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A B S T R A C T

Likelihood-based approaches are central in statistics and its applications, yet often challenging
since likelihoods can be intractable. Many methods such as the EM algorithm have been
developed to alleviate this.

We present a new likelihood inequality involving posterior distributions of a latent variable
that holds under conditions similar to the EM algorithm. Potential scopes of the inequal-
ity includes maximum-likelihood estimation, likelihood ratios tests and model selection. We
demonstrate the latter by performing selection in a non-linear mixed-model using MCMC.

1. Introduction

Likelihood is arguably the most important concept in statistics, formally introduced and popularized by Fisher (1922). Being
the ‘inverse probability’, likelihood measures the goodness-of-fit for a given statistical model, and is thus central to statistical
inference. Maximum-likelihood estimation is arguably the most used principle for statistical inference and is underpinned by
much theory. However, due to the fact that solving the associated score equations is often infeasible, auxiliary methods have
been developed specifically to facilitate maximization of the likelihood function, most notably the Expectation–Maximization (EM)
Algorithm (Dempster et al., 1977) and derivatives of this, such as the ECM algorithm, (Meng and Rubin, 1993). We will refer to
these as EM-class algorithms. An extensive treatise can be found in McLachlan and Krishnan (2007).

Likelihood is also used for likelihood ratio-tests, which are widely used in statistics and is theoretically justified by the
Neyman–Pearson lemma (Neyman and Pearson, 1933).

Latent variables. A notable challenge in statistical inference is the presence of latent or unobserved variables. A latent variable 𝑊
is characterized by the fact that it acts as part of the statistical model, but is not observed. In terms of evaluating the likelihood,
this implies the presence of a sum (if 𝑊 is discrete) or an integral (if 𝑊 is continuous) in the likelihood expression. Integrals are
notoriously difficult to evaluate, so other approaches are often needed.

Two popular approaches to handle latent variables in maximum likelihood estimation (sometimes in combination are Monte
Carlo methods and EM-class algorithms. Monte Carlo methods sample from some distribution (typically that of 𝑤). By correctly
aggregating the results, this approximates the value of the likelihood.

EM-class algorithms differ in sense that they do not compute the actual likelihood value (which is rarely of interest), but points
to some value being more optimal, which eventually converges to a stationary point for the likelihood (ideally the maximum).
Whereas EM-class algorithms are very useful when it comes to parameter estimation, they are not useful for model selection. Another
drawback is the relatively slow convergence rate of the EM algorithm.

There exists a large literature on statistical methods for latent variables, a good overview including modelling and estimation
methods can be found in Song (2007).
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Contribution of this article. In this article, we present a new inequality for likelihood in models involving latent variables, Similar
to the EM algorithm, we do not compute the actual likelihood values, but use the conditional distribution of the latent variable.

There are three scopes of the inequality: Likelihood-based inference, model selection and likelihood ratio (tests). The conditional
distributions can be approximated using MCMC methods, making implementation of e.g. model selection easy.

The remainder of the article is organized as follows: In Section 2 we present and proof the new inequality. In Section 3 we
apply the theorem to a model selection problem, where posteriors are approximated by MCMC, and finally we discuss the results
in Section 4.

2. Theorem

Suppose that we are given a statistical family consisting of an observation 𝑌 ∈  , a latent variable 𝑊 ∈  and an unknown
parameter 𝜃 in parameter space 𝛩.

Assume that the joint variable (𝑌 ,𝑊 ) is dominated; that is 𝑃𝜃((𝑌 ,𝑊 ) ∈ 𝐴) = ∫𝐴 𝑝𝜃(𝑌 ,𝑊 )𝑑(𝜆 ⊗ 𝜇)(𝑌 ,𝑊 ) for a measure 𝜆 on 
and 𝜇 on  , and assume that for every 𝜃, 𝑝𝜃(𝑌 ,𝑊 ) is non-zero for almost all 𝑊 ,𝑌 .

Let 𝑝𝜃(𝑌 ) be the marginal density for 𝑌 , and let 𝐿(𝜃) ∶= 𝑝𝜃(𝑌 ), 𝐿(𝜃,𝑊 ) ∶= 𝑝𝜃(𝑌 ,𝑊 ) denote marginal and posterior likelihoods,
respectively.

Theorem 1. Let 𝜃1, 𝜃2 ∈ 𝛩 Then 𝐿(𝜃1) < 𝐿(𝜃2) if and only if the following inequality is true:

∫ min
(

1,
𝐿(𝜃2,𝑊 )
𝐿(𝜃1,𝑊 )

)

d𝑃𝜃1 (𝑊 |𝑌 ) > ∫ min
(

1,
𝐿(𝜃1,𝑊 )
𝐿(𝜃2,𝑊 )

)

d𝑃𝜃2 (𝑊 |𝑌 ), (1)

here 𝑃𝜃(𝑊 |𝑌 ) is the posterior distribution of 𝑊 under 𝜃 given 𝑌 .

That is, by integrating the ‘‘truncated likelihood-ratios’’ under the posterior distributions, we can compare the likelihood of 𝑦
nder 𝜃1 and 𝜃2.

roof. Let 𝐴 denote the subset of 𝑊 where 𝐿(𝜃2,𝑊 ) < 𝐿(𝜃1,𝑊 ). First consider the left integral:

∫ min
(

1,
𝐿(𝜃2,𝑊 )
𝐿(𝜃1,𝑊 )

)

d𝑃𝜃1 (𝑊 |𝑌 ) = ∫ min
(

1,
𝐿(𝜃2,𝑊 )
𝐿(𝜃1,𝑊 )

)

𝐿(𝜃1,𝑊 )
𝐿(𝜃1)

d𝜇(𝑊 ) =

∫𝐴
𝐿(𝜃2,𝑊 )
𝐿(𝜃1)

d𝜇(𝑊 ) + ∫𝐴𝑐

𝐿(𝜃1,𝑊 )
𝐿(𝜃1)

d𝜇(𝑊 ) =

1
𝐿(𝜃1) ∫

1𝐴(𝑊 )𝐿(𝜃2,𝑊 ) + 1𝐴𝑐 (𝑊 )𝐿(𝜃1,𝑊 ) d𝜇(𝑊 ) (2)

We get a similar result for the right integral with 𝐿(𝜃1) replaced by 𝐿(𝜃2). Now the theorem follows. □

If given two parameters or statistical models 𝜃1 and 𝜃2, we shall refer to the integral

∫ min
(

1,
𝐿(𝜃2,𝑊 )
𝐿(𝜃1,𝑊 )

)

d𝑃𝜃1 (𝑊 |𝑌 )

as the truncated likelihood-ratio (integral) of 𝜃2 wrt. 𝜃1.

Corollary 2. From the proof of the theorem it follows that the likelihood-ratio is given by the truncated likelihood-ratios divided by each
other:

𝐿(𝜃1)
𝐿(𝜃2)

=
∫ min

(

1, 𝐿(𝜃1 ,𝑊 )
𝐿(𝜃2 ,𝑊 )

)

d𝑃𝜃2 (𝑊 |𝑌 )

∫ min
(

1, 𝐿(𝜃2 ,𝑊 )
𝐿(𝜃1 ,𝑊 )

)

d𝑃𝜃1 (𝑊 |𝑌 )
(3)

Remarks. Note that the truncated likelihood-ratio is numerically stable due to the upper limit of 1. We have been slightly restrictive
for the ease of presentation: the non-zero property of 𝑝𝜃(𝑌 ,𝑊 ) can be relaxed somewhat, and we may also include prior probabilities
for 𝜃1 and 𝜃2 in the inequality.

Scope of the theorem. Apart from its intrinsic value, the greatest benefit of Theorem 1 is the fact that 𝐿(𝜃1,𝑊 ) is typically easy and
fast to calculate.

Thus, the presented result can be used as an algorithmic tool in likelihood-based statistics, wherever latent variables are present
and we do not wish to evaluate the actual likelihood values. We identify three scopes for application, maximum likelihood estimation,
2
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2.1. Maximum likelihood estimation

For maximum-likelihood estimation, suppose that we have a current parameter estimate 𝜃0. Let 𝜃1 be a new proposal. According
to Theorem 1 we can determine if 𝐿(𝜃1) > 𝐿(𝜃0) by evaluating and comparing the truncated likelihoods. Assuming that we can
evaluate the truncated likelihood, we can devise a (model-specific) algorithm for likelihood inference without actually computing
the likelihood.

As noted in the introduction, there already exists a widely used algorithm, that shares the same basic characteristics, namely the
EM algorithm. However, the EM algorithm is restricted by the fact that it cannot move ‘‘too far’’ from the current estimate, often
giving slow convergence. There are potentially use cases where an algorithm based on Theorem 1 with suitably tailored parameter
proposals might outperform the EM algorithm in terms of convergence. We leave this as future work.

2.2. Model selection

Assume that we have 𝑁 different parameter values, 𝜃1,… , 𝜃𝑛, corresponding to 𝑛 groups, and a datum 𝑦 ∈  . We wish to assign 𝑦
to the group having the highest likelihood, argmax 𝑝�̂�𝑘 (𝑦), this is the typical setting of model-based classification common to statistics
and machine learning.

Using Theorem 1, we can devise an algorithm that calculates argmax 𝑝�̂�𝑘 (𝑦) without knowing the value of 𝑝�̂�𝑘 (𝑦):

Algorithm 1.

1. For 𝑗, 𝑘 = 1,… , 𝑁 , calculate the truncated likelihood-ratio 𝑑𝑗𝑘 by

𝑑𝑗𝑘 = ∫ min
(

1,
𝐿(𝜃𝑘,𝑊 )
𝐿(𝜃𝑗 ,𝑊 )

)

d𝑃𝜃𝑗 (𝑊 |𝑦)

2. If it holds that

𝑑𝑗𝑙 > 𝑑𝑙𝑗 for all 𝑙

for some 𝑗, we conclude that 𝜃𝑗 has the highest likelihood, ie. 𝑗 = argmax 𝑝�̂�𝑘 (𝑦).

However, finding the conditional distributions 𝑃𝜃1 (𝑊 |𝑦) often pose a challenge in itself, one solution is to use MCMC methods:

Algorithm 2.

1. Select 𝐾, the number of particles in the MCMC algorithm
2. For 𝑗 = 1,… , 𝑁 , run MCMC sampler to obtain 𝐾 samples 𝑤𝑗,1,… , 𝑤𝑗,𝐾 of the conditional distribution (𝑊 |𝑦𝜃𝑗 ).
3. For 𝑗, 𝑘 = 1,… , 𝑁 , approximate the truncated likelihood-ratio 𝑑𝑗𝑘 by

𝑑𝑗𝑘 = 1
𝐾

𝐾
∑

𝑙=1
min

(

1,
𝑝𝜃𝑘 (𝑦,𝑤𝑗𝑙)
𝑝𝜃𝑗 (𝑦,𝑤𝑗𝑙)

)

4. If it holds that

𝑑𝑗𝑙 > 𝑑𝑙𝑗 for all 𝑙

for some 𝑗, we conclude that 𝜃𝑗 has the highest likelihood, ie. 𝑗 = argmax 𝑝�̂�𝑘 (𝑦).

Since the 𝑑𝑗𝑘 values are an approximation of the true truncated likelihoods, there is no guarantee that we can find a 𝑗 with the
latter property. However if 𝑝𝜃1 (𝑦),… , 𝑝𝜃𝐾 (𝑦) are distinct, an ‘‘optimal’’ 𝑗 will eventually exist for increasing 𝐾.

Computational cost. The computational cost for model selection consists of two parts:

• A computational cost for approximating the posterior, this is 𝑂(𝑛)
• A computational cost for pairwise comparison of likelihoods this is 𝑂(𝑛2)

In general, we expect the computational cost of approximating the posterior to dominate the computational cost of pairwise
comparisons for small 𝑁 , as the former typically would rely on potentially costly MCMC (cf. algorithm 2).

2.3. Likelihood ratios

Finally, we can use Corollary 2 to approximate likelihood-ratios and hence likelihood-ratio tests. The approximation by MCMC
is

𝐿(𝜃𝑗 )
𝐿(𝜃𝑘)

≈

∑𝐾
𝑙=1 min

(

1,
𝑝𝜃𝑘 (𝑦,𝑤𝑗𝑙 )
𝑝𝜃𝑗 (𝑦,𝑤𝑗𝑙 )

)

∑𝐾
𝑙=1 min

(

1,
𝑝𝜃𝑗 (𝑦,𝑤𝑘𝑙 )

)

3

𝑝𝜃𝑘 (𝑦,𝑤𝑘𝑙)
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Fig. 1. Trajectories of arm movements. The movement is from left to right.

using the notation of Algorithm 2.

3. Example: Model selection for arm movement data

In this section we will demonstrate the theorem by applying it to a classification problem on a data set of arm movements from
functional data analysis (Grimme, 2014). Here, the goal is to detect which of 10 people that performed a specific trajectory. Olsen
et al. (2018) outlines the details of the classification experiment and also proposed a non-linear mixed-effects model that were
superior compared to other methods. Trajectories for the 10 people can be seen in Fig. 1.

The classification method proposed by Olsen et al. (2018) is essentially a model selection problem.

Statistical model. A datum 𝑦 consists of discrete observations from a trajectory 𝑦 ∶ [0, 1] → R3, which we model by

𝑦(𝑡) = 𝜃𝑗 (𝑣(𝑡, 𝑤)) + 𝑥𝑛(𝑡) (4)

where 𝑥𝑛 is a Gaussian process, 𝜃𝑗 is the ‘‘mean curve’’ of subject 𝑗 and 𝑣(, 𝑤) models the temporal deviation as a function of a latent
Gaussian variable 𝑤 ∈ R7.

The full-observation likelihood 𝑝𝑗 (𝑦,𝑤) can be described as a Gaussian probability:

𝑝𝑗 (𝑦,𝑤) = 𝑝0𝑗 (𝑦|𝑤)𝑝1𝑗 (𝑤)

where both 𝑝0𝑗 and 𝑝1𝑗 are Gaussian probability densities. However, the highly non-linear model (4) makes the likelihood for the
observed data

𝑝𝑗 (𝑦) = ∫ 𝑝0𝑗 (𝑦|𝑤)𝑝1𝑗 (𝑤) d𝑤

intractable, and so other methods are needed for estimation and model selection. Since estimation in (4) is not within the scope of
this article, we refer to Olsen et al. (2018) and restrict our focus to model selection.

3.1. Model selection

To perform model selection for a new, unseen datum 𝑦, Olsen et al. (2018) used a Laplace approximation to approximate 𝐿𝑗 (𝑦).
Here we instead demonstrate model selection using Algorithm 2. This does not require approximating the full likelihood 𝐿𝑗 (𝑦),

but only the conditional distribution (𝑤|𝑦; 𝑗), for which an MCMC sampler can be used.
To do this, we sampled from the posteriors (𝑤|𝑦𝑛, 𝜃𝑗 ) using an MCMC sampler, and compared these likelihoods using Theorem 1.

In detail, let 𝑦test be a datum from the test set. Then for each subject 𝑗 ∈ {1,… , 10}:

• Initialize 𝑤𝑗 = 0 ∈ R7

• Run MCMC sampler to obtain 60 samples 𝑤𝑗,1,… , 𝑤𝑗,60 of the posterior distribution (𝑤|𝑦; 𝑝𝑗 ).
• For each pair of subjects 𝑗, 𝑘 = 1,… , 10, approximate the truncated likelihood-ratio 𝑑𝑗𝑘 by

𝑑𝑗𝑘 = 1
60

60
∑

min

(

1,
𝑝0𝑘(𝑦|𝑤𝑗𝑙)𝑝1𝑘(𝑤𝑗𝑙)
0 1

)

4

𝑙=1 𝑝𝑗 (𝑦|𝑤𝑗𝑙)𝑝𝑗 (𝑤𝑗𝑙)
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Table 1
Array of log-transformed truncated likelihood ratios log(𝑑𝑗𝑘) when doing model selection for a datum. Bold indicates entries where 𝑑𝑗𝑘 ≥ 𝑑𝑘𝑗 . Bottom row indicates
he number of such occurrences for each column.

1 2 3 4 5 6 7 8 9 10

1 0.00 −0.94 0.00 0.00 −165.9 −0.13 −116.7 0.00 −91.19 −1.91
2 −449.77 0.00 −64.78 0.00 −91.37 −2.71 0.00 −69.34 −255.8 −92.0
3 −346.0 −87.55 0.00 −4.09 −303.4 −73.33 −145.1 −57.96 −330.7 −284.4
4 −484.07 −106.9 −148.2 0.00 −178.1 −91.99 −79.58 −149.5 −328.0 −157.3
5 −551.7 −14.17 −201.9 0.00 0.00 −0.42 0.00 −143.1 −290.0 −7.75
6 −497.5 −46.24 −108.9 0.00 −81.10 0.00 −0.79 −109.6 −276.4 −91.65
7 −812.0 −123.9 −301.0 −56.34 −142.4 −94.79 0.00 −313.1 −470.2 −207.3
8 −243.7 −65.24 −13.57 0.00 −223.1 −43.47 −134.7 0.00 −236.5 −115.8
9 −64.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 −431.3 −66.7 −239.8 −0.15 −52.98 −23.82 −4.09 −126.0 −291.9 0.00

# 2 6 7 10 3 8 9 4 1 5

This returns a 10 × 10 array of values 𝑑𝑗𝑘 for the selected datum. By comparing these values we can now classify 𝑦 to the class with
he highest likelihood, cf. Algorithm 2.

Results are shown in Table 1: here the datum was classified to category 4. The full ‘‘ordering’’ of models is given by:

𝐿4 > 𝐿7 > 𝐿6 > 𝐿3 > 𝐿2 > 𝐿10 > 𝐿8 > 𝐿5 > 𝐿1 > 𝐿9

here 𝐿𝑗 = 𝑝𝑗 (𝑦) is the likelihood corresponding to group 𝑗.

. Discussion

With its general setting, the presented theorem is valid in a wide range of models, since latent variables are present in many
lasses of statistical models. The great benefit of the results lies in the fact that calculating ‘‘full’’ likelihood is often fast and
asy to implement. We remark however, that the presented work is not a modelling tool, and we are still subject to robustness,
isspecification and other aspects of statistical modelling.

As noted in the introduction, there are similarities to the EM-class algorithms, but also a notable difference: EM-class algorithms
se only the posterior distribution of the current estimate, whereas applications of the presented theorem use two posterior
istributions. With the presented theorem we are free to choose any proposal 𝜃∗ for an updated estimate, but we are not guaranteed
likelihood improvement as in the EM-class algorithms.

We expect the main application of the presented theorem to be model selection as demonstrated in Section 3. Apart from setting
p the MCMC, the proposed solution is fairly plug-and-play and does not rely on any integral approximation for the likelihood,
hich may require considerable work in a practical setting and can be hard to assess

When using MCMC for approximating the posterior, as done in the presented example, this introduces some uncertainty in the
omparison of the truncated likelihoods due to the randomness in the MCMC algorithms. Increasing the number of particles in
he MCMC sampler would decrease this uncertainty at a price of increased computational cost. In the presented example we did
airwise comparisons of all 10 models, which required the evaluation of 100 truncated likelihood integrals. This was helpful in
ssuring consistency — the pairwise evaluations gave a consistent ordering of the models.

In the example we used a Metropolis–Hastings (MH) algorithm. The MH algorithm is arguably the most popular MCMC algorithm,
ut many other strong MCMC algorithms exist. A discussion of pros and cons is left for future work, we refer to Brooks et al. (2011)
or a general discussion of MCMC algorithms.

We see this work as an addition to the statistician’s toolbox, where it may be combined with a wide range of models and methods.
hereas it may not outperform specialized methods for classification (it is a purely algorithmic tool) or lead to fast and general

ptimization algorithms, it is easily implemented in an MCMC setting, which is one of the most common and versatile tools in
tatistics. The truncated likelihood ratio can potentially be combined with various tools of Bayesian methodology such as INLA (Rue
t al., 2009) and Approximate Bayesian computation, we leave this for future work.

ata availability

Data sources can be found in the cited material.
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