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Accelerating vaccine manufacturing development 
through model-based approaches: current advances and 
future opportunities 
Elham Ramin1, Antonio Gaetano Cardillo2, Reinhard Liebers3,  
Johannes Schmölder4, Eric von Lieres4, Wim Van Molle5,  
Bastian Niebel6, Laurent Natalis7, Irina Meln3,  
Mónica Perea-Vélez8, Didier Clénet9,  
John Bagterp Jørgensen10,11, Bernt Nilsson12,  
Daniel G. Bracewell13 and Krist V. Gernaey1   

This review highlights the importance of model-based 
approaches in accelerating vaccine manufacturing process 
development. The challenges of scaling up from laboratory to 
commercial processes are addressed through the adoption of 
Process Analytical Technology frameworks and Quality by 
Design principles. The application of various modeling 
approaches beyond downstream and upstream processes in 
vaccine production is discussed in detail. These in silico 
process simulation approaches enable deeper understanding 
of manufacturing dynamics, identification of critical process 
parameters, and the development of well-defined design 
spaces, ultimately leading to accelerated vaccine development 
and improved product quality. The authors stress the 
significance of an integrated modeling platform for vaccine 
manufacturing, exemplified by the Inno4Vac project. This 
initiative seeks to develop a comprehensive computational 
platform for vaccine manufacturing and stability testing, with a 
particular focus on stakeholder engagement and collaboration 
with regulatory bodies to ensure the acceptance and 
implementation of the platform. 
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Introduction 
Vaccine administration is widely recognized as one of 
the most valuable healthcare interventions for routine 
immunization and outbreaks management [1]. The re-
cent COVID-19 pandemic has underscored the critical 
importance of developing efficient and effective phar-
maceutical manufacturing processes to produce vaccines 
that are affordable, available at scale, and widely acces-
sible in a short amount of time. 

Despite the remarkable advancements in vaccine dis-
covery science since its discovery in the early 19th 
century [2], the task of effectively scaling up laboratory- 
based processes for commercial manufacturing continues 
to pose a significant challenge [3]. The manufacturing 
process plays a crucial role in preserving the essential 
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properties identified during vaccine discovery, enabling 
the production of substantial quantities under tightly 
controlled conditions for clinical trials and subsequent 
market supply. The complexity and inherent variations 
in the manufacturing process, coupled with stringent 
regulatory requirements governing the biological and 
chemical components, manufacturing processes, testing, 
release procedures, and determination of the product 
expiry period, contribute to the lengthy and costly 
nature of vaccine production. Process development 
alone can account for up to 30% of the time needed for 
successful market introduction of a vaccine [4]. The 
three COVID vaccine approvals within a year of the 
pandemic’s start highlight technology’s accelerating role 
and regulatory adoptability in emergent situations. 

To enhance the efficiency of pharmaceutical manu-
facturing, regulatory bodies such as the U.S. Food and 
Drug Administration (FDA) and European Medicine 
Agency (EMA) have encouraged the adoption of in-
novative methodologies through Process Analytical 
Technology (PAT) frameworks and implementation of 
Quality by Design (QbD) principles [5]. These frame-
works underscore the importance of knowledge-based 
tools that enable manufacturers to better understand, 
predict, and assure the quality of their products during 
development process and manufacturing. In this con-
text, emerging modeling tools such as hybrid modeling  
[6,7], machine learning [8,9], and digital twins [10,11] are 
evaluated for their potential benefits. These approaches 
rely on in silico process simulation, which is based on 
mathematical representation of the manufacturing pro-
cess. By simulating the manufacturing process, one can 
gain a deeper understanding of the underlying dynamics 
and identify critical process parameters (CPPs) that have 
a significant impact on the quality of the final product, 
and their relationship to critical quality attributes 
(CQAs). With a well-defined design space, processes can 
be optimized without requiring additional approvals  
[12]. Thus, accurate and reliable process simulation 
models can enhance the development of robust vaccine 
manufacturing processes, ensuring product quality and 
stability, and reducing development time. 

Model-based approaches have been widely applied in 
diverse biomanufacturing domains to enhance the effi-
ciency of production [13,14]. However, in the context of 
vaccine biomanufacturing, the adoption of these 
methods has not kept pace, despite the existence of 
novel platform technologies for upstream and down-
stream processes in the biopharmaceutical industry  
[15–17]. This disparity can be attributed, in part, to the 
ever-evolving landscape of vaccine types, ranging from 
whole organisms to purified macromolecules, combined 
antigens, recombinant vectors, synthetic peptides, DNA, 
or RNA [2]. Regulatory concerns regarding the impact of 
models on CPPs further contribute to this constraint  

[18]. However, the application of modeling tools in 
vaccine manufacturing is emerging as the biotechnology 
sector increasingly embraces the QbD principles. 

The aim of this publication is to provide an overview of 
recent advances in model-based approaches for the 
purpose of improving process development in vaccine 
manufacturing, and to give an outlook on how an in-
tegrated model-based approach can influence vaccine 
manufacturing in the future. 

Vaccine biomanufacturing process 
development (state-of-the-art) 
Vaccine manufacturing 
Vaccine production, related to the active component or 
the antigen, involves a sequence of unit operations de-
signed to transform starting materials to a final product of 
the required purity. The specific sequence and compo-
sition of the components vary depending on the char-
acteristics of the vaccines. Figure 1 outlines a generic 
flowsheet diagram for vaccine manufacturing and shows 
an example of the key stages for an E. coli-expressed 
antigen process. The process involves upstream cell 
cultivation (fermentation) and isolation through cen-
trifugation or filtration, followed by product recovery 
(lysing) and downstream purification through cen-
trifugation (or sequential membrane filtration) and 
chromatographic steps to reach the desired purity. The 
purified drug/substance can then be used for the for-
mulation/stabilization process and the final fill and finish 
stage. A more detailed description of the specific stages 
for certain vaccine types can be found elsewhere [1]. 

Vaccine manufacturing is a complex process influenced 
by several factors, including the intricate nature of un-
derlying processes and unit operations, as well as the 
diverse range of equipment setups at different scales and 
for different vaccine types. Additionally, the dynamic 
operation modes at various production stages, such as 
fed-batch fermentation and batch purification, con-
tribute to the complexity. These complexities are cur-
rently being addressed in process modeling research and 
development, as outlined in this review. 

Process development 
The objective of vaccine manufacturing process develop-
ment is to identify an optimum design that can con-
sistently achieve production and purity targets with limited 
costs and time, while adhering to regulatory standards. 

In line with the PAT framework and QbD principles, 
process development begins with heuristic risk analysis 
and qualitative assessment to screen parameters. This is 
succeeded by scale-down multivariate experiments, 
utilizing statistical methods to define the design space. 
Subsequent scale-up studies, encompassing monitoring 
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and control, ensure replicable and consistent process 
performance at commercial scales. 

The upstream process involves fermentation of starting 
material, which, in most cases, is generated based on cell 
bank derivation and characterization guidelines (ICH 
Q5D [19]). The objective of upstream process devel-
opment is to increase product yield and expression rate 
while maintaining quality by evaluating and optimizing 
cell metabolism and fermentation process conditions  
[20]. This is typically done using a scale-down approach, 
where the impact of commercial-scale dynamic condi-
tions on cell metabolism is studied in laboratory setups 
and the information is used for scale-up optimization and 
validation [21]. 

Downstream process development, with chromatography 
as the main step, aims to achieve a target purification level 
and involves evaluation of optimal resin type, buffer 
conditions that allow optimal binding of proteins to resins, 
optimal elution conditions, and process robustness [22]. 
The design space is typically explored using empirical 
approaches involving laboratory experiments [23]. 

The scale-down experimentation approach (for both 
upstream and downstream processes) enables the use of 
advanced high-throughput experimentation (HTE) 
methods to screen a larger number of process parameters 
using design of experiments (DoE) and response surface 
model [24,25]. However, this approach requires sig-
nificant experimental efforts, offers limited process un-
derstanding during the development phase, and might 
even lead to a suboptimal process design as the scale- 
down setups might lack accurate representation of con-
ditions in the large-scale. Moreover, while the com-
plexity of the purification process is greatly influenced 

by cell cultivation conditions, it is common practice to 
optimize upstream and downstream processes separately  
[23], which further contributes to a suboptimal design. 
Considering the highly dimensional parameter space 
across multiple unit operations, the experimental studies 
must be complemented with more advanced model- 
based tools to generate deeper process understanding, 
and efficiently explore the design space. 

Figure 2 illustrates the various approaches employed 
throughout process development, emphasizing the ne-
cessity of process understanding when transitioning from 
the knowledge space to the operating space. In this 
context, validated models serve as valuable tools for 
bridging the gap between theoretical insights and prac-
tical implementation. 

Modeling for process development in vaccine 
manufacturing 
Potential benefits of modeling 
Modeling offers several distinct advantages in the con-
text of process development. It provides a robust fra-
mework for understanding the underlying mechanisms 
of the process. By capturing the relationships between 
CPPs and CQAs, models offer valuable insights into the 
system dynamics and behavior [26]. Additionally, mod-
eling serves as a valuable aid in planning and designing 
experimental setups [27] and in evaluating the value 
propositions and risks associated with new products and 
processes under different scenarios [28]. Moreover, va-
lidated models can be used for the development of ad-
vanced control strategies in later stages of process 
development [29]. In recent years, models are also in-
creasingly used to predict environmental impact of (parts 
of) a process [30]. 

Figure 1  
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Generic flow diagram for vaccine antigen (upper diagram) and an example of an E. coli- expressed antigen production (lower flowsheet). UF: 
ultrafiltration, DF: diafiltration.   
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Models have far-reaching implications beyond process 
development, particularly in the manufacturing stage. 
They are the key elements of digital twin and real-time 
model-based control strategies and can significantly im-
prove the efficiency of manufacturing processes when 
integrated with real-time data [10]. However, currently, 
there are limitations in applying models for online 
monitoring and control of biopharmaceuticals as they 
become subject to FDA and EMA software regulations 
due to their direct impact on CPPs [18]. 

Modeling approaches 
Modeling approaches span a wide range, including me-
chanistic models based on fundamental principles  
[12,15,20], empirical models derived from experimental 
observations as well as some mechanistic assumptions  
[23,31], and data-driven models that utilize statistical 
methods or machine learning algorithms to establish re-
lationships or identify patterns from large datasets [32,33]. 
Hybrid modeling, which combines elements from dif-
ferent approaches (e.g. incorporating data-driven compo-
nents into mechanistic models), is an emerging modeling 
approach for biopharmaceutical processes [6,7]. 

The degree to which a mechanistic or data-driven 
modeling approach can be applied for process develop-
ment depends on the extent of knowledge about the 
underlying processes and the availability of data. While 
mechanistic models offer high predictability, they can 

pose computational challenges in describing complex 
processes mathematically and entail difficulties in de-
termining key parameters. Consequently, the develop-
ment of mechanistic models requires extensive 
calibration and validation efforts, as well as labor-in-
tensive improvements when new knowledge about the 
mechanism arises. 

Data-driven models, on the other hand, while cir-
cumventing the described challenges of mechanistic 
models, rely heavily on experimental data for their de-
velopment and training. Therefore, they are restricted to 
predicting within the boundaries of experimental ob-
servations and their accuracy and reliability highly de-
pend on both the quality and the representativeness of 
the data [34]. Additionally, interpretability is a challenge 
as they lack explicit physical explanations. There is 
however an increasing interest in developing inter-
pretable and explainable artificial intelligence [35]. To 
address these limitations, hybrid modeling has emerged 
as an effective approach combining the predictive cap-
abilities of mechanistic models with the efficiency of 
data-driven models. This integration allows for mini-
mizing the amount of data needed for model develop-
ment while ensuring the inclusion of physical relevance 
to key processes [7,36]. 

In the context of bioreactor modeling, various scales and 
degrees of complexity — from macro to micro and 

Figure 2  
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Process development approaches for vaccine production to establish the design and operating space.   
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extracellular to intracellular — are considered to study 
and predict scale-up-related mechanisms such as hy-
drodynamics, population heterogeneity, cell metabolism, 
and biological adaptation. At the molecular level, highly 
predictive mechanistic models such as metabolic net-
work models and flux balance analysis are employed to 
capture the influence of various operating conditions 
(e.g. temperature, pH, dissolved oxygen, agitation, per-
fusion rate, and media supplements) on cellular phy-
siology, productivity, and/or expression [20]. To address 
the complexity of metabolic models with regard to 
parameterization, lumping and pooling techniques are 
developed [14]. The simplest cell models are the black 
box (unstructured) models, such as Monod-based kinetic 
models, which do not consider intracellular kinetics. 
These models have constant yields and may not accu-
rately predict fed-batch or batch processes as compared 
with the metabolic (structured) models. To account for 
population heterogeneity (i.e. cell-to-cell variations such 
as mass, age, and internal metabolism), population bal-
ance models are mainly used [21]. To describe CQAs 
such as glycosylation patterns, hybrid kinetic models are 
utilized [37]. These hybrid kinetic models combine 
known mechanistic knowledge with machine learning 
methods to identify data-driven functional representa-
tions of kinetics and cell regulation. Constructing these 
models from data necessitates well-prepared and unified 
data collections along with computationally demanding 
training procedures [36]. To model large-scale bior-
eactors, computational fluid dynamics (CFD) models are 
coupled with (metabolic) kinetic models to predict 
process yield and productivity in the presence of en-
vironmental heterogeneities [38]. To address computa-
tional demands, CFD-based compartment models have 
been developed [39]. CFD and compartment models 
can be used for regime analysis to design more re-
presentative scale-down setups in simulating large-scale 
conditions in the laboratory [40]. 

Chromatography modeling encompasses both empirical 
and mechanistic approaches. Empirical methods rely on 
conducting experiments using DoE and HTE techniques  
[23]. On the other hand, mechanistic modeling delves 
into the physical chemistry principles underlying the 
process. This includes studying transport phenomena at 
the column and system levels and considering diffusion, 
adsorption kinetics, and equilibrium at the particle level  
[41]. Additionally, process configuration factors such as 
valve switching times and elution gradients are in-
corporated into the models [42]. To investigate flow dis-
tribution in chromatography columns at commercial 
scales, high-definition CFD models are developed  
[43,44]. In chromatography modeling, the adsorption be-
havior is essential, capturing the adsorption difference 
between impurities and the product. Adsorption de-
scription must capture the separation in a multi-
dimensional space, including parameters such as feed and 

buffer compositions, ligand and resin properties, tem-
perature, pH, salt, and so on. During the initial stages of 
downstream processing, particularly in centrifugation and 
capture, the feed and processes are complex and therefore 
descriptions need to be simplified. However, as we pro-
gress to later stages, such as polishing, detailed adsorption 
of small quantities of process and product-related im-
purities becomes essential. 

Later in vaccine development, expiration periods are 
determined based on guidelines such as ICH Q1 and 5C  
[45]. These guidelines, initially designed for small mole-
cules, are now unfit for rapid vaccine development as they 
reply on simple linear models and demand extensive 
historical data on vaccine stability. In contrast, modern 
modeling methodologies such as Bayesian hierarchical 
models [46], or advanced kinetic models integrating 
covariates of several sources of variability [47], allow to get 
a better understanding of the product’s long-term stability 
and enable accelerated stability studies. 

Employing diverse modeling approaches across process 
development stages can effectively characterize the 
multiscale, multidisciplinary mechanisms in vaccine 
manufacturing (see Figure 3). Mechanistic models allow 
driving process development from early stages reducing 
timeline and costs associated with large-scale activities. 
Subsequently, more data-dependent and surrogate 
models (e.g. hybrid and reduced mechanistic models) 
can play a significant role during later stages of devel-
opment, primarily for optimization, monitoring, and 
control purposes (e.g. development of soft sensors [48]). 
Hybrid modeling can significantly reduce the number of 
experimental iterations required throughout process 
development. This is particularly relevant for vaccine 
process development, given the complexity of the pro-
cesses involved and the resource-intensive nature of data 
generation. 

Available simulation software 
As a result of advances in algorithms and computer 
technology, advanced modeling approaches have been 
applied in the biotech industry, leading to the devel-
opment of several commercial and noncommercial si-
mulators for modeling biopharmaceutical processes. 
Commercial tools such as SuperPro Designer and BioPro 
Designer by Intelligen, Inc. (https://www.intelligen. 
com/), BioProcess Simulator and Aspen 
Chromatography by Aspen Technology (https://www. 
aspentech.com/), GoSilico by Cytiva (https://www. 
gosilico.com/), Ypso-Ionic by YpsoFacto (https://www. 
ypsomed.com/en/), BioSolve Process by BioPharm 
(https://www.biopharmservices.com/), BioContinuum by 
Merck (https://www.merckgroup.com/), and gPROMS 
by Siemens process systems engineering (PSE) (https:// 
www.psenterprise.com/) have been designed to enable 
experimentalists to conduct simulations or flowsheet 
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simulations without requiring programming expertise. 
These tools are primarily used for screening different 
processing schemes based on feasibility and profitability. 
In contrast, academic tools, although requiring some 
programming knowledge, enable researchers to explore 
diverse modeling approaches and address specific re-
search questions. For instance, the open-source tool 
CADET (https://cadet.github.io) [49] serves as a pow-
erful solver for various models, such as column transport, 
adsorption isotherms, and chemical reactions. It also 
provides functionalities for process analysis, parameter 
estimation, and optimization. 

Outlook: toward an integrated modeling 
platform 
The life science industry has experienced a shift to-
ward open-sourceness and collaboration, with biotech and 
biopharma companies actively partnering with research 
institutes to foster open-source model development in-
itiatives. There is a growing emphasis on adopting non-
proprietary software and establishing a common platform 
for early-stage model development to facilitate effective 
communication among experts and researchers, while 
intellectual property rights are still maintained for mod-
eling activities with significant business impact. 

This trend is reflected in the area of bioprocess mod-
eling, particularly in bioreactor/metabolic modeling and 
purification (mainly chromatography), which has evolved 
from an academic setting to commercial and open-source 
solutions. However, the integration of models remains a 
substantial challenge because a) the modeling 

approaches to individual operations were designed to 
help develop process understanding of those unit op-
erations, not for whole bioprocess modeling, b) the 
system complexity is high, leaving the bioreactor re-
quiring understanding of the cell population and how it 
will interact with the operations before chromatographic 
purification, such as cell lysis and solid–liquid separation. 
This complexity makes fully mechanistic modeling im-
practical, especially when the purpose is to predict for-
mation of impurities. Consequently, some level of 
empirical evidence is required, which may arise from 
activities related to process development and/or mea-
surement taken throughout the process. The latter area 
is growing steadily [50] with the PAT initiative given 
prominence by the FDA nearly 20 years ago. 

Having a connected approach to modeling a bioprocess 
is critical not only for the concept of a digital twin but 
also for the QbD philosophy. The material complexity 
during harvest introduces substantial batch-to-batch 
variation, making it essential to understand CPPs. To 
achieve an integrated model, a systematic and holistic 
approach is necessary for harmonization of the unit op-
erations. This includes interface compatibility, avail-
ability and robustness of parameter outputs and inputs, 
production scales, as well as modes of operation, for 
example, feed strategies in bioreactors and specific se-
quences of operations in a series of chromatography 
columns. In fact, failure to couple the unit operations 
together in a simulation model is considered to be one of 
the main risks of bioprocess modeling, because models 
for bioreactors and downstream operations typically 
focus on completely different sets of variables. Thus, in 
order to mitigate the potential failures in developing an 
integrated model-based platform for vaccine manu-
facturing, it is essential to comprehensively assess the 
issues related to heterogeneity, inconsistency, and 
varying model accuracy across unit processes. 

These aspects have been addressed by the ongoing 
Inno4Vac project (www.inno4vac.eu) [51]. The project’s 
acronym stands for Innovations to accelerate vaccine 
development and manufacture. While encompassing 
various relevant topics, including effective vaccine epi-
tope prediction tools and the development of novel 
nonanimal and human infection models, a key focus of 
Inno4Vac in subtopic 4 (ST4) is the establishment of a 
modular open-source computational platform for in silico 
modeling of protein subunit vaccine biomanufacturing 
and stability testing. The ST4 consists of five work 
packages (WP16–20, see Figure 4) to achieve the fol-
lowing objectives:  

• WP16: Develop stability prediction models for vaccine 
manufacturing using linear and nonlinear equations 
and integrate them into a global biomanufacturing 
platform. 

Figure 3  
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Overview of multiscale and multidisciplinary nature of the underlying 
mechanisms in bioreactors (upper illustration) and chromatography 
columns (lower illustration).   
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• WP17: Establish a cloud-based platform to assess the 
performance and robustness of biomanufacturing 
processes, with a specific emphasis on scaling up and 
down in the production of vaccines using E. coli.  

• WP18: Create digital twins for key purification units, 
apply advanced in silico analysis and design tools, and 
enable real-time control to optimize downstream 
processing, especially for scale changes.  

• WP19: Validate the predictive capabilities of in silico 
models for vaccine stability, unit operations in protein 
subunit vaccine manufacturing, and control modules 
developed in WP18.  

• WP20: Initiate a regulatory dialog to engage with 
authorities, paving the way for the future inclusion of 
predictive modeling in chemistry, manufacturing, and 
control (CMC) dossiers for vaccines. 

Figure 4 illustrates the key elements involved in each 
work package of ST4 in the Inno4vac project in estab-
lishing an integrated modeling platform for vaccine 
manufacturing process development. This involves sta-
keholder engagement, process modeling, parameteriza-
tion and validation with experimental and real-world 
data, integration of all models, and a regulatory roadmap. 

Platform development 
By integrating upstream processes such as hydrodynamic 
and metabolic bioreactor modeling, with downstream 
processes such as centrifugation and chromatography, 
the platform provides comprehensive insights into vac-
cine production. One of the key objectives is to establish 
robust interfaces among the packages, ensuring seamless 
data flow from upstream models into downstream 
models. Furthermore, the platform encompasses an 
overall control strategy as well as a module to facilitate 
the prediction of pharmaceutical product stability, thus 
aiming to offer a holistic solution for the optimization of 
vaccine manufacturing processes. The infrastructure of 
Inno4Vac includes a JupyterHub as a versatile cloud- 
based platform to integrate various modeling packages in 
CADET (https://cadet.github.io). It enables code ex-
ecution in multiple languages, such as Python, C++, and 
R, within an interactive environment. The platform also 
provides user management features, facilitating colla-
boration among multiple users. Inno4Vac serves as a 
demonstration of the potential of in silico modeling in 
vaccine manufacturing, offering a roadmap for further 
developments. 

Stakeholder engagement 
Stakeholder involvement is crucial to the development 
and acceptance of effective models that support the 

design, manufacture, and testing of innovative vaccines, 
while simultaneously accelerating their availability to 
the populations who need them the most. To achieve 
this ambitious goal, the Inno4Vac project was designed 
to foster public–private collaboration with an engage-
ment strategy of involving key stakeholders of vaccine 
development, manufacturing, and approvals as official 
project partners. The main project stakeholders com-
prise prominent global pharmaceutical companies, small- 
and medium-sized enterprises, academic institutions, 
nonprofit organizations, and regulatory agencies: all of 
whom play a vital role in shaping the project’s outcomes. 

Early dialog between model developers and regulators is 
essential to achieving the highest probability of project 
success. Currently, regulators are expanding their 
knowledge and understanding of general modeling 
principles, model abilities to conform to regulatory ex-
pectations (including dossier requirements), and their 
utility to inspections (e.g. link to Good Modeling 
Practice information and change management under the 
companies’ Pharmaceutical Quality System). A common 
concern regarding model implementation is the poten-
tial for added regulatory burdens, particularly due to 
limited awareness at the National Regulatory Agencies 
(NRAs). This is especially relevant during product re-
gistration and lifecycle management, including global 
registration. The Quality Innovation Group Listen and 
Learn focus group recently discussed this concern in 
relation to topics such as continuous and decentralized 
manufacturing [52]. In the field of stability prediction of 
pharmaceutical products, several groups at Coalition for 
Epidemic Preparedness and Innovations, The European 
Federation of Pharmaceutical Industries and Associa-
tions, and Biotechnology Industry Organization cur-
rently work on integration of stability modeling in 
international guidelines, leveraging dialog between in-
dustry, regulators, and institutions. 

In this emerging field, ongoing developer–regulator 
dialog is crucial to clarify model objectives, data ex-
pectations for regulatory files, and enhance mutual un-
derstanding [53]. To boost regulatory awareness among 
modelers and facilitate regulators’ grasp of model use in 
vaccine development, Inno4Vac organized a dedicated 
regulatory workshop with key NRAs and is currently 
planning a follow-up to share further progress in this 
area. Furthermore, continuous external regulatory mon-
itoring identifies opportunities and landscape changes 
for future external utilization of the platform/models. 
External experts are engaged proactively to address po-
tential future regulatory hurdles during the development 

Overview of elements in establishing an integrated modeling platform within ST4 of Inno4vac project [51]. See text for further information on the 
objectives for each work package. (CFD; computational fluid dynamics, SMEs; small-to-medium enterprises).   
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process. Communication, documentation, and test data-
sets are included in the strategy to enhance accessibility 
and usage of the resulting platform. 

Conclusions 
Model-based approaches offer significant opportunities 
for enhancing vaccine production. Current advances in 
modeling biopharmaceutical processes can address the 
multiscale and multidisciplinary nature of the under-
lying mechanisms. They provide powerful tools that can 
significantly reduce the cost and time in the develop-
ment stage and facilitate scaling-up and transfer of bio-
processes to other manufacturing sites. 

The value of developing an integrated modeling plat-
form for biopharmaceutical manufacturing is exemplified 
by the Inno4Vac (www.inno4vac.eu) project. While fo-
cusing on model development and integration for up-
stream and downstream processes, the project 
emphasizes stakeholder engagement and proactive reg-
ulatory dialog as essential elements in facilitating the 
implementation of model-based approaches. To ensure 
regulatory acceptance, novel guidelines and inter-
nationally harmonized protocols are necessary as digita-
lization of manufacturing advances. Efforts by regulatory 
bodies such as EMA and FDA to address modeling use 
and deployment are underway (e.g. [52]). 
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