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Recently, various state-space implementations of surplus production models (SPMs) have been developed for data-limited stocks. Often, catches
and fishing effort are underestimated and discards are ignored. This results in biased estimates of stock status and reference points. Therefore,
we conduct a sensitivity analysis for different under-reporting scenarios (due to non-declared landings, by-catch, and discards) on model estimates
and thus advice for the black hake species in northwest Africa. Two modelling frameworks were used, namely a stochastic SPM in continuous
time (SPiCT) and Just Another Bayesian Biomass Assessment (JABBA). A common set of diagnostics was developed to allow comparison
across modelling frameworks. Scenarios correspond to hypotheses about misreporting and assumptions and priors that were kept consistent.
The ratio of current fishing mortality over the fishing pressure that gives the maximum sustainable yield, F/FMSY, is most affected by under-
reporting. Results are sensitive to the prior assumed for the initial depletion level, B0/K, and research is needed. If the misreporting is changing
over time, relative quantities (e.g. F/FMSY) and trends are biased, while if misreporting (or at least a part of misreporting) is constant, relative
quantities are unbiased. Therefore, the nature of any trend in misreporting should be investigated.
Keywords: data-limited stocks, discards, diagnostics, Merluccius spp., state-space models, stock assessment

Introduction

In recent decades, fisheries management policies (DAFF, 2007;
MSA, 2007; MFNZ, 2008; CFP, 2013) have paid special atten-
tion to improving data-limited stock (DLS) advice (e.g. Froese
et al., 2012). This has resulted in the development of a number
of computational approaches (Sharma et al., 2021; Cousido-
Rocha et al., 2022).

When only total catch and effort data are available for
a fishery, surplus production models (SPMs) are the most
commonly used tools (Hilborn and Walters, 1992) and have
a long history as a method for managing data-limited fish
stocks (Punt, 2003). The dynamics of the populations are de-
fined by the relationship between current biomass and previ-
ous biomass, a surplus production function (that encompasses
the processes of growth, recruitment, and natural mortality),
and catch (Polacheck et al., 1993). A common assumption is
that a relative abundance index is directly proportional to the
biomass.

Although production models may produce parameter esti-
mates based on simpler assumptions than age-structured mod-
els, they are still used for the assessments of many stocks, for
example, tropical tunas (ICCAT, 2019a), North Sea stocks
(ICES, 2021b), Mediterranean stocks (STECF, 2017), and
North Atlantic African stocks (FAO, 2020b). Recent progress
in the fitting procedures of SPMs includes the use of Bayesian
methods to set priors (McAllister and Kirchner, 2001),

estimation methods to incorporate both process and obser-
vation error using mixed-effects (Thorson and Minto, 2015),
and Bayesian state-space models (Meyer and Millar, 1999;
Thorson et al., 2014; Pedersen and Berg, 2016; Winker et
al., 2018). These developments are particularly useful for im-
proving convergence in data-limited situations. The use of be-
spoke methods designed for specific fisheries is currently being
replaced by the use of publicly-available software packages
(Methot and Wetzel, 2013; Pedersen and Berg, 2016; Car-
ruthers and Hordyk, 2018; Winker et al., 2018). These are
generally flexible, well documented, tested, and maintained
(Dichmont et al., 2021). The Food and Agriculture Organiza-
tion of the UN (FAO) also performs a systematic assessment
of stocks based on global landing records alone (FAO, 2019).
Nevertheless, despite the development of statistical methods,
software, and the availability of documentation, in some cases,
changes from traditional methods have not been made.

Although most stock assessment methods rely on reported
landings, the assumption that catches are known without er-
ror does not hold for many stocks. One of the main problems
with catch and effort data is the existence of illegal, under-
reported, and unregulated (IUU) fisheries (Lodge, 2007), es-
pecially for economically valuable resources. Furthermore,
poorly or unmonitored artisanal fleets, by-catch and discards,
particularly for trawl fleets, are important sources of underes-
timation of catch and effort data. Also, the trend or the degree
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of underestimation can vary with time and, depending on the
reasons, increase or decrease, masking or overlapping individ-
ual effects of under-reported data. Several studies based on
data from on-board observers report that total discards can
be substantial and account for as much as 40% of total catch
for bottom trawlers, and may also be highly variable (Kelleher,
2005; Pérez-Roda et al., 2019), even within the same fleet. In
general, information on discards is uncertain and incomplete
in many demersal fleets.

Various studies have evaluated the effects on SPM of not in-
cluding discards, for example, by assuming bounds for catches
in a Bayesian framework (Hammond and Trenkel, 2005),
while purely frequentist methods have evaluated the effects of
misreported catch on species composition of multispecies fish-
eries (Soto et al., 2006) and on catch and effort jointly (Omori
et al., 2016). Nevertheless, there is no analysis of the effect of
misreporting on recently developed Bayesian state-space pro-
duction models. Therefore, as the demand for assessment of
DLS is increasing, it is important to assess the robustness of
SPM to under-reported data.

To evaluate the effect of the major uncertainties aris-
ing from under-reporting catches, discards, and bycatch on
management quantities, we chose two widely used Bayesian
state-space models: a Stochastic Surplus Production model in
Continuous Time (SPiCT) (https://github.com/DTUAqua/spi
ct) and Just Another Bayesian Biomass Assessment (JABBA)
(https://github.com/JABBAmodel). We focused on black hake
(Merluccius spp.), an economically important stock that is af-
fected by misreporting. Black hake stock is a valuable dem-
ersal resource of interest for the European Union (EU) fleets
operating in northwest Africa (hereafter NWA), (FAO Area
34), due to its high value and volume of catches (22000 in
2018) (FAO, 2020a).

Recently, a CECAF/FAO Working Group on the assessment
of demersal resources in NWA (FAO, 2020b) stressed the need
to improve the monitoring of catches, effort, and sizes for
black hake, both as a target and as an incidental catch, and to
make better estimations of discarded catches to be included in
future assessments.

Under-reporting is incorporated into the assessment mod-
els by altering total landings and the Catch Per Unit of Effort
(CPUE) index. By simulating the ranges of uncertainty and the
types of trends, we create different levels of data-limited sce-
narios in the fishery and evaluate the magnitude of obviating
their effect on the reference points used for management.

This study is based on the observers’ on-board sampling
programme for the Spanish fresh trawler fleet operating in
NWA. Data available for black hake make this stock the most
representative among those NWA resources that can be eval-
uated through state-space SPM to provide measures of uncer-
tainty for management quantities. Also, the results will help
when conducting assessments for other species.

The study applies a similar methodology to that used in the
simulation study on the effect of under-reported catches and
effort by Omori et al. (2016) for DLS. An aim is to assist in
the future development of operating models and the use of life
history traits for black hake in a DLS framework (ICES, 2020)
and also the need to incorporate discards in FAO assessments.

Within this context, the purposes of this study are: (i)
to provide replicable alternative stock assessments based on
SPiCT (Pedersen and Berg, 2016) and JABBA (Winker et
al., 2018) SPMs for black hakes and other DLS in NWA;
(ii) to evaluate the effect of major uncertainties arising from

Figure 1. Relative estimates of Bt/BMSY (a) and Ft/FMSY (b) from the
Biodyn assessment of black hake in 2019 and standard errors of the
standardized CPUE index of the Spanish fresh trawling fleet (c) of black
hake.

under-reporting catches (by-catch and discards) on the pa-
rameters of production models and, hence, on management
quantities as well as in model estimates; and (iii) to analyse
the relative importance of different under-reporting scenar-
ios in the Bayesian state-space assessment models SPiCT and
JABBA.

Material and methods

Black hake fisheries data

The African black hake stock is composed of two sympatric
species, Merluccius polli (Cadenat, 1950) and Merluccius
senegalensis (Cadenat, 1950), with fishing ranging from Mo-
rocco to Guinea-Bissau. The target fishery is assessed as a sin-
gle stock, Merluccius spp. (FAO, 2020a). The fishery started
to extend southward from Saharan waters in the 60s, moni-
toring began in 1983 and data were collected only from 2000
onward. Fleets operating in the area (EU, coastal states, and
other countries) catch black hake as both a target species,
there is also discarding of all the fleets operating in the area,
the Spanish demersal fleet targeting black hake is the most sta-
ble in terms of data continuity and consistency (FAO, 2020b),
despite some interruptions in the fishing agreements between
EU and non-EU countries. Additionally, this fleet is the only
one targeting black hake in the area where observers on board
are recording information on catches, discards, and biology.
Current assessments of black hake are carried out assuming a
Schaefer production model using Biodyn software in discrete
time programmed in an EXCEL spreadsheet template (Punt
and Hilborn, 1997; Barros, 2012) (Figure 1) fitted assuming
an observation error in a frequentist way. CI and uncertainty
about reference points are not provided. The FAO’s current
assessment of black hake serves as a baseline assessment for
deciding on Total Allowable Catches (TACs) or on fishing ef-
fort based on Maximum Sustainable Yield (MSY) reference
points, even though it does not follow the minimum scientific
criteria required for acceptance (Punt et al., 2020). Estimates
of the current Biodyn assessment are shown in Table 1a).
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Effects of misreporting landings and discards 2595

Figure 2. The % of underestimation of total catch and discard of the
Spanish trawling fleet for comparison with the current assessments of
black hake (base case i.e. no underestimation).

For the purpose of this study, a standardized CPUE was
developed for the Spanish fresh trawling fleets in Mauri-
tanian waters targeting black hake from 2000 to 2018. It
is the same period covered by the above-mentioned Bio-
dyn assessments (FAO, 2020b). Standard errors of the stan-
dardized CPUE input are shown in Figure 1. Details of the
CPUE standardization are available in the supplementary
material. Unlike the Biodyn model, JABBA and SPiCT al-
low one to incorporate information about the standard er-
rors in the model settings (Table 1c). Total reported catch
data for black hake in the NWA (2000–2018) (FAO, 2020b)
was used as input for the SPiCT and JABBA production
models.

Black hake is a representative example of a fishery with
multiple sources of information that results in misreporting of
catches and discards. Catch data are occasionally recorded in
a heterogeneous spatial-temporal way depending on the coun-
try, fleet, or the period of validity of the fishing agreement.
This results in a lack of continuity and poor quality of black
hake catch and effort data. Also, substantial misreporting tar-
get of bycatch catches of non-EU fleets is a recurring concern.
Limitations also arise in the sampling at the fish market and
by ignoring discards in the assessments (although it is com-
mon knowledge that discard numbers are high). Therefore,
there is a broad range of possible misreporting scenarios. For
example, the underestimation of total catches might have
increased due to the increase in power of industrial fleets
in recent years, which could generate catches and discards
that are ignored in the assessments. Another possibility is
that fleets of developing countries are increasingly accessing
the fishing grounds. Meanwhile, the Spanish fleet is adopt-
ing gradually technical management measures for minimum
size. This provoked an increase in discards at the beginning,
but fishing strategies are moving to more precautionary lev-
els of discards (for example, fishing in deeper waters). Hence,
trajectories of under-reporting discards are assumed to be de-
creasing (Figure 2).

Production assessment models: priors and settings

Bayesian state-space models relate time series of observations
{It}, {Ct} to unobserved states, {Bt} and {Ft} through a stochas-
tic observation model for {It} given {Bt} (Meyer and Millar,
1999). They are able to simultaneously incorporate uncer-
tainty in the biomass dynamics, i.e. process error (Schnute,
1977; Hilborn and Walters, 1992), and the uncertainty in
the observations, i.e. observation error (Pella and Tomlinson,
1969; Butterworth and Andrew, 1984; Ludwig and Walters,
1985).

We use the Bayesian state-space models SPiCT and JABBA
to assess black hake under different scenarios of under-
reporting in the NWA. Both assessment methods implement
the Pella-Tomlinson SPM, are distributed as open software
written in R (R Development Core Team, 2014), and provide
model diagnostics and stock status.

SPiCT is a continuous time model that explicitly models
both abundance and fishing dynamics as stochastic processes.
The model incorporates observation error not only in the in-
dex, σ 2

I , but also in catches, σ 2
C , and process error is associated

both with biomass, σ 2
B , and fishing mortality, σ 2

f . Therefore,
changes in fishing efficiency will be included in the estimated
fishing mortality. SPiCT is implemented using the Template
Model Builder (TMB, Kristensen et al., 2015) library in R.

JABBA is a discrete time model that considers the obser-
vation error in the index (Winker et al., 2018) σ 2

ε , separated
into three additive components for each abundance index i
and year y:

σ 2
ε,y,i = σ̂ 2

SE,y,i + σ 2
f ix + σ 2

est,i,

where σ̂ 2
SE,y,i is an external estimable year-to-year observa-

tion error, σ 2
f ixa fix input variance to account for additional

sampling errors associated with abundance indices, and σ 2
est,i

an estimable variance from a prior distribution. JABBA is
run in JAGS (Plummer, 2003) to estimate Bayesian posterior
distributions for all quantities of interest using Monte Carlo
Markov Chains (MCMC), and JAGS is executed from the R
library R2jags (Su and Yajima, 2012). Process error is associ-
ated with the population process, and equations and catch are
assumed to have a fixed uncertainty that is not estimated.

Model specifications JABBA and SPiCT are shown in
Table 1(a–c).

For SPiCT, a prior for index observation error of the index,
σ 2

I was set at 0.1699 for the mean of the standard errors of the
standardized index. The ratios between observation and pro-
cess errors for the population and the fishery α = σI/σB and
β = σC/σF are difficult to estimate simultaneously (Pedersen
and Berg, 2016), and observation and process errors were set
as default priors. The continuous time equations were dis-
cretized using the Euler scheme, with a default time increment
of 1/16 year. Also, time for observations of the commercial
CPUE was set to the middle of the year, as there is no evidence
of seasonality in total catches throughout the year.

For JABBA, after different trials, the prior for process
error was set to follow a relative less informative inverse
Gamma with scaled parameters (0.01, 0.001) (Winker et al.,
2018). We set that the model estimates observation error
for all the years, σ̂ 2

SE,y,i, i.e. proc.dev.all = TRUE, and
then estimates additional variance for the observation error
σ 2

est,i, i.e. sigma.add = TRUE and sigma.est = TRUE
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and set a tentative fix for input variance σ 2
f ix through

fixed.obsE = 0.3 to account for errors in sampling for the
CPUE index.

Model parameters differed between JABBA and SPiCT,
therefore, to enable comparisons, when possible common in-
puts were set for JABBA and SPiCT based on Biodyn as-
sessment estimates (Table 1a) from CECAF (FAO, 2020b).
For each model, the input specifications were set following
Pedersen and Berg (2016) and Winker et al. (2018). The
Pella-Tomlinson production function was used rather than the
Schaefer used in Biodyn to allow more flexibility in the shape
parameter of the production curve. The mean for the prior log-
normal distributions for K and r were set to 88952.2 and 0.6,
respectively. The prior for the initial depletion level followed a
log-normal distribution with mean = log(0.47) and CV = 0.3.
The CV of all other parameters in JABBA and SPiCT was set
to 0.2.

Model definitions

Model specifications of SPiCT and JABBA have the advantage
with respect to Biodyn of setting priors for initial stock status
and the ability to provide information about the standard er-
rors of the index as inputs. Initial biomass status estimated
from Biodyn was close to the optimum, i.e. B2001/BMSY = 0.9
(Figure 1). Nevertheless, as recommended in ICES (2021), a
more precautionary value should be considered for initial de-
pletion when it is known that the fishery started many years
before data are available (in this case the 80s). For this reason,
we pose the case B2001/BMSY = 0.5, implemented in JABBA
as a prior with a lognormal distribution for B2001/BMSY with
CV = 0.2.

The Biodyn assessment does not incorporate standard er-
rors for the index. We use this information in JABBA set-
ting se = data.frame(Yr = timeI, Index = SE)
and in SPiCT as relative uncertainties, i.e. they act as weights
in the estimation through stdevfacI vector, and are multi-
plied to the overall index uncertainty that is estimated.

Based on the Biodyn settings and priors combined with
the options for initial stock status and index standard errors
for JABBA and SPiCT, we obtain four models (Table 1c) for
each of which we run sensitivity analysis for underreponting
scenarios. The model that replicates the Biodyn assessment is
Model 1. The most plausible and precautionary model that
incorporates available information is Model 4. Model 2 and
Model 3 are intermediate cases between the other two.

Assessment

JABBA and SPiCT are supported and recommended packages
when only catch and index data are available (Pedersen and
Berg, 2016; Dichcmont et al., 2021). Following Carvalho et
al. (2021), four properties are used as objective criteria for
evaluating the plausibility of the assessment model: (1) model
convergence; (2) fit to the data; (3) model consistency; and
(4) prediction skill. Here, we focused on the first three to
demonstrate the applicability of the JABBA and SPiCT pack-
ages. Prediction skill (Kell et al., 2021; Hurtado-Ferro et al.
2015) can be used to choose between models’ ability to predict
data not used in the fit using the mean absolute scaled error
(MASE) (Hyndman and Koelhler, 2006). Regarding the qual-
ity of the observable quantities, i.e. the CPUE index, SPiCT,
and JABBA are provided with common diagnostic tools and
visualization for the input data and CPUE fits, which helps in

the evaluation of stock status (Winker et al., 2018) and ac-
ceptance of an assessment. The results presented below do
not fully describe the complete details of the modelling and
prior choices, nor management advice for the NWA black
hake stock, but are aimed to illustrate the use of diagnostics
and summarize model outputs. Detailed assessment diagnostic
plots for the four models are presented in the supplementary
material.

Under-reporting scenarios

Under-reporting in total catches and discards may have dif-
ferent patterns over time. We defined four types of trends
in under-reporting for each input series in the SPM, uci(t ),
(Figure 2 upper panel) for trends in percentages of underre-
ported catches and, udj

(t ), for trends in percentages of under-
reported (Figure 2 lower panel).

Percentage of total discards in Spanish trawlers targeting
black hake in NWA varies between 20 and 60% (Cervantes et
al., 2018; García-Isarch et al., 2020; FAO, 2020a), as recorded
by on-board observers. In Mauritania, the discarded black
hake by the Spanish fresh trawl fleet has been monitored since
2003 by an on-board sampling programme of observers’ sur-
veys (Fernández-Peralta et al., 2010, 2011, 2012; Quintanilla
et al., 2012; Rey et al., 2012, 2015, 2016) and the monitoring
of the historical evolution of the fishery is described by Ramos
and Fernández (1992); Ramos-Martos and Fernández-Peralta
(1994, 1995); FAO (2012); Fernández-Peralta et al. (2019). In
the last decades, black hake discards have progressively de-
creased, while the size at first capture has increased from 20
to 30 cm in Mauritanian waters (Ramos et al., 1998). To pre-
serve the resource, each country sets a minimum catch size,
which influences the amount of hake discarded. This techni-
cal measure seems to have resulted in a change of strategy
by the fleet, which now fishes deeper to avoid catching juve-
niles and cause hake discards to diminish. Hence, based on
knowledge of the fishery, four trends in under-reported dis-
cards were considered: StepDec, geomDec, constDecEnd, and
constant (Figure 2 lower panel). Under StepDec, we assumed
three periods of a decrease in discards based on the average
effort of the fleet measured in average number of days per
trip, 11.5, 7.3, and 6.1, in 2000–2017, in 2008–2014, and in
2015–2018, respectively. In these three periods, the percent-
age of discards decreased constantly from 60 to 40%, from 40
to 30%, and from 30 to 10%, respectively. In geomDec, we
considered an exponential decay in the percentage of under-
reported discards from 2000 to 2018, from 60 to 10%; in con-
stDecEnd, there is a constant initial under-reporting of 30%
in the first half of the period and a constant decrease in the
second half from 30 to 10% at the end of the period; in con-
stant, the under-reported percentage is 30% during the whole
period.

Under-reported trends of simulated total catches were de-
fined to cover a range of possible cyclic and monotonic
theoretical situations: sin, foursteps, decrease, and increase
(Figure 2 upper panel). We considered that real reported
catches have improved due to the resources invested in data
collection, but the global trend in under-reported catches was
set as due to many factors (fleets) that made it difficult to as-
sume a predominant trend. To simulate the catch scenarios, we
added to the total declared landings, Lt, a percentage given by
the under-reporting function:

Ci,t = (
1 + uci (t )

) · Lt, 1 ≤ i ≤ 4; 2000 ≤ t ≤ 2018.
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Percentages of under-reported discards, ud (t ), were added
as a percentage of the declared hake catches of Spanish Fresh
trawl fleet, CSP, and then the numerator in the standardized
CPUE scenarios were recalculated

CPUEj,t =
((

1 + udj
(t )

)
· Ct,SP

)
/ ft, 1 ≤ j ≤ 4;

2000 ≤ t ≤ 2018.

The current situation (no under-reporting is considered in
the assessments) was named the base case or Scenario 1 (S1),
characterized by uc (t ) = ud (t ) = 0. The trends of under-
reported catches and discards combined generate 16 scenar-
ios “S2” to “S17” (Table 2) of misreporting to be compared
with the base case. Note that decrease and geomDec trends
are the same, they only differ in the name to distinguish that
one is applied to discards and the other is applied to catches,
respectively. Data for scenarios of total catch and CPUE are
presented in the supplementary material (Table 1.2).

The scenarios of under-reporting were compared to the base
case to investigate how SPMs are affected by uncertainties in
total catch, discards, and CPUE, i.e. how important is the ob-
servation error in state-space models. Following (Omori et al.,
2016), we compared the output of fitting SPiCT and JABBA
to each scenario Si with respect to the base case through the
percentage difference (%di f f erenceQ) for each parameter, Q,

%di f f erenceQ = 100 ×
(
QSi − Qbase

)

Qbase
, i = 2, . . . , 17.

Although all model quantities differences are calculated, for
the purpose of this study, we focus on the relative differences
in relative quantities F/FMSY and B/BMSY.

Results

Assessments

A total of 136 assessments were conducted for the 17 data sce-
narios, namely, the two state space JABBA and SPiCT models
and the four settings established in Model 1–4. Detailed in-
formation about these results is available in the online supple-
mentary material. For the purpose of this study, here, we only
illustrate some of the most relevant results from the assess-
ments. The assessment criteria of convergence, consistency,
and model residuals were achieved for all runs. The Ljun-Box
test for autocorrelation of the CPUE residuals was not sig-
nificant only for SPiCT Model 1, but these do not invalidate
the SPiCT results, as only the second lag is significantly high.
To illustrate some of the results, Table 3 shows estimates for
the base case assessments. JABBA and SPiCT base case as-
sessments are much more congruent when B0/BMSY = 0.5 and
standard errors of the index are used as inputs (Model 4) than
when the Biodyn current assessment is basically used (Model
1). Overall, F/FMSY > 1, for all models, i.e. the fishing mortality
is above the optimal levels. Nevertheless, B/BMSY > 1 for all
JABBA models and only for SPiCT in Model 4. In general, K
and n are lower and r higher for JABBA and SPiCT. The shape
parameters decrease from Model 1 to Model 4, and the esti-
mated values are close to Schaefer. MSY is higher for JABBA
than SPiCT, except in Model 1. The effect of incorporating
the information of standard errors as input is the improve-
ment in relative reference points for both SPiCT and JABBA
in all models. Meanwhile, in JABBA, the use of a lower value
of 0.5 gives a more pessimistic diagnosis, as it was expected, in

SPiCT has the opposite effect, i.e. with lower initial depletion
level, lower K and better values of F/FMSY.

Figure 3 shows the prior and posterior distributions of
JABBA and SPiCT Model 4. The main differences appear in
the prior and posterior of B0/K. Uncertainty in parameters
are difficult to compare between JABBA and SPiCT. The ob-
servation error in the index for SPiCT, sdi, was parametrized
through a log-normal distribution with a mean equal to the
average of standard errors of the standardized CPUE, 0.1699,
but its estimated posterior distribution differed from the prior
(see also supplementary material for more detailed plots). The
same occurs to α and β ratios. Regarding JABBA, observation
error was estimated using a low informative prior distribution
of σ 2

est and is very similar between models.

Under-reporting scenarios

Figure 4 shows the significant differences between under-
reporting scenarios and the base case relative quanti-
ties B2018/BMSY and F2018/FMSY. As expected, in the most
favourable cases in the under-reported trend of total catches,
(ud = decrease), i.e. scenarios S10, S11, S12, and S13, relative
reference points resulted in more favourable values of relative
biomass and fishing mortality than the base case. This means
that, independently of the discard under-reporting trend and
model considered, the current relative reference points at the
end of the period, the improvement in total catch statis-
tics would lead to more optimistic assessments of the stock.
Additionally, scenarios with a cyclic under-reporting trend,
uc = sin, and decreasing under-reported discards, ud = ge-
omdec, constDecrEnd, i.e. S3 and S4, show the same result in
SPiCT and JABBA. The bias generated by the trend of under-
reported catches, uc = sin, depends on the SPM model and
on the combination with specific under-reported trends in dis-
cards, ud.

Those with decrease and foursteps trends of under-reported
catches, i.e. S6–S13, showed negative bias in B2018/BMSY

and positive bias in F2018/FMSY, i.e. a more pessimistic sta-
tus. Higher biases are produced on F2018/FMSY than on
B2018/BMSY. Table 4 shows the average differences in jointly
B2018/BMSY and F2018/FMSY by scenario, showing that sce-
nario 14 (uc = increasing trend in underreported catches and
ud = stepDec trend in discards) has the more important dif-
ferences in relative assessment quantities. This is observed
in Figure 5. The high levels of non-declared discards of the
Spanish fleet at the beginning of the period produce signif-
icant differences in catches for the same level of effort and,
hence, CPUE trajectories in base case and scenario 14 differed
notably (shown in the log scale to better visualize the bias).
This causes differences in contrast of the data as inputs for
the models, mainly at the beginning of the period. This is also
observed in the trajectories of total catches at the end of the
period, where the increase in declared total catches causes dif-
ferences with the base case to be magnified, producing dif-
ferences in the contrast of catches. The combination of these
two effects is observed in the trajectories of relative quanti-
ties such that, at the beginning of the period, B/BMSY is higher
for the base case, changing along the period to finish below
the base case B/BMSY. The opposite occurs for the relative
F/FMSY.

Figure 6 shows default plots for Kobe plot for the SPiCT
base case scenario for Model 1 (top panel) and Kobe plot for
the JABBA base case scenario for Model 4 (bottom panel).
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Table 2. Scenarios of under-reporting are generated by the combination of the different trends in under-reporting catches, uc (sin, foursteps, Decrease,
and Increase), and under-reporting discards, ud (stepDec, geomDec, constDecend, and constant).

Base case (S1) uC = uD = 0% Catch trend uC

sin Foursteps Decrease Increase

Discard
trend
uD

stepDec S2 S6 S10 S14
geomDec S3 S7 S11 S15

constDecEnd S4 S8 S12 S16
constant S5 S9 S13 S17

Table 3. Posterior estimates and CI for SPiCT and JABBA assessment of the base case (no under-reporting) for Model 1: B0/BMSY = 0.9 without vectors of
CPUE standard errors as input; Model 2: B0/BMSY = 0.9 with vectors of CPUE standard errors as input; Model 3: B0/BMSY = 0.5 without vectors of CPUE
standard errors as input; and Model 4: B0/BMSY = 0.5 with vectors of CPUE standard errors as input.

JABBA SPiCT

Model 1 K 87 670.66 (66844.9–123289.09) 101 415.61 (75880.58–135543.58)
r 0.63 (0.46–0.85) 0.6 (0.45–0.8)
N 1.87 (1.33–2.6) 2.17 (1.58–2.98)

BMSY 42 681.5 (30699.28–63902.32) 52 194.44 (36581.5–74470.95)
FMSY 0.33 (0.24–0.47) 0.28 (0.21–0.36)
MSY 14 246.43 (11955.38–18178.77) 14 451.93 (12578.05–16604.98)

B/BMSY 1.07 (0.75–1.58) 0.93 (0.68–1.26)
F/FMSY 1.44 (0.82–2.24) 1.57 (0.97–2.54)

Model 2 K 91 432.7 (68067.85–123563.52) 98 930.7 (70181.7–139456.34)
r 0.62 (0.46–0.85) 0.61 (0.45–0.81)
N 1.86 (1.31–2.66) 2.11 (1.48–3.01)

BMSY 44 403.54 (30633.01–63402.75) 50 321.77 (32456.4–78020.98)
FMSY 0.33 (0.24–0.48) 0.29 (0.2–0.4)
MSY 14 673.21 (11934.89–19170.53) 14 361.23 (12214.12–16885.76)

B/BMSY 1.14 (0.73–1.69) 0.98 (0.69–1.39)
F/FMSY 1.31 (0.73–2.32) 1.49 (0.92–2.43)

Model 3 K 88 404.41 (67472.31–116 164) 98 356.94 (71406.85–135478.42)
r 0.62 (0.46–0.86) 0.58 (0.44–0.77)
N 1.86 (1.33–2.54) 2 (1.41–2.83)

BMSY 42 752.94 (30969.92–60011.25) 49 025.57 (35624.06–73672.82)
FMSY 0.34 (0.25–0.47) 0.29 (0.21–0.4)
MSY 14 350.12 (11191.57–18150.73) 14 178.63 (12212.54–16461.25)

B/BMSY 1.04 (0.7–1.6) 0.94 (0.65–1.37)
F/FMSY 1.47 (0.82–2.4) 1.56 (0.94–2.61)

Model 4 K 87 019.98 (66075.48–119638.96) 92 937.01 (68471.03–126145.15)
r 0.63 (0.46–0.87) 0.59 (0.44–0.79)
N 1.82 (1.27–2.58) 1.92 (1.35–2.73)

BMSY 41 832.49 (29823.48–61318.77) 45 420.04 (30509.11–67618.49)
FMSY 0.34 (0.24–0.49) 0.31 (0.22–0.43)
MSY 14 485.58 (11872.35–18788.52) 13 903.97 (11922.8–16214.34)

B/BMSY 1.09 (0.69–1.62) 1.01 (0.72–1.5)
F/FMSY 1.38 (0.78–2.47) 1.45 (0.87–2.4)

This illustrates particular differences between JABBA and
SPiCT. For MODEL 1, SPiCT showed the better fits to data
(is the only case where there is not a lag 2 AC test of the in-
dex) (see supplementary material for details). For this model,
in SPiCT the Kobe plot showed the current situation of the
base case in the red quadrant and JABBA in the orange
quadrant, i.e. JABBA and SPiCT estimates showed the major
differences for Model 1. On the contrary, Model 4 showed
the most congruent results between JABBA and SPiCT with
the current status of the fishery and the stock in a risk situa-
tion (orange quadrant) for JABBA and SPiCT. Figure 7 shows
trajectories of B2018/BMSY and F2018/FMSY for all scenarios for
Model 4. General patterns of series are similar, but the year in
which there is an inflexion point from which stock begins a re-
covery period varies among scenarios and JABBA and SPiCT,
as well as the sign of the bias in the series.

Discussion

This study evaluated the effect of ignoring discards in the
CPUE index and under-reporting of landings in the assess-
ments of the Bayesian state-space SPMs SPiCT and JABBA.
As a first in implementing a precautionary approach (Garcia,
1996; Fischer, 2020) we analysed uncertainty on the model
parameters, the reference points and the deviations both in
the process and the observation error. The assessment models
are open-source tools implemented as a flexible assessment
framework that we used not only to provide an updated as-
sessment, but also to identify where and how research needs
to be strengthened to improve the quality of the assessment
for DLS. We applied these models to the black hake fishery
in NWA, an example of a DLS affected by under-reporting,
in discards, declared catches, and CPUE. In addition, data are
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Effects of misreporting landings and discards 2599

Figure 3. Prior and posterior distributions of parameters estimated in Model 4 for JABBA (top panel) and SPiCT (bottom panel).

uninformative and only short series of data with contrast are
available.

The next generation of stock assessment models should
routinely provide a set of diagnostics (e.g. Carvalho et al.,
2021). We therefore considered criteria to check convergence,

goodness of fit, and model consistency in the assessments,
which are necessary to make progress in the assessments of
black hakes and other DLS. Both models equally identify data
issues and indicate that SPiCT assessments are affected by a
slight autocorrelation in the index that should be investigated

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/80/10/2591/6827054 by Technical Inform
ation C

enter D
enm

ark - D
TU

 user on 22 D
ecem

ber 2023



2600 M. Soto et al.

Figure 4. Production model percentage differences in estimates for F/FMSY and B/BMSY between scenarios and the base case by model. The dashed red
vertical line represents the base case reference, and the points at the left and right of the vertical line indicate the sign of the bias in estimates.

Table 4. Average differences between under-reporting scenarios and base
case assessments of Fcurrent/FMSY or Bcurrent/BMSY estimates of JABBA and
SPiCT.

Scenario JABBA SPiCT

2 5.75 4
3 6.875 3.75
4 2.75 1.875
5 0.75 0.75
6 11.25 13.125
7 12.75 11.75
8 7.625 8
9 6.875 5.5
10 −4.875 −1.75
11 −4.875 −1.25
12 −6 −1.75
13 −5.75 −1.75
14 24.625 14.75
15 24.75 13.375
16 19.875 11
17 17.375 8.625

Major differences are emboldened and obtained for S14 (increase uc and
stepDec ud).

(see supplementary material). The JABBA runs all passed the
residual tests. This routine provides a sufficient scientific ba-
sis and can be easily implemented to support management
advice for black hakes and other stocks in the Eastern Cen-
tral Atlantic area. Both models present signals of overfishing
(F/FMSY > 1), being this parameter the most affected by under-
reporting.

The definition of the base case is a model based on the use
of priors (Table 1). The use of priors leads to more robust esti-
mation, but reduces the uncertainty of the estimates (Pedersen
and Berg, 2016). Of course, a poor choice of priors that are
far from the true values can lead to biased estimates. Recent
evolutions in Bayesian computation and software allow for
new developments on how to allocate priors in fitting pro-
cedures. In particular, state-space models deal with how to
combine the uncertainty in the population dynamics with the
uncertainty in observed data by using Bayesian techniques
to compute posterior distributions of parameters (Meyer and
Millar, 1999), and also frequentist methods. SPiCT assigns
weights to the standard errors for the index and catches ac-
cording to the observed variances in the CPUE and catch each
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Figure 5. CPUE index (a), catch (c), and estimated relative fishing
mortality in SPiCT (b) and JABBA (d) for the original data (base case, black
line) and increase catch together with decreasing step-by-step discards
(stepDec) of the Spanish fresh trawling fleet scenario (S14) (red line) that
yielded the largest % differences in the average B/BMSY and F/FMSY time
series. Dashed ovals indicate where the contrast is lowered by
under-reporting in discards and total catches.

year. JABBA decomposes the total observation variance of the
index allowing for the incorporation of changes in catchability
that implicitly informs about the process error in the biomass
dynamics. JABBA allows adding the standard errors of the
CPUE as inputs. Information about the initial depletion level
and status of the stock is crucial to determining the results
of the assessments. Posterior distributions for B0/K differed
from priors more than other parameter specifications, both in
JABBA and SPiCT.

Starting from the current Biodyn assessment (the most data-
limited situation), we set a group of different levels of data-
limited situations, combining choices of initial relative stock
status with choices about the use of standard errors of the
standardized CPUE index, leading to the more plausible situa-
tion given by Model 4. This model represents a lower degree of
data-limited situation, using information from the index and
limiting to a more precautionary level the initial biomass at
the beginning of the assessment period. As expected, Model
4 showed the more congruent advice between JABBA and
SPiCT. Since both models offer different choices of priors and
settings, they are not easy to compare. Nevertheless, some re-
sults went beyond control inputs, and we obtained similar
conclusions.

Regarding model parameter estimates, the intrinsic popula-
tion growth rate, r, has a different meaning between the Bio-
dyn, JABBA, and SPiCT approaches. SPiCT is a continuous-
time model that is discretized using an Euler scheme. Both
these modelling and optimization approaches mean that r is
not comparable, and so using the same priors or comparing
estimates across models is difficult. A high carrying capacity
could be expected in the black hake stock given the resilience
of these species, which have endured high fishing pressure with
high yields for decades (Pitcher and Alheit, 1995; Rey, 2016).
Nevertheless, this is only observed in general for SPiCT, not
for JABBA.

Figure 6: The Kobe plot for the best fit of the SPiCT base case scenario
for Model 1 (top panel) and the Kobe plot for the JABBA base case
scenario more similar to SPiCT advice for Model 4 (bottom panel). Plots
show the estimated trajectories (2001–2018) of B/BMSY and F/FMSY.
Different grey shaded areas in JABBA denote the 50, 80, and 95%
credibility intervals for the terminal assessment year. The probability of
terminal year points failing within each quadrant is indicated in the figure
legend in JABBA. The expected situation if the current levels of fishing
mortality are maintained is shown in the yellow point in the SPiCT plot.

As it is recommended by ICES (2021a), this study corrob-
orates that reducing the initial depletion level as well as the
relative initial stock status, B2001/BMSY, made assessments of
JABBA and SPiCT more congruent. The shape parameter es-
timated by JABBA is systematically lower than SPiCT, which
should be investigated. A balance between model convergence
and flexibility to estimate r, K, and n is the key to determin-
ing the height, range, and symmetry of the surplus production
curve and, hence, the reference points FMSY and BMSY (Peder-
sen and Berg, 2016). One step ahead, residuals quantify the
prediction skill of the SPiCT assessments. We have not imple-
mented a quantification of the predictive skill using MASE,
however, as suggested in Kell et al. (2021). Also, Winker et
al. (2018) pinpointed the overoptimistic stock status estima-
tions using JABBA and incorporated a generic hockey-stick
function to prevent surplus production per unit of biomass
approaching infinity at very low abundance. Nevertheless, we
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2602 M. Soto et al.

Figure 7. Plot of series B/BMSY and F/FMSY by scenarios and model for SPiCT (top panels) and JABBA (lower panels) for Model 4.

did not use the hockey-stick model, as the shape parameter is
close to 2 for all models.

Once the base case is defined in our study, scenarios of
under-reporting in total catches and discards were incorpo-
rated into the SPM, as suggested by Omori et al. (2016), with
the aim of evaluating observation error to assess systematic
bias on estimates of Bayesian state-space models. The differ-
ence in this study is that we do not introduce underestima-
tion of effort but of discards. This produced changes in the
numerator of the calculation of the CPUE, i.e. at the same
levels of effort, catches are set higher due to under-reporting.
This changes the patterns of the CPUE at the beginning of
the period, showing an overall decreasing pattern (Figure 1)
or, at least, a less pronounced increasing trend in the current
CPUE. As a consequence, the combination of underestimation
trends of total catches and discards affects the contrast of the
data (Carvalho et al. 2017) at the beginning of the period,
mainly by the higher levels of discards, and at the end of the
period due to the higher catches. The result is that the under-
reporting effect propagates throughout all the periods, follow-
ing different patterns depending on the scenario. Overall, the
different parametrization affects specific model parameter es-
timates more (Table 3) and differences in contrast generated
by the scenarios drive the advice in JABBA and SPiCT (Figure
4). This means that differences in contrast of the data intro-
duced by under-reporting scenarios create differences in bias

of the estimates, independently of the common parametriza-
tion used in JABBA and SPiCT.

The impact of systematic trends of under-reporting in catch
and discards generates bias in advice with the associated risk.
If the trend in under-reported catches is the most optimistic
and less realistic case, i.e. the decrease trend, and if uc = de-
crease, the bias in estimated current biomass is positive, i.e.
the real biomass would be at higher levels than the base case.
Nevertheless, this is an improbable situation, and it is more
likely to assume that uc is not decreasing due to a variety of
factors. In that framework, a negative systematic bias in cur-
rent biomass and a more optimistic advice is happening. This
means that while we think that the fishery and the stock are
near the MSY values, the true situation is worst. This con-
clusion is evident for JABBA. Although in SPiCT most of the
scenarios are in the same direction, there are some exceptions.
From these results, we conclude that JABBA captures the bias
in the data slightly better than SPiCT.

The lack of historical data for many DLS conditions is the
starting point of the assessments and highlights the impor-
tance of investigating initial values for depletion and prox-
ies of B0/K in state-space models when short time series are
available (around 20 years). These studies should be combined
with data on the life history characteristics of the stock (Fis-
cher, 2020) and the quality of past information (through the
availability and quality of an abundance index).
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In the absence of fishery-independent resource surveys for
black hake in NWA, CPUE is currently the best indicator of
biomass trends (Cooke and Beddington, 1984; Punt, 2003).
For many DLS, particularly in the Central Eastern Atlantic,
exploring information obtained through VMS and scientific
observation in commercial surveys and also further studies
on the hydrological conditions, i.e. upwelling index, (Mein-
ers, 2007; Meiners et al., 2010) are the unique opportunities
for providing coherent measures of fishing effort and obtain-
ing proper CPUE indices.

Many of the conclusions of this study are likely to be rele-
vant for other DLS assessed through production models and,
particularly, for Eastern Central Atlantic stocks. However,
the type of statistical diagnostic and plots used to evaluate
whether a proposed assessment is the “best available science”
(Punt et al., 2020) differ between jurisdictions. Some stocks
are not so data-limited (ICES, 2012), and assessments con-
ducted by CECAF could be improved using modern software
and existing data. State-space models fit well and may detect
anomalies in the indices. As above mentioned, the way to im-
prove data quality is by using VMS to standardized CPUEs,
investigating priors for B0/K, and collecting historical data
on the fisheries and any other relevant information, such as
local surveys in cooperation with third countries. Systematic
catch under-reporting will affect historical and current esti-
mates and reference points for catch, biomass, and harvest
rate. If misreporting has been consistent over time, i.e. a con-
stant percentage, then although the estimate of scale will be
biased, relative estimates such as F/FMSY and B/BMSY, both cur-
rent and historical trends, will potentially be unbiased. How-
ever, it is unlikely that misreporting will be consistent over
time as it will depend upon monitoring, control, and compli-
ance. For example, the initial development of a fishery when a
stock was lightly exploited and a comprehensive management
framework lacking misreporting could result in an underesti-
mation of virgin biomass and productivity at high stock sizes
(e.g. the increase catch scenario). While misreported in recent
years as management measures are implemented as stock be-
comes deleted (e.g. the decline catch scenario), it will poten-
tially impact estimates of FMSY and BMSY. The precautionary
approach requires the impact of uncertainty on estimates of
stock status to be taken into account when providing man-
agement advice. Catch misreporting is a problem in many fish-
eries worldwide and understanding the impact is necessary to
provide robust advice.

This work contributes to increasing transparency, repro-
ducibility, and scientific reliability, while the external peer-
review enhances the consistency of the assessments. The ma-
jority of SPMs implemented in Regional Fisheries Manage-
ment Organizations (RFMO) for stock assessments are based
on third-party software (ASPIC; Prager, 1994; BSP2; McAllis-
ter, 2014; Biodyn, Barros, 2012). However, changes and fur-
ther developments to such programmes rely on a few devel-
opers, and the record of the issues addressed may be unclear
(Winker et al., 2018). Open-source alternatives provide fish-
eries scientists with tools to improve and standardize assess-
ment procedures, democratizing modelling approaches across
nations.
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