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A B S T R A C T

The frequent and persistent cloud cover in the Arctic limits the extent to which sea surface temperature (SST)
can be retrieved from thermal infrared (IR) satellite sensors. Passive microwave (PMW) observations provide
highly complementary information to IR, enabling measurements through non-precipitating clouds, although at
a coarser spatial resolution. The differences in coverage, accuracy, footprint size, spatial resolution and error
characteristics between IR and PMW SSTs require a systematic assessment of how to best combine IR and
PMW SST retrievals. This is provided in this study on the basis of the ESA-CCI PMW SST climate data record
(CDR) and an existing IR-based gap-free SST and sea ice surface temperature CDR covering the Arctic (>58◦N),
where cloud cover is a serious limitation to IR sensors. An important step towards a combined IR and PMW
SST CDR is to correct for systematic biases in the PMW and IR SST datasets relative to each other. The PMW
SSTs show reduced biases against in situ SSTs compared to the IR SSTs, but for consistency with time periods
when no Arctic PMW SSTs were available, the PMW SSTs have been adjusted to the IR SSTs in this study.
This is done using a dynamic bias correction to generate a consistent combined IR and PMW Arctic SST CDR
for the period 2002–2017. Including PMW SSTs reduces the standard deviations from 0.54 ◦C, 0.55 ◦C and
0.47 ◦C to 0.47 ◦C, 0.54 ◦C and 0.41 ◦C against drifters, moorings and Argo floats, respectively. The improved
performance is seen in almost all regions (including those already covered by IR observations), with the largest
improvement in IR data sparse regions. The average theoretical uncertainty reduces by 0.08 ◦C, which is in
good agreement with the observed improvement in the standard deviation against drifters. The results are
very promising and expected to improve even further in the future with the launch of the Copernicus Imaging
Microwave Radiometer (CIMR), which will enable PMW SST retrievals with lower uncertainties and much
closer to coasts and sea ice (where the largest uncertainties arise) than what is possible with previous and
current PMW radiometers.
1. Introduction

The sea surface temperature (SST) is an Essential Climate Vari-
able (ECV) used for monitoring, understanding and predicting climate
change (Bojinski et al., 2014). The Arctic is warming more rapidly than
the global average, due to a number of amplifying feedback mecha-
nisms (e.g. AMAP, 2021; Pithan and Mauritsen, 2014; Meredith et al.,
2019; Rantanen et al., 2022), which makes it a very important region to
monitor. The extreme environment and the poor accessibility make in
situ observations challenging and sparse in the Arctic (Centurioni et al.,
2019; Donlon et al., 2012).

Satellite observations are an important tool for monitoring the
Arctic due to the high spatial and temporal coverage. There are several
global satellite-based gap-free (i.e. Level 4, L4) SST products (e.g.

∗ Corresponding author at: DTU-Space, Technical University of Denmark, Lyngby, Denmark.
E-mail address: pne@dmi.dk (P. Nielsen-Englyst).

Reynolds et al., 2007; Merchant et al., 2019; Donlon et al., 2012), but
these usually show large uncertainties and diversity in the Arctic (Dash
et al., 2012; Castro et al., 2016; Vazquez-Cuervo et al., 2022), where
extreme environmental conditions, limited in situ data, persistent cloud
cover and a varying length of the sunlit part of the day round the year
complicate accurate SST retrievals from satellites (Donlon et al., 2009;
Høyer et al., 2012; Minnett et al., 2019). Improving the Arctic SST data
has been identified as being of ‘‘high priority’’ for future SST research
and developments (O’Carroll et al., 2019). Specialized high latitude
algorithms have previously been developed and shown to surpass the
global L4 SST products in the Arctic (Jia and Minnett, 2020; Vincent
et al., 2008b,a). Moreover, infrared (IR) satellite observations have
recently been used to produce the first satellite-based L4 climate data
vailable online 12 December 2023
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record (CDR) of combined ocean and sea ice surface temperature in
the Arctic (>58◦N), which enables consistent climate monitoring of the

rctic warming (Nielsen-Englyst et al., 2023).
The IR SST observations are hampered by clouds, and data gaps

sually remain after combining different IR SST datasets. Two common
ethods used to fill in the data gaps are temporal extension (e.g.
eynolds and Smith, 1994) and spatial interpolation techniques (e.g.
eynolds and Smith, 1994; Thiébaux et al., 2003; Donlon et al., 2012;
ielsen-Englyst et al., 2023). In the Arctic, frequent and persistent
loud cover results in long periods without surface coverage from IR
ensors, and the cloud-contaminated observations are often difficult to
dentify. Therefore, the IR SST analyses usually rely heavily on the
hoice of interpolation technique and cloud masking in the Arctic,
esulting in large sampling errors (Liu and Minnett, 2016). SSTs derived
rom passive microwave (PMW) observations have the potential to
ill in large and persistent data gaps in the IR coverage, since PMW
bservations are less impacted by clouds and aerosols (Donlon et al.,
007, 2009; Ulaby et al., 2014; Wentz and Meissner, 2000) than IR
ensors which nevertheless tend to provide higher spatial resolution.
STs retrieved from IR sensors usually have spatial resolutions of about
–4 km and uncertainties of 0.2–0.4 ◦C (Donlon et al., 2007; Merchant

et al., 2019; Reynolds et al., 2002; Embury et al., 2012), while PMW
SSTs have spatial resolutions of about 50 km and uncertainties of 0.4–
0.5 ◦C, with the largest uncertainties in high latitudes (Nielsen-Englyst
et al., 2018; Alerskans et al., 2020, 2022; Gentemann, 2014; Wentz
et al., 2000; Shibata, 2006).

Current and previous PMW sensors do not capture sub-mesoscale
to mesoscale SST features and are influenced by land near (∼100 km)
coasts and sea ice due to the large field of view. Improved spatial
resolution of the 6.9 and 10.7 GHz channels could lead to substantial
improvements of PMW SST retrievals and their information content
in global and regional SST products (O’Carroll et al., 2019). This is
one of the primary objectives of the Copernicus Imaging Microwave
Radiometer (CIMR) by the European Space Agency (ESA) as a part
of the Copernicus Expansion program of the European Union (http:
//www.cimr.eu/). CIMR will provide high-accuracy, high resolution
PMW observations of the Polar Regions, which will enable retrievals
of SST at a higher spatial resolution (∼15 km) and lower uncertainty
(∼ 0.3◦C) than what is possible with the current PMW missions (Don-
lon, 2020). In addition to CIMR, the Advanced Microwave Scanning
Radiometer 2 (AMSR2) follow-on mission (AMSR3) is currently being
prepared by Japan Aerospace Exploration Agency (JAXA) (Kasahara
et al., 2020).

The large potential of including high latitude PMW SST retrievals
with frequent updates from previous, current and future PMW missions,
makes it important to investigate how to best combine IR and PMW
SST retrievals in an Arctic analysis. Many global L4 SST analyses
already include PMW SST observations e.g. the NOAA Optimum In-
terpolation (OI) SST V2 (Reynolds et al., 2007; Huang et al., 2021),
Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA;
Donlon et al., 2012; Good et al., 2020), Canadian Meteorological
Center (CMC) SST analysis (Brasnett, 2008), Remote Sensing Systems
(REMSS) MW-IR SST product (http://www.remss.com/measurements/
sea-surface-temperature/oisst-description), and the Multi-scale Ultra-
high Resolution (MUR) SST analysis (Chin et al., 2017). Prior sys-
tematic efforts have investigated the impact of including satellite SST
retrievals from the IR Advanced Very High Resolution Radiometer
(AVHRR), the Advanced Microwave Scanning Radiometer – Earth Ob-
serving System (AMSR-E) and the Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI) to an existing in situ data based
global analysis (Reynolds et al., 2004, 2007), and later the impact
of further adding the IR Advanced Along Track Scanning Radiometer
(AATSR) and PMW TMI satellite SST retrievals (Reynolds et al., 2010).
The AMSR-E data was found to have a strong impact in the mid-
latitudes particularly in large gradient regions e.g. the Gulf Stream,
2

because of the improved data coverage (Reynolds et al., 2007). This i
impact was not seen by adding TMI SSTs, because accurate TMI SST
retrievals are limited to the tropics (Reynolds et al., 2010). Simi-
larly, Brasnett and Colan (2016) showed clear improvements when
assimilating AMSR2 SSTs in the CMC SST analysis. Other studies have
put efforts into characterizing the errors of IR and PMW satellite SST
products (O’Carroll et al., 2008; Gentemann, 2014; Ricciardulli and
Wentz, 2004) and developing bias corrections to facilitate improved
merging of the products using moored and drifting buoys as Castro et al.
(2008).

This study presents the first systematic assessment of the impact of
including PMW SST observations in an Arctic SST analysis. The PMW
SSTs are from the ESA Climate Change Initiative (ESA-CCI) PMW SST
CDR (Alerskans et al., 2020) based on AMSR-E and AMSR2 obser-
vations. As reference, we use the recently generated Arctic (>58◦N)
4 combined SST and sea ice surface temperature (IST) CDR, which
ses IR-sensors only (Nielsen-Englyst et al., 2023). Several methods
f including satellite PMW SSTs have been tested using one year of
ata, 2015, in order to identity the best way to combine the SST
bservations from IR and PMW sensors in the Arctic, aiming for a
ombined long-term (1982-present) CDR. The year, 2015, was chosen
ue to a relatively limited IR SST coverage in that year (Merchant et al.,
019). In this case, we would expect the largest impact of including the
MW SST observations and thus, providing the best baseline for testing
he different methods. Based on the test runs of 2015, one method has
een selected and used for including the PMW SST data in the Arctic
eanalysis for the entire ESA CCI PMW SST period (2002–2017). The
aper is organized as follows. Section 2 briefly describes the IR-based
4 Arctic SST/IST CDR, the PMW SSTs, and the in situ observations
sed for validation. Section 3 provides a description of the different
ethods tested for including the PMW SSTs in the Arctic L4 SST/IST
ataset. Section 4 presents the impact on satellite coverage, validation
esults and the effective spatial resolution of the different test runs
uring 2015. Section 5 provides the validation results and uncertainty
stimates based on the combined IR and PMW Arctic L4 SST CDR
2002–2017). Section 6 discusses the results and provides suggestions
or future work and finally, the conclusions are provided in Section 7.

. Data

.1. L4 Arctic SST/IST

This study uses the combined L4 Arctic (>58◦N) SST/IST climate
ataset (described in Nielsen-Englyst et al., 2023) as baseline. The
ataset covers both sea and sea-ice surfaces in the Arctic, with open
cean being defined by sea ice concentration (SIC) ≤ 15%, the marginal
ce zone (MIZ) as 15% < SIC ≤ 70%, and ice covered when SIC>
0%. The long term (1982–2021) climate dataset was generated by
ombining multiple sources of satellite observations and applying a
tatistical optimal interpolation (OI) method to obtain daily gap-free
ields, with a spatial resolution of 0.05◦ in latitude and longitude. The
nput SST data consist of SST observations from A(A)TSR, AVHRR and
LSTR (Sea and Land Surface Temperature Radiometer) from Coper-
icus Climate Change Service (C3S) and ESA-CCI projects (Merchant
t al., 2019), while the IST observations are obtained from the Arctic
nd Antarctic ice Surface Temperatures from thermal Infrared satellite
limate dataset version 2 (AASTI v2; Dybkjær et al., 2014) and from
he operational Ocean and Sea Ice Satellite Application Facility (OSI
AF) IST product (OSI-205; Dybkjær et al., 2018). To be included in
he OI processing, a minimum quality level (QL) of 4 was required
or all observations except from those from SLSTR, where a QL of

was required (Nielsen-Englyst et al., 2023). The observations were
ombined and averaged (i.e. using a noise weighting average) by
onsidering the available data within 24 h from the analysis. The gaps
n the resulting fields were filled by the OI method using the previous
ay’s analysis field as first guess. For each grid cell, the OI method

s designed to provide the optimal SST/IST value, given statistical

http://www.cimr.eu/
http://www.cimr.eu/
http://www.cimr.eu/
http://www.remss.com/measurements/sea-surface-temperature/oisst-description
http://www.remss.com/measurements/sea-surface-temperature/oisst-description
http://www.remss.com/measurements/sea-surface-temperature/oisst-description
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Fig. 1. Example of the number of open water days (%) during one year (2015).

input, such as first guess variance, error covariances, uncertainties on
the input observations and correlation functions, which were derived
empirically from the observations (Nielsen-Englyst et al., 2023). Spa-
tially varying correlation functions in the latitudinal and longitudinal
directions were derived and used in the OI processing, with e-folding
scales of 69.5 km, 276.1 km and 344.4 km for SST, IST, and the MIZ,
respectively (Nielsen-Englyst et al., 2023). A multi-SIC field was used
to identify the different surface types for each day during the record. A
temporally and spatially constant bias correction (of +0.16 ◦C) was ap-
plied in the post-processing of the L4 SST fields to correct for the mean
difference in the derived L4 SSTs, when compared to drifting buoys
SSTs for the period 1982–2021. This difference arises since the IR SSTs
are too cold, and this will be further discussed in Section 6. Each daily
L4 Arctic SST/IST field comes with a theoretical uncertainty estimate,
which has been derived directly from the OI method (Nielsen-Englyst
et al., 2023). Validation of the OI-derived L4 SST uncertainties against
drifting buoy observations showed that the OI method is capable of
deriving reliable uncertainty estimates for SST (Nielsen-Englyst et al.,
2023). The L4 Arctic SST/IST processing system will be referred to as
the DMI OI L4 processing system and more details on its configuration
is available in Nielsen-Englyst et al. (2023).

Fig. 1 shows an example of the number of open water days during
one year (2015), while Fig. 2 shows the corresponding seasonal varia-
tion in the open water fraction (dark blue + light blue). During winter
and spring, only 20% of the (non-land) surface is open water, while the
open water coverage increases to almost 60% during September. Fig. 2
also illustrates the percentages of the open ocean and sea ice (including
the MIZ) grid cells which are satellite-observed and unobserved for
each day during 2015. About 75% of the sea ice covered grid cells
are covered with observations during winter, while the IST satellite
coverage drops to below 10% during summer due to an extensive
summer cloud cover. On average, only 21.7% of the open ocean is
covered with satellite observations. During winter, only ∼10% of the
open ocean grid cells are covered by observations, while the open ocean
satellite coverage reaches a maximum in summer of about 35%. This
means that the L4 SST/IST CDR is actually based on a very limited set
of satellite observations during long periods of the year. In this study,
the focus is on the open ocean regions because of the variable sea ice
emissivity, and the fact that thermal microwaves penetrate into the
snow-cover on sea ice (Ulaby et al., 1986; Tonboe et al., 2011). The
penetration in sea ice means that the IST measured by IR and PMW
3

radiometers is not the same (Lavergne et al., 2022), which complicates
a blend of the two (see Section 6).

In 2015, the L4 SST CDR is based only on IR satellite observations
from AVHRR sensors (Nielsen-Englyst et al., 2023). Fig. 3(a) shows the
total number of days with IR SST observations in each grid cell during
2015, and it is evident that IR observations of the surface are limited
by clouds in many regions for more than half of the year.

2.2. PMW data

We use the Level-2 (L2) data from the PMW SST CDR described
in Alerskans et al. (2020) and developed within the ESA-CCI SST
project (Merchant et al., 2014). The L2 PMW SST CDR is generated
using a statistical regression-based retrieval algorithm, which uses ob-
servations from AMSR-E and AMSR2 for the period June 2002–October
2017 (Alerskans et al., 2020). The PMW SSTs have been adjusted to best
represent the daily mean temperature at 20 cm depth for consistency
with the ESA-CCI IR SST retrievals (Embury et al., 2012; Merchant
et al., 2019). The resulting L2 PMW SST CDR is provided with a 10
km grid resolution and is available from the Centre for Environmental
Data Archival (CEDA) at http://gws-access.ceda.ac.uk/public/esacci-
sst/PMW2.0_release/AMSR/L2P/.

In this study, only PMW SST observations assigned QL 3–5 are used.
For these QLs, no PMW SSTs are retrieved if any sea ice is detected
within ±200 km (using the ERA-Interim SIC), or if land is detected
within ±100 km (Alerskans et al., 2020). This is done to exclude PMW
SST retrievals which may be contaminated by land and sea ice due
to the large satellite footprint at low frequencies. Fig. 3(b) shows the
total number of days with PMW observations during one year (2015),
when included in the OI processing scheme in a similar way as the
IR observations. The large band with no PMW observations along the
coasts and the sea ice edge is explained by the fact that only the highest
(3-5) QLs are used. In larger distances from coasts and sea ice, the
PMW SST observations show superior coverage compared to the IR SST
retrievals, which are limited by cloud cover. This illustrates the large
potential there may be in combining IR and PMW observations for the
SST mapping of the Arctic.

2.3. In situ observations

In situ observations from drifting buoys, moored buoys and Argo
floats are used for validation as in Nielsen-Englyst et al. (2023). The in
situ observations are obtained from the Hadley Centre Integrated Ocean
Database v. 1.2.0.0 (HADIOD, Atkinson et al., 2014). The drifters are
well represented in the Arctic open ocean region. The Argo floats show
good coverage in the North Atlantic and Greenland Sea while the moor-
ings which are concentrated in certain regions of the North Atlantic
and southern Greenland Sea. In this study, the in situ observations are
only used for validation and have not been included in the analysis nor
used for bias correction of the analysis as was done using the drifters
in Nielsen-Englyst et al. (2023).

3. Methods

Satellite IR and PMW radiometers measure top-of-the-atmosphere
up-welling thermal emission. However, the IR and PMW satellite SST
observations have very different characteristics in terms of spatial
resolution and sensitivity to noise sources, which need to be taken
into account in order to combine the two data sets properly (Castro
et al., 2016). One difference is, as already mentioned, the almost all-
weather capability of PMW observations compared to the clear-sky only
capability of IR observations. The penetration depth of IR and PMW
sensors also differs, with IR measuring the skin SST and PMW sensors
measuring the subskin temperature (Donlon et al., 2007; Minnett and
Kaiser-Weiss, 2012). However, the L2 IR and PMW SST datasets used in
this study have already been adjusted to best represent the daily mean

http://gws-access.ceda.ac.uk/public/esacci-sst/PMW2.0_release/AMSR/L2P/
http://gws-access.ceda.ac.uk/public/esacci-sst/PMW2.0_release/AMSR/L2P/
http://gws-access.ceda.ac.uk/public/esacci-sst/PMW2.0_release/AMSR/L2P/
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Fig. 2. Example of the coverage (%) of the open ocean and sea ice (including the MIZ) grid cells, which are satellite-observed and unobserved, respectively, for each day during
one year (2015).
Fig. 3. The total number of days with SST observations during 2015 from (a) IR and (b) PMW sensors.
at the same depth (of 20 cm) by the data providers, using physical mod-
elling of the diurnal cycle (Embury et al., 2012; Horrocks et al., 2003;
Merchant et al., 2019). The IR and PMW observations are also subject
to different sources of uncertainty. The Arctic IR SST uncertainties
arise mainly due to undetected clouds and insufficient representation
of the atmospheric attenuation (e.g. by water vapour) (Castro et al.,
2008), while large PMW SST uncertainties usually are related to rain,
strong winds (>20 m s−1), sun-glint, radio frequency interference (RFI),
sidelobe contamination near (typically within ∼100 km) land and/or
sea ice (Gentemann, 2014; Gentemann and Hilburn, 2015). Other
differences are related to the different grid and spatial resolutions.
The IR SST datasets used in this case have grid resolutions of 0.05◦

(corresponding to 5 km in the latitudinal direction and to ∼3.9 km and
∼1.9 km in the longitudinal direction at 58◦N and 80◦N, respectively),
which is close to the actual spatial resolution of the observations. On
the other hand, the ESA-CCI L2 PMW SST data is provided with a 10
km grid resolution, while the actual spatial resolution is in the order of
50 km due to the large satellite footprint at low frequencies. Because
of the large PMW footprint, PMW SSTs are not retrieved close to coasts
and sea ice (for QL 3–5), and in these areas, the IR observations are
thus the only source of SST observations (Alerskans et al., 2020). The
different PMW and IR footprint sizes make it important to assess the
4

impact on the effective spatial resolution when blending PMW and IR
SSTs.

In this study, different test runs have been designed to assess the
best method to include the PMW SST observations in the Arctic L4
SST/IST reanalysis taking into account the differences in the observa-
tion characteristics between the IR and PMW observations. All test runs
were processed using the DMI OI L4 processing system (Section 2.1),
which is described in detail in Nielsen-Englyst et al. (2023). The DMI
OI L4 processing system takes the L2 satellite observations as input
and averages these into single sensor daily Level-3 (L3) fields. The L3
fields are afterwards aggregated into L3 super-collocated (L3S) fields
by calculating the noise weighted average of the available observations
within 24 h from the analysis. The IR SSTs are assumed to have uncer-
tainties of 0.3 ◦C (ATSR), 0.4 ◦C (AVHRR), 0.4 ◦C (SLSTR) (following
Nielsen-Englyst et al., 2023), while the PMW SSTs are assumed to
have uncertainties of 0.5 ◦C (Alerskans et al., 2020). The L4 fields are
generated using the same empirically derived OI statistical parameters
as in Nielsen-Englyst et al. (2023) for all test runs. The temporally and
spatially constant bias correction (of +0.16 ◦C) as applied in Nielsen-
Englyst et al. (2023) has been excluded in the test runs to present the
non-(in situ)adjusted validation results for a fair comparison of the IR
and PMW derived SST datasets. Table 1 provides an overview of the
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Fig. 4. Examples illustrating the L3S SST field during one day i.e. September 1, 2015 for the testruns (a) IR, (b) PMW, (c) IR_PMW, (d) IR_PMW_AVG and (e) IR_PMW_SUB.
different test runs processed for 2015, while a description of each test
run is provided below.

3.1. IR only (IR)

Test run IR is identical to the Arctic SST/IST CDR described
in Nielsen-Englyst et al. (2023) except that the constant bias correction
(of +0.16 ◦C) against drifters has been excluded (as stated in the
previous section). This IR-only test run is used as reference for the
following test runs, which all include PMW observations. Fig. 4(a)
shows an example of the L3S SST field during one day (September
1, 2015) when only IR SST observations are used in the aggregation,
leaving large regions unobserved due to clouds.

3.2. PMW only (PMW)

Test run PMW excludes all IR SST data and is based only on the
PMW SST data. In this case, the PMW observations have been included
using the same approach as was done for the IR observations in the
first test run. When aggregating to single sensor L3 fields, this leaves
gaps in approximately every second grid cell of the L3 PMW field, since
the L2 PMW observations are provided at a 10 km grid (in contrast to
the L4/L3 0.05 degree grid), and a given satellite observation is only
included once in the current DMI OI L4 processing scheme. Fig. 4(b)
shows an example of the resulting L3S SST field, illustrating superior
coverage compared to test run IR in all regions, except from near coasts
and sea ice.
5

Table 1
Overview of the different test runs. The IR headline refers to IR being included as in
Nielsen-Englyst et al. (2023), while the PMW headline refers to PMW being included
in a similar way as IR. PMW-AVG specifies that a complete and averaged PMW field
is included. In contrast, PMW-SUB corresponds to a sub-sampled PMW field being
included. REF indicates if an inter-sensor bias correction has been used and specifies
the applied reference sensor. See Sections 3.1–3.7 for a detailed description of each
test run.

Test run IR PMW PMW-AVG PMW-SUB REF

IR X
PMW X
IR_PMW X X
IR_PMW_AVG X X
IR_PMW_SUB X X
IR*_PMW X X X IR
IR_PMW* X X X PMW

3.3. IR and PMW (IR_PMW)

Test run IR_PMW is the first attempt to combine IR and PMW SST
observations in the DMI OI L4 processing scheme. The IR and PMW ob-
servations have been included as in the first two test runs, leaving gaps
in approximately every second grid cell of the L3 PMW field. Fig. 4(c)
shows the resulting L3S SST field, illustrating the superior coverage
obtained by combining the IR and PMW SST observations. IR_PMW will
be the baseline of the following test runs, which all combine the IR and
PMW observations using slightly different approaches.
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Fig. 5. Spatial variation of the mean coarse grid (and extrapolated) PMW SST bias correction field for the months (a) December–February (DJF), (b) March–May (MAM), (c)
June–August (JJA), and (d) September–November (SON), 2015. The PMW SST bias correction field is subtracted from the PMW SST observations in IR*_PMW (and added to the
IR SST observations in IR_PMW*).
3.4. IR and averaged PMW (IR_PMW_AVG)

IR_PMW_AVG is tested to see the effect of a more complete PMW
SST field. The setup is similar to IR_PMW, but differs in the way the
L3 PMW field is aggregated. Instead of only allowing each satellite
observation to be included once, each L2 PMW satellite observation
is included in all L3 grid cells within a radius of 5 km. Since the grid
resolution of 0.05◦ corresponds to less than 4 km in the longitudinal
direction in the Arctic (>58◦N), this approach allows observations in
all grid cells covered by the PMW footprints of the L2 observations and
increases the number of L2 PMW observations available in each L3 grid
cell in general. Fig. 4(d) shows the averaged and more complete L3S
SST field obtained by using this setup.

3.5. IR and subsampled PMW (IR_PMW_SUB)

Two problems arise in the previous test runs including PMW SSTs.
Firstly, the L3 PMW SST grid cells are substantially over-sampled (with
the L2 grid resolution being much higher than the PMW footprint)
and each L3 PMW SST grid cell is thereby not independent but noise-
correlated with its neighbouring grid cells (within the satellite footprint
of ∼50 km). Moreover, there is a risk of PMW flooding in the OI scheme,
and thus, minimizing the impact of the much less frequent IR SSTs. Test
run IR_PMW_SUB investigates the effect of sub-sampling the L2 PMW
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SST observations. In IR_PMW_SUB, the L2 PMW SST observations have
been sub-sampled with a step of four in the longitude and latitude of
the L2 grid before averaging to the L3 PMW fields. This minimizes the
dependence between the L3 PMW grid cells, and reduces the amount
of L3 PMW grid cells and the risk of L3 PMW SST flooding in the OI
scheme. Fig. 4(e) shows an example of the resulting L3S SST field using
the IR SST observations and the sub-sampled L2 PMW SST observations
as input.

3.6. IR and averaged, subsampled and IR-adjusted PMW (IR*_PMW)

The rationale behind IR*_PMW is to use the averaged and complete
L3 PMW fields produced during test run IR_PMW_AVG but by applying
a mask to these fields (based on the IR_PMW_SUB L3 PMW fields)
to minimize the dependence between the PMW observations and the
risk of L3 PMW SST flooding in the OI scheme. Therefore, only those
L3 PMW grid cells, which are included in IR_PMW_SUB are kept and
included in the L3S and L4 generation of test run IR*_PMW. This
means that the number of days with observations is the same as in
IR_PMW_SUB and the L3S SST coverage is identical to the SST coverage
visually implied in Fig. 4(e).

IR*_PMW also includes an inter-sensor bias correction, which has
been implemented to correct for systematic biases in the IR and PMW
SST data sets relative to each other. This is an important step towards
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Fig. 6. Seasonal variation of the daily spatially mean (>58◦N) PMW bias correction field subtracted from the L3 PMW SST observations in IR*_PMW (and added to the IR SST
observations in IR_PMW*) during 2015.
a combined IR and PMW dataset to avoid introducing biases when
switching from one sensor to the other/or both. Here, the L3 PMW SST
data have been corrected using the L3 IR SST observations as references
(the ‘‘*’’ in IR*_PMW denotes the reference field). The bias correction
is described in more detail in Section 3.8.

3.7. PMW-adjusted IR and averaged, subsampled PMW (IR_PMW*)

IR_PMW* is similar to IR*_PMW, but instead of correcting the PMW
SST observations against IR SST, the IR SST observations have been
corrected against the PMW SST observations.

3.8. Inter-sensor bias correction

In test run IR*_PMW and IR_PMW*, an inter-sensor bias correction
has been implemented to correct for systematic biases in the IR and
PMW SST data sets relative to each other. The inter-sensor bias cor-
rection method was developed in Høyer et al. (2014), where it was
demonstrated to be very efficient in removing biases throughout the
year. The bias correction is assumed to be a smooth field, mainly
accounting for slowly varying systematic tendencies of each sensor
retrieval.

Using IR as reference, the following approach is used to estimate the
PMW SST bias correction (subtracted from the L3 PMW observations
in IR*_PMW). The IR SST reference field has been averaged onto
coarser grid (0.25◦) and aggregated using a temporal window of 7
days. A difference field is calculated for each day by subtracting the
IR reference field from the corresponding coarse resolution aggregated
PMW sensor field. This coarse resolution difference field is afterwards
interpolated to high resolution (0.05◦) and smoothed over 500 km. The
500 km smoothing scale has been chosen to reduce small scale noise
to ensure a robust bias correction and to capture the expected scale
of the biases in the satellite retrievals, which may be due to synoptic
atmospheric events. The resulting high resolution difference field has
been used to bias-correct the L3 PMW SST fields. The bias correction
has been subtracted from the L3 PMW observations in IR*_PMW. In
IR_PMW*, the bias correction is calculated in a similar way using
PMW as reference field, which corresponds to adding the PMW bias
correction to the L3 IR SST observations. Fig. 5 shows the seasonal
spatial variation of the coarse grid, smooth and extrapolated PMW
SST bias correction field, while Fig. 6 shows the daily mean PMW
SST bias correction throughout the year 2015. In all seasons, the bias
correction is smallest in the North Atlantic. The average bias correction
is 0.31 ◦C, with almost no correction during winter and a maximum
during summer of about 0.6 ◦C.

4. Test run results

This section investigates the impact on the satellite coverage, val-
idation and the effective spatial resolution by including PMW SST
observations in the Arctic L4 SST/IST dataset using one year (2015)
of the data and the setup from the test runs described in Section 3.
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4.1. Satellite coverage

The number of daily satellite observations included in the OI pro-
cessing scheme varies among the test runs. Fig. 7 shows the change
in the number of daily SST observations compared to the IR reference
test run for the individual test runs during 2015. In the case where
only PMW observations are used (Fig. 7(a)), no SST observations are
available near coasts and sea ice, but more SST observations are avail-
able everywhere else compared to test run IR. Combining PMW and
IR observations as in IR_PMW (Fig. 7(b)), most regions (away from
coasts and sea ice) experience more SST observations compared to
test run IR. Performing the L3 PMW averaging by including more L2
PMW observations as in IR_PMW_AVG allows many more days with SST
observations compared to the other test runs (Fig. 7(c)). Fig. 7(d) shows
the remaining number of days with SST observations after the L3 PMW
fields have been sub-sampled to only include the available L3 PMW
grid cells from IR_PMW_SUB. The average daily SST coverage for the
different test runs are: 21.7% (IR), 33.9% (PMW), 55.6% (IR_PMW),
73.8% (IR_PMW_AVG) and 25.2% (IR_PMW_SUB/IR*_PMW/IR_PMW*)
during 2015.

4.2. Validation

The different test runs have been validated against drifting buoy
SST observations, which provide the best representation of the Arctic.
Table 2 shows the validation results of the L4 SST fields, the aggregated
L3 super-collocated (L3S) SST fields, and the single sensor L3 PMW
SST fields during 2015. Matchups with drifter SST or L4/L3S/L3 SST
below −1.8 ◦C and matchups with L4/L3S/L3 – drifter SST differences
deviating more than three times the standard deviation from the mean
L4/L3S/L3 – drifter SST difference (referred to as a 3-sigma filter) have
been excluded from the validation statistics. The filters are applied to
exclude erroneous in situ observations and to provide more representa-
tive validation statistics (without dominance from outliers). Each filter
removes about 2% of the L4 matchups. The varying satellite coverage
(as seen in Section 4.1) is reflected in the large variations in the number
of L3S and L3 PMW matchups in Table 2.

For test run IR, a significant increase in standard deviation is seen
from the L3S to L4 field, which indicates that it is difficult for the
OI processing to provide accurate SSTs in the poorly IR observed
regions. The L4 IR mean SST difference of −0.14 ◦C is close to the
difference (of −0.16 ◦C), which was documented and corrected for in
the post-processing of the long-term climate dataset in Nielsen-Englyst
et al. (2023). As seen in Fig. 6, the PMW observations are generally
warmer than the IR observations, and the resulting mean difference
against drifters is reduced for all test runs where PMW observations
are included in the L4 generation (and not referenced against the
IR observations as in IR*_PMW). All combinations of IR and PMW
observations show reduced L4 standard deviations compared to only
using either IR or PMW SST observations.
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Fig. 7. Differences in the total number of daily SST observations compared to test run IR for (a) PMW, (b) IR_PMW, (c) IR_PMW_AVG and (d) IR_PMW_SUB/IR*_PMW/IR_PMW*
during 2015.
Table 2
Overall performance of the different test runs against in situ observations from drifting buoys during 2015. The table shows the mean difference (MD; provided
as satellite fields minus in situ), standard deviation of the differences (STD), root mean squared difference (RMSE), and the number of observations (Nobs) for
the L4, the aggregated L3 super-collocated (L3S) and single-sensor L3 PMW SST fields, respectively. A 3-sigma filter has been applied to remove outliers.
Test run L4 L3S L3 PMW

MD STD RMSE Nobs MD STD RMSE Nobs MD STD RMSE Nobs

IR −0.14 0.64 0.65 193,798 −0.10 0.47 0.48 41,312 – – – –
PMW −0.03 0.74 0.74 192,140 −0.01 0.57 0.57 97,648 −0.01 0.57 0.57 97,648
IR_PMW −0.04 0.56 0.57 194,434 −0.03 0.54 0.54 119,014 −0.01 0.57 0.57 97,649
IR_PMW_AVG −0.03 0.56 0.56 194,457 −0.02 0.47 0.47 153,197 −0.00 0.48 0.48 140,401
IR_PMW_SUB −0.06 0.56 0.56 194,188 −0.08 0.51 0.51 49,506 0.00 0.63 0.63 10,256
IR*_PMW −0.18 0.56 0.59 194,159 −0.12 0.47 0.48 49,450 −0.01 0.44 0.44 10,219
IR_PMW* 0.05 0.56 0.56 194,532 0.12 0.48 0.49 49,456 −0.01 0.44 0.44 10,219
Table 2 also shows that it is possible to reduce the standard devia-
tions of the L3 PMW observations by including more (of the surround-
ing) L2 PMW observations in the aggregation of the L3 PMW field. This
also allows more L3 grid cells to be assigned with a PMW SST and
results in more L3 PMW matchups compared to PMW/IR_PMW. The
opposite is the case when the L2 PMW fields are sub-sampled. Here the
number of grid cells with a L3 PMW SST is reduced, which results in
fewer matchups than for PMW/IR_PMW, and less L2 PMW observations
available for averaging the L3 PMW SST fields, resulting in a larger
L3 PMW SST standard deviation. If the L3 PMW SST validation subset
from IR_PMW_SUB (10,256 matchups) is used for the IR_PMW_AVG L3
PMW SST validation, the standard deviation and bias reduce to 0.44 ◦C
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and −0.01 ◦C (as also seen for IR*_PMW/IR_PMW*). This clearly shows
that including more L2 PMW SST observations in the L3 PMW SST
aggregation improves the L3 PMW SST performance substantially.

The improved L3 PMW and L3S standard deviations of
IR*_PMW/IR_PMW* (and IR_PMW_AVG) are, however, not reflected
in the L4 standard deviations, which do not vary among the test
runs including both PMW and IR SST observations. If only the L3S
matchups of IR_PMW_AVG (153,197 matchups) are considered in the
L4 validation, all combined IR and PMW test runs provide equal same
standard deviations of 0.46 ◦C, while test run IR and test run PMW
provide standard deviations of 0.53 ◦C and 0.55 ◦C, respectively (not
shown). This indicates that if both IR and PMW observations are
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Fig. 8. The standard deviation (STD) of the L4 SST differences against drifter SST for (a) IR and (b) IR*_PMW, and the mean differences (MD) between (d) IR*_PMW, (e) IR_PMW*
and drifters. The last column shows the number of L4 matchups (Nobs) for (c) IR*_PMW and (f) IR*_PMW which are not included in the IR_PMW_AVG L3S matchups. The statistics
are calculated for each 2 × 2 degree grid having more than 50 members during 2015.
included, the OI L4 processing is able to provide accurate SSTs for
those 153,197 matchups despite the differences in the L3S and L3 PMW
fields.

Figs. 8(a) and 8(b) show the geographical distribution of the stan-
dard deviations of the L4 SST differences against drifting buoy SST
using IR and IR*_PMW SST, respectively, with the latter being similar
to IR_PMW, IR_PMW_AVG, IR_PMW_SUB, and IR_PMW* (which are not
shown). In both cases, the largest standard deviations are found along
the coasts and in the seasonal ice covered waters. The few or none
satellite observations from the IR and PMW sensors in these regions
(see Fig. 3) make it difficult for the OI method to provide accurate
SSTs. Figs. 8(d) and 8(e) show the mean differences in 2015, when
compared to drifting buoy SST for IR*_PMW and IR_PMW*, which have
been selected to illustrate the impact on the MD when the satellite ob-
servations are corrected against IR and PMW observations, respectively.
Large differences are seen in the mean SST differences for IR*_PMW
and IR_PMW*, with IR*_PMW being cold compared to drifters, with an
increasing magnitude towards the sea ice edge. In contrast, IR_PMW*
shows varying mean differences, with an average difference around
zero, but also regions with SSTs warmer than drifters (e.g. the Beaufort
and Chukchi Sea). Fig. 8(c) shows the distribution of the L4 matchups
(with drifters) available for validation of IR*_PMW during 2015, which
is similar to the matchup distribution of the other test runs (not shown).
The drifter matchups show good coverage of the open water regions
with most matchups in the North Atlantic and southern Greenland Sea.
Fig. 8(f) shows the distribution of those IR*_PMW L4 matchups that
are not part of the IR_PMW_AVG L3S matchups i.e. those matchups that
have no IR or PMW satellite SST observations within the corresponding
grid cells. These are concentrated along the coasts and sea ice edge. In
these regions, increased standard deviations are observed for both IR
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and IR*_PMW (Figs. 8(a) and 8(b)) as well as for the other test runs
(not shown). This will be discussed in greater detail in Section 6.

The performances of IR, IR*_PMW and IR_PMW* are shown as a
function of latitude (Fig. 9(a)) and time (Fig. 9(b)) for 2015. The shaded
areas represent the 95% confidence intervals (Thomson and Emery,
2014) and it is evident that the differences among the test runs are sig-
nificant, even at high latitudes where the least matchups are available.
Generally, IR*_PMW/IR_PMW* show smaller standard deviations, with
the largest improvement between 68◦N and 80◦N compared to test run
IR. Test run IR and IR*_PMW show a gradual increase in the absolute
mean difference with latitude. This is in contrast to IR_PMW*, which
shows a mean difference centred around zero except from northwards
of about 80◦N, where it is colder than drifters, but to a smaller degree
than the IR and IR*_PMW. IR_PMW* also shows a smaller and more
stable mean difference as a function of time compared to test run IR
and IR*_PMW (Fig. 9(b)). The dynamic bias correction of IR against
PMW is thus able to significantly reduce the latitudinal and seasonally
discrepancy observed in the IR SSTs.

4.3. Spectral analysis

Due to the differences in IR and PMW footprint sizes and coverage,
it is important to assess the impact on the effective spatial resolution
of the L4 product, when ingesting the PMW SSTs into the IR-based L4
SST/IST analysis. Therefore, a spectral analysis has been performed in
the two sub-domains shown in Fig. 10 for the different L4 SST test
runs. Comparisons of the spectral power will indicate added benefit in
resolving SST signals or degradation of the effective spatial resolution
when including the coarser PMW observations. In addition, they may



Remote Sensing of Environment 301 (2024) 113949P. Nielsen-Englyst et al.
Fig. 9. Mean differences (MD) and standard deviations (STD) of the differences using drifter SST as reference during 2015 for test run IR, IR*_PMW and IR_PMW* as a function
of (a) latitude (◦N) and (b) time, using bin sizes of 1◦ and 15 days, respectively, and a requirement of minimum 30 matchups per bin. The 95% confidence intervals are shown
as shaded areas (mainly visible at high latitudes).
Fig. 10. Domain 1 (D1, blue) and 2 (D2, magenta) used for the calculation of the
spectral power.

also enable an identification of any inconsistencies/spurious effects in
the PMW SST data ingestion.

The estimation of the power spectrum is performed using the stan-
dard FFT method in the zonal direction (Thomson and Emery, 2014)
and only open water points are included. The power spectrum per wave
number is computed for each latitude band and averaged into bins for
the full year for each test run. Fig. 11 shows the zonal spectra for
each test run (except from IR_PMW* for which there was no visible
difference from IR*_PMW) during 2015 for sub-domains D1 (a) and
D2 (b). The theoretical −2 and −5/3 (−1.6) curves for the expected
decrease of spectral power in the mesoscale to sub-mesoscale are also
included for Vazquez-Cuervo et al. (2022), Castro et al. (2017). Note
that the smallest scales are resolved only in the northernmost region of
the D2 domain, as the distance between meridionals becomes smaller
towards the high latitudes. This means that the results for the smallest
scales are based on less data than for the larger scales. Therefore, to
avoid noisy signals, only power spectra with wavelengths larger than 6
km are shown. Generally, the effective spatial resolution of the test runs
follows the expected theoretical behaviour for the sub-mesoscale and
is comparable with that of other L4 products (Vazquez-Cuervo et al.,
2022; Castro et al., 2017).

Fig. 11 shows similar power spectra at scales larger than ∼60 km for
D1 and scales larger than ∼20 km for D2, for the different test runs.
The ‘‘bump’’ in spectral power occurring for the PMW and IR_PMW
at approximately 12.5 km in D1 (10.5 km in D2) is assumed to be
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associated with energy contribution from the smaller scales, probably
due to the mismatch between the native resolution of the L2 PMW
data (10 km) and the L3/L4 grid spacing (0.05 degrees). For PMW
and IR_PMW, this mismatch leaves gaps in approximately every second
L3 grid cell after one satellite overpass, while additional overpasses
likely fill in some of the same, but also alternative (every second) L3
grid cells. As a result, any SST bias variations between orbits may
introduce spurious energy at smaller scales and this is likely what is
seen here. PMW and IR_PMW generally have more energy at small
scales compared to the other test runs and their spectral slopes are
gentler, i.e. slower decrease in power as wavenumbers increase. This
is likely explained by the fact that both of these test runs include PMW
SST observations (approximately for every tenth kilometer) in regions
that were otherwise under-sampled by IR (and gap-filled using OI). This
is in contrast to IR_PMW_SUB and IR*_PMW, where the PMW SSTs have
been subsampled and the L4 output relies more on the interpolation
capability in these regions resulting in a more smooth L4 field. This
is manifested as an overall lower spectral power level and a rapid
decrease in the power as wavenumbers increase, i.e. steeper spectral
slopes. In IR_PMW_AVG, the averaging performed in the aggregation
of the L3 PMW SST field also results in a more smooth L4 SST field.
Except from PMW and IR_PMW, the test runs are closely aligned with
the IR spectra (i.e. indicating no degradation of the effective spatial
resolution when including the PMW SST data), which is ideal in terms
of long-term consistency of a merged IR and PMW SST product.

4.4. Selection for the CDR

Different ways of including PMW SST observations in the L4 Arctic
SST/IST reanalysis have been assessed. For all test runs, the inclu-
sion of PMW SSTs reduces the L4 standard deviations against drifters
compared to only using IR SST (and only using PMW SST).

The best L3 PMW validation result is obtained by allowing each L2
PMW observation to be included in all L3 grid cells in a radius of 5
km from the L2 PMW observation. This reduces the noise and provides
more robust L3 PMW SST estimates (see IR_PMW_AVG validation in
Section 4.2). To reduce the dependence between the L3 PMW observa-
tions and the risk of PMW flooding in the OI scheme, this L3 PMW field
(from IR_PMW_AVG) has been sub-sampled by only including those
grid cells, which were also included in IR_PMW_SUB. This is done in
both IR*_PMW and IR_PMW* that differ only in the inter-sensor bias
correction, which adjusts the PMW SST to IR SST in IR*_PMW and
IR SST to PMW SST in IR_PMW*. The smallest discrepancy against
drifters is seen in the case where the IR SSTs are adjusted to PMW
SSTs, since the IR SSTs are generally too cold compared to drifters.
However, the PMW observations span a much shorter time scale than
IR, which limits the extent to which the bias correction against PMW
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Fig. 11. Zonal power spectra for the subdomains (a) D1 and (b) D2 for the different test runs during 2015.
SSTs can be applied. To increase the feasibility of climate analyses, we
have decided to adjust the PMW SSTs to IR SSTs to ensure consistency
and avoid jumps when introducing the PMW SSTs in a long-term SST
analysis (i.e. 1982-present).

The spectral analysis revealed similar zonal spectra for all the test
runs (and both domains) except from PMW and IR_PMW, which both
have more energy in the small-scales compared to the other test runs.
This is explained by the fact that both of these test runs include PMW
SST observation (approximately for every tenth kilometer) in regions
that were otherwise under-sampled by IR. The other test runs are
closely aligned with the IR spectra, which is ideal in terms of long-term
consistency of a merged IR and PMW SST product.

Based on above analyses, we decided to use the setup from IR*_PMW
to generate a blended IR and PMW Arctic L4 SST CDR for the ESA CCI
PMW SST CDR period extending from June 2002 to October 2017.

5. CDR results

This section provides the validation and uncertainty results of the
blended Arctic IR and PMW L4 SST CDR for the ESA CCI PMW SST
period (2002–2017), hereafter referred to as IR*_PMW (after the test
run, which it is based on). The results of the full IR*_PMW SST CDR
is compared to the IR-based Arctic SST/IST CDR (described in Nielsen-
Englyst et al., 2023) for this period, which will be referred to as IR
hereafter. In the PMW sensor gap between AMSR-E and AMSR2 (from
October 4, 2011 to July 4, 2012) the IR*_PMW SST CDR is based only
on IR observations, and is thus identical to the IR SST CDR for this
period.

5.1. Validation

The long-term IR and IR*_PMW runs have been validated against
drifting buoys, Argo floats and moorings for the years 2002–2017. The
validation statistics are summarized in Table 3 for the L3S and L4
SST products. For both drifters and Argo floats there is a substantial
improvement in the L4 standard deviations, which reduce from 0.54 ◦C
to 0.47 ◦C and from 0.47 ◦C to 0.41 ◦C, respectively, by including
PMW SST observations. Moorings show very limited variation in the
L4 performances and this is explained by the fact that the moorings
are located only in specific parts of the North Atlantic and the southern
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Greenland Sea.
The L3S SST validation revealed limited variations in the statistics
for IR and IR*_PMW (for all in situ types). Argo floats and drifters
increase their number of L3S matchups with about 15% when PMW
observations are added, while moorings only have 4% more matchups
when including PMW observations. These additional matchups are not
available for the IR product, and if these matchups are excluded from
the L3S IR*_PMW validation, the statistical parameters (provided in
Table 3) of L3S IR and L3S IR*_PMW are the exact same (for all in
situ types).

Fig. 12(a) shows the geographical distribution of standard deviation
against drifters for L4 IR*_PMW, while Fig. 12(b) shows the differences
in standard deviation between L4 IR*_PMW and L4 IR for drifters
during the period 2002–2017. The largest standard deviations are
generally found along the coasts and sea ice edge, where few IR and
PMW SSTs are available. Compared to the IR run, the inclusion of PMW
SSTs provides reduced standard deviations in almost all regions with
few exceptions which are likely related to sea ice contamination and
residual RFI (Gentemann and Hilburn, 2015).

Fig. 13(a) shows the annual mean and standard deviation of the L4
SST minus drifter SST differences for the period 2002–2017. In general,
higher standard deviations are seen when no PMW SST observations are
included. For both IR and IR*_PMW, the standard deviations are largest
in the last part of the period (2011–2017), which is characterized
by fewer IR SST observations, since the (A)ATSR and SLSTR are not
available (Nielsen-Englyst et al., 2023; Merchant et al., 2019). For
this period, we also notice a larger reduction in standard deviation
when including PMW SSTs. At the same time, the mean difference
differs slightly among the two runs, which was unexpected as the
PMW SSTs have been adjusted to the IR SSTs. To investigate this
effect in greater detail, Fig. 13(b) shows the validation statistics as a
function of the number of days since an IR SST observation was last
available in that particular grid cell. For both IR and IR*_PMW, the
standard deviations against drifters increase almost linearly with the
number of days since an IR SST observation was last available. It is
also seen that the reduction in standard deviation from including PMW
SSTs increases with the number of days since the last IR observation
(i.e. the largest improvements are seen in IR data sparse regions). The
mean difference aligns well for the two test runs in cases where IR
observations have been available within the last 50 days. For those
matchups (2%) where IR observations are lacking in more than 60
days, the mean difference (against drifters) differs among the two runs,

◦
with the mean difference for the IR product tending to 0 C. This
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Table 3
Overall performance of IR and IR*_PMW SSTs against drifting buoys, Argo floats and moorings for the years 2002–2017. The table shows the mean difference (MD;
provided as the satellite fields minus in situ), standard deviation of the differences (STD), root mean squared difference (RMSE), and the number of observations
(Nobs). A 3-sigma filter has been applied to remove outliers.

L4 IR L4 IR*_PMW L3S IR L3S IR*_PMW

MD STD RMSE Nobs MD STD RMSE Nobs MD STD RMSE Nobs MD STD RMSE Nobs

Drifters −0.15 0.54 0.56 1.70e06 −0.15 0.47 0.49 1.70e06 −0.09 0.42 0.43 4.62e05 −0.11 0.42 0.43 5.31e05
Moorings −0.11 0.55 0.56 39,935 −0.12 0.54 0.56 39,935 −0.05 0.51 0.51 16,649 −0.06 0.52 0.52 17,304
Argo −0.07 0.47 0.48 19,847 −0.06 0.41 0.41 19,936 0.01 0.38 0.38 5,758 −0.00 0.38 0.38 6,578
Fig. 12. (a) Standard deviation (STD) of the L4 SST differences against drifter SST for IR*_PMW and (b) the difference in standard deviation between L4 IR*_PMW and IR for
drifters, during the period 2002–2017. The statistics are calculated for each 2 × 2 degree grid having more than 50 members.
Fig. 13. Mean differences (MD) and standard deviations (STD) of the differences against drifter SST for IR and IR*_PMW CDR SSTs as a function of (a) time and (b) days since
last IR observation, using bin sizes of one year and three days, respectively, and a requirement of minimum 30 matchups per bin. The 95% confidence intervals are shown as
shaded areas (mainly visible for the large number of days since last IR observation.
is a phenomenon occurring mainly from October through December,
when long periods without observations result in the use of first guess
(previous day’s analysis) many days in a row, resulting in the use of
erroneously warmer (summer+fall) SSTs. In principle, the OI should
account for this by taking neighbour observations into account but what
we see is the residual effect from large areas with missing observations
for a long time. This is of course undesirable and will be discussed
further in Section 6. The inclusion of the more frequent PMW SSTs
reduces this effect as seen in Fig. 13(b). This is another advantage of
including PMW observations with frequent updates from past, current
and future PMW radiometers.

5.2. L4 uncertainty

As described in Nielsen-Englyst et al. (2023) each daily L4 SST/IST
is assigned with an uncertainty estimate, which is a direct output of
the OI method that depends on the data availability, the proximity
12
of the observations and the uncertainty of the observations and the
background field. Fig. 14(a) shows the geographical mean L4 SST
uncertainty for IR*_PMW for the period 2002–2017. The largest un-
certainties are found along the coasts and in the seasonal ice covered
regions with maximum uncertainties (of ∼2 ◦C) north of Svalbard. This
is in agreement with the increased standard deviations observed against
drifters in this region (Fig. 12(a)). Fig. 14(b) shows the reduction in
L4 SST uncertainty when including PMW SST observations, with the
largest reductions in the Barents Sea, Greenland Sea and the Labrador
Sea.

Fig. 15 shows the yearly mean L4 SST uncertainty during 2002–
2017 for IR and IR*_PMW, respectively. In both cases, the L4 SST
uncertainty increases after 2011 as a result of fewer IR satellite obser-
vations which is in agreement with the increased standard deviations
observed in the end of the record in Fig. 13(a). At all times, the
IR*_PMW provides lower L4 SST uncertainties than the IR run, with
the largest improvements in the end of the period, which is also in
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Fig. 14. Spatial mean (a) L4 SST uncertainty of IR*_PMW and (b) L4 SST uncertainty difference between IR*_PMW and IR calculated for grid cells with more than 90 days of
open water in the period 2002–2017.
Fig. 15. Yearly mean L4 SST uncertainty during 2002–2017 for IR and IR*_PMW.
agreement with Fig. 13(a). Overall, IR*_PMW provides a reduction in
the L4 SST uncertainty of 0.08 ◦C compared to IR, which is comparable
to the reduction in standard deviation observed against drifters of
0.07 ◦C (see Table 3). Nielsen-Englyst et al. (2023) also showed good
agreement between L4 SST uncertainties and observed uncertainties
using drifter SSTs as reference for the full IR record (1982–2021). The
reduced L4 SST uncertainty estimates obtained when including PMW
SSTs are thus very promising results.

6. Discussion

The inclusion of PMW SST observations provides substantial reduc-
tions in the L4 standard deviations compared to only using IR (and only
using PMW) SST observations. The improved performance is mainly
linked to the superior coverage from PMW observations in the Arctic
(Fig. 7). However, the independent and highly complementary uncer-
tainty characteristics of PMW and IR observations (see Section 3) are
likely also part of the explanation for the observed improvements. The
complementary uncertainty characteristics reduce the risk of systematic
biases (e.g. as seen for the IR) in a merged product. This is supported
by all combinations of IR and PMW SSTs (without introducing an inter-
sensor bias correction) having reduced L4 biases compared to the IR
test run (Table 2). The colder temperatures observed in the Arctic IR
SSTs (compared to drifters) is a well known problem, which is also
seen in other SST analyses e.g. OSTIA (Fiedler et al., 2019). To reduce
the risk of introducing biases when switching from one sensor to the
other/or both, an inter-sensor bias correction is necessary. Fig. 6 shows
an example of the mean inter-sensor bias correction applied during
13
2015, with a distinct seasonal cycle. An analysis of the bias correction
during the full record (2002–2017) revealed similar seasonal patterns,
but also large inter-annual variations. This challenges the derivation of
a generic bias correction to be used outside of the PMW SST period.
When applying the dynamic bias correction (Section 3.8), the smallest
L4 mean difference against drifters is seen in the case where the IR
SSTs are adjusted to PMW SSTs. However, to be consistent with time
periods when no Arctic PMW SSTs are available, the bias correction
adjusting the PMW SSTs to IR SST has been implemented here. This
introduces a bias in the L4 SST as seen in Table 2. Since, the continuity
of PMW imagers have been sustained for the future with AMSR3 and
CIMR in the pipeline, future work should focus on using the PMW SST
observations to adjust the cold IR SSTs in the Arctic (also extended to
periods when no PMW SSTs are available).

In general, the largest standard deviations (Fig. 12(a)) and theoreti-
cal uncertainties (Fig. 14(a)) are found along the coasts and sea ice edge
for both IR and IR*_PMW as well as for the other test runs (not shown).
In these regions, few or no SST observations from the IR and PMW
satellite sensors (Fig. 3) make it challenging to provide accurate SST
estimates. In addition, some of these regions have very large gradients
in the surface temperature e.g. along the ice edge (Carvalho and Wang,
2020). The improved spatial resolution (of 15 km) from CIMR will
enable PMW SST retrievals much closer to coasts and sea ice in the
future. The higher accuracy of 0.3 ◦C (in cold waters) from CIMR will
also improve the Arctic SST estimates even further.

The L4 IR standard deviations during 2015 were higher (0.64 ◦C for
drifters) compared to those from the full period (0.54 ◦C for drifters).
This is mainly explained by the fact that only the AVHRR sensors
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were available during the period 2011–2017 (Nielsen-Englyst et al.,
2023; Merchant et al., 2019). The year, 2015, was chosen since we
expected the largest impact from PMW observations to occur when
few IR observations are available, thus making it more feasible to
assess the impact and variations among the different test runs. As
evident from Fig. 13(a), the largest reduction in standard deviation
by including PMW SSTs was indeed observed during the period 2011–
2017. In relation to that, Fig. 13(b) also showed that the reduction in
standard deviation is largest for regions rarely observed by IR sensors.

For both IR and IR*_PMW, the reduced satellite coverage during
2011–2017 resulted in increased standard deviations (Fig. 13(a)) and
increased L4 uncertainties (Fig. 15). In the same period, the mean
difference differs between IR and IR*_PMW and the explanation for this
is the difference in the satellite coverage. The overall mean differences
reported in Nielsen-Englyst et al. (2023) did not show any long-term
dependence on the satellite coverage (i.e. considering the generally
increasing satellite coverage over time). However, Fig. 13(b) revealed
that there is a coverage dependence when binning the mean differences
as a function of the days since the last IR observation in that particular
grid point. Both IR and IR*_PMW get warmer as the number of consec-
utive days without IR observations increases. The issue arises during
fall and early winter in unobserved regions and when the surrounding
observations are too far away to have any weight in the OI scheme. In
that case, the first guess SST (i.e. previous day’s analysis in this case) is
used many days in succession resulting in the use of erroneous warmer
(summer and fall) SSTs.

This is clearly undesirable, in particular in the context of climate
monitoring. Most of the existing and widely used L4 global SST analyses
also use OI techniques (Castro et al., 2016; Vazquez-Cuervo et al., 2022)
and the previous day’s analysis as first guess (e.g. NOAA OI SST and
REMSS MW-IR SST), and it is thus likely that they also are affected
by this artefact. Fig. 13(b) showed that the residual effect was most
pronounced when only including IR observations, while the inclusion
of the PMW observations reduced the effect. This is another argument
of including the more frequent available PMW observations from past,
present and future missions. However, despite the inclusion of PMW
SSTs, the problem will likely persist in regions very near coasts and sea
ice, which cannot be resolved by the current IR and PMW sensors. This
should be addressed in future updates of the Arctic reanalysis as well
as in the development of new regional and global reanalyses e.g. by
applying a seasonal variation to the first guess field.

Another suggestion for future work is a detailed assessment of
the changes in the spatial SST gradients in terms of intensity and
location, when including PMW SST observations. In this study, an
initial investigation has been conducted by running a Sobel operator
on the SST fields from test run IR and IR*_PMW and considering the
difference in the gradient magnitude fields for the full year (i.e. 2015).
Some changes in the intensity and location of the SST gradients are
seen e.g. a reduction in the SST gradients in proximity to sea ice when
including PMW SST observations (not shown), but the mean difference
is very small. Further analysis is needed to fully understand why these
differences arise and taking into account the varying grid sizes in the
region.

Future work should also be focused towards improving the valida-
tion close to sea ice e.g. by using Saildrone observations (Gentemann
et al., 2020; Vazquez-Cuervo et al., 2022; Jia et al., 2022) and po-
tentially improving the surface temperature estimates close to both
coasts and the sea ice e.g. in similar ways as done for salinity re-
trievals in Meissner and Manaster (2021) and Olmedo et al. (2017).
Moreover, the capability of using PMW ISTs to supplement the IR ISTs
should also be investigated in the future. An increasing number of
PMW derived IST products have become available at daily temporal
resolution based on the vertically polarized 6.9-GHz channel AMSR-
data (e.g. Le Traon et al., 2015; Comiso et al., 2003; Kilic et al.,
2019). These approximately represent the physical temperature of the
14

snow/ice interface (Tonboe et al., 2011; Tonboe, 2010; Ulaby et al.,
1986), and relating these to IR IST (i.e. the skin surface temperature)
is a challenging task considering the large temperature gradients in the
snow during winter (e.g. Comiso et al., 2003, 1989).

Finally, future work should aim at updating the OI scheme to
include the L2 PMW SST uncertainty estimates provided with the
individual PMW SST retrievals instead of the spatial and temporal
constant of 0.5 ◦C. Alerskans et al. (2020) showed good validation
results of the L2 PMW SST uncertainties and using these may lead to
better L4 SST estimates as well as improved L4 uncertainty estimates.

7. Conclusions

The impact of including passive microwave (PMW) sea surface
temperature (SST) observations is investigated using an existing in-
frared (IR) gap-free (L4) Arctic surface temperature analysis covering
the ocean and sea ice northwards of 58◦N. The Arctic suffers from
frequent and persistent cloud cover, which prevents IR retrievals of
SST. Therefore, the almost all-weather PMW sensors have a significant
coverage advantage over IR sensors (which nevertheless provide a
much better spatial resolution).

This study provides a systematic assessment of how to best combine
IR and PMW SST observations in a blended L4 Arctic SST analysis in
order to improve existing reanalyses as well as preparing for future
PMW missions (such as CIMR). It is found that the addition of PMW
SST observations improves the L4 SST validation results against drifting
buoy SSTs for all the methods evaluated here. In order to combine
IR and PMW, it is important to correct for systematic biases in the
PMW and IR SST data sets relative to each other. The PMW SSTs
show lower mean differences against drifter SSTs compared to the IR
SSTs, but for consistency with time periods when no Arctic PMW SST
observations are available, the PMW SSTs have been adjusted to IR SSTs
in this study. This has been done in order to generate a blended IR and
PMW Arctic SST climate dataset for the ESA-CCI PMW SST data period
(2002–2017).

The overall L4 SST standard deviations decrease from 0.54 ◦C,
0.55 ◦C and 0.47 ◦C to 0.47 ◦C, 0.54 ◦C and 0.41 ◦C against drifters,

oorings and Argo floats, respectively, when PMW SST observations
re included in the full record (2002–2017). As expected, the largest
mprovements are seen when the IR data is sparse, but improved per-
ormance is seen in almost all regions including those already covered
y IR observations. The good performance is likely not only due to the
uperior PMW coverage but also related to the different and comple-
entary uncertainty characteristics of IR and PMW observations. The
ean theoretical uncertainty estimate decreases with 0.08 ◦C when

ncluding PMW observations, which is in good agreement with the
bserved reduction in standard deviation against drifters.

The largest theoretical uncertainties and standard deviations against
rifters are generally found along the sea ice edge and coasts, which
uffer from no or few SST observations (both from IR and PMW
ensors). Improved PMW coverage and SST retrievals are expected in
he future with the launch of the CIMR mission, which will provide
STs with a spatial resolution of 15 km and a precision of 0.3 ◦C (in
old waters) (Donlon, 2020). This will allow PMW SST retrievals much
loser to the coasts and sea ice compared to what is possible with
revious and current radiometers. Therefore, CIMR has a very large
otential to improve Arctic SST estimates even further.
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