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A B S T R A C T

Many scientific and real-world applications are built on magnetic fields and their characteristics. To retrieve the
valuable magnetic field information in high resolution, extensive field measurements are required, which are
either time-consuming to conduct or even not feasible due to physical constraints. To alleviate this problem, we
predict magnetic field values at a random point in space from a few point measurements by using a generative
adversarial network (GAN) structure. The deep learning (DL) architecture consists of two neural networks:
a generator, which predicts missing field values of a given magnetic field, and a critic, which is trained
to calculate the statistical distance between real and generated magnetic field distributions. By minimizing
the reconstruction loss as well as physical losses, our trained generator has learned to predict the missing
field values with a mean reconstruction test error of 6.45% when a large single coherent region of field
points is missing, and 10.04%, when only a few point measurements in space are available. This is better by
about a factor of two compared to conventional methods such as linear interpolation, splines, and biharmonic
equations. We verify the results on an experimentally validated magnetic field.
1. Introduction

Magnetic fields are used in a multitude of scientific and real-
world applications, from MRI scanners to electric motors. In all of
these applications, the magnetic field must be optimized for the given
technology, which typically requires that the magnetic field is char-
acterized. However, to characterize a magnetic field, it has to be
determined throughout the volume of interest, regardless of whether
the magnetic field is measured using a Hall sensor in an experimental
setup or the field is computed using a simulation framework such as
analytical modeling [1] or finite element analysis [2]. Determining the
magnetic field with increasing resolution is computationally expensive,
as is measuring the field in a large number of points for characterizing
the field of an experimental setup.

The problem of obtaining a detailed magnetic field from a set of
measurements or simulation points is known in a number of domains.
In robotics, Gaussian processes have been used to interpolate and ex-
trapolate magnetic field values from a few given data points [3]. As the
computational complexity of Gaussian processes renders the approach
more or less useless in practice, when the number of observations
becomes large, i.e., more than several thousand measurements, the
authors model a scalar potential function instead of the 3-D magnetic
field. In addition to that, the presented method uses an approximation
of the covariance function to model the ambient magnetic field, which
inherits information of magnetic field disturbances from the surround-
ing indoor environment. A robot uses this information to perform

∗ Corresponding author.
E-mail address: spol@dtu.dk (S. Pollok).

localization, and the subsequent robot navigation is highly dependent
on the quality of the magnetic field estimation. Le Grand et al. [4] use
a simple linear interpolation of the measured mesh points to perform a
mapping from coarse, expensive magnetic field measurements to a fine
magnetic field estimate, which inherently is a low-order approximation.

In magnetohydrodynamics, the dynamics of conducting fluids have
to be described. The predictions of the charged fluid particle trajec-
tories rely on the exact magnetic field values in each location. Given
numerical results of a magnetic field evaluation on a discrete grid,
the divergence-free magnetic field values at any point in space are
obtained by relating the magnetic field to its vector potential using
Fourier transforms [5]. The resultant vector potential is then interpo-
lated using cubic splines. Bernauer et al. [6] use similarly a spline-based
interpolation.

In geophysics, least-squares collocation is used for the interpolation
of the earth anomaly map from given magnetic field measurements
of different sources [7]. Another approach to model the geomagnetic
field on the Earth’s surface is to interpolate the external magnetic field
disturbances by Spherical Elementary Current Systems [8].

Moreover, problems exist, where magnetic field values simply can-
not be obtained and have to be interpolated. For instance, the photo-
spheric magnetic field in the Sun’s polar region is unavailable in specific
locations and in order to infer large-scale characteristics, the missing
field data is interpolated [9]. Here, the estimation of missing field data
vailable online 21 February 2023
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Fig. 1. Simplified overview of the novel DL approach for magnetic field prediction. A
generator neural network is trained to predict the missing magnetic field values.

is performed with third-order 2-D polynomial functions fitted to the
given data by least squares.

As demonstrated above, the interpolation methods used for mag-
netic fields differ between domains, as does the numerical accuracy and
computational cost of the implementation. Here, we present a novel
technique for interpolating and extrapolating magnetic field values
based on deep learning (DL). DL is a data-driven approach, where
the parameters of artificial neural networks are trained to optimize an
objective function, and is proven to be an universal approximator [10].
Recent advances in this research area have led to outstanding results
in natural language processing [11], speech recognition [12], and com-
puter vision [13]. The technique has not only proven to be beneficial
for the mentioned engineering tasks, DL architectures are now used to
solve challenges in natural sciences, e.g., material discovery [14] or
drug design [15].

In magnetism research, neural networks have been used, e.g., for
approximately solving Maxwell’s equations for electromagnetic struc-
tures [16] or for solving Maxwell’s equations in an inverse manner [17],
i.e., inferring the magnetic structure from a given magnetic field.
Recently, physics-informed neural networks (PINNs) [18] have been
formulated to embed the nonlinear partial differential equations of a
physical domain into the DL architecture. That setup makes the prior
knowledge of the problem’s physics available to the DL method and
therefore respects the given constraints during training. An instance of
PINNs was adapted to the area of magnetism [19], where Maxwell’s
equations describe the underlying physical laws of magnetostatics and
micromagnetism.

The underlying physical laws have been embedded in a recently
emerging DL architecture called generative adversarial networks
(GANs) [20]. In that setup, two neural networks are trained: a genera-
tor, which outputs a desired target sample, and a discriminator, which
checks whether an output sample is real or artificially generated. By
adding loss terms to the generator, which relate the generated target
samples to the underlying stochastic differential equations, stochastic
processes can be approximated [21].

In computer vision, GANs have been used to generate images based
on conditions [22]. Song et al. [23] learn a diffusion process from
data to noise. By approximating the reverse-time stochastic differential
equation, an image can be retrieved from only a few given parts of
the original image. Another promising work [24] learns to predict a
probability distribution for each pixel value based on its preceding pixel
neighbors. Further developments in their architecture and learning
procedure have led to the ability to fill in missing pixel values of an
RGB image to create a visually appealing and consistent output [25].
Zheng et al. [26] enhance existing work for semantic image inpainting
by adding loss terms, which introduce the physical constraints of a
geostatistical problem, i.e., to infer the heterogeneous geological field
of a few point measurements.

Here, we present a novel approach, where a physics-informed GAN
is used to predict missing field values of a magnetic field. Whereas in
principle the inpainting region of an image can be of any color as long
as it is appealing for the human eye, the distribution and the behavior
2

of a magnetic field are governed by Maxwell’s equations. By embedding
the physical constraints into the loss function of our DL method, we
show that the quality of our predicted field regions can be improved.
A generator neural network 𝐺 shall reconstruct the real, underlying
magnetic field 𝐁 by inter- and extrapolation on sparsely measured field
values 𝐁𝑠𝑝𝑎𝑟𝑠𝑒:

𝐁 = 𝐺(𝐁𝑠𝑝𝑎𝑟𝑠𝑒). (1)

Based on the partly measured field values, we consider two distinct
problems. One of that is inpainting, where the magnetic field is given
around an area of unknown field values, which are then interpolated
by our method as shown in Fig. 1. The second task, which we call out-
painting, is a combination of inter- and extrapolation. Hereby, magnetic
field values are sparsely measured and the trained neural network has
to generate the missing values.

To the best of our knowledge, this is the first application of GANs
to magnetic field prediction. We extend previous work [25] to an
outpainting task and embed the physical behavior of magnetic fields
into additional losses, which the generator neural network is trained
on. In addition to the performance of our novel method, we provide an
extensive comparison to other state-of-the-art methods used for mag-
netic field prediction in literature and also compare to magnetic fields
measured in a physical experiment. Hereby, we measure a magnetic
field produced by multiple hard magnets with a Hall sensor and predict
missing field values with our trained generator network.

2. Physics-informed GANs

A method capable of addressing the introduced problem is DL with
physics-informed GANs. By adversarial supervision, a generator neural
network 𝐺 learns to produce samples that match the distribution of
the ground-truth training data, which are magnetic fields in our case.
Given some measured magnetic field values in a predefined area as
input, the trained 𝐺 outputs a complete magnetic field from the learned
distribution, which is constrained to match the given measurements
and to meet the physical properties of magnetic fields.

2.1. Wasserstein GANs with gradient penalty

In the original formulation of GANs, two neural networks are com-
peting in a min-max game. A generator network 𝐺 maps a sample 𝐳
of a simple noise distribution to a sample 𝐱 of the model distribution
P𝑔 as 𝐺(𝐳; 𝜃𝑔), where 𝜃𝑔 are the trainable network parameters. Simulta-
neously, a discriminator network 𝐷 is trained to output a scalar for a
given sample in the form 𝐷(𝐱; 𝜃𝑑 ), where 𝜃𝑑 are its network parameters
to be optimized. The idea is that 𝐺 tries to fool 𝐷 by generating samples
that resemble the ones taken from the real target space distribution P𝑟.
On the other hand, 𝐷 improves in distinguishing real from generated
samples during training. That should force 𝐺 to generate even more
realistic samples by increasing the similarity between P𝑔 and P𝑟. To
achieve the described behavior, the training objective for 𝐺 and 𝐷 is
defined as follows:

min
𝐺

max
𝐷

E
𝐱∼P𝑟

[

log
(

P𝑟(𝑥)
P𝑟(𝑥) + P𝑔(𝑥)

)]

+ E
�̃�∼P𝑔

[

log
( P𝑔(�̃�)
P𝑟(�̃�) + P𝑔(�̃�)

)]

, (2)

where 𝐱 ∼ P𝑟 denotes that a sample 𝐱 is drawn from the real target
distribution P𝑟, �̃� = 𝐺(𝐳; 𝜃𝑔), and E is the expected value, which is a
generalization of the weighted average in probability theory. If P𝑟 =
P𝑔 , it can be shown that the objective reaches a global minimum of
− log 4, and we would have obtained an ideal generator 𝐺. However,
this training procedure turns out to be unstable in practice due to mode
collapsing of the discriminator and vanishing gradients.

In Wasserstein GANs with gradient penalty (WGAN-GP) [27], these
problems are alleviated by defining 𝐷 as a critic, which outputs the
Wasserstein-1 distance 𝑊 [28] between P and P instead. This is a
𝑔 𝑟
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Fig. 2. Illustration of the DL architecture used for magnetic field prediction. A two-step generation process, which consists of down- and upsampling across multiple convolutional
layers, produces missing field values of a masked input magnetic field. The result is evaluated by a local and a global critic, which are again neural networks consisting of several
convolutional layers. In addition to the 𝐿𝑤𝑔𝑎𝑛−𝑔𝑝, the 𝑙1 reconstruction losses, 𝐿𝑚𝑎𝑡𝑐ℎ and 𝐿𝑚𝑖𝑚𝑖𝑐 , and the physical losses, 𝐿𝑑𝑖𝑣 and 𝐿𝑐𝑢𝑟𝑙 , are calculated for updating the parameters
of the generator networks in order to minimize the overall loss function.
statistical distance, which describes the similarity between two prob-
ability distributions as a way of optimal transport. Informally, one
can imagine P𝑔 and P𝑟 as the mass distribution of two differently
shaped piles of earth of the same total mass. The Wasserstein-1 distance
then determines the minimal distance of transporting mass units to
transform one pile of earth into the other one [29]. The WGAN-GP
objective function is defined as:

min
𝐺

max
𝐷∈

E
𝐱∼P𝑟

[𝐷(𝐱; 𝜃𝑑 )] − E
�̃�∼P𝑔

[𝐷(�̃�; 𝜃𝑑 )], (3)

where  is the set of 1-Lipschitz functions. In our case, the set of
1-Lipschitz functions is defined as:
‖𝐷(�̂�1; 𝜃𝑑 ) −𝐷(�̂�2; 𝜃𝑑 )‖2

‖�̂�1 − �̂�2‖2
≤ 1, (4)

where �̂� is a sample drawn from the probability distribution P�̂�, which is
combining P𝑟 and P𝑔 by sampling uniformly from straight lines between
pairs of points sampled from these two distributions. As 𝐷 is a neural
network and fully differentiable, it implicitly follows that ∇�̂�𝐷(�̂�; 𝜃𝑑 ) ≤
1 has to hold true, if 𝐷 ∈ . Further, we refer to 𝐷 as critic from here
on. Under an optimal critic, the generator network parameters 𝜃𝑔 are
trained to minimize 𝑊 (P𝑔 ,P𝑟).

2.2. Loss function for magnetic field prediction

In WGAN-GP, a gradient penalty term is added to the standard
WGAN loss function:
𝐿𝑤𝑔𝑎𝑛−𝑔𝑝 = E

𝐱∼P𝑟
[𝐷(𝐱; 𝜃𝑑 )] − E

�̃�∼P𝑔
[𝐷(�̃�; 𝜃𝑑 )]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿𝑤𝑔𝑎𝑛

+ 𝜆𝑔𝑝 E
�̂�∼P�̂�

[(‖∇�̂�𝐷(�̂�; 𝜃𝑑 )‖2 − 1)2]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿𝑔𝑝

,
(5)

where 𝜆𝑔𝑝 is the gradient penalty coefficient. The additional loss term
ensures that the norm of the gradients of the critic parameters 𝜃𝑑
is close to 1 for adherence to Eq. (5), which lets 𝐷 be an optimal
realization of the set of 1-Lipschitz functions. The loss 𝐿𝑤𝑔𝑎𝑛−𝑔𝑝 is then
backpropagated to update the network parameters of the generator and
the critic.

Our work is inspired by generative image inpainting from the
research area of computer vision, where GANs are trained to inpaint
the missing region of a corrupted image 𝐱𝑠𝑝𝑎𝑟𝑠𝑒. Ideally, the generated
result �̃� shall match 𝐱𝑠𝑝𝑎𝑟𝑠𝑒 in all the image pixels available and mimic
the ground-truth full image 𝐱. Hence, an 𝑙1 loss 𝐿𝑚𝑎𝑡𝑐ℎ between the
predicted result �̃� and the given input image 𝐱𝑠𝑝𝑎𝑟𝑠𝑒, and a second
𝑙1 loss 𝐿𝑚𝑖𝑚𝑖𝑐 between �̃� and the ground-truth training sample 𝐱 are
formulated:
𝐿𝑚𝑎𝑡𝑐ℎ = ‖𝐱𝑠𝑝𝑎𝑟𝑠𝑒 ⊙ (𝟏 −𝐦) − �̃� ⊙ (𝟏 −𝐦)‖1,

𝐿𝑚𝑖𝑚𝑖𝑐 = ‖𝐱 ⊙𝐦 − �̃� ⊙𝐦‖1,
(6)

where 𝐦 is a binary mask with a pixel value of 1 for missing magnetic
field values and a value of 0 if field measurements are available.
3

The symbol ⊙ denotes, here and throughout the paper, the Hadamard
product. The result of the Hadamard product is a matrix filled in each
element 𝑖, 𝑗 with the element-wise product of the entries 𝑖, 𝑗 of the two
original matrices. All matrices involved in this mathematical operation
are of the same dimension.

For magnetic field prediction, we have additional information of the
underlying physics of magnetic fields. We not only want to generate a
visual appealing result, we also want the generated magnetic field to
be constrained by Maxwell’s equations. With addition of physical loss
terms to the loss function, our DL method becomes physics-informed,
and it can be seen as a regularization for generating magnetic fields.
Samples from our target space distribution P𝑟 are discrete magnetic
fields values on a regular grid, 𝐁 = 𝐱. The first physical loss term is
Gauss’s law for magnetism, which states that:

𝐿𝑑𝑖𝑣 = ∇ ⋅ �̃�
!
= 0, (7)

where �̃� is the generated magnetic field prediction. If we further assume
the absence of electric current density or changing electric field over
time, Ampère’s circuital law can be simplified to:

𝐿𝑐𝑢𝑟𝑙 = ∇ × �̃�
!
= 0. (8)

Our final loss function used during training is formulated as follows:

𝐿 =𝜆𝑤𝑔𝑎𝑛−𝑔𝑝𝐿𝑤𝑔𝑎𝑛−𝑔𝑝 + 𝜆𝑚𝑎𝑡𝑐ℎ𝐿𝑚𝑎𝑡𝑐ℎ + 𝜆𝑚𝑖𝑚𝑖𝑐𝐿𝑚𝑖𝑚𝑖𝑐
+ 𝜆𝑑𝑖𝑣𝐿𝑑𝑖𝑣 + 𝜆𝑐𝑢𝑟𝑙𝐿𝑐𝑢𝑟𝑙 ,

(9)

where 𝜆𝑤𝑔𝑎𝑛−𝑔𝑝, 𝜆𝑚𝑎𝑡𝑐ℎ, 𝜆𝑚𝑖𝑚𝑖𝑐 , 𝜆𝑑𝑖𝑣, and 𝜆𝑐𝑢𝑟𝑙 are the coefficients for each
single loss term and define their relative importance.

Algorithm 1 WGAN-GP for magnetic field prediction
1: while 𝐺 has not converged do
2: for 5 iterations do
3: Sample magnetic fields 𝐁 from training data;
4: Generate random masks 𝐦 for 𝐁;
5: Construct input fields 𝐁𝑠𝑝𝑎𝑟𝑠𝑒 ← 𝐁⊙ (𝟏 −𝐦);
6: Get result �̃� ← 𝐁𝑠𝑝𝑎𝑟𝑠𝑒 + 𝐺(𝐁𝑠𝑝𝑎𝑟𝑠𝑒,𝐦)⊙𝐦
7: Update 𝐷 with 𝐿𝑤𝑔𝑎𝑛−𝑔𝑝
8: end for
9: Update 𝐺 with 𝐿𝑚𝑎𝑡𝑐ℎ, 𝐿𝑚𝑖𝑚𝑖𝑐 , 𝐿𝑑𝑖𝑣, 𝐿𝑐𝑢𝑟𝑙, and 𝐿𝑤𝑔𝑎𝑛−𝑔𝑝

10: end while

2.3. Neural network architecture

The DL architecture used for magnetic field prediction is adapted
from Yu et al. [25] and visualized in Fig. 2. To demonstrate the concept
and to make visualization of the results easier, we choose to input a
3-D magnetic field measured in a 2-D rectangular area and output an
inter- or extrapolated 3-D magnetic field in this area. These fields are
multiplied with a binary mask 𝐦 during training as follows:

𝐁 = 𝐁⊙ (𝟏 −𝐦). (10)
𝑠𝑝𝑎𝑟𝑠𝑒
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Fig. 3. Magnetic field regions of the 2-D measurement area, which the two neural
networks serving as local and global critic use as input for the outpainting task.

The two-step generating process is designed in the style of residual
learning [30] and can be described as follows:

𝐁𝑐𝑜𝑎𝑟𝑠𝑒 = 𝐺𝑐𝑜𝑎𝑟𝑠𝑒(𝐁𝑠𝑝𝑎𝑟𝑠𝑒,𝐦),

�̃� = 𝐺𝑓𝑖𝑛𝑒(𝐁𝑐𝑜𝑎𝑟𝑠𝑒 ⊙𝐦 + 𝐁𝑠𝑝𝑎𝑟𝑠𝑒,𝐦).
(11)

A generator network 𝐺𝑐𝑜𝑎𝑟𝑠𝑒 generates a coarse prediction by apply-
ing a sequence of convolutional layers on 𝐁𝑠𝑝𝑎𝑟𝑠𝑒 and the applied mask
𝐦. First, the input field is downsampled to a smaller resolution with an
increased number of channels, so that the same amount of information
can be preserved with subsequent convolutions being computationally
less expensive. Second, several convolutions with differently scaled
filters are performed on the downsampled image to increase the field-
of-view of the model and to enable encoding at multiple scales. Finally,
the data is upsampled with interpolations to the original size, which
results in a coarse prediction 𝐁𝑐𝑜𝑎𝑟𝑠𝑒.

A second generator network 𝐺𝑓𝑖𝑛𝑒 takes 𝐁𝑐𝑜𝑎𝑟𝑠𝑒 and 𝐁𝑠𝑝𝑎𝑟𝑠𝑒 as input,
and produces �̃� in a similar manner as the coarse generator. Parallel to
that, the magnetic field is split up into small patches of 3 × 3 pixels in
a second branch. The relative importance between these patches and
the missing pixels is calculated, which is then used for an improved
reconstruction. The idea behind that so-called contextual attention
branch is to overcome the locality in the convolutional layers and
to enhance it with a global information flow from distant magnetic
field pixels. The convolution and the attention branch are concatenated
before upsampling to the original resolution.

On �̃�, the losses 𝐿𝑚𝑎𝑡𝑐ℎ, 𝐿𝑚𝑖𝑚𝑖𝑐 , 𝐿𝑑𝑖𝑣, and 𝐿𝑐𝑢𝑟𝑙 can be directly
calculated. For the adversarial loss 𝐿𝑤𝑔𝑎𝑛−𝑔𝑝, we need to employ a critic
neural network, which tells us the Wasserstein-1 distance between the
original and the generated magnetic fields. Iizuka et al. [31] show
that it is beneficial to split the critic into a global critic network,
which evaluates the whole image, and a local critic network, which
determines the quality of the filled-in regions.

In our framework, we extend the setup to work computationally
efficient also with the outpainting task, which can be seen as an
inverted inpainting task. Hereby, only small regions of magnetic field
measurements across the 2-D area are given. The missing field values
around have to be inter- and extrapolated. Implementing this task in the
framework of Yu et al. [25] is straightforward. However, special care
has to be taken when creating the local patches for the outpainting task.
Instead of naively inverting the mask values and calculating the local
patch for nearly the whole image, we define small boxes with padding
size 𝑠𝑝𝑎𝑑 around the given field patch as shown in Fig. 3.

As the convolutional neural networks used in 𝐺𝑐𝑜𝑎𝑟𝑠𝑒 and 𝐺𝑓𝑖𝑛𝑒 are
resolution-independent, the size and shape of 𝐁𝑠𝑝𝑎𝑟𝑠𝑒 can vary during
inference time. Similarly, the applied missing regions can be arbitrarily
chosen by setting the mask pixel values to 1. The complete training
procedure is summarized in Algorithm 1. As usual with GANs, the
neural network parameters of the critic are updated five times before
the next update for the generator parameters is performed.
4

Fig. 4. Virtual experimental setup. Multiple hard magnets shaped as cubic prisms are
placed randomly in a grid of resolution 10 × 10 × 5. The magnetic field samples used
for training and testing of our novel method are computed in a 2-D area enclosed by
this structure. It is assured that no magnetic material can be found in the measurement
area.

3. Experiments

To check the performance of our novel method for magnetic field
prediction, we introduce a virtual setup, where our open-source mi-
cromagnetism and magnetostatic modeling framework MagTense [1]
is used to place a 3-D construct of hard magnets around a 2-D area and
to compute its resulting magnetic field. As shown in Fig. 4, multiple
hard magnets are placed randomly with a probability of 50% in a grid
of resolution 10 × 10 × 5. Each magnet is shaped as a cubic prism
with a fixed side length of 0.1 cm and has a remanent magnetization
of 1.2 T, but with the easy axes of the single magnets randomly varying.
While the field here is generated with cubic magnets, there is no loss
of generality, as the different magnetizations and locations of the hard
magnets produce a huge variety of magnetic fields in the central area
of the grid. However, in a future work it will be interesting in a future
work to train on magnetic fields generated by, e.g., cylindrical magnets
or spheres.

The enclosed 2-D rectangular area in the center is left free of
magnet material and varying in side length ranging from 0.1 to 0.4 cm.
This produces multiple field length scales and a changing number of
magnets at the edge of that area between different realizations. We
compute the resulting 3-D magnetic field with a resolution 256 × 256
pixels and store 20,000 samples of these into a dataset, which is then
used to train our neural networks. Additionally, we store a layer of
magnetic field calculations above and a layer below to later be able
to calculate the divergence and curl of the magnetic field with a finite
difference method.

Moreover, we build a physical setup with real neodymium (NdFeB)
magnets in our laboratory and measure the magnetic field with a
Hall sensor. We print a 3-D holder with 12 × 12 spots and place 97
NdFeB magnets of cubic shape with a side length of 0.7 cm. The hard
magnets have a magnitude of 1.29–1.32 T and their easy axes lie in
the 𝑥𝑦-plane. However, production variations lead to small deviations
from that plane. In the center of the holder is a hole of size 6 cm ×
6 cm, similar to our virtual experiment. As ground-truth data, we then
measure the magnetic field in the enclosed 2-D area. In Fig. 5, this
specific setup is depicted along with the 𝑦-component of the magnetic
field.

For each of these setups, we then perform an inpainting and an out-
painting task. For inpainting, a single region in the 2-D measurement
area is missing and has to be interpolated. For outpainting, small re-
gions across the measurement area are given and the missing magnetic
field values are inter- and extrapolated with the given information.
For outpainting, we assume that the sources generating the field are
not present within the region where the field is being outpainted, thus
∇×𝐁 = 0 applies. This is a realistic condition, as this can also be ensured
experimentally or in applications.

For the inpainting problem, this is in principle a closed domain
Poisson problem with suitable boundary conditions and if the values
of the field are known fully on the boundary, these uniquely determine
the solution, i.e., the field in the inpainting region. However, the finite
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Fig. 5. The physical experimental setup. Fig. 5(a) shows the 12 × 12 holder with
97 NdFeB magnets. In the enclosed 2-D area, we measure the magnetic field. The
𝑦-component 𝐁𝑦 is visualized in Fig. 5(b). For brevity, we omit 𝐁𝑥 here and as the
easy axes of the single hard magnets are in the 𝑥𝑦-plane, it follows that 𝐁𝑧 = 0.

resolution on the boundary limits the uniqueness of the solution, also
given the fact that the magnetic field is a 3-D quantity and the boundary
values are only known on a 2-D slice. Secondly, it is often the case that
the more training data can be supplied to the DL architecture, the better
predictions the trained model will give, assuming that the training data
is coherent and samples the region where magnetic field prediction is
performed. Hence, we make as much information as possible available
to the neural network, including the field outside the boundary of the
inpainting region, to overcome the mentioned limitations of only the
boundary values given.

For inpainting, we extend the vision of the local critic to be 4 pixels
larger across the masked area with the idea that the generator learns
even better to predict magnetic field inserts with a smooth transition
across the edge from the given to the predicted area. We define four
sub-tasks with varying side lengths of the missing quadratic area. For
each of the side lengths of 48, 96, 144, and 192 pixels, we train
a separate generator neural network. To generalize better to unseen
mask sizes, we further vary the side length of the masks between
batches up to 25% from the side length it is trained for. Each training
batch consists of 25 samples for which the loss function of Eq. (9) is
calculated. The neural network parameters of the generator and the
critic are then updated with the gradients of this batch loss using the
Adam optimizer [32] with a learning rate of 1e–4. On an NVIDIA
GeForce RTX 3090, this results in an almost full GPU memory usage
of its 24 GB. We train each of the setups for at least 300,000 iterations,
where the training time differs for different mask sizes. On average, it
takes approximately 0.5 s/batch. As starting point, we take the values
for the penalty coefficients directly from Yu et al. [25]. The newly
introduced hyperparameters 𝜆𝑑𝑖𝑣 and 𝜆𝑐𝑢𝑟𝑙 are set based on manual
inspection of the error magnitude in order to scale 𝐿𝑑𝑖𝑣 and 𝐿𝑐𝑢𝑟𝑙 to
a similar range as the other loss terms. We have visualized the scaled
loss terms used for the generator updates in Fig. 6. Eventually, the
coefficients are defined as follows: 𝜆𝑤𝑔𝑎𝑛−𝑔𝑝 = 0.001, 𝜆𝑔𝑝 = 10, 𝜆𝑚𝑎𝑡𝑐ℎ =
7.2, 𝜆𝑚𝑖𝑚𝑖𝑐 = 3.6, 𝜆𝑑𝑖𝑣 = 500, and 𝜆𝑐𝑢𝑟𝑙 = 30,000.

For outpainting, we introduce a setup, where 20 regions of 16 × 16
magnetic field values across the measurement area are given, and a
second setup with only 20 point measurements being available. For
each of these setups, we train a generator neural network similarly to
the inpainting task. Now, we use a batch size of 48 samples, which
leads to better convergence in this task. Running for 500,000 iterations
on two NVIDIA GeForce RTX 3090 in parallel, training time results in
0.63 s/batch. As the divergence and curl losses become larger in the
outpainting task, we adjust 𝜆𝑚𝑎𝑡𝑐ℎ = 10, 𝜆𝑚𝑖𝑚𝑖𝑐 = 2.4, 𝜆𝑑𝑖𝑣 = 120, and
𝜆𝑐𝑢𝑟𝑙 = 24,000. Fig. 6(b) indicates to further decrease 𝜆𝑑𝑖𝑣 to obtain
more similar ranges of the scaled loss terms in future training runs. A
more extensive hyperparameter search is likely to reveal an improved
set of hyperparameters.

The code, pretrained models, and examples are available at:
https://github.com/spollok/magfield-prediction.
5

Fig. 6. Overview of the scaled reconstruction and physical loss terms during training.
During inpainting, the loss terms are in the same range, whereas in the outpainting
task, 𝐿𝑑𝑖𝑣 is an order of magnitude larger than the scaled 𝐿𝑚𝑖𝑚𝑖𝑐 and 𝐿𝑐𝑢𝑟𝑙 . The scaled
𝐿𝑚𝑎𝑡𝑐ℎ is an order of magnitude smaller compared to these.

Table 1
MAPE [%] of inpainting task for different mask sizes. The method with the lowest MAPE
on each sub-task with 250 test samples is marked in bold. Our method is retrained on
each of the specific sub-tasks. The subscripts in the last row indicate that we evaluate
our method trained on one mask size only.

48 96 144 192

Linear 5.10 16.17 27.76 37.93
Spline 0.52 3.87 10.93 19.45
Biharmonic [34] 0.52 4.04 10.55 17.78
WGAN-GP [25] 3.91 4.81 8.49 11.51
Ours 3.10 4.46 6.45 9.40
Ours144 3.35 4.06 6.45 15.43

4. Results

In the following section, we evaluate our novel method for magnetic
field prediction and benchmark its performance with current state-of-
the-art methods found in literature. In addition to our method, we
solve the tasks with a linear and a cubic spline-based interpolation
from SciPy [33], biharmonic equations [34], a Scikit [35] implemen-
tation of Gaussian processes [36] with a radial-basis function kernel,
and the adapted WGAN-GP method from Yu et al. [25] without the
additional physical terms in the loss function. We skip evaluating Gaus-
sian processes for the inpainting task as its computational complexity
scales with (𝑛3), where 𝑛 is the number of given magnetic field
measurements, and becomes computationally prohibitive for this task.
Moreover, we do not apply linear interpolation for the outpainting task
as its implementation does not support extrapolation to magnetic field
points outside the convex hull of the given field measurements.

In principle, 3-D magnetic fields can be represented by a specific
set of spherical harmonics [37] or some other set of alternative basis
vectors. For a true 3-D problem, if the field was known completely on
the boundary of the inpainting region, the coefficients of the spherical
harmonics could be fit to the available magnetic field measurements,
and then magnetic field values could be predicted in the missing field
points. However, we consider here the problem where only a 2-D
measurement area of such a 3-D magnetic field is considered. Using
2-D eigenfunctions, which are fitted to the boundary values of this 2-D
measurement area, do not allow for magnetic field predictions, as the
field varies in the third dimension. Therefore, we limit the comparison
of our DL approach to the state-of-the-art methods mentioned above,
and leave the potential use of spherical harmonics for 3-D magnetic
field prediction in a 2-D measurement area open for future research.

4.1. Virtual setup - Inpainting

In Table 1, we compare our method to four other methods used
in literature for magnetic field prediction based on the mean abso-
lute percentage error (MAPE) between ground-truth and the predicted
magnetic field values. It is defined as:

MAPE = 1
𝑛
∑

∑

‖(𝐱𝑖 − �̃�𝑖)⊙𝐦‖1
∑ , (12)
𝑛 𝑖=1 ‖𝐱𝑖 ⊙𝐦‖1

https://github.com/spollok/magfield-prediction
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Fig. 7. Qualitative analysis of the inpainting task with a mask side length of 144 pixels. Only the trained methods can grasp the curved behavior of the missing magnetic field.
Our method further enhances smoothness and predicts a more correct curvature compared to the standard WGAN-GP approach.
where 𝑛 is the total number of test samples, which have not been used
during training of the neural networks. Each benchmark is run with 𝑛 =
250. Unsurprisingly, linear interpolation shows poor performance the
larger the area of missing magnetic field values becomes. An interpola-
tion method based on cubic splines performs the best for small masks
with side lengths of 48 and 96 pixels. The biharmonic interpolation
performs similarly good, whereas the learning-based WGAN-GP meth-
ods, the DL architecture from Yu et al. [25] and ours, become valuable
with increasing amount of missing magnetic field values to predict.
Our method, the physics-informed version of WGAN-GP, performs best
on the masks with side lengths of 144 and 192 pixels. When further
comparing the correctness of the magnetic field physics, our method
has the lowest divergence loss with 0.20 mT/pixel and the lowest
curl loss with 0.71 μT/pixel on the task with a mask side length of
192 pixels. Here, the spline-based method has a divergence loss of
0.41 mT/pixel and a curl loss of 2.37 μT/pixel.

To emphasize the advantage of our method on larger masks, we
employ a qualitative analysis of the inpainting task with a mask side
length of 144 pixels. The given magnetic field has a shape of 256 × 256
pixels for each of the three components 𝐁𝑥, 𝐁𝑦, and 𝐁𝑧. For visualization
purposes, we only show the ground-truth field distribution of 𝐁𝑥, which
is depicted in Fig. 7(a). After masking the ground-truth, Fig. 7(b) serves
as the input for the interpolation methods. Only the WGAN-GP methods
in Figs. 7(f) and 7(g) grasp the shape in the missing area correctly.
The other methods produce sub-optimal results, which can be partly
explained with the missing information from the other two magnetic
field components, 𝐁𝑦 and 𝐁𝑧, as these methods are interpolating missing
values of one component at a time and hence do not include potentially
useful, available information of the magnetic field. On the other hand,
the learning-based WGAN-GP approaches act directly on all the three
components and process them together. If we had interpolated the
magnetic scalar potential 𝜓𝑀 with only one component, the other state-
of-the-art methods might potentially have reveal better predictions.
Subsequently, the resulting magnetic field can then be derived with
𝐁 = −∇𝜓𝑀 . However, in a real-world setup, normally the three
magnetic field components are measured, and when these are measured
incompletely, one does not know 𝜓𝑀 .

Regarding the inference time, i.e., the computation time for predict-
ing the missing magnetic field values, the WGAN-GP methods are with
2.48 s competitive with linear interpolation (1.58 s) and cubic splines
(1.70 s), as shown in Table 3. The biharmonic equations method needs
43.64 s for one test sample.

For the same task of inpainting with a masked area of size 144 × 144
pixels, we calculate the pixel-wise MAE dependent on the closest given
magnetic field measurement. It can be seen in Fig. 8 that our method
outperforms other interpolation methods the further a magnetic field
value to be predicted is away from the measured region. This occurs
around a distance of 17 pixels from the mask edge. On smaller dis-
tances, there remains a small MAE of around 4 mT, which makes
the edge of the predicted field region visually distinguishable from
given magnetic fields with low field values. In contrast to the other
interpolation methods, the generator 𝐺𝑓𝑖𝑛𝑒 generates a full image with
a resolution of 256 × 256 pixels, from which only the masked area is
used as prediction for missing field values. Even though the generator
6

Fig. 8. Pixel-wise MAE for distance to next given measurement in the input magnetic
field on the inpainting task with a masked area of size 144 × 144 pixels.

is trained with 𝐿𝑚𝑎𝑡𝑐ℎ, it does not succeed to generate magnetic fields
that match the given measurements exactly at the edges.

We further investigate how resilient our method is to different mask
sizes during inference time compared to the mask size the generator
neural network was trained on. When using a generator, which was
trained on mask sizes with a shape of 144 × 144 pixels, then, as shown
in the last row of Table 1, the MAPE for smaller mask sizes is similar to
the generator specifically trained on that mask size and twice as large
on the mask size with a side length of 192 pixels.

4.2. Virtual setup - Outpainting

In addition to inpainting, we evaluate our method on two outpaint-
ing tasks with 100 test samples, respectively. In both tasks, there are 20
regions of field measurements in each sample available. These regions
have the size of 1 × 1 pixel in the first sub-task and 16 × 16 pixels in
the second one. In Table 2, the MAPE and the physical losses, 𝐿𝑑𝑖𝑣 and
𝐿𝑐𝑢𝑟𝑙, of our method are compared to the losses of four other methods
found in literature to perform magnetic field prediction inside and
outside the convex hull of given magnetic field points. Our learning-
based, physics-informed method performs best on predicting missing
magnetic field values in the setup with 20 point measurements given
with an MAPE of 22.58%. The biharmonic equations, Gaussian pro-
cesses, and the standard WGAN-GP based method achieve comparable
results with an MAPE of slightly above 25%, whereas the interpolation
method based on cubic splines leads to a large representation loss and
non-physical predictions, i.e., the divergence and curl of the predicted
magnetic field are substantially greater than 0. For 20 given regions
across the measurement area with a side length of 16 pixels, Gaussian
processes perform the best with a low MAPE of 4.74% and only a
small divergence of 0.24 mT/pixel. This is comparable to the error rates
in the inpainting task. Our method outperforms the other methods in
the curl loss of the magnetic field, while having twice the MAPE of
Gaussian processes for this sub-task. It is important to mention that
Gaussian processes are implemented to process the three components
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Fig. 9. Qualitative analysis of the outpainting task with 20 measurement regions of size 16 × 16 pixels. Visually, Gaussian processes and our method achieve to reconstruct the
ground-truth magnetic field almost perfectly.
Table 2
Losses for the two outpainting tasks.

1 × 1 16 × 16

MAPE 𝐿𝑑𝑖𝑣 𝐿𝑐𝑢𝑟𝑙 MAPE 𝐿𝑑𝑖𝑣 𝐿𝑐𝑢𝑟𝑙
[%] [mT/px] [μT/px] [%] [mT/px] [μT/px]

Spline 193 7590 2228 71.81 2.99 171
Biharmonic [34] 28.58 1.27 5.21 16.84 0.79 2.77
Gaussian 25.96 0.96 4.28 4.74 0.24 1.20
WGAN-GP [25] 27.05 1.31 7.87 17.70 0.86 4.57
Ours 22.58 0.87 3.51 10.04 0.39 0.99

Table 3
Inference time [s] during different sub-tasks.

Inpainting Linear Spline Biharmonic [34] WGAN-GP [25] Ours

144 × 144 1.58 1.70 43.64 2.48 2.48

Outpainting Gaussian Spline Biharmonic [34] WGAN-GP [25] Ours

16 × 16 233.37 0.26 294.45 2.48 2.48

of the magnetic field separately. Here, predicting an unknown value,
e.g., 𝐵𝑥,∗, at location (𝑥∗, 𝑦∗) is constructed as a linear combination of
kernel functions ∑𝑛

𝑖=1 𝛼𝑥,𝑖𝑘((𝑥∗, 𝑦∗), (𝑥𝑖, 𝑦𝑖)), where (𝑥𝑖, 𝑦𝑖) is the location
of the 𝑖th of 𝑛 available field measurements, and 𝛼𝑥,𝑖 incorporates the
given information of 𝐵𝑥,𝑖 at these locations. We refer the reader to
Rasmussen [36] for a more detailed derivation of 𝜶. As 𝑘 in Gaussian
processes, we choose a radial-basis function kernel with a length scale
exceeding the 2-D measurement area to resemble the smooth nature of
magnetic fields. The underlying squared-exponential similarity measure
of the chosen 𝑘 seems to be suited well for magnetic field prediction.
An example of outpainting with Gaussian processes is given in Fig. 9(e).
On that sample, only our method is able to retrieve missing information
similarly good and can produce a visually appealing result as shown in
Fig. 9(g).

When comparing the inference times of the different methods on
the outpainting task with 16 × 16 pixels, the learning-based WGAN-
GP methods have the same computation time of 2.48 s as for the
inpainting task. In contrast to the other methods, the size and amount
of mask has no influence on the inference time of the DL approach
as the computation path from given mask input to prediction of the
full magnetic field stays the same. However, as mentioned before, the
inference time of Gaussian processes scale with (𝑛3) and evaluates to
233 s for a single image here. The biharmonic equations take 294 s to
evaluate, while the spline-based method is the fastest with 0.26 s.

4.3. Experimental setup

To further validate the performance and generalizability of our
approach, we use the trained generator of our learning-based, physics-
informed WGAN-GP, which was trained on the 3-D virtual experimental
setup from Fig. 4, to make predictions in the 2-D physical setup shown
in Fig. 5. Therefore, we measure 8342 magnetic field points in the
enclosed 2-D area of size 24 mm × 24 mm with a Hall sensor. Hereby,
we obtain a resolution of 96 × 86 inside that area. We again perform an
inpainting task with a mask size of 48 × 48 pixels and an outpainting
7

Fig. 10. Qualitative analysis on magnetic field prediction in the experimental 2-D setup
with a generator network that was trained on the virtual setup. For outpainting, the
prediction of a generator retrained on the experimental setup on the same masked input
is shown as well. For each of the tasks, the masked input and the predicted magnetic
field values of 𝐁𝑦 are visualized.

task with 16 regions of 1 × 1 pixel given. The qualitative results are
shown in Fig. 10, with a generator trained on the virtual setup with
a mask side length of 144 pixels for inpainting, and with a generator
network trained on the outpainting task with a mask size of 1 × 1 pixel.
Additionally, we show the prediction of a generator, which is retrained
on magnetic fields resulting from a virtual, rebuilt setup that is similar
to the experimental setup in Fig. 5(a). In the new dataset, the 128
empty spots are randomly filled with hard magnets being only mag-
netized in the 𝑥𝑦-plane, i.e., the 𝑧-component of their magnetization
is set to 0. The inpainting results seem to agree well with the original
magnetic field. The predictions of the outpainting task though show a
clear visual disagreement in the lower right part of the enclosed 2-D
area. However, the field prediction in that area substantially improved
when retraining a generator network on magnetic fields similar to
the test field. In general, such a complete retraining becomes only
feasible with a large amount of data available in a new setup with
different scales and magnetic sources close to the measurement area.
Nevertheless, we assume that our initially trained generator can predict
magnetic fields without a loss of generality. With a small amount
of data available for a new experimental setup, then a fine-tuning
starting from the pretrained weights of our generator neural network
can already improve the performance of magnetic field prediction to
an acceptable level.

5. Discussion

The DL approach is working well and better than other methods
found in literature, when the area of missing magnetic field measure-
ments becomes large. However, our approach has flaws when the value
to predict is close to the region of given field points. As shown in Fig. 8,
the MAE for standard interpolation methods becomes very low as the
given closest points are used as starting points for the specific inter-
polation technique. On the other hand, the WGAN-GP approaches take
the given field points as input to the DL architecture and over several
convolutions output a prediction, which is only indirectly coupled to
the available measurements. The reconstruction of the given magnetic
field points is solely controlled by 𝐿𝑚𝑎𝑡𝑐ℎ, which the generator tries to
minimize over several updates of its network parameters. An obvious
first idea to tackle this issue would be to increase 𝜆𝑚𝑎𝑡𝑐ℎ and hence
the importance of this loss. During parameter updates, more focus
will be put on matching the given original points. We trained a new
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Fig. 11. Comparison of 𝐿𝑚𝑎𝑡𝑐ℎ and validation loss during training for the inpainting
task with different values for 𝜆𝑚𝑎𝑡𝑐ℎ. The red curve shows the hyperparameter set chosen
throughout the study with 𝜆𝑚𝑎𝑡𝑐ℎ = 7.2. The green curve uses a 𝜆𝑚𝑎𝑡𝑐ℎ = 1000 to enhance
to importance of this error with the intention to decrease the mismatch of generator
predictions on locations with known magnetic field measurements.

Fig. 12. Training curves for the outpainting task. The blue curve shows the progress
of 𝐿𝑤𝑔𝑎𝑛 and the validation loss with the standard WGAN-GP method. The red curve
is the evolution during training, when enabling physical losses with our method.

generator network with an updated hyperparameter set. As visualized
in Fig. 11(a), the green curve has indeed a lower, improved 𝐿𝑚𝑎𝑡𝑐ℎ, indi-
cating that the prediction matches the masked input in the given areas
better. But when looking at the overall validation loss in Fig. 11(b),
one can see that the calculated reconstruction loss on samples unseen
during training is larger throughout the training. This can be explained
with an increase of the other losses, 𝐿𝑑𝑖𝑣 and 𝐿𝑐𝑢𝑟𝑙, which leads to a less
physical model and worse performance on the magnetic field prediction
in unknown areas. In general, a more elaborate hyperparameter search
could substantially enhance the performance of our method. Due to
limited available calculation time, we performed all our experiments
with the set of hyperparameters stated in Section 3 without further
tuning. Another approach to alleviate this behavior could be a post-
processing method to smooth values at the edges of the final result or
to combine it with a spline-based method close to given field points.
For instance, one can predict values close to given measurements with
cubic spline-based interpolation and at about a distance of 17 pixels
from the next given measurements, the magnetic field predictions from
our method can be more and more taken into account.

Another interesting point to discuss is the improvement of our
physics-informed method compared to the standard WGAN-GP ap-
proach. Especially, on the outpainting task our method leads to a
substantially lower MAPE. With Fig. 12, we want to emphasize the
importance of introducing the physical losses into the DL architecture.
The introduction of the physical losses influences the updates of the
generator network parameters to be more general, which in return
makes it easier for the critic to differentiate between real and generated
samples, and 𝐿𝑤𝑔𝑎𝑛 stays higher throughout the training. We recall that
the critic tries to maximize the Wasserstein-1 distance between real and
generated magnetic field distributions. Hence, 𝐿𝑤𝑔𝑎𝑛 = 0 means that the
critic cannot distinguish between real and generated samples anymore.
Consequently, the generator network has fewer incentives to improve
its generating process of magnetic field predictions. Eventually, this will
result in a higher validation loss.

When looking at Fig. 10(b) one can see that the trained generator
is performing well on large parts of 𝐁𝑦 to predict, but has difficulties
to anticipate the fast switching magnetic field in the lower right part of
the measurement area. These emerge from the adjacent hard magnets
at the border of the enclosed 2-D area as visualized in Fig. 5(a). In
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comparison to the virtual 3-D setup, the gap is smaller here and hence
the magnetic field produced in the lower right area is not part of the
magnetic field distribution the generator was trained on. A remedy for
that could be either to include such magnetic field data in the training
data in order to make the generator predictions even more general or
to completely retrain on the physical 2-D setup. A further feature to
implement could be an additional input parameter to indicate a specific
condition, e.g., the number magnets at the border of the enclosed 2-D
area or other geometrical implications such as the gap between magnets
and measurement locations.

6. Conclusion

With our novel method, we are able to perform magnetic field pre-
diction better than current state-of-the-art methods on inpainting tasks,
where large parts of the magnetic field measurement relative to the
overall measurement area are missing. Moreover, our physics-informed,
learning-based method produces the best results when comparing it
to other state-of-the-methods on an outpainting task with only point
measurements (1 × 1 pixel) available. When regions (16 × 16 pixels)
of measurements are given, then Gaussian processes outperform our
method, however, with the inference time of magnetic field prediction
being two orders of magnitude higher. In some time-critical applica-
tions such as the simultaneous mapping and localization performed in
robotics mentioned in the introduction, our model could serve as a
trade-off between accuracy and computational time. In future work, it
can be interesting to make use of the fact that closed Poisson problems,
e.g., the inpainting task in Section 4.1, can be solved from the boundary
values around the missing field information. Hence, the generator
neural network could be trained to predict missing field measurements
from only these values in the input layer.
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