

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 09, 2024

Decentralized Threshold Signatures with Dynamically Private Accountability

Li, Meng; Ding, Hanni; Wang, Qing; Zhang, Mingwei; Meng, Weizhi; Zhu, Liehuang; Zhang, Zijian; Lin,
Xiaodong

Published in:
IEEE Transactions on Information Forensics and Security

Link to article, DOI:
10.1109/TIFS.2023.3347968

Publication date:
2024

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Li, M., Ding, H., Wang, Q., Zhang, M., Meng, W., Zhu, L., Zhang, Z., & Lin, X. (2024). Decentralized Threshold
Signatures with Dynamically Private Accountability. IEEE Transactions on Information Forensics and Security,
19, 2217 - 2230. https://doi.org/10.1109/TIFS.2023.3347968

https://doi.org/10.1109/TIFS.2023.3347968
https://orbit.dtu.dk/en/publications/25bd8cea-1f7d-4cd3-b740-d700928cf537
https://doi.org/10.1109/TIFS.2023.3347968

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 1

Decentralized Threshold Signatures with
Dynamically Private Accountability

Meng Li, Senior Member, IEEE, Hanni Ding, Qing Wang, Mingwei Zhang, Weizhi Meng, Senior Member, IEEE,
Liehuang Zhu, Senior Member, IEEE, Zijian Zhang∗, Member, IEEE, Xiaodong Lin, Fellow, IEEE

Abstract—Threshold signature is a fundamental cryptographic
primitive used in many practical applications. As proposed by
Boneh and Komlo (CRYPTO’22), TAPS is a threshold signature
that is a hybrid of privacy and accountability. It enables a
combiner to combine t signature shares while revealing nothing
about the threshold t or signing quorum to the public and asks
a tracer to track a signature to the quorum that generates it.
However, TAPS has three disadvantages: it 1) structures upon a
centralized model, 2) assumes that both combiner and tracer are
honest, and 3) leaves the tracing unnotarized and static.

In this work, we introduce Decentralized, Threshold, dy-
namically Accountable and Private Signature (DeTAPS) that
provides decentralized combining and tracing, enhanced privacy
against untrusted combiners (tracers), and notarized and dy-
namic tracing. Specifically, we adopt Dynamic Threshold Public-
Key Encryption (DTPKE) to dynamically notarize the tracing
process, design non-interactive zero knowledge proofs to achieve
public verifiability of notaries, and utilize the Key-Aggregate
Searchable Encryption to bridge TAPS and DTPKE so as to
awaken the notaries securely and efficiently. In addition, we
formalize the definitions and security requirements for DeTAPS.
Then we present a concrete construction and formally prove its
security and privacy. To evaluate the performance, we build a
prototype based on SGX2 and Ethereum.

Index Terms—Threshold Signature, Security, Privacy, Ac-
countability.

I. INTRODUCTION

A. Background

Threshold signatures [1], [2] allow a group of n parties
to sign a message if no less than t parties participate in the
signing process. They are a crucial tool for many practical
applications [3]–[5]. For instance, the initiation of a new
financial project calls for at least t enterprises to collabo-
rate. Among the threshold signatures, there are two types

Meng Li, Hanni Ding, Qing Wang, and Mingwei Zhang are with the
Key Laboratory of Knowledge Engineering with Big Data (Hefei University
of Technology), Ministry of Education; School of Computer Science and
Information Engineering, Hefei University of Technology; Anhui Province
Key Laboratory of Industry Safety and Emergency Technology; and Intel-
ligent Interconnected Systems Laboratory of Anhui Province (Hefei Uni-
versity of Technology). (Email: mengli@hfut.edu.cn, {hanniding, qingwang,
mwzhang}@mail.hfut.edu.cn)

Liehuang Zhu and Zijian Zhang are with the School of Cyberspace Science
and Technology, Beijing Institute of Technology, 100081 Beijing, China.
Zijian Zhang is also with the Southeast Institute of Information Technology,
Beijing Institute of Technology, Fujian, 351100, China. (Email: {liehuangz,
zhangzijian}@bit.edu.cn)

Weizhi Meng is with the Department of Applied Mathematics and Computer
Science, Cyber Security Section, Technical University of Denmark (DTU),
Denmark. (E-mail: weme@dtu.dk)

Xiaodong Lin is with the School of Computer Science, University of
Guelph, Guelph, ON N1G 2W1, Canada. (Email: xlin08@uoguelph.ca)

Corresponding author: Zijian Zhang.

of threshold signatures standing out: Accountable Threshold
Signature (ATS) and Private Threshold Signature (PTS). ATS
is a kind of threshold signature scheme where the signature can
identify the original signing group that generated the signature.
Specifically, a tracing algorithm takes as input a message, a
valid signature on the message, and the public key to output a
group of signers that generated the signature [6], [7]. A PTS
is a kind of threshold signature scheme where the signature
on a message m reveals nothing about t or the quorum of
t original signers [8], [9]. Besides unforgeability, these two
signatures offer complete accountability and complete privacy
for the signing quorum, respectively.

B. Existing Work

A recent work Threshold, Accountable, and Private Sig-
nature (TAPS) [10] proposed by Boneh and Komlo (CRYP-
TO’22) has achieved both accountability and privacy. In TAPS,
a key generation function takes n and t as input, and generates
a public key pk and n private keys sk1, sk2, · · · , skn for
the n signers; during the signing process, each signer from
a quorum of t signers S, holding a private key sk, generates
a signature share σi; a combiner holding a combining key skc
uses {σi}ni=1 to generate a complete signature σ; a signature
verification function takes as input pk, m, and σ to output
accept or reject; a tracer (or anyone) with a tracing key skt can
trace a signature to the quorum that generates it. The benefits
of TAPS are remarkable: the signing group keeps the skt secret
so that t and S remain private from the public, but the t signers
are accountable in case of misbehaviors [11].

C. Motivations and New Goals

Our motivations come from a real-world scenario in fi-
nancial areas. For example, a group of companies are in a
long-term collaboration and at least t companies are required
to initiate a new and confidential project by co-signing a
new contract. A “third” party, which is not fully trustworthy,
is responsible for combining their signatures and generate a
threshold signature as a collaboration proof. Meanwhile, in
case of any criminal activities or misbehaviors, t entities,
such as police department, finance department, and insurance
company, are required to participate in the signing process as
a witness. Furthermore, if one of the t companies engages
in some criminal activities, its identity will be recovered by
the t′ witnesses and a not-so-trustworthy tracer, and it will
be sanctioned according to law or regulation. Combined with
the observations on TAPS, we acquire four motivations. M1.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 2

Centralized combining and tracing. The role of combiner
and tracer is important to generating and tracing a complete
signature. However, the centralized setting is prone to a single
point of failure. M2. Untrusted combiner. The combining
key skc is kept by the only combiner that could be untrusted,
e.g., lose or leak the key. The threshold t is also exposed to
the combiner. As designed in TAPS, t is part of privacy and is
hidden from the public. Therefore, we take the privacy one step
further by assuming an untrusted combiner. M3. Untrusted
tracer. Similarly, the tracing key skt is kept by an untrusted
tracer and t is exposed. M4. Unnotarized and static tracing.
The tracing key skt is kept by the sole tracer that can use
skt to recover any quorum of t signers. We argue that the
tracing process is a sensitive process that should be notarized
by a dynamic and relevant group of notaries, i.e., t′ notaries
or witnesses [12], [13]. Meanwhile, the value of t′ varies
according to the matter and relevant authorities. The idea
resembles the one in threshold encryption where a ciphertext
can only be decrypted when at least t′ users cooperate [14].

These four motivations have driven us to provide enhanced
security and privacy in threshold signatures using a decen-
tralized approach, i.e., decentralized threshold signatures with
dynamically private accountability. Namely, we have four new
goals as follows. G1. Enhanced security against a single
point of failure. The threshold signature system should be
secure in a decentralized manner such that one (a small number
of) combiner/tracer’s breakdown does not affect the whole sys-
tem. G2. Enhanced privacy against untrusted combiners.
The threshold signature system is privacy-preserving during
the signing process. Specifically, not only the quorum of t
original singers, but t, skt, and t′ are hidden from combiners.
G3. Enhanced privacy against untrusted tracers. The
threshold signature system is privacy-preserving during the
tracing process. To be specific, t, skc, and t′ are hidden from
tracers. G4. Notarized and dynamic tracing. The tracing
process should be notarized by t′ parties among a group of
authorities. The value of t′ is a variable parameter, which is
related to the specific tracing requirement.

Remark 1 (Privacy of t signers after tracing). We notice that
once a tracer has traced a complete signature to its t signers,
the signers’ identities as well as t are revealed to the tracer.
This looks contradictory to G3 where we protect t and make
G3 only applicable to the realm before tracing. However, we
can choose to protect t signers from tracers (will be explained
Section 4).

D. Our Approach

To achieve the four abovementioned goals, we propose an
approach as follows. (1) We transit the centralized model
of TPAS into a decentralized one by using a Consortium
Blockchain (CB) [15], [16] to distribute the combining and
tracing capabilities. Each blockchain node can be either a
combiner or a tracer such that the combiner (tracer) actually
performing the combining (tracing) is determined by the
underlying consensus mechanism. In this way, an adversary
cannot predict such a performer to attack. (2) We protect t
and t′ from the untrusted combiners and untrusted tracers

during the combining and tracing by deploying a Trusted
Execution Environment (TEE) [17]–[19] on combiners and
tracers. The combining and tracing will be conducted within
an enclave, over which the combiners and tracers have no
control over the data inside. (3) We propose “dynamically
private accountability”, i.e., limit the tracing capability of
untrusted tracers by asking another quorum of t′ parties
to notarize the tracing process. We denote this quorum as
N = {N1, N2, · · · , Nt′}. Specifically, the tracer can only
trace from a complete signature to its t signers only if there
are t′ notaries allow it. This is realized by adopting Dynamic
Threshold Public-Key Encryption (DTPKE) [14] to designate
t′ notaries for the tracing process.

In summary, we introduce a new type of threshold sig-
nature scheme, called DeTAPS, that provides dynamic ac-
countability while maintaining full privacy for the signing
quorum and notarizing quorum. A Decentralized, Threshold,
dynamically Accountable and Private Signature scheme,
or simply DeTAPS, works as follows: (i) a key generation
procedure generates a public key pk and n private keys
{sk1, sk2, · · · , skn}, a combining key skc, and a tracing key
skt, (ii) a signing protocol among a quorum of t signers and
a combiner generate a signature σ on a message m, (iii) a
signature verification algorithm takes as input pk, m, and σ
and outputs true or false, and (iv) a tracing algorithm takes
as input skt, m, and σ, and outputs the original quorum of
t signers. For security model, we assume that the combiners
and tracers are malicious, which are not allowed to know t or
t′. We define the precise syntax for the DeTAPS scheme and
the security requirements in Section 3.

E. Technical Challenges

Given the general approach, we are still faced with three
technical challenges when constructing DeTAPS. C1. How
to securely select the t′ notaries while guaranteeing public
verifiability? In this work, we ask the t signers to choose
t′ notaries whose identities are kept secret. In the meantime,
we have to guarantee public verifiability of the t′ notaries,
i.e., there are enough authenticated notaries selected by the t
signers during combining. C2. How to securely awaken the
t′ notaries to the call for partially decryption of encrypted
threshold signatures when necessary? There are several tech-
nical candidates for solving this problem. (1) Encrypt-and-
Decrypt: It is workable, but time consuming and clumsy. (2)
Private Set Intersection (PSI) [20], [21]: It provides strong
security but requires more than one interaction, which results
in high costs. (3) Attribute-Based Encryption (ABE) [22],
[23]: It achieves fine-grained access control but incurs high
computational costs. C3. How to allow a notary to efficiently
locate the encrypted signatures related to himself from all
the ciphertexts on the CB? Some technical candidates are as
follows. (1) Indistinguishable Bloom Filter (IBF) [24], [25]:
It is efficient but needs to share a set of keys between signers
and notaries. (2) Designated Verifier Signature [26], [27]: It
requires additional signing by the signers and it cannot provide
confidentiality. To tackle C1, we design Non-Interactive Zero
Knowledge Proofs (NIZKPs) to enable the public to verify the

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 3

t′ notaries in a secure manner. To overcome C2 and C3, we
utilize the Key-Aggregate Searchable Encryption (KASE) [28]
as a bridge between TAPS and DTPKE to reconcile security
and efficiency [29]–[31].

We provide some details on how we construct DeTAPS.
Setup. We assume that any quorum of t signers have commu-
nicated with each other via face to face or a secure channel to
determine t′ notaries N = {N1, N2, · · · , Nt′}. Each quorum
of t signers has a unique and random signer group identifier
gid ∈ G in each signing period. This can be done by asking a
representative of each quorum to anonymously write a random
number on the blockchain. G will be updated in future periods.
Each notary has a pseudo-identity pid. A KASE aggregation
key ka is generated in the beginning for each notary. Sign.
Each signer of a quorum of t signers generates a signature
share σi on the same message m and sends its ciphertext to
the CB. Combine. During combining, the enclave E within
the combiner C encrypts σ to be an encrypted threshold
signature σ by using the combining key skc. After combining,
E computes an index ind of N . Trace. Upon a tracing call,
each related notary computes a trapdoor td by using ka and
pid. The index and trapdoor are sent to a smart contract
that searches on ind with td to retrieve a matched σ to the
requesting notary. The notary sends a partial decryption of
σ to the CB. Only if the designated t′ notaries are awaken
to perform partially decryption, can a tracer T trace within
its enclave to the original quorum of t tracers by using the
tracing key skt. In addition, the encrypted threshold signature
can be verified by the public.

F. Our Contributions

Our contributions are summarized as follows.
• We design a decentralized framework for threshold sig-

natures to distribute the combining (tracing) capabilities
to multiple combiners (tracers).

• We design a TEE-based execution engine to secure the
combining (tracing) process against untrusted combiners
(tracers).

• We adopt DTPKE to dynamically notarize the tracing
process and integrate TAPS with DTPKE by using KASE
to awaken the notaries.

• We formally prove the security and privacy of DeTAPS.
We build a prototype and evaluate its performance.

Paper Organization. The paper is organized as follows.
Section II briefly reviews some preliminaries. Section III
formalizes the system model, security, and privacy of DeTAPS.
Section IV describes DeTAPS. Section V analyzes its security
and privacy. Section VI evaluates the performance of DeTAPS.
Section VII concludes this paper.

II. PRELIMINARIES

In this section, we briefly review some preliminaries that
work as building blocks.

A. ATS

An accountable threshold signature is a tuple of five polyno-
mial time algorithms (KeyGen,Sign,Combine, Verify,Trace).

KeyGen(1λ, n, t) is a probabilistic algorithm that takes securi-
ty parameter λ, the number of signers n, and the threshold t as
input, output the private key set ski as well as the combined
public key pk. Sign(ski,m) is a probabilistic algorithm that
uses private key set ski to sign message m to output a sig-
natures set σi. Combine(pk,m,S, {σi}i∈S) is a deterministic
algorithm takes as input the public key pk, the message m,
the signer set S, and the output σi of previous algorithm as
inputs to output ATS signature σm. Verify(pk,m, σm) is a
deterministic algorithm that uses public key pk and message
m to verify whether σm is a valid ATS signature, with valid
outputs 1 and invalid outputs 0.

We use the Schnorr scheme in [6] as the ATS for DeTAPS.
Specifically, the functions of the ATS in the DeTAPS operate
as follows:

– Setup: G is a group of prime order q and G has two
independent generators g, h. H is a hash function, H:
PK ×G×M→ Zq , PK is the public key space.

– KeyGen(1λ, n, t): sk1, sk2, · · · , skn
$← Zq, pki ←

{gski}ni=1, pk ← (t, pk1, · · · , pkn), output(pk, (sk1, sk2,
· · · , skn)).

– Sign(ski,m): ri
$← Zq, Ri ← gri , c← H(pk,R, m) ∈

Zq, zi ← ri + ski · c ∈ Zq, output σi ← (Ri, zi).
– Combine(pk,m,S, {σi}i∈S) → σm: Abort if |S| 6= t,
z ←

∑
i∈S zi ∈ Zq, R ←

∏
i∈C Ri, output σm ←

(R, z,S)
– Verify(pk,m, σm): pkS ←

∏
i∈S pki, c ← H(pk,

R,m) ∈ Zq , if |S| = t and gz = pkcS · R output 1,
else output 0.

– Trace(pk,m, σm): run ATS.Verify(pk,m, σm), if it is
valid, output S, else output fail.

An ATS is secure if it is unforgeable and accountable, i.e.,
if for every Probabilistic Polynomial Time (PPT) adversary
A, the function Advforg

A,ATS of winning an unforgeability and
accountability attack game is a negligible function of λ [10].

B. DTPKE

DTPKE is a kind of threshold public-key encryption
where a ciphertext can be decrypted when at least t
users collaborate. More importantly, the size of the de-
cryptor set and the threshold are not fixed during the
setup, but at the encryption time. DTPKE is a tu-
ple of seven algorithms (Setup, Join,Encrypt,ValidateCT,
ShareDecrypt,ShareVerify,Combine), Setup(1λ)→ (mk, ek,
vk, ck) is a probabilistic algorithm that takes security parame-
ter λ as input to output master secret key mk, encryption key
ek, combing key ck, and verification key vk. Join(mk, id)→
(usk, upk, uvk) is a probabilistic algorithm that takes the
master secret key mk, and the identity id of new user as input
to output the user’s private key usk, the user’s public key upk,
and the user’s verification key upk. Enc(ek,U , t′,m) → c
is a probabilistic algorithm that takes encryption key ek, a
set U of users, threshold t′, and message m to output a c.
ValidateCT(ek,U , t′, c)→ {0, 1} is a deterministic algorithm
that takes encryption key ek, set U , a threshold t′, and a
ciphertext c as input to check whether c is valid, if valid
output 1, else output 0. ShareDecrypt(pid, usk, c) → σja is

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 4

a deterministic algorithm that takes user id, user’s private
key usk, and ciphertext c to output a decryption share σja or
⊥. ShareVerify(vk, pid, uvk, c, σa) → {0, 1} is a determinis-
tic algorithm that takes verification key vk, user id, user’s
verification key uvk, ciphertext c, decryption share σa to
check whether σa is a valid decryption share, if valid output
1, else output 0. Combine(ck,U , t′, c,N , {σja}j∈[t′]) → is a
deterministic algorithm that takes combining key ck, set U ,
threshold t′, ciphertext c, subset N ⊆ U , and a decryption
share set {σja}j∈[t′] to output a signature σm.

We use the scheme in [14] as the DTPKE for DeTAPS.
Specifically, the functions of the DTPKE in the DeTAPS
operate as follows:

– Setup(1λ): B = (p,G1,G2,GN , e(·, ·)) is a system with
group and bilinear map satisfies |p| = λ, g $← G1,
h

$← G2, g and h are all generators, γ, α $← Z∗p,
a is the maximal size of an authorized set, D ←
{d1, · · · , da−1}

$← Gp, u← gα·γ , v ← e(g, h)α, mk ←
(g, γ, α), ek ←

(
a, u, v, hα, {hα·γi}2a−1

i=1 ,D
)

, ck ←(
a, h, {hγi}a−2

i=1 ,D
)

, since DTPKE does not provide
robustness, vk is not defined, output (mk, ek, vk, ck).

– Join(mk, id): x $← Z∗p, usk ← g
1

γ+x , upk ← x, uvk ←
x, output (usk, upk, uvk).

– Enc(ek,U , t′,m): k $← Z∗p, u ← |U|, c1 ← u−k, c2 ←
h
k·α·

∏
xi∈U

(γ+xi)·
∏
x∈U

a+t′−u−1
(γ+x)

, K ← vk, K will
be used to encrypt the message, output c← (c1, c2).

– ValidateCT(ek,U , t′, c): c′1 ← u−1, c′2 ←
h
α·

∏
x∈U∪D

a+t′−u−1
(γ+x)

, if e(c1, c
′
2) = e(c′1, c2)

and |U| ≥ t′ output 1, else output 0.
– ShareDecrypt(pid, usk, c): σja ← e(uskj , c2) ←

e(g, h)

k·α·
∏
xi∈U∪Da+t′−u−q

(γ+xi)

γ+xj , output σjm.
– ShareVerify(vk, pid, uvk, c, σa): Choose δ at random,
usk′ ← uskδ , if e(usk′, (hαγ) × (hα)upk) = vδ and
e(usk′, c2) = σδa output 1, else output 0.

– Combine(ck,U , t′, c,N , {σja}j∈[t′]): N is a subset of t′

users, s(N ,U) ←
∏
x∈U∪Da+t′−u−1−N

x, p(N ,U)(γ) ←
1
γ ·
(∏

x∈U∪Da+t′−u−1−N
(γ + x)− s(N ,U)

)
, p(N ,U)(γ)

is a polynomial of degree a − 2, e(g, c2)
1∏

x∈N (γ+x) ←
e(g, h)

k·α·
∏
xi∈U∪Da+t′−u−1

−N (γ+xi), Aggregate(GN ,∑
) ← e(g, c2)

1∏
x∈N (γ+x) , σm ← (e(c1, p(N ,U)(γ))

·Aggregate(GN ,
∑

))
1

s(N ,U) , output σm.
Its non-adaptive adversary, non-adaptive corruption,

chosen-plaintext attacks (IND-NAA-NAC-CPA) security is
based on the Multi-sequence of Exponents Diffie-Hellman
(MSE-DDH) assumption, where Advind-cpa

A,DTPKE(l,m, t′) ≤
Advmse-ddh(l,m, t′) [14], [32], [33]. For succinctness, we
write Enc(ek,N ,m), ValidateCT(ek,N , c), and Combine(ck,
N , c, {σjm}j∈[t′]) as a shorthand for the three functions.

C. KASE

KASE allows a data owner to share a set of files with
a group of selected data users, which can perform keyword

search over the set of files. Specifically, the data owner
distributes an aggregate key to the data users. Then, the data
user sends an aggregate trapdoor to conduct keyword search
over the set of files. KASE is a tuple of seven algorithm-
s (Setup,Keygen, Encrypt,Extract,Trapdoor,Adjust, Test).
Setup(λ, n) → (B,PK, H) is a probabilistic algorithm that
takes a security parameter λ and maximum possible number
of documents n as input to output the system parameters
(B,PK, H). KeyGen(λ) → (mpk,msk) is a probabilistic
algorithm that takes a security parameter λ as input to output
a pair of keys (mpk,msk). Extract(msk,S) → ka is a
deterministic algorithm that takes owner’s master-secret key
msk, and subset S which contains the indices of documents as
input to output a aggregate key ka. Enc(mpk, i)→ (c1, c2, cω)
is a probabilistic algorithm that takes owner’s master-public
key mpk, file index i, and keyword subset S as input to
output ciphertext (c1, c2, cω). Trapdoor(ka, ω) is a determin-
istic algorithm that takes aggregate key ka, and keyword ω as
input to output trapdoor td. Adjust(B,PK, H, i,S, td)→ tdi
is a deterministic algorithm that takes system parameters
(B,PK, H), file index i, subset S, trapdoor td as input to
output the right trapdoor tdi. Test(tdi, (c1, c2, cω), i)→ {0, 1}
is a deterministic algorithm that takes right trapdoor tdi,
ciphertext (c1, c2, cω), and file index i to check whether cω
is valid, if valid output 1, else output 0. We use the scheme
in [28] the KASE for DeTAPS. Specifically, the functions of
the KASE in the DeTAPS operate as follows:

We use the scheme in [28] the KASE for DeTAPS. Specif-
ically, the functions of the KASE operate as follows:

– Setup(λ, n): B = (p,G,G1, e(·, ·)) is a bilinear map-
ping group system, p is the order of G, g is a gen-
erator. 2λ ≤ p ≤ 2λ+1, g $← G, α $← Zp. gi ←
g(αi) for i = {1, 2, · · · , n, n + 2, · · · , 2n}, PK ←
(g, g1, · · · , gn, gn+2, · · · , g2n). H: {0, 1}∗ → G is a one-
way hash function, output (B,PK, H).

– KeyGen(λ): γ $← Zp, mpk ← gγ , msk ← γ, output
(mpk,msk).

– Extract(msk,S): ka ←
∏
j∈S g

γ
n+1−j , output ka.

– Enc(mpk, i): i ∈ {1, · · · , n}, t $← Zp. c1 ← gt,
c2 ← (mpk · gi)t. cω ← e(g,H(ω))t/e(g1, gn)t, output
(c1, c2, cω).

– Trapdoor(ka, ω): td← ka ·H(ω), output td.
– Adjust(B,PK, H, i,S, td): tdi ← td ·∏

j∈S,j 6=i gn+1−j+i, output tdi.
– Test(tdi, (c1, c2, cω), i): pub ←

∏
j∈S gn+1−j , c′ω ←

e(tdi, c1)/e(pub, c2). If c′ω = cω , output 1, else output
0.

KASE achieves controlled searching and query privacy
based on the Discrete Logarithm (DL) assumption and the
Bilinear Diffie-Hellman Exponent (BDHE) assumption [32].

D. PKE

A public key encryption scheme PKE is a triple of algo-
rithms (KeyGen,Encrypt,Decrypt). KeyGen(1λ) → (pk, sk)
is a probabilistic algorithm that takes as input a security
parameter λ to output a public key pk and a secret key sk.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 5

Encrypt(pk,m)→ c is a probabilistic algorithm that encrypts
a message m using pk and finally outputs a ciphertext c.
Decrypt(sk, c) → m is a deterministic algorithm that takes
c and sk as input and outputs a plaintext m.

We use EIGamal as the PKE for DeTAPS. Specifically, the
functions of the PKE in the DeTAPS operate as follows:

– KeyGen(1λ): Choose a large prime p satisfying p − 1
with large prime factors at random, and g is its modulo p
primitive element, sk $← {0, · · · , p−1}, y ← gsk mod p,
pk ← (y, p, g), output (pk, sk).

– Encrypt(pk,m): k $← {0, · · · , p − 1}, c1 ← gk mod p,
c2 ← m · yk mod p, output c← (c1, c2).

– Decrypt(sk, c): m← (c2 · (csk1)−1) mod p, output m.
A PKE scheme is semantically secure if for every PPT

adversary A, Advind-cpa
A,PKE(λ) is negligible [34].

E. COM

A commitment scheme is a pair of algorithms
(Commit,Verify). Commit(x, r) → com is a deterministic
algorithm that takes x and random number r as input and
outputs a commitment com. Verify(x, r, com) → {0, 1}
is a deterministic algorithm that determines whether the
commitment is valid, if com′ = com, output 1, else output 0.

We use Pedersen commitment as the COM algorithm for
DeTAPS. Specifically, the functions of the COM in the De-
TAPS operate as follows:

– Setup: Choose multiplicative group G = Z∗q , g and h are
its two generators, public triple (g, h, q).

– Commit(x, r): r $← Zq , x ∈ Zq , com ← gxhr, output
com.

– Verify(x, r, com): compute com′ ← gxhr, if com′ =
com output 1, else output 0.

A COM scheme is secure if it is unconditionally hiding
and computationally binding, i.e., for every PPT adversary A,
Advbind

A,COM(λ) is negligible.

F. SIG

A signature scheme SIG is a triple of algorithms
(KeyGen,Sign,Verify). KeyGen(1λ) → (pk, sk) is a proba-
bilistic algorithm that takes as input a security parameter λ to
output a public key pk and a secret key sk. Sign(sk,m)→ σ
is a probabilistic algorithm run by a signer with a signer key
sk to output a signature σ on m. Verify(pk,m, σ) → {0, 1}
is a deterministic algorithm that verifies the signature σ on a
message m to decide whether to accept or reject σ.

We use the ECDSA (Elliptic Curve Digital Signature Algo-
rithm) signature scheme as the SIG for DeTAPS. Specifically,
the detailed functions operate as follows:

– Setup: Choose an elliptic curve with G as the generator,
n = |G| and n is a prime number, hash is a hash
algorithm.

– KeyGen(1λ): sk $← {1, · · · , n− 1}, pk ← sk ·G, output
(pk, sk).

– Sign(sk,m): h ← hash(m), k
$← {1, · · · , n − 1},

R ← k · G, let R.x be the X-axis value of point R,
r ← R.x, s← k−1(mod n)·(h+r·sk), output σ ← (r, s).

– Verify(pk,m, σ): h← hash(m), R′ ← (h · s−1(modn) ·
G+ (r · s−1(mod n)) · pk, t′ ← R′.x, if t′ = t output 1,
else output 0.

A SIG scheme is strongly unforgeable if for every PPT
adversary A, Adveuf-cma

A,SIG (λ) is negligible.

G. NIZKP

A non-interactive zero-knowledge proof protocol enables
a prover to convince a verifier that a certain statement is
true, without revealing any information about the underlying
information for its truth. It involves two algorithms (P,V)
invoked as π ← Prove(1λ,m), b← Verify(π).

H. Intel SGX2

Software Guard eXtensions (SGX) is a hardware extension
of Intel Architecture that enables an application to establish
a protected execution space, i.e., an enclave [35]–[38]. SGX
stores enclave pages and SGX structures in the protected mem-
ory called Enclave Page Cache (EPC). SGX guarantees confi-
dentiality of code/data and detection of an integrity violation of
an enclave instance from software attacks. SGX allows one to
verify that a piece of software has been correctly instantiated
on the platform via attestation. Since SGX imposes limitations
regarding memory commitment and reuse of enclave memory,
Intel introduces SGX2 to extend the SGX instruction set to in-
clude dynamic memory management support for enclaves [18],
[19]. SGX2 instructions offer software with more capability to
manage memory and page protections from inside an enclave
while preserving the security of the SGX architecture and
system software.

For formal foundation for Secure Remote Execution (SRE)
of enclaves, Subramanyan et al. [39] addressed the formal
modeling and verification of enclave platforms via three steps.
First, they defined the properties required for SRE of enclaves.
Second, they presented Trusted Abstract Platform (TAP), an
idealization of enclave platforms together with a parameterized
adversary model. They gave machine-checked proofs exhibit-
ing that the TAP provided SRE against the adversaries. Third,
they gave machine-checked proofs showing that formal models
of two proposals for trusted hardware platforms offered SRE.

I. Consortium Blockchain

As an underlying technique in Bitcoin, blockchain is a
ledger recording transactions among users who do not fully
trust each other in a decentralized network. The transactions
are packed into separate blocks by a set of nodes using
a predefined consensus algorithm, and the blocks are se-
quentially linked into a chain by their cryptographic hashes.
Nodes participate in creating new blocks to compete for some
rewards such as financial incentives. Consortium blockchain
is a specific blockchain maintained by a group of authorized
entities [40], [41]. For participation, only qualified parties
are allowed to access and maintain the blockchain. It aims
to secure transactions between users who do not fully trust
each other but work collaboratively toward a common goal.
Its consensus process is controlled by the authorized entities.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 6

For our setting of DeTAPS, a consortium is perfect regarding
system model and security model. This is why we choose a
consortium blockchain to lay the communication basis.

III. DECENTRALIZED, THRESHOLD, DYNAMICALLY
ACCOUNTABLE AND PRIVATE SIGNATURE

In this section, we formalize the notion of DeTAPS, includ-
ing system model, unforgeability, accountability, and privacy.

A. System Model

The system architecture of DeTAPS is depicted in Fig. 1.
It consists of signer, combiner, notary, tracer, and consortium
blockchain. We list the key notations in Table I.

……

t signers
ATS.Sign(), PKE.Enc()

Blockchain

……
t' notaries

KASE.Trapdoor()
DTPKE.ShareDec(), PKE.Enc()

Smart Contract
KASE.Adjust()
KASE.Test()

Enclave
PKE.Dec()
DTPKE.ValidateCT()
DTPKE.ShareVerify()
DTPKE.ShareCombine()
ATS.Trace()

SIG.Sign()

Verify()
Random Tracer

Original t signers
(optionally
encrypted)

Random Combiner

awaken

1. Generating
a threshold
signature

2. Tracing
t signers

……

DeTAPS
signature

Verifier
Verify()

message Enclave
PKE.Dec()
ATS.Combine()
DTPKE.Enc()
KASE.Enc()
Prove()

Notaries

Notaries

Notaries

Fig. 1: System Architecture of DeTAPS.

TABLE I: Experimental Parameters

Notation Meaning
λ security parameter
n number of signers
n1 number of combiners
n2 number of tracers
n3 number of notaries
t threshold
ski key for i-th signer

{sksi }
n1
i=1 n1 signing keys

{skci }
n1
i=1 n1 combining keys

{skti}
n2
i=1 n2 tracing keys

gid signer group identifier
G set of signer groups
ka aggregate key
N set of notaries
S signing quorum
M message space
m message for signing

σi, σ̂i ATS signature share, encryption of σ
σm, σ Combined signature, σm under DTPKE
σ DeTAPS signature

Signer. When a group of t signers S = {S1, S2, · · · , St}
prepare to generate a signature on a message m, they request
the pseudo-identity from t′ parties N = {N1, N2, · · · , Nt′} as
notaries. Then, each group manager generates a signer group
identifier gid ∈ G in current signing period and reports it to
CB. Next, each signer sends a signature share on m to CB.

Combiner. Each combiner Ci is equipped with an enclave
Ei. Ci has a pair of signing keys and Ei has a pair of
encryption keys. The combining key is secured in the Ei. After
being elected as a winning node, Ci retrieves all signature
shares from the CB and the Ei decrypts them to collect related
signature shares and combine them into a complete signature.
Next, it generates an encrypted signature via DTPKE, com-
putes an index via KASE, and constructs a non-interactive zero
knowledge proof. Finally, Ci signs the message, encrypted
signature, index, and the proof.

Remark 2 (For overlooked signature shares). During com-
bining in an enclave, there will be overlooked signature shares
that exist for the protection of t. We do not cast them out of
the enclave and retrieve them for the next combining. Instead,
we store these shares in the enclave, which has an enough
storage space.

Remark 3 (Why multiple combiners?). There is only one
combiner in TAPS, which is prone to the general problems of
centralized model [42]. In DeTAPS, we have distributed such
an ability to all blockchain nodes that hold a combining key
in an enclave. The combining process will be assigned to a
randomly node based on the blockchain consensus result. In
this way, an adversary will have more difficulty in compro-
mising the actual combiner in current period. This idea also
applies to why we have multiple tracers.

Notary. There is a set of parties working as notaries. In
real life, they can be a notary office or a local authority.
Each notary Ni has a pseudo-identity, shares an aggregate key,
and acts as a user (not necessarily a blockchain node) in the
CB network. Upon a tracing call, each notary Ni computes
a trapdoor. Ni sends the trapdoor to the CB and waits for
matching results. If there is a decryption task, Ni verifies the
results and then generates a decryption share of the encrypted
signature. Next, Ni sends an encrypted response to the CB.

Tracer. Each tracer Tj is also equipped with an enclave Ej .
The tracing key is secured in the Ej . After being elected as
a winning node, Tj retrieves all encrypted decryption shares
from the CB and the Ej decrypts them to verify decryption
shares. Finally, Ej collects t′ related valid shares to combine a
complete signature and trace the original quorum of t tracers.

Consortium Blockchain. DeTAPS is built upon a decen-
tralized framework where a CB records all the transactions
sent by signers, combiners, notaries, and tracers. There are two
pools on the CB: a signature share pool SSL for combiners to
track and a decryption share pool DSL for tracers to monitor.
Each of them is deployed on a Smart Contract (SC).

Definition 1. A decentralized, threshold, dynamically ac-
countable and private signature, or DeTAPS, is a tuple of
five polynomial time algorithms Π = (Setup,Sign,Combine,
Verify,Trace) as shown in Fig. 2 where

– Setup(1λ, n, n1, n2, t) → (PK, (sk1, sk2, · · · , skn),
{skci }

n1
i=1, {skci }

n1
i=1, {sktj}

n2
j=1,G, ka) is a probabilistic

algorithm that takes as input a security parameter λ, the
number of signers n, the number of combiners n1, the
number of tracers n2, and a threshold t to output a public
key PK, n signer keys {sk1, sk2, · · · , skn}, n1 signing
keys {sksi }, n1 combining keys {skci }, n2 tracing keys
{sktj}, a set of signer groups G, and an aggregate key ka.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 7

• Sign(ski,m,S,N)→ σ̂i is a probabilistic algorithm run
by a signer with a signer key ski and a set of notaries N
to generate an encrypted signature share σ̂i on message
m in message space M.

• Combine(skci ,m,S, {σ̂j}j∈S) → σ is a probabilistic
algorithm run by a combiner with a combining key skci ,
a message m, a signing quorum S = {S1, S2, · · · , St},
and t encrypted signature shares {σ̂j}j∈S . If the shares
are valid, Combine outputs a DeTAPS signature σ.

• Verify(PK,m, σ) → {0, 1} is a deterministic algorithm
that verifies the signature σ on a message m with respect
to the public key PK.

• Trace(skti ,m, σ) → S is a deterministic algorithm run
by a tracer with a tracing key skti , a message m, and a
signature σ. If σ is valid, Trace outputs a set S who have
generated σ. Otherwise, it outputs a symbol ⊥.

• For correctness, we require that for all t ∈ [n], all t-
size sets S, all m ∈ M, and (PK, (sk1, sk2, · · · , skn),
{skci }

n1
i=1, {sktj}

n2
j=1,G, ka) ← Setup(1λ, n, n1 n2, t) the

following two conditions hold:

Pr[Verify(PK,m,Combine(skc, sks,m,S,
{Sign(ski,m,S,N)}i∈S)) = 1] = 1,

Pr[Trace(skt,m,Combine(skc, sks,m,S,
{Sign(ski,m,S,N)}i∈S)) = S] = 1.

B. Unforgeability and Accountability

DeTAPS has to satisfy unforgeability and accountability,
i.e., existential unforgeability under a chosen message attack
with traceability [10]. Informally, unforgeability refers to an
adversary compromising less than t signer cannot generate a
valid signature on a message [43], [44], and accountability
refers to an adversary compromising t or more signers cannot
generate a valid message-signature pair that traces to at least
one signer. We formalize these two properties in the adver-
sarial experiment in Fig. 2. Let Advforg

A,Π(λ) be the probability
that A wins the experiment against the DeTAPS scheme Π.

Definition 2 (Unforgeability and Accountability). A De-
TAPS scheme Π is unforgeable and accountable if for all PPT
adversaries A, there is a negligible function negl such that
Advforg

A,Π(λ) ≤ negl(λ).

C. Privacy

(1) Privacy against public. A party who observes a series
of (m,σ) pairs, acquires nothing about t, t′ or the signers. (2)
Privacy against signers. Collaborating signers who observe a
series of (m,σ) pairs, acquires nothing about t′ or signers. (3)
Privacy against combiners. A combiner cannot learn t, t′, or
signers. (4) Privacy against tracers. A tracer cannot learn t, t′,
or signers. We formalize the four properties in the adversarial
experiment in Fig. 3 and Fig. 4.

Definition 3 (Privacy). A DeTAPS scheme is private if for
all PPT adversaries A, AdvprivP

A,Π(λ), AdvprivS
A,Π(λ), AdvprivC

A,Π (λ),
and AdvprivT

A,Π (λ), are negligible functions of λ.
In ExpprivP, A generates four thresholds t0, t1, t′0 and t′1 in

[n] and is given PK. A submits a string of signature queries

to a signing oracle O1, where each query contains a message
m and four sets S0, S1, W0, and W1. Then, A receives a
signature generated using either S0 or S1 (same for N0 or
N1). A can access a tracing oracle O2 while not being able to
determine whether the string of signatures it observed related
to the left or the right sequence of sets.

In ExpprivS, A generates (t, t′), and is given all the signing
keys. Same as ExpprivP, A cannot determine whether O1 that
takes four sets S1, S1, N0, and N1 responds using wither S0

or S1 (same for W0 or W1).

IV. OUR CONSTRUCTION

In this section, we present a concrete construction from
a secure ATS scheme. The DeTAPS construction consists of
eight building blocks:

– An ATS = (KeyGen,Sign, Combine,Verify,Trace);
– A DTPKE = (Setup, Join,Enc,Validate,ShareDecrypt,

ShareVerify, Combine);
– A KASE = (Setup,KeyGen,Extract,Enc,Trapdoor,

Adjust,Test);
– A PKE = (KeyGen,Encrypt,Decrypt);
– A COM = (Commit,Verify);
– A SIG = (KeyGen,Sign,Verify);
– A non-interactive zero knowledge argument of knowledge

(P,V).
– An enclave E = (init.E, config.E).
The DeTAPS scheme is shown in Fig. 5 and we put the

generation of NIZKPs in the Appendix. In our construction,
a DeTAPS signature on a message m is a tuple σ = (σ, π, η)
where (1) σ is a dynamic threshold public-key encryption of
an ATS signature σm on m, encrypted by using the ATS
public key pk, (2) π is a zero-knowledge proof that N used as
notaries is a valid subset of [n3], the decryption of σ is a valid
ATS signature on m, the encryption of (c1, c2, {indi}i∈N) is
(gid,N), and (3) η is the combiner’s signature on σ, π). We
note that the shadows (gray rectangles) in the Combine and
Trace in Fig. 5 indicate that the operations covered by the
shadow are conducted within the TEE.

Remark 4 (Encryption of ATS signature). This step initiates
dynamically private accountability by involving a quorum of
t′ notaries N to encrypt the underlying ATS signature σm.
It is triggered by a quorum of t signers who designate N
in generating a signature share ATS.Sign(ski,m,S). When
combining t signature shares, an enclave Ei computes a
threshold signature σm and then encrypts σm by invoking
σ ← DTPKE.Enc(ek,N , σm). To facilitate successful tracing,
each relevant notary Nj has to generate a decryption share
of σ by using σmj ← DTPKE.ShareDecrypt(pidj , uskj , σ)
for a tracer to combine t′ decryption shares and run S ←
ATS.Trace(pk,m, σm).

Remark 5 (Encryption of gid and N). After an encrypted
threshold signature is published and its signers are held
accountable, we need to awaken its notaries to decryp-
t the encrypted threshold signature. To this end, we re-
sort to KASE. The enclave creates a index by computing
(cgid1 , cgid2 , {indi}i∈N) ← KASE.Enc(mpk, gid,N) where
gid resembles file index and items in N = {pidi} are

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 8

1. (n, n1, n2, t,S, state)
$← A(1λ) where t ∈ [n], S ⊆ [n] Expforg

2. (PK, (sk1, · · · , skn), {sksi , skci }
n1
i=1, {skti}

n2
i=1,G, ka)

$← Setup(1λ, n, n1, n2, t)

3. (m′, σ′)
$← AO(·,·)(PK, (sk1, · · · , skn), {sksi , skci }

n1
i=1, {sktj}

n2
j=1,G, ka, state)

where O1(Si,mi) returns the signature shares {Sign(skj ,mi,Si,N)}j∈Si
Winning condition:
Let (S1,m1), (S2,m2), · · · be A’s queries to O1

Let S ← ∪Si, union over all queries to O1(Si,m′), let St ← Trace(skti ,m
′, σ′)

Output 1 if Verify(PK,m′, σ′) = 1 and either St * S ∪ S ′ or if St = fail

Fig. 2: Experiment of Unforgeability and Accountability.

1. b1
$← {0, 1}, b2

$← {0, 1} ExpprivP

2. (n, n1, n2, t0, t1, t
′
0, t
′
1,S0,S1,N0,N1, state)

$← A(1λ), t0, t1 ∈ [n], t′0, t
′
1 ∈ [n3]

3. (PK, (sk1, · · · , skn), {sksi , skci }
n1
i=1, {sktj}

n2
j=1,G, ka)

$← Setup(1λ, n, n1, n2, tb1)

4. (b′1, b
′
2)← AO2(·,·,·),O3(·,·,·,·,·),O4(·,·)(PK, state)

5. Output (b′1 = b1) ∧ (b′2 = b2).

where O2(N0,N1,m||σ||gid): σ̂ ← PKE.Enc(pke,m||σ||Nb2 ||gid)

O3(S0,S1,N0,N1,m): σ $← Combine(skci ,m,Sb1 , {Sign(skj ,m,Sb1 ,Nb2}j)
for S0,S1 ⊆ [n], |S0| = t0 and |S1| = t1, N0,N1 ⊆ [n3], |N0| = t′0 and |N1| = t′1

O4(m,σ) returns Trace(skti ,m, σ).
Restriction: if σ is computed from O3(·, ·, ·, ·,m), A never queries O4 at (m,σ).

1. b1
$← {0, 1}, b2

$← {0, 1} ExpprivS

2. (n, n1, n2, t, t
′
0, t
′
1,S0,S1,N0,N1, state)

$← A(1λ) where t ∈ [n], t′0, t
′
1 ∈ [n3]

3. (PK, (sk1, · · · , skn), {sksi , skci }
n1
i=1, {sktj}

n2
j=1,G, ka)

$← Setup(1λ, n, n1, n2, t)

4. (b′1, b
′
2)← AO2(·,·,·),O4(·,·)(PK, (sk1, sk2, · · · , skn) , state)

5. Output (b′1 = b1) ∧ (b′2 = b2).

Restriction: |S0| = |S1| = t, N0,N1 ⊆ [n3], |N0| = t′0, |N1| = t′1

Fig. 3: Two Experiments of Privacy against the Public and the Signers.

1. b1
$← {0, 1}, b2

$← {0, 1} ExpprivC

2. (n, n1, n2, t0, t1, t
′
0, t
′
1,S0,S1,N0,N1, state)

$← A(1λ) where t0, t1 ∈ [n], t′0, t
′
1 ∈ [n3]

3. (PK, (sk1, · · · , skn), {sksi , skci }
n1
i=1, {sktj}

n2
j=1,G, ka)

$← Setup(1λ, n, n1, n2, tb1)

4. (b′1, b
′
2)← AO2(·,·,·),O3(·,·,·,·,·),O4(·,·)(PK, sksi , state), i ∈ [n1]

5. Output (b′1 = b1) ∧ (b′2 = b2).
Restriction: sksi can be the one used in O3(S0,S1,N0,N1,m).

1. b1
$← {0, 1}, b2

$← {0, 1} ExpprivT

2. (n, n1, n2, t0, t1, t
′
0, t
′
1,S0,S1,N0,N1, state)

$← A(1λ) where t0, t1 ∈ [n], t′0, t
′
1 ∈ [n3]

3. (PK, (sk1, · · · , skn), {sksi , skci }
n1
i=1, {sktj}

n2
j=1,G, ka)

$← Setup(1λ, n, n1, n2, tb1)

4. (b′1, b
′
2)← AO2(·,·,·),O3(·,·,·,·,·),O4(·,·)(PK, state)

5. Output (b′1 = b1) ∧ (b′2 = b2).

Fig. 4: Two Experiments of Privacy against the Combiners and the Tracers.

keywords. Since the |{indi}| = t′, we use some dummy pids
to hide t′. In tracing, a notary uses an aggregate-key ka to
compute a trapdoor tdi ← KASE.Trapdoor(ka, pidi) for the
SC to look for matching indexes.

Remark 6 (The generation of π). There are five parts in
π. The first one and second one are done by committing to

a vector, proving that every commitment is well formed [10],
[46], and generating NIZKPs using the Fiat-Shamir transform.
The last three are done by generating NIZKPs as well.

Remark 7 (Protect t from Tracer). After the original quorum
of signers is revealed in an enclave, we can encrypt their
identities by a target party’s public key for directional tracing.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 9

Setup(1λ, n, n1, n2, t) :

1. (pk, {ski}ni=1)← ATS.KeyGen(1λ, n, t) //n: number of signers
2. rpk ← Rλ, compk ← COM.Comm(pk, rpk)

3. (mk, ek, vk, ck)← DTPKE.Setup(1λ)

4. (pksj , sk
s
j)← SIG.KeyGen(1λ, j), j ∈ [n1] //Combiner Cj’s signing keys

5. (pkej , sk
e
j)← PKE.KeyGen(1λ, j), j ∈ [n1] //Enclave Ej’s encryption keys

6. (usko, upko, uvko)← DTPKE.Join(mk, o), o ∈ [n3] //n3: number of notaries
7. (B,PK, H)← KASE.Setup(λ, |G|)
8. (mpk,msk)← KASE.KeyGen(λ)

9. ka ← KASE.Extract(msk,G)

10. skcj ← (pk, skej , t, ek, rpk), j ∈ [n1] //Combining key

stored in Enclave Ej

11. sktj ← (skej , ck, pk), j ∈ [n2] //Tracing key
12. gid← HASH(GID, time), GID ∈ G //gid: signer group identifier
13. PK ← (compk, ek, vk, {pksi }

nj
j=1, {pkej}

n1
j=1,B,PK, H,mpk, {gid})

14. Output (PK, {ski}ni=1, {sksj}
n1
j=1, {skcj}

n1
j=1, {sktj}

n2
j=1,G, ka)

Sign(ski,m,S,N)→ σ̂i :

1. σi ← ATS.Sign(ski,m,S)

2. σ̂i ← PKE.Enc(pkej ,m||σi||N ||gid) //Sent to CB to be processed by a combiner
Combine(skcj = (pk, skej , t, ek, rpk) , sksj ,m,S, {σ̂i}i∈S)→ σ

1. (m||σi||N ||gid)← PKE.Dec(σ̂i, sk
e
j) //Enter Ei here; σi ∈ Tx pool

2. σm ← ATS.Combine(pk,m,S, {σi}i∈S)

3. σ ← DTPKE.Enc(ek,N , σm)

4. (cgid1 , cgid2 , {indo}o∈N)← KASE.Enc(mpk, gid,N)

5. Generate a proof for the relation:
R((t′, compk, ek,mpk,m, σ, gid, c

gid
1 , cgid2 , {indo}o∈N); (N , σm, rpk, pk)) = 1 iff{

N ⊆ [n3], ATS.Verify(pk,m, σm) = 1, COM.Verify(pk, rpk, compk) = 1,

σ = DTPKE.Enc(ek,N , σm), (c1, c2, {indo}o∈N)← KASE.Enc(mpk, gid,N).

}
6. η ← SIG.Sign(sksj , (m,σ, c

gid
1 , cgid2 , {indo}o∈N , π))

7. Output a DeTAPS signature σ ← (σ, cgid1 , cgid2 , {indo}o∈N , π, η)

Verify(PK,m, σ)→ {0, 1}
1. Accept σ if SIG.Verify(pksj ,m, σ) = 1 and π is valid; reject otherwise.
Trace(sktj = (skej , ck, pk),m, σ)→ S

1. tdo ← KASE.Trapdoor(ka, pido) //For each notary with a pseudo identity pido
2. tdgido ← KASE.Adjust(B,PK, H, gid,G, tdo) //For each gid and tdo
3. {0, 1} ← KASE.Test(tdgido , (cgid1 , cgid2 , {indo})) //Search all indexes to locate σ
4. If SIG.Verify(pksj , (m,σ, π), η) 6= 1, output fail and return.
5. δo ← DTPKE.ShareDecrypt(pido, usko, σ) //For each pido and each m
6. δo ← PKE.Enc(pido, uvko, δo, pk

e
j)

7. (pido, uvko, σ
m
o)← PKE.Dec(δo, sk

e
j)

8. {0, 1} ← DTPKE.ValidateCT(ek,N , σ) //Assume that σ is preloaded

9. {0, 1} ← DTPKE.ShareVerify(vk, pido, uvko, σ, δo)

10. σm ← DTPKE.Combine(ck,N , σ, {δo}o∈N)

11. S ← ATS.Trace(pk,m, σm).

Fig. 5: The DeTAPS scheme

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 10

If not, we can wait for some time to reveal a batch of quorums
including t and then re-setup the system with a new t.

Remark 8 (Random selection of combiners and tracers). The
random selection of combiners and tracers depends on the
underlying consensus mechanism. For example, in Ethereum,
the consensus mechanism is clique and ethash.

Correctness. DeTAPS is correct if the ATS scheme, DTPKE
scheme, KASE scheme, PKE scheme, COM scheme, SIG
scheme, and (P,V) are correct.

V. SECURITY AND PRIVACY OF DETAPS

Now we prove that the scheme is unforgeable, accountable,
and private.

Theorem 1. The DeTAPS scheme Π in Fig. 5 is unforge-
able, accountable, and private, assuming that the ATS is se-
cure, the COM is hiding and binding, the PKE is semantically
secure, the TEE is confidentiality-preserving, the DTPKE is
IND-NAA-NAC-CPA secure, the KASE is privacy-preserving,
the (P,V) is an argument of knowledge and honest verifier
zero knowledge (HVZK), and the SIG is strongly unforgeable.
The proof of Theorem 1 is captured in the following five
lemmas.

Lemma 1. The DeTAPS scheme Π is unforgeable and
accountable if the ATS is secure, the (P,V) is an argument of
knowledge, and COM is blinding, i.e., for all PPT adversaries
A, there exists adversaries A1, and A2, such that

Advforg
A,Π(λ) ≤

(
Advforg

A1,ATS
(λ) + Advbind

A2,COM(λ)
)
·α(λ)+β(λ),

(1)
where α and β are the knowledge error and tightness of the
proof system.

Proof. We prove Lemma 1 by defining experiments Exp 0,
Exp 1, and Exp 2.

Exp 0. It is the experiment of unforgeability and account-
ability Expforg defined in Fig. 2 applied to Π. If E0 stands for
A wins Exp0, then

Advforg
A,Π(λ) = Pr[E0]. (2)

Exp 1. It is identical to Exp 0 with a strengthened winning
condition: A has to output a valid forgery (m′, σ′) where
σ′ = (σ′, cgid

′

1 , cgid
′

2 , {ind′o}, π′, η′) with a witness satisfy-
ing R((t′, compk, ek,mpk,m

′, σ′, gid′, cgid
′

1 , cgid
′

2 , {ind′o});
(N ′′, σ′′m, r′′pk, pk′′)) = 1.

Assume A′ is an adversary in Exp 1. It invokes
A and answers to A’s queries until receives from A
the (m′, σ′, cgid

′

1 , cgid
′

2 , {ind′o}) to provide a statemen-
t (t′, compk, ek,mpk,m

′, σ′, gid′, cgid
′

1 , cgid
′

2 , {ind′o}). A′ ex-
ecutes the extractor Ext for (P,V) on A’s remaining exe-
cution. Ext produces a witness w = (N ′′, σ′′m, r′′pk, pk′′).
A′ uses w and sks to generate π′ and η′ such that σ′ =

(σ′, cgid
′

1 , cgid
′

2 , {ind′o}, π′, η′) is a valid signature on m′. A′
outputs (m′, σ′) and w. By definition of Ext, if E1 stands for
A′ wins Exp 1, then

Pr[E1] ≥ (Pr[E0]− α(λ))/β(λ). (3)

Exp 2. The adversary now has pk and rpk. We strengthen
the winning condition by requiring pk = pk′′. Let E2 stand

for A wins Exp 2 and E stand for pk 6= pk′′. Therefore,
Pr[E2] = Pr[E1 ∧¬E] ≥ Pr[E1]−Pr[E]. Assume that there is
an adversary A2 such that Pr[E] = Advbind

A2,COM(λ). We have

Pr[E2] ≥ Pr[E1]− Advbind
A2,COM(λ). (4)

Next, we construct an adversary A1 that invokes A and
answers toA’s queries. WhenA outputs a forgery (m′, σ′) and
a witness (N ′′, σ′′m, r′′pk, pk′′) that meet the winning condition
of Exp 1 and Exp 2, A1 outputs (m′, σ′′m). By R, we have
σ′′m is a valid signature on m′ with respect to pk′′. By Exp
2, we have pk = pk′′. Therefore, if A wins Exp 2, then
(m′, σ′′m) is a valid forgery for the ATS scheme. Since the
ATS is secure, we have that Pr[E2] is at most negligible, i.e.,

Advforg
A1,ATS

(λ) ≥ Pr[E2]. (5)

Lastly, combining (2), (3), (4), and (5) proves (1). This
completes the proof of the lemma. �

Lemma 2. The DeTAPS scheme Π is private against the
public if the COM is hiding, the PKE is semantically secure,
the TEE is confidentiality-preserving, the DTPKE is IND-
NAA-NAC-CPA secure, the KASE is privacy-preserving, the
(Prove,Veriy) is HVZK, and the SIG is strongly unforgeable,
i.e., for all PPT adversaries A, there exists adversaries A1,
A2, A3, A4, A5, A6, and A7, such that

AdvpriP
A,Π(λ) ≤2

(
εA1

(λ) + Advind-cpa
A2,PKE

(λ) + Advind-obs
A3,TEE(λ)

+Advind-cpa
A4,DTPKE(λ) + Advind-cka

A5,KASE(λ)

+Q · Advhvzk
A6,(P,V)(λ) + Adveuf-cma

A7,SIG(λ)
)

(6)
where εA1(λ) is hiding statistical distance of COM, obs is an
observation function of A3, and Q is query number.

Proof. We prove Lemma 2 by defining seven experiments.
Exp 0. It is the experiment of privacy against the public

ExppriP defined in Fig. 3 applied to Π. If E0 stands for A
wins Exp 0, then

AdvpriP
A,Π(λ) = |2Pr[E0]− 1|. (7)

Exp 1. It is identical to Exp 0 except that step 2 of
Setup in Fig. 5 is modified such that rpk ← Rλ, compk ←
COM.Comm(0, rpk), where 0 is committed instead of pk.
Since COM is hiding, the adversary’s Adv in Exp 1 is
indistinguishable from its Adv in Exp 0, i.e., say E3 stands
for A1 wins Exp 1, then

|Pr[E1]− Pr[E0]| ≤ εA1(λ). (8)

Exp 2. It is identical to Exp 1 except that the signing
oracle O1(S0,S1,N0,N1, m) is modified such that step 2 of
Sign in Fig. 5 now returns σ̂i ← PKE.Enc(pkej , 0), where
0 is encrypted instead of (m||σi||N ||gid). Since PKE is
semantically secure, A2’s Adv in Exp 2 is indistinguishable
from its Adv in Exp 1, i.e., say E2 stands for A2 wins Exp
2, then

|Pr[E2]− Pr[E1]| ≤ Advind-cpa
A2,PKE

(λ). (9)

Exp 3. It is identical to Exp 2 except that the is modified
such that step 1 of Combine in Fig. 5 now returns the same
(m||σi||N ||gid) within a different enclave.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 11

We assume that A3 only observes outputs of an observation
function obs. The confidentiality-preserving property of the
TEE is proved by the fact that for any two traces that have
equivalent attacker operations and equivalent observations of
the enclave execution, but possibly different enclave private
states and executions, A3’s execution, i.e., its sequence of
states, is identical [39]. In specific,

∀π1,π2 . (Ae1(π1[0]) = Ae2(π2[0])∧
∀i. curr(π1[i]) = curr(π2[i]) ∧ IP (π1[i]) = IP (π2[i])∧
∀i. curr(π1[i]) = e⇒ obse1(π1[i+ 1]) = obse2(π2[i+ 1]))

⇒ (∀i. (Ae1(π1[i]) = Ae2(π2[i]))
(10)

where A is A3, e1 and e2 are two different enclaves, π1 and
π2 are two traces with the same initial state for enclaves e1

and e2, curr is the current mode of the platform, and IP is
these bits of non-determinism in a particular state. Therefore,
given that the TEE is confidentiality-preserving, A3’s Adv in
Exp 3 is indistinguishable from its Adv in Exp 2, i.e., say E3

stands for A3 wins Exp 3, then

|Pr[E3]− Pr[E2]| ≤ Advind-obs
A3,TEE(λ). (11)

We refer the interested reader to [39] for the more detailed
information.

Exp 4. It is identical to Exp 4 except that the signing
oracle O1(S0,S1,N0,N1, m) is modified such that step 3
of Combine now returns σ ← DTPKE.Enc(ek, N , 0), where
0 is encrypted instead of σm. Since DTPKE is secure, A4’s
Adv in Exp 4 is indistinguishable from its Adv in Exp 3, i.e.,
say E5 stands for A4 wins Exp 4, then

|Pr[E4]− Pr[E3]| ≤ Advind-cpa
A4,DTPKE(λ). (12)

Exp 5. It is identical to Exp 4 except that the sign-
ing oracle O1(S0,S1,N0,N1,m) is modified such that
step 4 of Combine now returns (cgid1 , cgid2 , {indo}o∈N) ←
KASE.Enc(mpk, gid, {rj}), where a random set is encrypted
instead of N . Since KASE is privacy-preserving, A5’s Adv in
Exp 5 is indistinguishable from its Adv in Exp 4, i.e., say E5

stands for A5 wins Exp 5, then

|Pr[E5]− Pr[E4]| ≤ Advindcka
A5,KASE(λ). (13)

Exp 6. It is identical to Exp 6 except that the
signing oracle O1(S0,S1,N0,N1, m) is modified
such that step 5 of Combine now generates a
proof π by using the simulator, which is given
(t′, compk, ek,mpk,m, σ, gid, c

gid
1 , cgid2 , {indo}o∈N) as

input. Since the simulated proofs are computationally
indistinguishable from real proofs, A6’s Adv in Exp 6 is
indistinguishable from its Adv in Exp 5, i.e., say E3 stands
for A6 wins Exp 6, then

|Pr[E6]− Pr[E5]| ≤ Q · Advhvzk
A6,(P,V)(λ). (14)

Exp 7. It is identical to Exp 7 except that responses to
O2(m,σ) are fail. If SIG is strongly unforgeable, A7’s Adv
in Exp 7 is indistinguishable from its Adv in Exp 6, i.e., say
E2 stands for A7 wins Exp 7, then

|Pr[E7]− Pr[E6]| ≤ Adveuf-cma
A7,SIG(λ). (15)

In Exp 7, A7’s view is independent of b. Consequently, A7

has no advantage in Exp 7, i.e.,

Pr[E7] = 1/2. (16)

Lastly, combining (7)-(14) proves (6). This completes the
proof of lemma 2. �

Lemma 3. The DeTAPS scheme Π is private against the
signers.

Proof. The proof of Lemma 3 is identical to the proof of
Lemma 2. �

Lemma 4. The DeTAPS scheme Π is private against the
combiners.

Proof. The proof of Lemma 4 is almost identical to the
proof of Lemma 2 except that the Exp 1 is removed because
the combiner has the signing key, i.e.,

AdvpriP
A,Π(λ) ≤ 2

(
Q · Advhvzk

A1,(Prove,Verify)(λ) + ε(λ)+

Advindcka
A3,KASE(λ) + Advind-cpa

A4,DTPKE(λ) + Advind-cpa
A5,PKE

(λ)
)
(17)

Lastly, combining (7), (9)-(14) proves (15). This completes
the proof of Lemma 4. �

Lemma 5. The DeTAPS scheme Π is private against the
tracers.

Proof. Although the tracer carries out the tracing process
within its enclave, its view is the same as one from the public.
Therefore, the proof of Lemma 5 is identical to the proof of
Lemma 2. �

We show how to generate the proofs as follows.
1. Prove N ⊆ [n3]:
1.1 Prove V =

∏n3

i=1 pk
bi
i

Prover:
• choose randomly αi

$← Zq, 1 ≤ i ≤ n3, compute B =∏n3

i=1 pk
αi
i

• compute H = hash(pk1, · · · , pkn3
, V, B)

• send (B,α′1 = b1H+α1, · · · , α′n = bnH+αn) to verifier
Verifier:
• compute H = hash(pk1, · · · , pkn3 , V, B)

• check V H ·B ?
=
∏n3

i=1 pk
α′i
i

1.2 Prove V0 = gψ and V1 = g
∑n3
i=1 bi · hψ:

1.2.1 Prove V0 = gψ

Prover:
• choose randomly α $← Zq , compute B = gα

• compute H = hash(g, V0, B)
• send (g, V0, B, α

′ = ψH + α) to the verifier
Verifier:
• compute H = hash(g, V0, B)

• check V H0 B
?
= gα

′

1.2.2 Prove V1 = g
∑n3
i=1 bi · hψ:

Prover:
• choose randomly αi

$← Zq, 1 ≤ i ≤ n3 + 1, compute
B =

∏n3

i=1 g
αi · hαn3+1

• compute H = hash(g, h, V1, B)
• send (B,α′1 = b1H +α1, · · · , α′n = bn3

H +αn3
, α′n3+1

= ψH + αn3+1) to the verifier
Verifier:

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 12

• compute H = hash(g, h, V1, B)

• check V H1 ·B
?
=
∏n3

i=1 g
α′i · hα

′
n3+1

1.3 Prove bi(1 − bi) = 0 for i = 1, 2, · · · , n3: page 67
in Guaranteed Correct Sharing of Integer Factorization with
Off-line Share-holders, PKC’98:

Common input: Com, g, h ∈ G, Prover’s input: r ∈ Zq
To prove either Com = hr or Com = ghr

Prover:
if Com = hr

• choose randomly w, r1, c1 ∈ Zq
• compute A = hw, B = hr1(Com/g)−c1 , and H =
hash(Com,A,B)

• send (Com,A,B, c1, c2 = H − c1, r1, r2 = w + zc2) to
verifier

else if Com = ghr

• choose randomly w, r2, c2 ∈ Zq
• compute A = hr2Com−c2 , B = hw, and H =
hash(Com,A,B)

• send (Com,A,B, c1 = H − c2, c2, r1 = w + rc1, r2) to
verifier

Verifier:

• check H ?
= c1 + c2 mod q

• check hr1 ?
= B(Com/g)c1 mod q

• check hr2 ?
= AComc2 mod q

2. Prove ATS.Verify(pk,m, σm) = 1: Sec5.1, Sec5.4, Fig5,
Fig6 in TAPS

2.1 Prove gz = [
∏n
i=1 pk

bi
i]c·R where R = σm is protected.

Prover:
• choose randomly kz, kb1, kb2, · · · , kbn ← Zq , compute
A = gkz

∏n
i=1 pk

−c·kbi
i

• choose randomly r ← Zq , compute B = gzgr, z′ = z+r,
and R′ = Rgr

• compute H = hash(pk1, · · · , pkn, c, A,B, z′, R′)
• send (ẑ = z′H + kz, b̂1 = b1H + kb1, · · · , b̂n = bnH +
kbn) to verifier

Verifier:
• compute H = hash(pk1, · · · , pkn, c, A,B, z′, R′)
• check A ·R′H [

∏n
i=1 pk

b̂i
i]c

?
= gẑ

2.2 Prove T0 = gψ and T1 = g
∑n
i=1 bi · hψ:

2.2.1 Prove T0 = gψ

Prover:
• choose randomly α $← Zq , compute B = gα

• compute H = hash(g, T0, B)
• send (g, T0, B, α

′ = ψH + α) to verifier
Verifier:
• compute H = hash(g, T0, B)

• check TH0 B
?
= gα

′

2.2.2 Prove T1 = g
∑n
i=1 bi · hψ:

Prover:
• choose randomly αi

$← Zq, 1 ≤ i ≤ n + 1, compute
B =

∏n
i=1 g

αi · hαn+1

• compute H = hash(g, h, T1, B)
• send (B,α′1 = b1H + α1, · · · , α′n = bnH + αn, α

′
n+1 =

ψH + αn+1) to verifier

Verifier:
• compute H = hash(g, h, T1, B)

• check TH1 ·B
?
=
∏n
i=1 g

α′i · hα
′
n+1

2.3 Prove bi(1− bi) = 0 for i = 1, 2, · · · , n: same to 1.3
3. Prove COM.Verify(pk, rpk, compk) = 1:
Prover:
• set A = compk

• choose randmly α1, α2 ∈ Zq , compute B = gα1hα2 , and
H = hash(g, h,A,B)

• send (A,B, α′1 = Hpk+α1, α
′
2 = Hrpk+α2) to verifier

Verifier:
• computes H = hash(g, h,A,B)

• check AHB ?
= gα

′
1hα

′
2

4. Prove σ = DTPKE.Enc(ek,N , σm):
since C1 = u−k and C2 = hks, prove similar to 1.2.1

5. Prove (c1, c2, {indi})← KASE.Enc(mpk, gid,N):
since ind = e(g,H(pki))

t/e(g1, g|{gid}|)
t, pki ∈ {N}

Prover:
• set A = e(g,H(pki))/e(g1, g|{gid}|)
• choose randmly α ∈ Zq , compute B = Aα, and H =
hash(ind,A,B)

• send (ind,A,B, α′ = Ht+ α) to verifier
Verifier:
• computes H = hash(ind,A,B)

• check indHB ?
= Aα

′

VI. PERFORMANCE EVALUATION

In this section, we build a prototype of DeTAPS based on
Intel SGX2 and Ethereum blockchain. We evaluate its per-
formance regarding computational costs and communication
overhead of five phases.

A. Experimental Settings

Dataset and Parameters. Since there are no specialized
datasets, we synthesize the input data. Table II lists key
experimental paraments. We vary the number of signers n from
10 to 50, the number of notaries n3 from 10 to 50, the number
of signatures n4 from 100 to 1000, the length of message m
from 1 KBytes to 10 KBytes, the threshold t and the number
of notaries t′ from 5 to 15. The security parameter λ is 512,
the number of combiner n1 and the number of tracer n2 is set
to 5. Our codes are uploaded to github.com/UbiPLab/DeTAPS.

TABLE II: Experimental Parameters

Parameter Value
n, n3 [10, 50], [10, 50]

n1, n2, n4 5, 5, [100, 1000]
|m|, λ [1, 10], 512
t, t′ {5, 10, 15}

Setup. We implement DeTAPS on a Linux server running
Ubuntu 20.04 with an Intel(R) Xeon(R) Platinum 8369B CPU
@ 2.70GHz We use HMAC-SHA256 as the pseudo-random
function to implement the hash functions. We use AES as the

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 13

symmetric encryption. We use Geth as the primary tool for
Ethereum network environment establishing. We use remix to
write the SC and deploy it by a light-weighted browser plugin
metamask. We use puppeth to create the genesis block.We
use Python to implement all cryptographic primitives. The
implementation details are shown in Fig. 6.

Device: Android/PC
Notary

Ethereum: Geth,
Puppeth
Node

Ethereum: Geth,
Puppeth
Node

Ethereum: Geth,
Puppeth
Node

Ethereum: Geth,
Puppeth
Node

 Metamask

Device: Android/PC
Signer

Device: Android/PC
Enclave: Gramine

Language: Python3.7
Combiner

Deployment transactions Nodes connections Off‐chain communications On‐chain communicationsC‐N communications

Device: Android/PC
Enclave: Gramine

Language: Python3.7
Tracer

Solidity

Consortium Blockchain

HTTP WEB3WEB3 P2P HTTP

Fig. 6: Implementation Details of DeTAPS.

2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
1 6 0

1 8 0

2 0 0

2 2 0

2 4 0

2 6 0

N u m b e r o f s i g n e r s a n d n o t a r i e s

Tim
e (

ms
)

(a) Setup

2 4 6 8 1 0 1 2 1 4 1 6
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0 S i g n e r

L e n g t h o f m e s s a g e (K B y t e s)

Tim
e (

ms
)

(b) Signing

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

4

8

1 2

1 6

2 0 C o m b i n e r (t = 5) E n c l a v e (t = 5)
 C o m b i n e r (t = 1 0) E n c l a v e (t = 1 0)
 C o m b i n e r (t = 1 5) E n c l a v e (t = 1 5)

Tim
e (

s)

N u m b e r o f t h r e s h o l d s i g n a t u r e s

(c) Combining

2 4 6 8 1 0 1 2 1 4 1 6

9 . 5

1 0 . 0

1 0 . 5 V e r i f i e r

L e n g t h o f m e s s a g e (K B y t e s)

Tim
e (

ms
)

(d) Verifying

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1

2

3

4

5

6 T r a c e r (t = 3) E n c l a v e (t = 3)
 T r a c e r (t = 4) E n c l a v e (t = 4)
 T r a c e r (t = 5) E n c l a v e (t = 5)

Tim
e (

s)

N u m b e r o f t h r e s h o l d s i g n a t u r e s (t ' = 5)

(e) Tracing with varying t

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1

2

3

4

5 T r a c e r (t ' = 3) E n c l a v e (t ' = 3)
 T r a c e r (t ' = 4) E n c l a v e (t ' = 4)
 T r a c e r (t ' = 5) E n c l a v e (t ' = 5)

Tim
e (

s)

N u m b e r o f t h r e s h o l d s i g n a t u r e s (t = 5)

(f) Tracing with varying t′

Fig. 7: Computational Costs.

B. Computational Cost

In Setup, DeTAPS generates all keys. In Signing, a sign-
er computes a signature share. In Combining, a combiner
combines a signature from t signature shares. In Verifying, a
verifier verifies a threshold signature. In Tracing, a notary com-
putes a trapdoor, the SC searches on indexes, a tracer traces a
threshold signature. We compute the average consumed time
of ten experiments for each figure below. In Fig. 7(a), Setup
with n = 50 and n3 = 50 is about 177 ms. In Fig. 7(b),
Signing a 10-KByte message is about 52 ms. In Fig. 7(c),

Combining is around 10 s for a 10-KByte message, 100
threshold signatures, and t = 5, i.e., 500 signature shares. In
Fig. 7(d), Verifying is around 10 ms for a 10-KByte message.
In Fig. 7(e), Tracing with varying t is about 4.9 s for the
enclave given 100 threshold signatures, t = 3, and t′ = 5.In
Fig. 7(f), Tracing with varying t′ is about 3.89 s for the enclave
given 100 threshold signatures, t′ = 3, and t = 5.

C. Communication Overhead

We analyze the communication overhead by counting the
length of transmitted messages of all parties for one sign-
ing group. In Signing, a signer sends a signing transaction
TxSign including a signature share. In Combining, an enclave
outputs a message m, an encrypted threshold signature σ,
an encrypted group number KASE.Enc(mpk, gid,N), and a
proof π. A combiner sends a combining transaction TxComb

including (m,σ). In Verifying, the verifier outputs 1 bit. In
Trace, a notary outputs a trapdoor td, the SC outputs t′ en-
crypted threshold signatures, the enclave outputs a ciphertext
PKE.Enc(S), and the tracer relays it to a target party. We
record the communication overhead in Table III.

VII. CONCLUSIONS

In this work, we have presented DeTAPS, a new threshold
signature scheme that achieves unforgeability, accountability,
and privacy. DeTAPS takes a step further towards providing
strong privacy as well as notarized and dynamic tracing in a
distributed network. In DeTAPS, the signature threshold t and
the witness threshold t′ is hidden from distributed combiners
and tracers by using an enclave to secure the combining
and tracing. We formally prove the security and privacy of
DeTAPS. Experimental results show that DeTAPS is efficient,
e.g., combining (tracing) a threshold signature for 5 singers
(notaries) in the enclave is only 86 (38) ms.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China (NSFC) under the grant No. 62372149, No.
62002094, Anhui Provincial Natural Science Foundation under
the grant No. 2008085MF196, and National Key Research
and Development Program of China under the grant No.
2021YFB2701202.

REFERENCES

[1] Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” Proc. 6th
Annual International Cryptology Conference (CRYPTO), August 1989:
307-315, Santa Barbara, USA.

[2] V. Shoup, “Practical Threshold Signatures,” Proc. 17th International
Conference on the Theory and Application of Cryptographic Techniques
(EUROCRYPT), May 2000: 207-220, Bruges (Brugge), Belgium.

[3] I. Damgård and M. Koprowski, “Practical threshold RSA signatures
without a trusted dealer,” Proc. 18th International Conference on the
Theory and Application of Cryptographic Techniques (EUROCRYPT),
May 2001: 153-165, Innsbruck, Austria.

[4] T. Attema, R. Cramer, and M. Rambaud, “Compressed Σ-protocols
for bilinear group arithmetic circuits and application to logarithmic
transparent threshold signatures,” Proc. 27th International Conference
on the Theory and Application of Cryptology and Information Security
(ASIACRYPT), December 2021: 526-556, Singapore, Singapore.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 14

TABLE III: Communication Overhead

Phase Signing Combining Verifying Tracing
Party Signer Enclave Combiner Verifier Notary SC Enclave Tracer

Theory TxSign m,σ,KASE.Enc(mpk, gid,N), π TxComb b (td, δ) |σ|t′ PKE.Enc(S) PKE.Enc(S)
Practice 1.34 MB 17.63 KB 18.06 KB 1 bit 0.06 KB 1.51t′ KB 2.57 KB 2.57 KB

[5] R. Bacho and J. Loss, “On the adaptive security of the threshold
BLS signature scheme,” Proc. 29th ACM Conference on Computer
and Communications Security (CCS), November 2022: 193-207, Los
Angeles, USA.

[6] S. Micali, K. Ohta, and L. Reyzin, “Accountable-subgroup multisigna-
tures: Extended abstract,” Proc. 8th ACM conference on Computer and
Communications Security (CCS), November 2001: 245-254, Philadel-
phia, USA.

[7] J. Nick, T. Ruffing, and Y. Seurin, “MuSig2: Simple two-round Schnor-
r multisignatures,” 41st Annual International Cryptology Conference
(CRYPTO), August 2021: 189-221, Virtual.

[8] A. Boldyreva, “Threshold signatures, multisignatures and blind signa-
tures based on the gap-diffie-hellman-group signature scheme,” Proc.
6th International Workshop on Theory and Practice in Public Key
Cryptography (PKC), January 2003: 31-46, Miami, USA.

[9] P.-A. Fouque and J. Stern, “Fully distributed threshold RSA under
standard assumptions,” Proc. 7th International Conference on the Theory
and Application of Cryptology and Information Security (ASIACRYPT),
December 2001: 310-330, Gold Coast, Australia.

[10] D. Boneh and C. Komlo, “Threshold signatures with private accountabil-
ity,” Proc. 42nd Annual International Cryptology Conference (CRYPTO),
August 2022: 551-581, Santa Barbara, USA.

[11] A. Scafuro and B. Zhang, “One-time traceable ring signatures,” Proc.
26rd European Symposium on Research in Computer Security (ESORIC-
S), October 2021: 481-500, Virtual.

[12] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities “honest or bust”
with decentralized witness cosigning,” Proc. 37th IEEE Symposium on
Security and Privacy (SP), May 2016: 526-545, San Jose, USA.

[13] M. Li, Y. Chen, C. Lal, and M. Conti, M. Alazab, and D. Hu, “Eunomia:
Anonymous and secure vehicular digital forensics based on blockchain,”
IEEE Transactions on Dependable and Secure Computing (TDSC),
2023, 20 (1): 225-241. DOI: 10.1109/TDSC.2021.3130583

[14] C. Delerablée and D. Pointcheval, “Dynamic threshold public-key
encryption,” Proc. 28th Annual International Cryptology Conference
(CRYPTO), August 2008: 317-334, Santa Barbara, USA.

[15] T. Okamoto and K. Takashima, “Decentralized attribute-based signa-
tures,” Proc. 16th International Workshop on Theory and Practice in
Public Key Cryptography (PKC), February 2013: 125-142, Nara, Japan.

[16] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” Proc. 37th IEEE Symposium on Security and Privacy (S&P),
May 2016: 839-858, San Jose, USA.

[17] Y. Xiao, N. Zhang, J. Li, W. Lou, and Y. T. Hou, “PrivacyGuard:
Enforcing private data usage control with blockchain and attested off-
chain contract execution,” Proc. 25rd European Symposium on Research
in Computer Security (ESORICS), Sempteber 2020: 610-629, Guildford,
United Kingdom.

[18] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intelr software guard extensions (Intelr SGX)
support for dynamic memory management inside an enclave,” Proc.
5th International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), June 2016: 1-9, Seoul, South Korea.

[19] Intel, “Which Platforms Support Intelr Software Guard Extensions
(Intelr SGX) SGX2?” Available: https://www.intel.com/content/www/
us/en/support/articles/000058764/software/intel-security-products.html

[20] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Effcient
batched Oblivious PRF with applications to PSI,” Proc. 23rd ACM
Conference on Computer and Communications Security (CCS), October
2016: 818-829, Vienna, Austria.

[21] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “PSI from PaXoS:
Fast, malicious private set intersection,” Proc. 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(Eurocrypt), May 2020: 739-767, Virtual.

[22] V. Goyal, O. Pandey, A. Sahai, B. Waters, “Attribute-based encryption
for fine-grained access control of encrypted data,” Proc. 13rd ACM

Conference on Computer and Communications Security (CCS), October
2006: 89-98, Alexandria, USA.

[23] L. Cheng, and F. Meng, “Server-aided revocable attribute-based encryp-
tion revised: Multi-user setting and fully secure,” Proc. 26rd European
Symposium on Research in Computer Security (ESORICS), October
2021: 192-212, Virtual.

[24] R. Li and A. X. Liu, “Adaptively secure conjunctive query processing
over encrypted data for cloud computing,” Proc. 33rd IEEE International
Conference on Data Engineering (ICDE), April 2017: 697-708, San
Diego, USA.

[25] X. Lei, A. X. Liu, R. Li, and G.-H. Tu, “SecEQP: A secure and efficient
scheme for SkNN query problem over encrypted geodata on cloud,”
Proc. 35th IEEE International Conference on Data Engineering (ICDE),
April 2019: 662-673, Macao, China.

[26] R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk, “Universal designated-
verifier signatures,” Proc. 9th International Conference on the Theory
and Application of Cryptology and Information Security (ASIACRYPT),
2003, 523-542.

[27] Y. Li, W. Susilo, Y. Mu, and D. Pei, “Designated verifier signature:
Definition, framework and new constructions,” Proc. 4th International
Conference on Ubiquitous Intelligence and Computing, July 2007: 1191-
1200, Hong Kong, China.

[28] B. Cui, Z. Liu and L. Wang, “Key-aggregate searchable encryption
(KASE) for group data sharing via cloud storage,” IEEE Transactions
on Computers (TC), 2016, 65 (8): 2374-2385.

[29] G. Yang, D. S. Wong, X. Deng and H. Wang, “Anonymous Signature
Schemes,” Proc. 9th International Conference on Theory and Practice
in Public-Key Cryptography (PKC), April 2006: 347-363, New York,
USA.

[30] F. Guo, R. Chen, W. Susilo, J. Lai, G. Yang and Y. Mu, “Optimal
Security Reductions for Unique Signatures: Bypassing Impossibilities
with a Counterexample,” Proc. 37th Annual International Cryptology
Conference (CRYPTO), August 2017: 517-547, Santa Barbara, USA.

[31] Z. Liu, K. Nguyen, G. Yang, H. Wang and D. S. Wong, “A Lattice-Based
Linkable Ring Signature Supporting Stealth Addresses,” Proc. 24th
European Symposium on Research in Computer Security (ESORICS),
September 2019: 726-746, Luxembourg.

[32] D. Boneh, X. Boyen, “Hierarchical identity based encryption with
constant size ciphertext,” Proc. 24th International Conference on the
Theory and Application of Cryptographic Technique (EUROCRYPT),
May 2005: 440-456.

[33] C. Delerablé, P. Paillier, D. Pointcheval, “Fully collusion secure dynamic
broadcast encryption with constant-size ciphertexts or decryption keys,”
Proc. first International Conference on Pairing-Based Cryptography
(Pairing), July 2007: 39-59.

[34] J. Katz and Y. Lindell, “Introduction to Modern Cryptography (Third
edition).” CRC Press, 2021: 1-598.

[35] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi, V.
Shanbhogue, and U. Savagaonkar, “Innovative instructions and software
model for isolated execution,” Proc. 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy (HASP),
June 2013, Tel-Aviv, Israel.

[36] Intel, “Intelr Software Guard Extensions.” Available: https://www.intel.
com/content/www/us/en/developer/tools/software-guard-extensions/get-
started.html

[37] M. Li, Y. Chen, Chhagan Lal, M. Conti, F. Martinelli, and M.
Alazab, “Nereus: Anonymous and secure ride-hailing service based
on private smart contracts,” IEEE Transactions on Dependable and
Secure Computing (TDSC), 2023, 20 (4): 2849-2866. DOI: 10.1109/TD-
SC.2022.3192367

[38] M. Li, Y. Chen, L. Zhu, Z. Zhang, J. Ni, C. Lal, and M. Conti,
“Astraea: Anonymous and secure auditing based on private smart
contracts for donation systems,” IEEE Transactions on Dependable and
Secure Computing (TDSC), 2023, 20 (4): 3002-3018. DOI: 10.1109/TD-
SC.2022.3204287

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 15

[39] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia, “A
formal foundation for secure remote execution of enclaves,” Proc. 24th
ACM Conference on Computer and Communications Security (CCS),
November 2017: 2435-2450, Dallas, USA.

[40] M. Li, L. Zhu, Z. Zhang, C. Lal, M. Conti, and M. Alazab, “Anonymous
and verifiable reputation system for E-commerce platforms based on
blockchain,” IEEE Transactions on Network and Service Management
(TNSM), 2021, 18 (4): 4434-4449. DOI: 10.1109/TNSM.2021.3098439.

[41] M. Li, Y. Shen, G. Ye, J. He, X. Zheng, Z. Zhang, L. Zhu, and M.
Conti, “Anonymous, secure, traceable, and efficient decentralized digital
forensics,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), 2023, PP (99): 1-1. DOI: 10.1109/TKDE.2023.3321712.

[42] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated blockchain
and edge computing systems: A survey, some research issues and chal-
lenges,” IEEE Communications Surveys & Tutorials (COMST), 2019, 21
(2): 1508-1532.

[43] B. Tahir, A. Jolfaei, and M. Tariq, “A novel experience-driven and
federated intelligent threat-defense framework in IoMT,” IEEE Journal
of Biomedical and Health Informatics, 2023, PP (99): 1-1.

[44] M. Ali, G. Kaddoum, M. Tariq, and H. V. Poor “A smart digital twin
enabled security framework for vehicle-to-grid cyber-physical systems,”
IEEE Trans. Information Forensics & Security (TIFS), 2023, PP (99):
1-1.

[45] F. Boudot, “Efficient proofs that a committed number lies in an interval,”
Proc. 17th International Conference on the Theory and Application of
Cryptographic Technique (EUROCRYPT), May 2000: 431-444, Bruges,
Belgium.

[46] W. Mao, “Guaranteed correct sharing of integer factorization with off-
line shareholders,” Proc. 1st International Workshop on Public Key
Cryptography (PKC), February 1998: 27-42, Pacifico Yokohama, Japan.

Meng Li is an Associate Professor and Dean Assis-
tant at the School of Computer Science and Infor-
mation Engineering, Hefei University of Technology
(HFUT), China. He is also a Post-Doc Researcher
at Department of Mathematics and HIT Center,
University of Padua, Italy, where he is with the Se-
curity and PRIvacy Through Zeal (SPRITZ) research
group led by Prof. Mauro Conti (IEEE Fellow).
He obtained his Ph.D. in Computer Science and
Technology from the School of Computer Science
and Technology, Beijing Institute of Technology

(BIT), China, in 2019. He was sponsored by ERCIM ‘Alain Bensoussan’
Fellowship Programme (from 2020.10.1 to 2021.3.31) to conduct Post-Doc
research supervised by Prof. Fabio Martinelli at CNR, Italy. He was sponsored
by China Scholarship Council (CSC) (from 2017.9.1 to 2018.8.31) for
joint Ph.D. study supervised by Prof. Xiaodong Lin (IEEE Fellow) in the
Broadband Communications Research (BBCR) Lab at University of Waterloo
and Wilfrid Laurier University, Canada. His research interests include security,
privacy, applied cryptography, blockchain, and vehicular networks. In this
area, he has published more than 60 papers in international peer-reviewed
transactions, journals and conferences, including TIFS, TDSC, ToN, TKDE,
TODS, TSC, TSG, TII, TVT, TNSM, TNSE, TGCN, COMST, MobiCom,
ICICS, SecureComm, TrustCom, and IPCCC. He is a Senior Member of IEEE.
He is an Associate Editor of IEEE TIFS and IEEE TNSM.

Hanni Ding received the B.E. degree from in 2023.
She is working toward her M.S. degree in the School
of Computer Science and Information Engineering,
Hefei University of Technology. Her research inter-
ests include security, privacy, and digital signatures.

Qing Wang received the B.S. degree in Information
and Computational Science at Harbin Normal Uni-
versity, China, in 2019, the M.S. degree in Founda-
tion of Mathematics at Shandong University, China
in 2022. She is working toward the Ph.D. degree in
computer science and technology at Hefei University
of Technology. Her research interests include applied
cryptography and searchable encryption.

Mingwei Zhang received the B.E. degree from
Jiangsu University of Science and Technology in
2021. He is working toward his M.S. degree in
the School of Computer Science and Information
Engineering, Hefei University of Technology. His
research interests include security, privacy, applied
cryptography, blockchain, and vehicular networks.

Weizhi Meng (weme@dtu.dk) received the Ph.D.
degree in computer science from the City University
of Hong Kong (CityU), Hong Kong. He worked as a
Research Scientist with the Department of Infocom-
m Security (ICS), Institute for Infocomm Research,
A*STAR, Singapore, and a Senior Research Asso-
ciate with the Department of Computer Science, C-
ityU. He is currently an Associate Professor with the
Department of Applied Mathematics and Computer
Science, Cybersecurity Section, Technical University
of Denmark (DTU), Denmark. His primary research

interests are cybersecurity and intelligent technology in security, including in-
trusion detection, smartphone security, biometric authentication, HCI security,
trust computing, blockchain in security, and malware analysis.

Liehuang Zhu is a Full Professor with the School of
Cyberspace Science and Technology, Beijing Insti-
tute of Technology, Beijing, China. He received his
M.S. degree from Wuhan University, Wuhan, China
in 2001, and his Ph.D. degree from Beijing Institute
of Technology, Beijing, China in 2004, both in
computer science. His research interests include data
security and privacy protection, blockchain applica-
tions, and AI security. He has authored more than
150 journal and conference papers in these areas.
He is an Associate Editor of IEEE Transactions on

Vehicular Technology, IEEE Network, and IEEE Internet of Things Journal.
He was a Guest Editor of special issue of IEEE Wireless Communications
and IEEE Transactions on Industrial Informatics. He has served as Program
co-chair of MSN 2017, IWWS 2018, and INTRUST 2014. He received the
Best Paper Award at IEEE/ACM IWQoS 2017, IEEE TrustCom 2018, and
IEEE IPCCC 2014.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, NOVEMBER 2023 16

Zijian Zhang received the Ph.D. degree from the
School of Computer Science and Technology, Bei-
jing Institute of Technology. He is now an Associate
Professor with the School of Cyberspace Science
and Technology, Beijing Institute of Technology. He
was a visiting scholar in the Computer Science and
Engineering Department, State University of New Y-
ork at Buffalo in 2015. His research interests include
design of authentication and key agreement protocol
and analysis of entity behavior and preference.

Xiaodong Lin (xlin08@uoguelph.ca) received the
PhD degree in information engineering from the
Beijing University of Posts and Telecommunication-
s, China, and the PhD degree (with Outstanding
Achievement in Graduate Studies Award) in electri-
cal and computer engineering from the University
of Waterloo, Canada. He is currently a professor
with the School of Computer Science, University
of Guelph, Canada. His research interests include
computer and network security, applied cryptogra-
phy, computer forensics, and software security.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3347968

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 04,2024 at 07:43:31 UTC from IEEE Xplore. Restrictions apply.

