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A B S T R A C T   

Protein structure determination is a critical aspect of biological research, enabling us to understand protein 
function and potential applications. Recent advances in deep learning and artificial intelligence have led to the 
development of several protein structure prediction tools, such as AlphaFold2 and ColabFold. However, their 
performance has primarily been evaluated on well-characterised proteins and their ability to predict sturtctures 
of proteins lacking experimental structures, such as many snake venom toxins, has been less scrutinised. In this 
study, we evaluated three modelling tools on their prediction of over 1000 snake venom toxin structures for 
which no experimental structures exist. Our findings show that AlphaFold2 (AF2) performed the best across all 
assessed parameters. We also observed that ColabFold (CF) only scored slightly worse than AF2, while being 
computationally less intensive. All tools struggled with regions of intrinsic disorder, such as loops and propeptide 
regions, and performed well in predicting the structure of functional domains. Overall, our study highlights the 
importance of exercising caution when working with proteins with no experimental structures available, 
particularly those that are large and contain flexible regions. Nonetheless, leveraging computational structure 
prediction tools can provide valuable insights into the modelling of protein interactions with different targets and 
reveal potential binding sites, active sites, and conformational changes, as well as into the design of potential 
molecular binders for reagent, diagnostic, or therapeutic purposes.   

1. Introduction 

Understanding 3-dimensional (3D) protein structures is key to many 
research questions, ranging from fundamental topics concerning how a 
given protein functions to translational hurdles involving using such 
information to manipulate protein function for industrial, therapeutic or 
other purposes. The most reliable approach towards resolving protein 
structures has been the use of experimental technologies, such as X-ray 
crystallography or nuclear magnetic resonance (NMR), and more 
recently, cryogenic electron microscopy. Yet, such approaches are time- 
consuming, low-throughput, and sometimes impossible for difficult to 
crystallise targets such as membrane proteins (Kermani, 2021). In an 
attempt to increase throughput and allow for 3D characterisation of 
large structural datasets and produce structures of proteins where 

conventional approaches fail, scientists have explored computational 
methods for the prediction of structures based on evolutionary history. 
Homology modelling aims to predict the 3D structure of a given protein 
(target) sequence based on its homology to solved structures (templates) 
(Thompson et al., 2020; Bai et al., 2015) and pairwise evolutionary 
correlations (Jones et al., 2012; Marks et al., 2011; Weigt et al., 2009; 
Shindyalov et al., 1994; Altschuh et al., 1987). Homology modelling has 
been used to produce structure models for at least one domain in more 
than half of all known sequences and a total of over 38 million models 
deposited on ModBase (Pieper et al., 2014). The majority of these 
deposited structures were generated using the software program MOD
ELLER (MDLR), an established and excellent protein modelling structure 
tool (Bitencourt-Ferreira and de Azevedo, 2019; Webb and Sali, 2016). 
This approach has aided in our understanding of protein structures and 
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has grown in accuracy with the increasing number of experimental 
structures deposited in the Protein Data Bank (PDB) (Protein Data Bank, 
2019), the rise of genomic sequencing, and the availability of deep 
learning techniques allowing rapid interpretation of these data. Never
theless, more often than not, current evolutionary-history-based ap
proaches fall short of generating predictions comparable to 
experimental accuracy, especially for proteins lacking closely related 
and experimentally resolved homologues. This has curtailed the utility 
of homology protein structure modelling for many biological applica
tions to date. 

Recently, protein structure prediction has, however, undergone a 
renaissance with the application of sophisticated machine learning ap
proaches. Whilst many of these algorithms are still reliant on template 
proteins and multiple sequence alignment (MSA), the shift from a 
rational decision tree to transformer-based neural networks has seen a 
substantial improvement in prediction accuracy (Jumper et al., 2021). 
Indeed, the first protein structure prediction tool using transformers, i.e. 
AlphaFold2 (AF2) (Jumper et al., 2021), achieved the highest accuracy 
prediction at the Critical Assessment of protein Structure Prediction 
(CASP) competition (CASP14) (Pereira et al., 2021). Its accuracy was 
comparable to experimental protein structure determination with 36% 
of their submitted protein targets having a root-mean-square deviation 
(RMSD) under 2 Å (generally considered to be a solved structure), and 
86% under 5 Å, with a total mean of 3.8 Å, which presented an 
impressive performance comparable to experimental accuracies. Since 
then, AF2 predicted structures for the near-whole proteome of 48 species 
with over 200 million entries (https://alphafold.ebi.ac.uk/) have been 
made publicly available, and the transformer-based approach of AF2 has 
also been independently reproduced in another tool, RoseTTAFold 
(Baek et al., 2021). 

Whilst the prediction precision of these tools is unprecedented, the 
computational power required to leverage them is substantial. Primar
ily, building the MSAs is computationally intensive (multiple hours and 
>2 TB of storage per protein) and involves sensitive homology searches 
via HMMER (Eddy, 2011) and HHblits (Steinegger et al., 2019). Further, 
running the deep neural networks for the modelling itself also requires 
computational power and memory, albeit negligible compared to 
building the MSAs. With this need for substantial computation in mind, 
researchers developed ColabFold (CF) (Mirdita et al., 2021), which 
harnesses Google Colaboratory and thus provides free access to powerful 
graphics processing units (GPUs). CF also accelerates predictions (20–30 
times faster than AF2) by using MMseqs2 search (Mirdita et al., 2019; 
Steinegger et al., 2017) instead of AF2’s native input feature generation. 
Further, CF also leverages optimisation strategies for predictions of 
multiple structures by avoiding recompilation and adding early stop 
criteria. Still, the question remains of what approach to rely on, if any, 
for protein structure prediction. The reliance of MDLR, AF2, and CF on 
homology alignments suggests that whilst all of these approaches excel 
in well-characterised areas of biology, they might struggle when few 
high quality templates exist. This is particularly relevant for snake 
venom toxins. Here, 19,000–25,000 toxins are predicted to exist 
(Laustsen et al., 2016), but only around 2,000 different proteins have 
been described, and an even smaller percentage (<10%) of their struc
tures have been experimentally resolved. Yet, understanding venom 
toxin structures could carry many benefits in either harnessing their 
beneficial potential as therapeutics (Mohamed Abd El-Aziz et al., 2019; 
Li et al., 2018; Ferraz et al., 2019) or for developing better treatments for 
snakebite envenomings (Gutiérrez et al., 2017; Knudsen et al., 2018; 
Jenkins et al., 2019). 

Thus, to investigate the performance of three commonly used protein 
structure prediction tools on less characterised and potentially chal
lenging protein targets, we predicted the structures of 1,062 snake 
venom toxins using MDLR and CF and compared them to each other and 
to AF2 predicted structures. 

2. Materials and methods 

2.1. Retrieval of snake venom toxin sequences 

To retrieve the sequences of all published snake venom toxins (Nov. 
2020) belonging to potentially medically relevant toxin families, we 
used the utilities offered by VenomZone (VenomZone). We selected 
C-type lectins (CTLs), disintegrins (DISs), kunitz-type serine protease 
inhibitors (KUNs), phospholipase A2s (PLA2s), snake venom metal
loproteases (SVMPs), snake venom serine proteases (SVSPs), and 
three-finger toxins (3FTxs), and searched for entries on UniProt (e.g., 
taxonomy:serpentes family:"phospholipase a2 family” (annotation: 
(type:"tissue specificity” venom) OR locations: (location:nematocyst)) 
AND reviewed:yes). The toxin UniProt entry information was retrieved 
with custom Python scripts using Biopython’s (Cock et al., 2009) 
ExPASy package (Gasteiger et al., 2003). 

2.2. Identification of experimentally resolved toxin structures 

The protein database (PDB) information on those entries was 
examined by cross-reference documentation in the obtained UniProt 
files. Where there were multiple annotated PDB entries for a UniProt 
accession, the entry with the highest resolution and chains corre
sponding to the toxin was used. This was achieved simply by parsing 
UniProt files using custom scripts. Preference was given to X-ray struc
tures. Thereafter, for a given toxin, the selected PDB file containing 
structural information for that entry was retrieved using pdb-tools 
(Rodrigues et al., 2018). Using the same tool, files obtained were 
filtered, selecting for chains corresponding to the toxin, and removing 
ligands and hydrogens in the structure. This process was also automated 
via bash scripting. 

2.3. Generating modeller structures 

For the remaining toxins that did not contain an annotated structure, 
the theoretical structure was predicted using homology modelling al
gorithms. To that purpose, we employed the Python MODELLER soft
ware (Webb and Sali, 2016). Toxins below the threshold length of 30 
amino acids were discarded. Thereafter, the “multiple template model
ling” approach and “loop refinement” were used with the PDB_95 
database for template search. These methods significantly improve 
modelling quality, especially of complex regions, such as loops (Webb 
and Sali, 2016). Predictions were automated and run using multiple 
threading with subprocesses. For each toxin sequence, a total of 10 
models were generated, and the best model, based on the lowest discrete 
optimised protein energy (DOPE) score, was selected as the represen
tative model. The DOPE score (Shen and Sali, 2006) is based on an 
improved reference state that corresponds to non-interacting atoms in a 
homogeneous sphere with the radius dependent on a sample native 
structure; it thus accounts for the finite and spherical shape of the native 
structures. It is used to assess the energy of the protein model generated 
through many iterations by MODELLER. Finally, we evaluated the DOPE 
score of all of our toxin models to ensure the overall quality was suffi
cient to merit their usage for further research. 

2.4. Generating ColabFold structures 

A version of ColabFold/MMSeqs2 (Steinegger et al., 2019) was 
modified to allow batch generation of structures. The program, origi
nally designed to process single proteins via an online interface, was 
restructured in order to process multiple sequences from file input. 
Functions were rewritten to eliminate use of global variables, in order to 
permit loop processing. A mechanism was added to allow processing to 
be interrupted and restarted without repeating previously generated 
structures. This was essential to allow use of cheap compute facilities 
such as Google Colab and Colab Pro, which reserve the right to interrupt 
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long-running jobs. This mechanism also allowed processing to be shared 
across multiple compute instances. The feature dictionary and all other 
parameters for reproducing the structure generation of any particular 
structure (and generation errors, if any) were written to 
sequence-specific files during batch processing. The number of CF 
models calculated for each residue was set to the maximum, five; 
multi-sequence alignment was set; environmental processing was set; 
Amber relaxation was enabled; use of templates was enabled; and 
homooligomer processing was disabled. Query sequences of less than 20 
residues or more than 1400 residues were skipped. Amber relaxation 
does not work for incomplete sequences with undetermined residues, so 
changes to the program were made to recognise these cases 

automatically and to invoke ColabFold without relaxation. The FASTA 
file processing was based on code from brentp (github) and Minkyung 
Baek’s modification to allow Colabfold to process complexes, as used in 
MMSeqs2, was retained (Baek and Baker, 2022). 

2.5. Retrieving AlphaFold2 structures 

To retrieve relevant toxin structures predicted by AF2, we down
loaded the latest database (https://alphafold.ebi.ac.uk/download) and 
selected the same list of UniProtIDs as were used in our MDLR and CF 
predictions. 

Fig. 1. Quality evaluation of the toxin structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF). Kernel Density Estimate of the distribution 
of DOPE scores for Modeller (Panel A), per-residue pLDDT values for AF2 (Panel B), and CF (Panel C). For Panels B and C, the pLDDT values are averaged for each 
model and categorized as Very Low Confidence (pLDDT < 50, orange), Low Confidence (50 ≤ pLDDT < 70, yellow), Confident (70 ≤ pLDDT < 90, blue), and Very 
Confident (pLDDT ≥ 90, green). The shading under the curves in all panels indicates the relative density of models falling within each quality range or score. D) Clash 
scores, i.e. the number of serious clashes per 1000 atoms, defined as all non–donor–acceptor atoms overlapping by more than 0.4 Å. E) MolProbity scores (scores 
measured in percentiles; percentile ≥66 being the best); Ramachandran outliers (scores from 0 to 1; 1 being the best); F) Ramachandran favoured percentage (scores 
from 0 to 1; 1 being the best). Significant differences were established via Wilcoxon matched-pairs signed rank test and indicated by an asterisk (P < 0.05). 
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2.6. Trimming of propeptides 

To enhance the accuracy and efficiency of our protein structure 
prediction we developed a code to detect and trim the signal peptides 
since these are not part of the mature protein or its function. The code is 
available via GitHub (https://github.com/nilshof01/signal_cleaver). 
Before starting the main script it is necessary to download the SignalP6 
package. For the processing of the UniProtIDs and predicting potential 
signal peptides, we developed a Python3.9 script to retrieve the se
quences by giving a list of IDs as input. Next, the protein sequences are 
analysed using SignalP6, a state-of-the-art software capable of predict
ing the presence and location of all five signal peptide cleavage sites in 
protein sequences. The software generates a GFF (General Feature 
Format) file for each ID in a separate folder, which contains the start-, 
end position and score of the predicted signal peptide regions (Teufel 
et al., 2022). A further Python script was developed to parse over the 
GFF files and extract this information for each ID in a pandas dataframe 
which was subsequently used to trim the sequences subsequently. 
Finally, the actual N-terminal trimming of the PDB file was performed 
using phenix.pdbtools (Liebschner et al., 2019). All structures have been 
deposited in Mendeley data (https://doi.org/10.17632/gjk47cjm26.1). 

2.7. Quality control and comparisons of structures 

To assess the quality and validate the toxin structures predicted by 
MDLR, AF2, and CF, we used several different approaches. Both 
AlphaFold2 and ColabFold provide their own measure of predicted 
model confidence as a per-residue predicted local distance difference 
test (pLDDT) score. MDLR assesses model quality using the discrete 
optimised protein energy (DOPE) method and provides a score for each 
model. These intrinsic accuracy measures were also considered in our 
evaluation of the models produced by each tool. The distribution of 
model-averaged pLDDT and DOPE scores was visualised using Kernel 
Density Estimate (KDE) plots. Plots were generated using seaborn and 
matplotlib in Python, with specific color-coded regions to denote vary
ing confidence levels of the pLDDT values. We evaluated the Ram
achandran scores (outliers and favoured percentage), which indicate the 
number of amino acid residues with poor or favoured φ/ψ (Phi/Psi) 
angles. Phi/Psi angles are the dihedral angles in the protein backbone. 
Only certain angles are typically found in proteins. Finally, we compared 
our models’ Molprobity scores (Davis et al., 2007). MolProbity is a 
structure-validation web service which uses a weighted function of 
clashes, Ramachandran favoured, and rotamer outliers, scaled and 
normalised so that its value approximates the resolution at which that 
score would be average. To assess global and local differences between 
models generated by each of the three tools, we performed pairwise 
structural alignment of each toxin model using the superimpose method 
(Shindyalov and Bourne, 1998) from the Bio.PDB module in the Bio
python toolbox and ranked aligned pairs by RMSD, separated by toxin 
family. Cases where RMSD was highest/lowest for each toxin family 
were inspected manually to identify areas of structural disagreement. 
Statistical analysis was performed as outlined above. To establish sta
tistical significance the dataset was analysed via Prism (v.9.5.1). Once a 
lack of Gaussian distribution was established via both the Shapiro-Wilk 
and Kolmogorov-Smirnov test, the Wilcoxon matched-pairs signed rank 
test was selected as appropriate non-parametric analysis to conduct 
pairwise comparisons of AF2, CF, and MDLR. 

3. Results 

3.1. Generation, retrieval, and validation of toxin structures 

For this study, we retrieved 1062 snake venom toxin sequences from 
UniProt, including 220 C-type lectins (CTLs), 82 disintegrins (DISs), 145 
kunitz-type serine protease inhibitors (KUNs), 190 phospholipase A2s 
(PLA2s), 135 snake venom metalloproteases (SVMPs), 147 snake venom 

serine proteases (SVSPs), and 274 three-finger toxins (3FTxs). Structures 
were generated for all of these sequences using MDLR, as well as CF. The 
respective AF2 structures were retrieved from the database. For any 
structures that had a propeptide, it was trimmed to allow for an equal 
comparison across tools. Notably, all tools appeared to model these 
propeptides very poorly. The 3186 trimmed structures were evaluated 
based on their individual confidence scoring, as well as via a series of 
parameters, including Clash scores, MolProbity scores, and Ramachan
dran favoured percentage. AF2 was significantly better than both MDLR 
and CF across all scores. MDLR performed the worst, though it was only 
slightly worse than CF in both Ramachandran evaluations (Fig. 1; 
Table S1). Notably, MDLR also performed worse on Clash and MolPro
bity scores, the more amino acid residues a given structure had (Fig. S2). 

3.2. Comparing all modeller, ColabFold, and AlphaFold2 structures 

To understand the differences in the structure prediction of the three 
modelling tools, all of the toxin structures underwent a three-way 
comparison. The largest variation in RMSD between models was 
observed in SVMPs, whereas the smallest was found to be for KUNs 
(Fig. 2; Tables S3 and S4). RMSD was significantly different across all 
toxin families between AF2/MDLR and CF/MDLR, when compared to 

Fig. 2. Differences in root-mean-square deviation (RMSD) between the toxin 
structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold 
(CF) and across the following toxin families: C-type lectins (CTLs), disintegrins 
(DISs), kunitz-type serine protease inhibitors (KUNs), phospholipase A2s 
(PLA2s), snake venom metalloproteases (SVMPs), snake venom serine proteases 
(SVSPs), and three-finger toxins (3FTxs). A) This resulted in three comparisons, 
i.e. AF2/CF, AF2/MDLR, and CF/MDLR. Significant differences were estab
lished via Wilcoxon matched-pairs signed rank test and indicated by an asterisk 
(P < 0.05). B) Differences between AF2 and CF only. 
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AF2/CF. Meanwhile, differences between AF2/MDLR and CF/MDLR 
were insignificant for all toxin families besides CTLs and 3FTxs. This 
indicated that AF2 and CF models exhibited a greater degree of simi
larity to each other than to structures generated by MDLR. The largest 
differences between AF2 and CF models were found within the CTL and 
SVMP families. 

Across all tools, it was found that the mean difference in RMSD was 

14.80 Å with a standard deviation of 30.94 Å between MDLR and CF, 
14.44 ± 30.97 Å between MDLR and AF2, and 2.77 ± 0.08 Å between 
AF2 and CF (Table S3). The highest similarity across all three was 
observed between models of toxins sharing the classic three-finger toxin 
fold, such as in P60774 from Naja samarensis, with an RMSD of 0.4 Å 
between MDLR and AF2 and no appreciable differences (Fig. 3A). On the 
other hand, the largest difference observed by RMSD (145 Å) was 

Fig. 3. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF), with the (A) most (P60774) and (B) least (Q10749) overlap across the 
entire dataset. Peptidase domain used for alignment (B) highlighted (red). 

Fig. 4. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF), with the (A) most (D8VNS6) and (B) least (Q6X5S5) overlap across C- 
type lectins. (C) The largest difference between AF2 and CF predictions (A7X3W1). D) Differences in root-mean-square deviation (RMSD) between the toxin 
structures predicted by MDLR, AF2, and CF. Significant differences were established via Wilcoxon matched-pairs signed rank test and indicated by an asterisk (P 
< 0.05). 
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between the metalloprotease Q10749 model generated by MDLR and 
either model generated by CF or AF2 (Naja mossambica). Modeller and 
AlphaFold agree only on the core of the peptidase domain, with AF2/CF 
identifying additional N- and C-terminal domains, which remain un
structured in the MDLR model (RMSD 145 Å between MDLR and both 
AF2 and CF; 3 Å between AF2 and CF). Restricting the alignment to the 
peptidase domain leads to a much better fit between models (RMSD 0.4/ 
0.42 Å between MDLR and both AF2 and CF; 0.29 Å between AF2 and 
CF; Fig. 3B). 

3.3. Toxin family specific patterns 

Snake venom toxins comprise a plethora of protein families sub
stantially varying in size and structural complexity (Tasoulis and Isbis
ter, 2017). Therefore, we also explored the predictions across all 
represented protein families. 

3.3.1. C-type lectins (CTLs) 
Snake venom CTLs are 10–30 kDa glycoproteins that contain 

conserved carbohydrate recognition domains and can bind to specific 
sugar residues, resulting in various biological effects (Oliveira et al., 
2022). Overall, we observed a mean RMSD difference of 5.2 ± 2.6 Å 
between all CTL models. The highest similarity was found to be between 
D8VNS6 from Cerberus rynchops (RMSD 0.4 Å between AF2 and CF, 
0.9/08 Å between Modeller and AF2/CF) (Fig. 4A). The largest differ
ence was between Q6X5S5 from Echis ocellatus (8.2 Å between AF2 and 
CF, as well as 15.7 Å and 13.6 Å differences between Modeller and 
AF2/CF, respectively; Fig. 4B). The largest difference between AF2 and 

CF predictions was found to be for A7X3W1 from Pseudoferania polylepis 
(12.6 Å; Fig. 4C). RMSD was significantly different between all three 
comparisons, with AF2/MDLR having the lowest average RMSD (3.3 Å) 
and CF/MDLR the highest (6.9 Å; Fig. 4D). Though not assessed in this 
study, we would expect to observe similar structural patterns in C-type 
lectin-like (SNACLECS) toxins; specifically that they are more on of the 
toxin families with higher levels of inaccuracies in their computational 
structure predictions. 

3.3.2. Disintegrins (DISs) 
Snake venom disintegrins, with few exceptions, derive from the 

proteolytic processing of PII SVMPs (Oliveira et al., 2022). Overall, we 
observed a mean RMSD difference of 7.0 ± 6.3 Å between MDLR and 
AF2 models. For example, the disintegrin fold of EC3B from Echis car
inatus is predicted under good agreement (RMSD 4.9 Å between AF2 and 
CF, as well as 1.1/1.0 Å between MDLR and AF2/CF Fig. 5A), with all 
solutions showing the same conserved four disulfide bonds expected 
from the heterodimeric disintegrin fold family. Here, most of the dif
ferences arise from the terminal peptidic regions that are not part of the 
disulfide-linked core. The largest differences were found between 
P0DJ43 models (RMSD 38/37 Å between MDLR and AF2/CF, 20 Å be
tween AF2 and CF) from Micropechis ikaheka (Fig. 5B). There is very little 
agreement across the three different models. Notably, the only section 
scored by AlphaFold to have “very high confidence” (pLDDT >90) is a 
<20 amino acid residue segment within the disintegrin domain. All 
three tools were able to model the predicted disulfide bonding pattern. 
The largest difference between AF2 and CF predictions was found to be 
for P0DJ43 (19.7 Å; Fig. 5C). RMSD was significantly different between 

Fig. 5. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF), with the (A) most (P81631) and (B) least (P0DJ43) overlap across 
disintegrins. (C) The largest difference between AF2 and CF predictions (P0DJ43). D) Differences in root-mean-square deviation (RMSD) between the toxin structures 
predicted by MDLR, AF2, and CF. Significant differences were established via Wilcoxon matched-pairs signed rank test and indicated by an asterisk (P < 0.05). 
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AF2/CF and both AF2/MDLR and CF/MDLR, with AF2/CF having the 
lowest average RMSD (3.6 Å) and AF2/MDLR the highest (7 Å; Fig. 5D). 

3.3.3. Kunitz-type serine protease inhibitors (KUNs) 
KUNs are 6–7 kDa small proteins containing three unique disulfide 

bonds that can inhibit the proteolytic activities of serine proteases and 
also include the highly neurotoxic dendrotoxins (Oliveira et al., 2022). 
Overall, we observed a mean RMSD difference of 2.8 ± 3.3 Å between all 
KUN MDLR and AF2 models. The highest similarity is between C1IC51 
from Walterinnesia aegyptia (RMSD 0.2 Å between AF2 and CF, 0.6 Å 
between Modeller and AF2/CF) (Fig. 4A). The largest difference driven 
by the terminal loop regions is between H6VC05 from Daboia russelii 
(2.0 Å between AF2 and CF, as well as 6.0 Å and 6.4 Å differences be
tween Modeller and AF2/CF, respectively; (Fig. 4B). The largest differ
ence between AF2 and CF predictions was found to be for P0CAR0 (2.5 
Å; Fig. 4C). RMSD was significantly different between AF2/CF and both 
AF2/MDLR and CF/MDLR, with AF2/CF having the lowest average 
RMSD (0.7 Å) and AF2/MDLR as well as CF/MDLR shared highest (1.6 
Å; Fig. 6D). 

3.3.4. Phospholipase A2s (PLA2s) 
Snake venom PLA2s are 13–19 kDa proteins and one of the main 

components of animal venoms (Oliveira et al., 2022). Overall, we 
observed a mean RMSD difference of 3.2 ± 3.4 Å between MDLR and 
AF2 models (Table S3). The highest similarity is detected for P04417 
from Gloydius blomhoffii (with an RMSD of 0.9 Å between AF2 and CF, 
0.4/0.9 Å between MDLR and AF2/CF) (Fig. 5A). The PLA2 domain itself 
is modelled to great agreement in all cases. The largest difference across 
predictions was found between P14411 from Bungarus fasciatus (5.2 Å 
between AF2 and CF, 5.8 Å between MDLR and AF2/CF), with differ
ences mainly arising in positioning of the terminal loop regions 

(Fig. 5B). The largest difference between AF2 and CF predictions was 
found to be for Q8AY47 (15.6 Å; Fig. 5C). RMSD was significantly 
different between AF2/CF and both AF2/MDLR and CF/MDLR, with 
AF2/CF having the lowest average RMSD (1.4 Å) and CF/MDLR the 
highest (3.3 Å; Fig. 7D). 

3.3.5. Snake venom metalloproteases (SVMPs) 
SVMPs are a class of enzymes found in the venom of snakes, with 

sizes ranging from 20 to 100 kDa (Oliveira et al., 2022). Out of 137 
SVMPs (average RMSD 80 ± 46 Å between MDLR and AF2 models), the 
highest similarity between models can be found in P20897 from Crotalus 
ruber (3.2 Å between AF2 and CF, 145 Å between Modeller and AF2/CF; 
Fig. 6A). Meanwhile, the largest difference was observed between 
models of Q10749 from Naja mossambica (6.8 Å between AF2 and CF, 
8.7 Å/7.8 Å between Modeller and AF2/CF; Fig. 6B) mentioned earlier. 
The largest difference between AF2 and CF predictions was found to be 
for Q3HTN1 (27.8 Å; Fig. 6C). RMSD was significantly different between 
AF2/CF and both AF2/MDLR and CF/MDLR, with AF2/CF having the 
lowest average RMSD (6.6 Å) and CF/MDLR the highest (81 Å; Fig. 8D). 
Further analysis revealed that when separately analysing the smaller P–I 
and the larger P-III SVMPS, there are larger discrepancies within the PIII 
models. 

3.3.6. Snake venom serine proteases (SVSPs) 
SVSPs are another class of enzymes found in snake venom, with sizes 

ranging from 26 to 67 kDa (Oliveira et al., 2022). Out of the 147 serine 
proteases (average RMSD 8 ± 13 Å between MDLR and AF2 models), the 
largest similarity between models can be found for Q7SZE2, from 
Gloydius ussuriensis (0.7 Å between AF2 and CF, 0.5 Å and 0.9 Å between 
MDLR and AF2/CF respectively; Fig. 7A). The largest disagreement 
between tools can be found for Q58L94 from Notechis scutatus (10 Å 

Fig. 6. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF), with the (A) most (C1IC51) and (B) least (H6VC05) overlap across 
kunitz-type serine protease inhibitors. (C) The largest difference between AF2 and CF predictions (P0CAR0). D) Differences in root-mean-square deviation (RMSD) 
between the toxin structures predicted by MDLR, AF2, and CF. Significant differences were established via Wilcoxon matched-pairs signed rank test and indicated by 
an asterisk (P < 0.05). 
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between AF2 and CF, 78/75 Å between Modeller and AF2/CF respec
tively; Fig. 7B). Overall, the spread of RMSD between highest and lowest 
similarity models between MDLR and AF2 is 8.3 ± 14 Å. The biggest 
difference between AF2 and CF in RMSD for a given SVSP was found to 
be 16 Å (A6MFK8; Fig. 7C). RMSD was significantly different between 
AF2/CF and both AF2/MDLR and CF/MDLR, with AF2/CF having the 
lowest average RMSD (2.2 Å) and AF2/MDLR as well as CF/MDLR with 
the shared highest (8.3 Å; Fig. 9D). 

3.3.7. Three-finger toxins (3FTxs) 
3FTxs comprise three major subfamilies of toxins, i.e. cytotoxins, 

long-chain neurotoxins, and short-chain neurotoxins (Casewell et al., 
2013). Out of the 275 3FTxs (average RMSD 3 ± 3 Å between MDLR and 
AF2 models), the greatest overlap between models was found to be for 
P60774 (0.37/0.92 Å between MDLR and AF2/CF, as well as 0.97 Å 
between AF2 and CF respectively; Fig. 8A). The largest difference in 
model RMSD was found to be for Q9W7K1 (12.8/12.7 Å between MDLR 
and AF2/CF, as well as 0.95 Å between AF2 and CF respectively; 
Fig. 8B). The protein found to have the largest differences in RMSD 
between AF2 and CF was P34074 (14.4 Å; Fig. 8C). RMSD was signifi
cantly different between all three comparisons, with AF2/MDLR having 
the lowest average RMSD (1.4 Å) and CF/MDLR the highest (3.5 Å; 
Fig. 10D). 

4. Discussion 

Prediction of protein structures is a critical aspect of biological 
research, particularly in understanding the function and potential 
therapeutic applications of proteins or how protein-based disease targets 
can be targeted with therapeutic agents. With the advent of deep 

learning and AI, several protein structure prediction tools have emerged, 
such as Modeller (MLDR), ColabFold (CF), and AlphaFold2 (AF2). Each 
of these tools utilise different algorithms and approaches, resulting in 
different predictions of protein structures. Therefore, in this study we 
aimed to provide insight into the reliability and accuracy of these three 
modelling tools when dealing with proteins that lack experimentally 
solved structures, using snake venom toxins as model systems. A total of 
1,062 snake venom toxin sequences, representing seven protein fam
ilies, were retrieved, and structures were generated for each sequence 
using MDLR and CF. The respective AF2 structures were retrieved from 
the database, and all 3,186 structures (1,062 from each tool) were 
evaluated using various parameters, including Clash score, MolProbity 
score, as well as Ramachandran favoured and outlier percentage to 
ensure that no inherent quality bias was introduced by any of the tools. 
These metrics mostly capture stereochemical quality and geometric re
alism, but they may not always correlate with the accuracy of the model 
in reproducing the true, experimentally determined structure. However, 
they allow assessment of the relative quality and reliability of models 
generated by different prediction tools. The results of the analysis 
revealed significant differences in performance across all three models, 
with the two non-homology-based approaches AF2 and CF exhibiting 
superior performance in all four evaluated parameters compared to the 
homology-based method Modeller. As an additional observation, AF2 
performed better than ColabFold across all evaluated parameters and 
significantly so in both Clash and MolProbity scores, which is in line 
with prior findings (Mirdita et al., 2021). These results indicate that AF2 
and CF, which rely less on the availability of structurally resolved ho
mologues, are more suited for predicting structures of diverse protein 
families, especially those without experimentally solved structures. The 
performance of Modeller, being a homology-based method, may be 

Fig. 7. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF), with the (A) most (P04417) and (B) least (P14411) overlap across 
phospholipase A2s. (C) The largest difference between AF2 and CF predictions (Q8AY47). D) Differences in root-mean-square deviation (RMSD) between the toxin 
structures predicted by MDLR, AF2, and CF. Significant differences were established via Wilcoxon matched-pairs signed rank test and indicated by an asterisk (P 
< 0.05). 

K. Kalogeropoulos et al.                                                                                                                                                                                                                       



Toxicon 238 (2024) 107559

9

indicative of the challenges faced with poorly structurally characterised 
proteins, such as those found among snake venom toxins. 

To have a better understanding of the differences in structure pre
diction quality of the three modelling tools, a three-way comparison was 
conducted over all assessed 1,062 snake toxins. RMSD analysis clearly 
indicated that a substantial spread existed in model overlap across the 
different toxins, ranging from 0.14 to 145 Å. The differences between 

tools were again greatest when MDLR was involved, whereas differences 
between AF2 and CF were rarely significant. Notably, when considering 
different snake toxin families, MDLR exhibited the smallest performance 
differences in short and highly conserved proteins, such as 3FTxs that 
share the classic three-finger toxin fold. MDLR is typically not suitable 
for domains that do not belong to a fold family because it is designed to 
work with targets where it can successfully assign a fold (Webb and Sali, 

Fig. 8. The structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF), with the (A) most (P20897) and (B) least (Q10749) overlap across 
snake venom metalloproteases. (C) The largest difference between AF2 and CF predictions (Q3HTN1). D) Differences in root-mean-square deviation (RMSD) between 
the toxin structures predicted by MDLR, AF2, and CF. Significant differences were established via Wilcoxon matched-pairs signed rank test and indicated by an 
asterisk (P < 0.05). Differences are also shown for both P-1 (E) and P-III (F) SVMPs separately. 
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2016), and differences may arise in the twilight zone of short sequences 
with relatively low similarity (Khor et al., 2015). Consequently, the 
largest performance differences were observed for long and complex 
proteins, such as SVMPs – particularly PIII SVMPs. Nevertheless, MDLR 
was able to successfully model conserved functional cores in SVMPs, 
such as the peptidase domain. This is likely due to the high level of 
structural conservation of such sites due to the need to also conserve 
function (Alberts et al., 2002). Another area where disagreement was 
observed between the generated protein structures was in loop regions. 
Whilst loop regions were typically identified across all three models we 
tested, their conformations often differed across MDLR, AF2, and CF. 
This was unsurprising and stems from proteins being dynamic molecules 
with a large conformational plasticity, allowing them to perform com
plex biological functions (Mukhopadhyay, 2022). Yet, these features are 
not uniformly distributed across the molecule, but are usually localised 
to parts with larger degrees of kinematic freedom (Papaleo et al., 2016). 
Thus, modelling conformations of loop regions remains challenging in 
computational biology and is usually inversely related to loop length 
(Barozet et al., 2021); these dynamics of flexibility, but also lack of 
reference structures, explains why we observed poor modelling of pro
peptides. It also highlights the need for a better structural understanding 
due to key roles of the propetides in chaperoning and to provide insights 
into how the interactions of the propeptide region inhibits enzymatic 
function for the design of inhibitor molecules. Finally, it is notable that 
the overall mean difference between AF2 and CF was close to 3 Å, which 
is large enough to have a substantial impact when used for generative 
ML approaches for protein design (Wang et al., 2021; Watson et al., 
2022). For some SVMPs, these differences even exceed 27 Å, high
lighting the current limitations of the explored protein structure 

prediction tools (Bryant et al., 2022). 
Nevertheless, several of the toxin families assessed in this article 

have structural models that are of sufficiently high quality for further 
analysis, and thus a multitude of use cases; specifically, the highly 
conserved 3FTxs, KUNs, and PLA2s can be used for computational sim
ulations to model their interactions with different targets. This can help 
reveal the details of their binding sites, active sites, and conformational 
changes, as well as for the discovery and design of potential molecular 
binders for reagent, diagnostic, or therapeutic purposes (Norman et al., 
2020). Notably, even toxin families with higher model variability and 
uncertainty (i.e. DISs, SVSPs, and SVMPs) could be used for similar 
purposes, as long as the focus falls on their conserved functional do
mains, such as their active sites. Importantly, these considerations 
regarding the limitations of computational structural modelling are not 
only relevant for toxin researchers, but can also be transferred to any 
other research area that is using computational predictions for protein 
structures and particularly ones with poor experimental coverage, such 
as rare diseases (Rossi Sebastiano et al., 2022). Overall, we hope the 
unravelled dynamics of computational structure prediction and the 
provision of all models and their comparisons constitute a key resource 
that can help de-risk future analyses. 

5. Conclusion 

The availability and accessibility of a range of powerful computa
tional models are a game changer for structural biology. Whilst 
extremely powerful, the plethora of available tools each come with their 
own set of advantages and disadvantages; these are often somewhat 
understood within their application in model organisms, but little data 

Fig. 9. The snake venom serine protease structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF), with the (A) most (Q7SZE2) and (B) least 
(Q58L94) overlap across snake venom serine proteases. (C) The largest difference between AF2 and CF predictions (A6MFK8). D) Differences in root-mean-square 
deviation (RMSD) between the toxin structures predicted by MDLR, AF2, and CF. Significant differences were established via Wilcoxon matched-pairs signed rank 
test and indicated by an asterisk (P < 0.05). 
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exists on their performance on poorly characterised protein targets. 
Here, we studied the performance of three different computational 
structural biology tools on their predictions of over 2000 snake toxin 
structures that have few experimental reference structures available. We 
generated these structures using Modeller and ColabFold and compared 
them to each other as well as AlphaFold2 designs. We found that pre
dictions were often closely aligned between CF and AF2, whereas MDLR 
often offered differing predictions. Nevertheless, differences between AF 
and CF were common, highlighting the need for cross-model validation 
of predicted structures. Notably, all tools performed well in predicting 
functional domains, while struggling with elements that are intrinsically 
disordered, such as loop regions. We further identified toxin families and 
structural features within these, as well as specific toxins, that were 
associated with substantially differing predictions across models. We 
therefore conclude that it is important to consider the complexity of the 
modelling task and use orthogonal modelling methods, such as AF2 and 
CF in combination with each other, to improve the reliability of struc
tural assumptions. This will not only help future research quickly 
identify potential discrepancies and de-risk their use of these models, 
but also highlights key protein families, such as SVMPs, SVSPs, and DISs 
that require further experimental validation. 

Ethical statement 

No experimentation on human or animal subjects was involved in 
this study. 

CRediT authorship contribution statement 

Konstantinos Kalogeropoulos: Conceptualization, Methodology, 

Investigation, Visualization, Resources, Writing - original draft, Writing 
- review & editing. Markus-Frederik Bohn: Conceptualization, Meth
odology, Investigation, Visualization, Resources, Writing - original 
draft, Writing - review & editing. David E. Jenkins: Methodology, 
Investigation, Writing - review & editing. Jann Ledergerber: Investi
gation, Visualization, Writing - review & editing. Christoffer V. 
Sørensen: Investigation, Writing - review & editing. Nils Hofmann: 
Investigation, Writing - review & editing. Jack Wade: Investigation, 
Writing - review & editing. Thomas Fryer: Investigation, Writing - re
view & editing. Giang Thi Tuyet Nguyen: Investigation, Writing - re
view & editing. Ulrich auf dem Keller: Resources, Supervision, Writing 
- review & editing. Andreas H. Laustsen: Resources, Supervision, 
Writing - review & editing. Timothy P. Jenkins: Conceptualization, 
Methodology, Investigation, Visualization, Funding acquisition, Project 
administration, Resources, Supervision, Writing - original draft, Writing 
- review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

All structures have been deposited in Mendeley data (DOI: 
10.17632/gjk47cjm26.1) 

Fig. 10. The three-finger toxin structures predicted by Modeller (MDLR), AlphaFold2 (AF2), and ColabFold (CF), with the (A) most (P60774) and (B) least (Q9W7K1) 
overlap. (C) The largest difference between AF2 and CF predictions (P34074). D) Differences in root-mean-square deviation (RMSD) between the toxin structures 
predicted by MDLR, AF2, and CF. Significant differences were established via Wilcoxon matched-pairs signed rank test and indicated by an asterisk (P < 0.05). 
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