types of porosity distri-
bution profiles, the buckling load intensity factor rises with the number
10
of stiffeners. (ii) By increasing the parameter 𝜉𝑝 for Classic porosity
profile, the BLIF slightly drops, whilst for Symmetric porosity profile
it is the other way round. This is attributed to different distributions
of porosities and, as a result, the Young’s modulus of the shell in
relation to the mid-surface in Classic and Symmetric Profiles. (iii) In
comparison to shells stiffened by interior stiffeners, those stiffened by
exterior stiffeners have greater critical buckling loads.

Fig. 11 represents the comparison of the buckling behaviour of
continuously graded Symmetric, Asymmetric, and Classic porous shells
with three different CNTs distributions. It can be inferred from this
figure that the impact of different CNTs distribution profiles on the
BILF of the stiffened shell is noticeably higher than those of various
porosity dispersion profiles. This highlights the proper selection of the
grade CNTs distributions through the shell’s thickness. Furthermore, as
can be seen from this figure, symmetrical distribution of porosities leads
to an improvement in the buckling behaviour of the shell, followed
by the Asymmetric profile. In other words, porosities distributed close
to the mid-surface are more effective in increasing the stiffness of the
structure than other non-uniform porosities distributions, Classic or
Asymmetric profiles. Therefore, designers can obtain desired stiffness
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Table 4
Effect of number of ring and stringer stiffeners on the buckling load intensity factor of CGP shells with varying the parameter
𝜉𝑝 and the length-to-mean radius ratio for Classic porosity Profile. (𝑅∕𝐿 = 2, 𝛷 = 2𝜋∕3, 𝛾 = 𝛿 = 0.5, 𝑎 = 1, 𝑏 = 0).

𝑅∕ℎ 𝑁𝑖
a = 6 𝑁𝑖 = 15 𝑁𝑖 = 24

10 100 10 100 10 100

Interior stiffeners
𝜉𝑝 = 0 166.9023 514.5110 166.9055 514.8749 166.9087 515.2385

0.5 166.8990 514.5012 166.9023 514.8651 166.9055 515.2282
1 166.8958 514.4914 166.8991 514.8552 166.9023 515.2184
3 166.8939 514.4855 166.8971 514.8493 166.9004 515.2125
5 166.8914 514.4776 166.8946 514.8415 166.8978 515.2047

Exterior stiffeners
𝜉𝑝 = 0 166.9672 517.8356 167.0677 523.1757 167.1683 528.5023

0.5 166.9640 517.8258 167.0645 523.1660 167.1651 528.4926
1 166.9608 517.8160 167.0613 523.1562 167.1619 528.4829
3 166.9588 517.8102 167.0594 523.1504 167.1600 689.1948
5 166.9563 517.8024 167.0569 523.1426 167.1574 528.4771

a i = r or s .
Table 5
The buckling load intensity factor of CGP shells with varying number of ring and stringer stiffeners, the parameter 𝜉𝑝, and
the length-to-mean radius ratio for Symmetric porosity Profile. (𝑅∕𝐿 = 2, 𝛷 = 2𝜋∕3, 𝛾 = 𝛿 = 0.5, 𝑎 = 1, 𝑏 = 1, 𝜁 = 2).
𝑅∕ℎ 𝑁𝑖

a = 6 𝑁𝑖 = 15 𝑁𝑖 = 24

10 100 10 100 10 100

Interior stiffeners
𝜉𝑝 = 0 166.9023 514.5110 166.9055 514.8749 166.9087 515.2381

0.5 193.8203 597.4526 193.8240 597.9074 193.8277 598.3614
1 222.7263 683.9032 222.7308 684.4574 222.7354 685.0106
3 237.2923 713.8565 233.1400 714.4445 233.1449 715.0314
5 237.2923 725.2776 237.2974 725.8776 237.3025 726.4765

Exterior stiffeners
𝜉𝑝 = 0 166.9672 517.8356 167.0677 523.1757 167.1683 528.5023

0.5 193.8793 193.8793 193.9714 605.3693 194.0635 610.2871
1 222.7795 686.5788 222.8640 691.1400 222.9484 695.6923
3 233.1864 716.4345 233.2684 720.8834 233.3504 725.3241
5 237.3430 727.8214 237.4240 732.2311 237.5051 736.6327

a i = r or s .
Fig. 7. Convergence of the buckling load intensity factor versus the mid-radius to
thickness ratio, 𝑅∕ℎ, of CGP shells with Sandglass CNTs profile. As evident from these
figures, the numerical approach not only exhibits rapid convergence as the longitudinal
grid points increase in number but also underscores the possibility of achieving accurate
BLIF for the shell using a minimal count of 9 grid points. (𝐿∕𝑅 = 2, 𝛷 = 2𝜋∕𝑅 = 2,
𝑁𝑟 = 𝑁𝑠 = 10, 𝑎 = 1, 𝑏 = 1, 𝜁 = 2, 𝜉𝑝 = 1).

and buckling behaviour of CGP shells by regulating distributions of
CNTs as well as porosities through the thickness of structure.

In order to scrutinize the impact of the agglomeration parameter 𝛿
used in the EMT approach on the buckling behaviour of CGP stiffened
shells, variation of the BLIF with the parameter 𝛿 for different porosities
11
Fig. 8. Convergence of the buckling load intensity factor versus the aggregation
parameter, 𝛾, of CGP shells with Sandglass CNTs profile. As depicted in this figure,
with the increase of the aggregation parameter denoted as 𝛾, leading to a reduction in
the agglomeration of CNTs within the metal matrix, there is an observable improvement
in the convergence behaviour. (𝐿∕𝑅 = 2, 𝑅∕ℎ = 20, 𝛷 = 𝜋∕2, 𝑁𝑟 = 𝑁𝑠 = 15, 𝑎 = 1, 𝑏 = 1,
𝜁 = 2, 𝜉𝑝 = 1).

and CNTs distribution profiles is shown in Fig. 12. As explained in
Eq. (2), by increasing the parameter 𝛿 the agglomeration degree of
CNTs within the metal matrix drops and, as a result, the BLIF of the
shell gradually grows, followed by higher growth rate for greater values
of the parameter 𝛿. It is interesting to note that the appropriate choice
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Fig. 9. Variation of the buckling load intensity factor of CGP shells with the length-to-mean radius ratio, L/R, for different types of CNTs distribution profiles. As discerned from
the figure, the manner in which CNTs are distributed within the matrix across the shell’s thickness exerts a notable influence on the BLIF for elevated values of the L/R ratio,
independent of the mode of porosity distribution along the radial direction of the shell. (𝑅∕ℎ = 10, 𝛷 = 2𝜋, 𝑁𝑟 = 𝑁𝑠 = 20, 𝛿 = 𝛾 = 0.5, 𝜁 = 2, 𝜉𝑝 = 1). (a) Symmetric profile (𝑎 = 1,
𝑏 = 1). (b) Asymmetric profile (𝑎 = 1, 𝑏 = 0.5).
Fig. 10. Effect of the parameter 𝜉𝑝 on the buckling behaviour of the CGP stiffened shell for different agglomeration degrees of CNTs. As evident, for varying degrees of CNT
agglomeration within the metal matrix, the porosity distributions that exhibit symmetry relative to the mid-surface of the shell profoundly influence the buckling behaviour of the
CGP shell. (𝑅∕ℎ = 20, 𝐿∕𝑅 = 2, 𝛷 = 𝜋∕2, 𝑁𝑟 = 𝑁𝑠 = 15, 𝛿 = 0.1, 𝜁 = 2). (a) Classic profile (𝑎 = 1, 𝑏 = 0). (b) Symmetric profile (𝑎 = 1, 𝑏 = 1).
of CNTs and porosities distribution profiles through the thickness plays
a crucial role in the buckling behaviour of the shell with the lower
degree of CNTs agglomeration. The BLIF of the CGP shell with Sym-
metric and Asymmetric porosity profiles increases by 32% and 18%,
respectively, than that of Classic profile.

Fig. 13 shows the variation of the BLIF with the shell angle for two
values of the mid-radius to thickness ratio, 𝑅∕ℎ = 10 and 𝑅∕ℎ = 50 and
different porosities distribution profiles. As can be seen in this figure,
overall, the BLIF of both R/h ratios declines by increasing the shell
angle irrespective of the type of porosity profile. However, the BLIF
of shells with lower values of the R/h ratio slumps as 𝛷 < 100, whilst
the downturn for thicker shells follows a mild trend and then remains
almost unaltered for closed shells. The impacts of the agglomeration
parameter 𝛾 and CNTs profiles on the variation of the BLIF with the
shell angle are studied in Fig. 14. It is found that the discrepancy
in the buckling behaviour of CGP shells with different CNTs profiles
substantially increases by reducing the agglomeration degree of CNTs
12
dispersed within the metal matrix phase. This trend is more appreciable
in smaller values of the shell angle.

5. Conclusion

This study has introduced a numerical model to investigate the
buckling behaviour of bio-inspired CGP nanocomposite cylindrical
shells. These shells were constructed using metal foams with closed-
cell structures characterized by power-law distributed porosity profiles.
By incorporating an elastic isotropic metal matrix containing dispersed
elastic CNTs, the study considered the impact of CNTs agglomeration
using the EMT approach to derive the effective constitutive law. The
focus was on understanding the effects of geometrical parameters,
porosity variability, and CNTs distribution on the buckling performance
of CGP shells, thereby offering insights for designing enhanced stability
in closed-cell cellular stiffened shells. Through the application of the
adjacent equilibrium criterion, the stability equations were solved
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Fig. 11. Comparison of the buckling behaviour of continuously graded Symmetric,
Asymmetric, and Classic porous shells with three different CNTs distributions. It can
be discerned from this figure that the influence of distinct CNTs distribution profiles
on the BLIF of the stiffened shell is markedly more pronounced compared to the effects
stemming from diverse porosity dispersion profiles. (𝐿∕𝑅 = 2, 𝛷 = 2𝜋∕3, 𝑁𝑟 = 𝑁𝑠 = 10,
𝜉𝑝 = 1, 𝛿 = 𝛾 = 0.5).

Fig. 12. Variation of BLIF with agglomeration parameter 𝛿 for different porosities
and CNTs distribution profiles. The appropriate selection of distribution profiles for
CNTs and porosities throughout the thickness assumes a pivotal role in influencing
the buckling behaviour of the shell, particularly when dealing with a lower degree
of CNTs agglomeration. In comparison to the Classic profile, the BLIF of the CGP
shell experiences a notable increase of 32% with the adoption of the Symmetric
porosity profile and an 18% increase with the utilization of the Asymmetric porosity
profile. (𝑅∕ℎ = 20, 𝐿∕𝑅 = 2, 𝛷 = 𝜋∕2, 𝑁𝑟 = 𝑁𝑠 = 15, 𝜉𝑝 = 1, 𝛾 = 0.95).

employing the GDQ and Lev́y techniques. The results have contributed
substantially to the field by providing fundamental knowledge that
serves as a basis for developing cellular stiffened shells exhibiting opti-
mal porosity and CNTs distributions, consequently leading to improved
stability.

The primary findings underscored the pivotal role of CNTs distri-
bution within the matrix on the enhancement of the BLIF for higher
L/R ratios. Furthermore, the symmetric distribution of porosity around
the mid-surface significantly influenced the buckling behaviour, par-
ticularly when dealing with varying degrees of CNTs agglomeration.
Notably, the controlling porosity parameter (𝜉 ) displayed minimal
13

𝑝

Fig. 13. BLIF versus shell angle for different values of mid-radius to thickness ratio
and porosities distribution profiles. As evident from the this figure, the BLIF for both
R/h ratios decreases with an increasing shell angle, regardless of the porosity profile.
However, for shells with lower R/h ratios and 𝛷 < 100, the BLIF experiences a
significant decline. In contrast, the BLIF for thicker shells exhibits a gradual decline,
stabilizing for closed shells. (𝐿∕𝑅 = 2, 𝛿 = 0.2, 𝛾 = 0.7, 𝑁𝑟 = 𝑁𝑠 = 10).

Fig. 14. Variation of BLIF with shell angle for different values of agglomeration
parameter 𝛾 and CNTs profiles. It can be observed from this figure that the disparity in
the buckling behaviour of CGP shells with varying CNTs profiles is notably amplified
by diminishing the degree of CNTs agglomeration dispersed within the metal matrix
phase. (𝑅∕ℎ = 40, 𝐿∕𝑅 = 2, 𝛿 = 0.2, 𝑁𝑟 = 𝑁𝑠 = 20, 𝑎 = 1, 𝑏 = 1, 𝜁 = 2).

impact on buckling behaviour when employing a Classic porosity dis-
tribution. In addition, the strategic allocation of porosities closer to
the mid-surface, in contrast to alternative non-uniform distributions,
effectively heightened the stiffness of the structure. The study further
disclosed that the deviation in buckling characteristics became more
pronounced as the degree of CNTs agglomeration decreased within the
metallic matrix phase, a trend more noticeable for lower shell angles.

This work has contributed valuable insights towards the design
of CGP shells with amplified stability and structural resilience. The
findings laid out in this study set the stage for future endeavours in
optimizing lightweight and robust composite structures that harness the
synergistic potential of both CNTs and porosity distributions.
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Appendix A

The equilibrium equations of the CGP shell can be obtained as
follow

𝜕𝑁𝛼1𝛼1
𝜕𝛼1
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𝜕𝑁𝛼1𝛼2
𝜕𝛼2
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⎡
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⎢
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1
𝑊𝑠

⎛

⎜

⎜
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⎜

⎜
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+ 1
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(
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⎞
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⎟

⎠

− 𝐴𝑠𝐸𝑠𝐻𝑠
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𝜕𝑢𝑖3
𝜕𝛼1

)2
⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

= 0

(A.1)

𝜕𝑁𝛼1𝛼2
𝜕𝛼1

+
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𝜕𝛼2
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𝜕𝛼2

⎡

⎢

⎢

⎣

1
𝑊𝑟

⎛

⎜

⎜

⎝

𝐸𝑟𝐴𝑟

⎛

⎜

⎜
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⎥
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⎞

⎟

⎟

⎠
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𝜕𝛼12

)
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𝜕𝛼1 𝑊𝑠 3 2 𝜕𝛼1
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(A.5)

where �̄�𝛼1𝛼1 and �̄�𝛼2𝛼2 are the mechanical forces applied to the ring
and stringer stiffeners expressed by:

�̄�𝛼1𝛼1 = 𝐸𝑠𝐴𝑠
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⎜
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Appendix B

The stability equations can be further explained in the following
manner
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⎤

⎥

⎥
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(B.5)

n the context of force resultants, the stability state is denoted by a
uperscript 1 and the equilibrium state is denoted by a superscript 0.
he prebuckling force resultants 𝑁0

𝛼1𝛼1
and 𝑁0

𝛼2𝛼2
are obtained from

Eqs. (A.1)–(A.6).
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