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A B S T R A C T

Demand-side flexibility is an important tool for enhancing the interaction of renewable energy resources
and reducing the need for grid upgrades. To employ this flexibility as a market product, it is necessary to
aggregate and coordinate by coordinating responsive loads. In this regard, designing effective load coordination
mechanisms that consider the preferences of aggregators, end-users, and network operators is critical for the
successful implementation of demand response (DR) programs. This paper proposes an incentive-based method
for coordinating a group of controllable devices that is practical, does not require complex, high-order models
of the entire system, respects end-users privacy and quality of service (QoS), and can readily incorporate
network conditions to ensure grid reliability. The proposed method includes algorithms at both the end-
user level for controllable device operation and the aggregator level for managing the grid access requests.
These algorithms are fast and with low computational burden which makes them suitable for the designed
framework, reduces the implementation cost and increases the chance of scalability. The method is illustrated
with a realistic test system consisting of a set of controllable heat pumps used in pool heating systems and
uncontrollable loads placed in a distribution feeder and supplied by a distribution substation transformer.
Simulation results highlight the effectiveness of the proposed method in satisfying the controllable device,
end-users, and grid constraints. Comparing the results with similar existing methods shows that the method is
11% more cost-effective than traditional ON/OFF methods while reducing the number of rejected grid access
requests from the devices, significantly.
1. Introduction

In recent years, demand response (DR) techniques have been widely
recognized for enabling the active participation of demand side re-
sources in grid balancing and operations. DR consists in adapting
demand profiles to grid needs, by increasing, reducing, or shifting the
amount of energy consumed [2]. Although the concept of shedding
large industrial loads for supporting the operation of the power grid
is not a new one, modern DR involves customers of all sectors and pro-
motes more dynamic participation in grid operations. While supply-side
resources, like traditional power plants, are relatively few in number
and characterized by high power capacities, demand-side resources
show opposite features: large numbers and low capacities [3]. As a
consequence, aggregation and coordination mechanisms are needed to

∗ Corresponding author.
E-mail address: Moban@dtu.dk (M. Banaei).

1 It is worth underlining that the definition of decentralized and distributed is not unified in the literature. Hereinafter, we refer to the definition adopted from
the optimization community [1], where distributed mechanisms enable a small amount of central coordination activity, while decentralized mechanisms rely on
neighbor-to-neighbor communication only.

achieve a significant load modulation and to deliver value to ancillary
service markets [4]. Moreover, it is worth underlining that such mech-
anisms have to be capable of unlocking demand-side flexibility without
compromising end-users’ comfort and privacy and cost-effective in both
deployment and implementation, at scale.

Over the past decades, several works have focused on the coor-
dination of demand-side resources. Coordination mechanisms can be
classified into three main groups: ‘‘centralized’’, ‘‘decentralized’’, and
‘‘distributed’’.1

In centralized coordination, a central coordinator, with complete
information and full controllability over all/individual devices in a pop-
ulation, drive the behavior of the population by broadcasting control
signals in a top-down fashion. The control signals are usually de-
rived from the solution of a centralized optimization problem (e.g., an
vailable online 28 December 2023
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optimal scheduling problem) and broadcast through a communica-
tion infrastructure between the central coordinator and the individual
devices. In power grids, direct load control (DLC) has been one of
the early methods to implement centralized methodologies, such as
interruptible load schemes encouraging end users to shed their load
during critical peak hours. Such mechanisms have been in place for
large industrial and commercial customers for more than 50 years [5],
and have received increased attention for their potential applications
in the residential sector in recent years [6]. It is worth underlining
that the centralized methods’ requirements of complete information
and full controllability may pose challenges in terms of scalability and
cyber-security [7]. Indeed, the larger the population, the higher the
computational burden. Moreover, it has been shown that centralized
control may cause unwanted load synchronization and oscillatory ef-
fects: e.g., the rebound effect following a load curtailment event can
result in a load peak higher than the one which originated the need for
the demand-response event [6].

Conversely, in decentralized models, each load is equipped with a
local controller which operates according to local sensing and control
objectives. This avoids the need for complex computation and com-
munication that characterizes a centralized control architecture [8].
Decentralized methods are also more resilient to cyber-attack and
communication failures [9]. However, the capability of decentralized
control approaches may be limited compared with more centralized
approaches. This is due to the limited system-level information that the
local controllers have [7].

Distributed coordination combines elements from centralized and
decentralized approaches by having a centralized agent coordinate a
population of loads, where each load is equipped with local sensing
and control capabilities. In general, the centralized agent uses in-
centives such as price to interact with loads and affect their control
strategy. Arroyo et al. [10] proposed a distributed control architecture
to steer flexibility of buildings and track a reference load profile.
In the proposed framework, an upper-level agent receives grid flex-
ibility requests, then, virtual price signals are used to promote the
desired load variation while leaving buildings the freedom to decide
their own control approach. Gupta et al. [11] introduced a method
for coordinating incentive-based demand response and batteries for
providing frequency regulation service in low inertia isolated grids.
A price elasticity model was used to calculate incentives that should
be sent to the loads for utilizing the required demand response. An
incentive-based coordination mechanism for integrated electricity and
heat systems was introduced by Zheng et al. [12]. In this approach,
price incentives are offered to district heating companies to encourage
pipeline energy storage utilization and flexibility provision from district
heating networks. The problem was formulated as a bi-level model. Yu
et al. [13] proposed a price-based approach for utilizing the flexibility
of industrial and residential customers in the intraday market. The
problem was formulated as a Stackelberg game and the existence and
uniqueness of the Stackelberg Equilibrium were investigated. Zhong
et al. [14] proposed a coupon incentive-based demand response ap-
proach in which consumers receive a flat rate price for electricity
consumption and a coupon price for modifying their baseline. These
coupons are used as incentives that encourage consumers to reduce
their consumption when wholesale electricity market prices spikes.
The consumers are allowed to update their response to these coupons
several times until the operating interval Junker et al. [15] proposed a
dynamic flexibility model termed ‘‘Flexibility Function’’, which predicts
demand as a function of prices. The Flexibility Function could be any
dynamic model. In [15], a finite impulse response model is suggested,
while in [16], a grey-box model based on stochastic differential equa-
tions is used. Once the Flexibility Function is estimated, it can be
used to generate the price signals that should be used to indirectly
control the demand to achieve some specific control objective. In [17]
a centralized controller is used to coordinate a pool of thermostatically
2

controlled loads (TCLs) to manage frequency and energy imbalance
in power systems. A Markov chain model was used to describe the
dynamic of the thermostatically Controlled Load (TCL) population,
and a proportional controller was used to broadcast control signals
(i.e. the fraction of TCLs to be switched on/off) to the TCL population to
track a reference power consumption profile. Despite the good tracking
performances (power tracking error ranging between 0.26 and 9.3%),
the proposed control approach requires an observable model, which
is not always available [18]. A similar distributed approach based
on mean-field theory to control deferrable loads to deliver ancillary
grid services was proposed by Meyn et al. [18,19] and by Mathieu
et al. [17].

In contrast to the above-mentioned works, in which a central load
coordinator broadcasts the control signal to the population of loads
(in a top-down fashion), bottom-up demand management schemes
build on methods used to manage data packets in communication
networks and have been widely investigated in [20–25]. Zhang and
Baillieul [20,21] proposed a bottom-up approach in which each load
stochastically requests an energy packet from the coordinator based
on the load’s local state variables. The proposed approach, referred to
as ‘‘packetized direct load control’’, assumed exact knowledge of the
number of packetized loads at any given time, that one could queue
up requests for synchronous allocation. In parallel with [20,21], Frolik
and Hines [26] proposed a random access approach for managing the
charging of Plug-in Electric Vehicles (PEVs) that simultaneously avoids
overloads and provides equal access to the charging resources.

Separately, Almassalkhi et al. developed Packetized Energy Manage-
ment (PEM) in [20] that improves upon the above-mentioned assump-
tions. Under PEM, the load makes requests under a generalized need for
energy device state that has been applied for EVs, TCLs, and batteries.
The PEM coordinator then either grants or denies each stochastic grid
access request based on the tracking error for a power reference signal
that is representative of grid and/or market conditions. That is, PEM
represents a privacy-aware, asynchronous, and stochastic, bottom-up
control scheme for many different switching loads, [22,23]. QoS con-
straints were also considered. In [24], the macro-model methodology
of the PEM system presented in [22] is further extended to model
and analyze fleets of deferrable loads, such as electric vehicles (EVs).
The PEM approach has also been extended to provide grid services. In
[25] a methodology is proposed to estimate and provide fast frequency
response (FFR) services via decentralized control of active packet in-
terruptions. In [27] a generalization of PEM is presented which gives
grid-aware load dispatch capability to the approach by incorporating
a new grid constraint management algorithm. The method is capable
of providing grid voltage regulation and tracking reference (e.g., AGC
signals) services while guaranteeing QoS for end-users.

A summary of the literature review is presented in Table 1. It can
be seen that only incentive-based methods can preserve privacy, be
responsive to external incentives, and provide look-ahead capability,
i.e., the ability to consider future changes in the user comfort constraint
in the method, preserve privacy, and be responsive to external incen-
tives. However, these approaches are very complex and expensive to
implement, and since they modify the price to change the consumers’
electricity consumption, they might not be fair for end-users. On the
other hand, PEM solutions have low computational complexity, low
hardware installation cost, scalability, ensure service quality, and pre-
serve end-users privacy, but are capable of accounting for external
incentives, such as electricity prices or CO2 emissions. Moreover a
device operating under PEM (i.e., a ‘‘packetized’’ load) has always
relied on measurements of the current energy state or need for energy
in deciding packet request probabilities and opt-out transitions and has
not incorporated any look-ahead capability at the device layer.

To fill the gap in the literature i.e., a method with low complex-
ity, look-ahead capability, privacy preservation, and external incentive
responsiveness, this manuscript presents a bottom-up methodology in-
spired by PEM for coordinating grid access requests that incorporates
incentives-based grid access requests (IBGARs) and accounts for both
system-wide grid conditions and local QoS. The specific contributions

of this manuscript are:
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Table 1
Summary of literature review.
Reference Control Modeling Look-ahead Privacy Incentives
No. architecture complexity capability preservation responsiveness

[5] Centralized High Yes No Yes
[7] Hybrid Medium Yes Partially No
[8] Decentralized Medium Yes Partially No
[9] Distributed High Yes Partially No
[10] Distributed Medium Yes Partially Yes
[11] Distributed High No No Yes
[12–16] Distributed High Yes Yes Yes
[17–19] Distributed Medium No No No
[20–25] Distributed Low No Yes No

This method Distributed Low Yes Yes Yes
• a novel incentive-based coordination mechanism that extends
prior literature (PEM method) on grid access requests;

• a look-ahead capability for taking into account known, but time-
varying future changes in local QoS requirements in determining
local device actions;

• adapting the device-level PEM algorithm to swimming pool heat-
ing systems with time-varying boundary conditions supplied by
heat pumps.

• incorporation of system-wide constraints, such as a transformer
capacity limit, to mitigate overloading;

The remainder of this paper is structured as follows. Section 2
introduces the theoretical framework of the proposed control architec-
ture, together with the mathematical models and algorithms used in
the paper. Next, Section 3 introduces the case study and presents the
simulation results. Finally, Section 4 summarizes the main findings of
the work and provides future research directions.

2. Incentive-based grid access requests (IBGAR) framework

The required framework for implementation of the IBGAR method
is illustrated in Fig. 1. The main focus of this work is on developing
novel algorithms for the packetized energy controller in the device
layer and the flexibility management system in the coordinator layer.
The sequence of actions in the proposed method is as follows:

• At each device, the real-time data of the metering devices are sent
to the Device controller,

• The device controller receives the data and incentive and decides
about sending or not sending a grid access request or opting out
of the program temporarily,

• The result of step 2 is sent to the flexibility management system
at the coordinator level,

• The flexibility management system considers a time period and
collects all the asynchronous requests,

• Taking into account the reference dispatch signal received from
DSO or DSO, the flexibility management system determines the
accepted and rejected requests and sends the results back to
devices,

• Based on the received response, the device controller generates
the control signal for the device.

Detailed descriptions of the IBGAR scheme at device and coordinator
levels are presented in Sections 2.1 and 2.2, respectively.

2.1. IBGAR implementation at the device level

As shown in Fig. 1, at the device level, each device controller 𝑑
receives the load status information from controllable device 𝑑 and
the external incentive from the aggregator. Then, the device controller
decides whether to send or not send a grid access request to the
3

Fig. 1. IBGAR framework. The orange-filled blocks represent the focus of this
manuscript.

aggregator considering the operation cost and constraints. Finally, the
received response from the aggregator is applied to the device through
the control signal. To ensure the quality of service, an opt-out possibil-
ity is considered that enables the device controller to exit the energy
schedule temporarily and satisfy the comfort constraints of residents or
operational limitations of devices.

Fig. 2 gives an overview on how the device controller decides about
sending access requests. To make the decision, a stochastic request rate
(SRR) function and a function that links the external incentive to an
access request mechanism (ARM) are needed. The output of the ARM
is a random number between 0 and 1. If this random number is less
than the value of the SRR function at the measured state variable,
the grid access request will be sent to the aggregator. This leads to a
computationally lightweight algorithm that does not require powerful
and expensive hardware for installation and a complex model of the
system, can be easily applied to different devices, and is real-time
responsive to external incentives.

If the normalized value of the state variable is negative or greater
than one, the algorithm will opt out of the program or not send a grid
access request (depending on the device) such that the state variable
returns to the range of zero and one as soon as possible.

The definition of state variable is different for each type of control-
lable device. For instance, for a battery, the state variable is the state
of charge (SOC), and for a TCL, the temperature represents the state
variable of the load.

The method is designed in such a way that it works with normal-
ized values of state variable and external incentives. This makes the
approach generic for different applications.
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Fig. 2. Overview of device controller logic showing both request and opt-out
mechanisms as functions of the measured state (QoS).

The key important points for successful implementation of the
method are designing the SRR function and defining the link be-
tween external incentive and the ARM which are discussed in the next
subsections.

2.1.1. SRR function modeling
In IBGAR, our focus is on one specific state variable of the system

𝑥∗𝑑 of the controllable device and the decision making is performed
based on the status of this state variable. As mentioned before, the
SRR function works with normalized state variable 𝑥∗𝑑 . Using the state
variable in the normalized form makes the method independent from
the type of the state variable e.g., temperature, state of charge, etc.,
and scales it between zero and one which makes the method generic
for any application.

Normalized value of the state variable 𝑥∗𝑑 in time interval 𝑘 i.e., 𝑥𝑛𝑑 [𝑘]
for device 𝑑 is calculated as below:

𝑥𝑛𝑑 [𝑘] =
𝑥∗𝑑 [𝑘] − 𝑥𝑚𝑖𝑛𝑑

𝑥𝑚𝑎𝑥𝑑 − 𝑥𝑚𝑖𝑛𝑑
, (1)

where 𝑥𝑚𝑖𝑛𝑑 and 𝑥𝑚𝑎𝑥𝑑 are the lower and upper bounds of the state
variable at device 𝑑, respectively. The SRR function represents the
probability of sending a grid access request at different values of the
normalized state variable. Depending on the device and the control
action, the SRR function should be monotonically increasing or de-
creasing. For a battery and charging (discharging) action, when the
SOC is low the probability of sending a request is high (low) and
decreases (increases) as the SOC of the battery increases, hence the SRR
function with be monotonically increasing (decreasing). For a TCL and
for heating (cooling) action, if the temperature is low, the probability
of sending a grid access request will be high (low) and by increasing
the temperature, this probability will decrease (increase), which leads
to a monotonically increasing (decreasing) SRR function.

The following mathematical equation is used to formulate SRR
function:

𝑃 (𝑥𝑛𝑑 [𝑘]) = 1 − 𝑒−𝜇(𝑥
𝑛
𝑑 [𝑘])𝛥𝑡, (2)

where 𝜇(𝑥𝑛𝑑 [𝑘]) is the rate parameter. If the SRR function should be
monotonically increasing, 𝜇(𝑥𝑛𝑑 [𝑘]) can be formulated as below:

𝜇(𝑥𝑛𝑑 [𝑘]) =

⎧

⎪

⎪

⎨

⎪

⎪

0 𝑥𝑛𝑑 [𝑘] ≤ 0

𝑚𝑅(
𝑥𝑛𝑑 [𝑘]

1−𝑥𝑛𝑑 [𝑘]
)(

1−𝑥𝑠𝑒𝑡𝑑
𝑥𝑠𝑒𝑡𝑑

) 𝑥𝑛𝑑 [𝑘] ∈ (0, 1)

∞ 𝑥𝑛𝑑 [𝑘] ≥ 1.

(3)
4

⎩

Fig. 3. Illustrating the effect of 𝑚𝑅 and 𝑥𝑠𝑒𝑡𝑑 on the probability of sending access request
for decreasing access request rates.

Otherwise, 𝜇(𝑥𝑛𝑑 [𝑘]) can be formulated as following:

𝜇(𝑥𝑛𝑑 [𝑘]) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 𝑥𝑛𝑑 [𝑘] ≥ 1

𝑚𝑅(
1−𝑥𝑛𝑑 [𝑘]
𝑥𝑛𝑑 [𝑘]

)(
𝑥𝑠𝑒𝑡𝑑

1−𝑥𝑠𝑒𝑡𝑑
) 𝑥𝑛𝑑 [𝑘] ∈ (0, 1)

∞ 𝑥𝑛𝑑 [𝑘] ≤ 0,

(4)

where 𝑥𝑠𝑒𝑡𝑑 is the normalized desirable set point of the state variable.
If a device does not have a set point for the state variable such as
batteries, we should have 𝑥𝑠𝑒𝑡𝑑 = 0.5. 𝑚𝑅 is a design parameter that
can be used to manage the variation of state variable around the set
point and consequently manage the energy consumption of the scheme.
This feature will be discussed in detail in Section 3. Three realizations
of Eq. (2) for a decreasing SRR function are depicted in Fig. 3.

As shown in Fig. 3, the probability of sending an access request
increases by increasing the value of 𝑚𝑅 which means more requests
for energy packets and consequently more energy consumption. For the
same values of 𝑚𝑅, the probability of sending an access request at the
set point temperature is the same at different values of the set point.

2.1.2. Incorporating external incentives into the ARM
We start with normalizing the external incentives. The normaliza-

tion is done such that it can deal with both dynamic and flat incentives.
So, the following formulation is proposed to normalize the incentives:

𝜌𝑧[𝑘] =
𝜌[𝑘]

1
2 (𝜌

𝑚𝑎𝑥 + 𝜌𝑚𝑖𝑛)
− 1, (5)

𝜌𝑛[𝑘] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌𝑧[𝑘]
𝜌𝑚𝑖𝑛𝑧

𝜌𝑧[𝑘] < 0
𝜌𝑧[𝑘]
𝜌𝑚𝑎𝑥𝑧

𝜌𝑧[𝑘] > 0

0 𝜌𝑧[𝑘] = 0,

(6)

where 𝜌[𝑘] is the incentive in time interval 𝑘. 𝜌𝑚𝑎𝑥 and 𝜌𝑚𝑖𝑛 are the
maximum and minimum values of the incentive in the time series,
respectively. 𝜌𝑚𝑎𝑥𝑧 and 𝜌𝑚𝑖𝑛𝑧 represent the maximum and minimum of
𝜌𝑧[𝑘].

Using (5) and (6), for dynamic tariffs, we have −1 ≤ 𝜌𝑛[𝑘] ≤ 1, and
for fixed tariffs 𝜌𝑛[𝑘] = 0.

One of the main differences between distributed coordination mech-
anisms (and more specifically, PEM) and the proposed IBGAR approach
is incorporating external incentives in the decision making process. In
PEM, the ARM works based on generating a random number 𝑅 ∈ [0, 1]
using the uniform distribution [22]. In IBGAR, it is suggested that
the uniform distribution is replaced with another distribution whose
characteristics change as the external incentive changes. It is worth
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Fig. 4. Illustrating the effects of 𝛼 on skewness of the beta distribution and the relation
between normalized incentive and 𝛼.

mentioning that the incentives are sent to motivate the end-users to
reduce their consumption. So, assigning greater values for incentives
(e.g. higher electricity prices) means more interest in reducing the
energy consumption. Therefore, the characteristics of the distribution
should be changed in such a way that when the incentive is high
(low), there will be a higher probability for generating random numbers
close to one (zero) and consequently, not sending (sending) an access
request (see Fig. 2). To this end, use of Beta distribution is suggested
for generating the random numbers. Beta distribution is formulated as
below:

𝑓 (𝑤) =

⎧

⎪

⎨

⎪

⎩

𝑤𝛼−1(1−𝑤)𝛽−1

𝐵(𝛼,𝛽)
0 ≤ 𝑤 ≤ 1

0 otherwise,
where 𝐵(𝛼, 𝛽) = ∫

1

0
𝑣𝛼−1(1 − 𝑣)𝛽−1 𝑑𝑣.

(7)

The first advantage of using Beta distribution is that the random
numbers generated by this distribution are always in the range of
[0, 1] which makes them perfect for the IBGAR method (see Fig. 2).
Moreover, we can easily control the skewness of the distribution by
changing one or both parameters 𝛼 and 𝛽.

Considering the explanations above, in low (high) incentives, the
distribution should be right-skewed (left-skewed). So, to depend the
skewness to the incentive, it is suggested that the 𝛽 is kept as 𝛽 = 𝛽0

and represent the 𝛼 as a function of normalized incentives as shown
in Fig. 4. When the incentive is low, i.e., the normalized incentive is
close to −1, the assigned value for 𝛼 should be much less than 𝛽0.
This increases the probability of generating random numbers close to
0, and sending access requests to the aggregator. When the normalized
incentive is equal to 0, we should have 𝛼 = 𝛽0 which gives a symmetric
distribution for generating the random number. In this case, the prob-
ability of sending an access request would be 50%. In high incentives,
i.e., normalized incentives close to 1, the assigned value for 𝛼 is much
greater than 𝛽0. This yields the generation of random numbers close to
1, which means low probability of sending access requests.

Different functions can be used to describe the relation between
𝛼 and normalized incentives, i.e., 𝛼 = 𝑓 (𝜌𝑛[𝑘]). The main feature
of these functions is to be monotonically increasing by increasing
the normalized incentive as depicted in Fig. 4. In general, use of an
exponential function as 𝛼 = 𝑎𝑒𝑏𝜌𝑛[𝑘] is suggested, where parameters
𝑎 ≥ 0 and 𝑏 ≥ 0 can be determined by choosing suitable values for
𝛼 in normalized incentives −1, and 1, and noting that 𝑓 (0) = 𝛽0.

The process outlined above can be applied for all ranges of in-
centives including negative external incentives (e.g., negative prices
as incentives). However, to add another lever to profit from negative
incentives, it is suggested that parameter 𝛽0 be replaced with 𝛽𝑛𝑒𝑔

where 𝛽𝑛𝑒𝑔 ≫ 𝛽0 for generating the random numbers in time intervals
where the external incentive is negative. This will lead to generating
5

Fig. 5. Illustration of two different situations for 𝑡𝑚𝑖𝑛 and 𝛥𝑡𝑐 , (a) 𝑡𝑚𝑖𝑛 < 𝛥𝑡𝑐 in which
IBGAR can be followed (b) 𝑡𝑚𝑖𝑛 ≥ 𝛥𝑡𝑐 in which opt out occurs.

random numbers very close to zero, and consequently, sending grid
access requests for almost all values of the state variable inside the
operational boundaries.

It is worth mentioning that according to (5) and (6), for flat in-
centive tariffs, we have 𝜌𝑛[𝑘] = 0 ∀𝑘 ∈ 𝐾 and as shown in Fig. 4, a
symmetric distribution will be used to generate random numbers for
all time intervals. So, IBGAR becomes independent of incentives. This is
not a disadvantage to IBGAR because when a flat incentive is assigned,
the incentive would be the same in all time intervals and consequently,
will be removed from the decision-making process. The important point
for keeping IBGAR efficient for flat incentive tariffs is that the amount
of energy consumption in this method should not be more than energy
consumption in the existing conventional control strategies. To solve
this issue, the design parameter 𝑚𝑅 introduced in (3) should be adjusted
properly to reach a suitable energy consumption level for flat incentive
tariffs.

2.1.3. Adding look-ahead capability to the method
As noted, look-ahead capability allows the device controller to

include future variations in the boundary conditions of the state vari-
able in the decision making. To add this feature to the method, it
is suggested that the algorithm checks the changes in the boundary
conditions in the next time intervals continuously, and to follow the
below steps:

1. Recognize the next change in the boundary conditions and the
time remaining to it (𝛥𝑡𝑐),

2. Calculate the minimum time (𝑡𝑚𝑖𝑛) required to meet the new
boundary condition,

3. Compare 𝑡𝑚𝑖𝑛 with 𝛥𝑡𝑐 . If 𝑡𝑚𝑖𝑛 < 𝛥𝑡𝑐 no change in the IBGAR
method will be needed. If 𝑡𝑚𝑖𝑛 ≥ 𝛥𝑡𝑐 , the opt out control should
be used to temporarily exit the plan and control the device
such that the lower/upper bound constraints are satisfied. An
example of these two situations for the case where the lower
bound changes in the next time intervals is illustrated in Fig. 5.

It should be noted that it is not necessary to follow these steps in
all cases where the boundary condition changes. Fig. 6 illustrates all
possible situations for changes in the boundary condition, the value of
the state variable, and its possible realizations in the next hours. In
cases (a) and (b), changes in the boundary conditions lead to increasing
the feasible operating range. So it is not necessary to apply look-ahead
capability. In cases (c) and (d) the feasible operating range reduces
but the state variable is still inside the range of the next boundary
conditions. So we can still postpone taking preventive actions. In cases
(e) and (f), the feasible operating range reduces and if proper actions
are not taken, the next boundary conditions may not be satisfied. So,
the look-ahead capability should be applied only for cases (e) and (f).
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Fig. 6. Different situations for the state variable and changes in the boundary condition: (a, b, c, d) the look-ahead capability is not used, (e, f) applying look-ahead capability.
Fig. 7. Block diagram of the proposed IBGAR at the device level.
Calculating 𝑡𝑚𝑖𝑛 for each device and operation mode is different.
For instance, for a battery, if the lower bound of SOC will increase
in next time intervals, i.e. case (e) in Fig. 6, then to obtain 𝑡𝑚𝑖𝑛 we
should assume charging the battery with maximum charging rate in the
next time intervals and find the minimum time to meet the new lower
bound as 𝑡𝑚𝑖𝑛. For a heating system, in case (e) the device should be
ON and in case (f) the device should be OFF in the next time intervals
and then dynamic model and experimental results should be used to
find the minimum time to meet the new boundary condition as 𝑡𝑚𝑖𝑛.
Detailed explanations about calculating 𝑡𝑚𝑖𝑛 for the studied case will be
presented in Section 3.

It is important to highlight that to include the look-ahead capability
in this method, the rise time (or ramp-up/down times) need to be
identified. In a practical implementation of IBGAR, this can be achieved
with simple system identification or data analysis procedures on the
physical assets without the need for precise mathematical models. Of
course, for the simulation herein, we only need the thermodynamic
model to estimate these parameters, but otherwise do not depend on
exact models.
6

2.1.4. IBGAR algorithm at the device level
A block diagram of the proposed IBGAR algorithm for the device

controller is presented in Fig. 7. In the first step, the algorithm checks
if applying look-ahead capability is required, i.e., the changes in the
boundary condition and the value of the state variable are similar to
cases (𝑒) and (𝑓 ) in Fig. 6 or not. If yes, 𝑡𝑚𝑖𝑛 and 𝛥𝑡𝐶 are calculated
(see Section 2.1.3) and compared. As long as the state variable can
satisfy the next boundary conditions, i.e., 𝑡𝑚𝑖𝑛 < 𝛥𝑡𝐶 , no specific action
is needed and we can continue with IBGAR main block, otherwise,
considering the type of the device, one of the two actions (a) opt-out
and turning the device ON or (b) not sending an access request and
turning the device OFF should be taken. For instance, for a Heating
(Cooling) device, if the lower bound is changing, the device should be
ON (OFF) and if the upper bound is changing, the device should be OFF
(ON) in the next time intervals.

In the next step, the algorithm checks if the normalized value of
the state variable is between zero and one, i.e., inside the operation
boundaries or not. If No, the algorithm decides on the opt-out from the
program and turning the device ON or taking no action and turning
the device OFF considering the type of the device, such that the state
variable returns to the inside of the operating range as soon as possible.
The last two steps can be considered as preprocessing steps to ensure
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Fig. 8. Closed loop block diagram of the aggregator operation for providing services
at the distribution grid level.

QoS for the customer. If yes, two parameters 𝑃 and 𝑅 will be generated
and compared. Parameter 𝑃 represents the SRR function and depends
on the state variable. Parameter 𝑅 is a random number generated by
Beta distribution while parameters of the distribution are controlled by
the normalized incentive. If 𝑅 ≤ 𝑃 , then the grid access request will be
sent to the aggregator, otherwise, not.

The electricity demand of the device is also sent alongside the
grid access request or opt-out signal to let the coordinator know the
electricity consumption of the device. This could be the nominal power
consumption of the device or the rated charging or discharging power
of the batteries.

2.2. IBGAR method implementation at the coordinator level

As shown in Fig. 1, the IBGAR method benefits from the possibility
of bilateral data communication between devices and a coordinator
(e.g., an aggregator) to provide flexibility services for the grid. At the
coordinator level, the coordinator broadcasts the incentives, i.e., elec-
tricity price, CO2 emission, etc., to devices. Then, each device decides
whether to send or not send the access request to the coordinator.
The coordinator receives access requests from devices and signals from
the distribution system operator (DSO) or transmission system operator
(TSO), and responds to the access requests using flexibility management
system such that the error between the requested dispatch signal and
its realization in the grid minimizes. A closed loop block diagram of the
coordinator operation is depicted in Fig. 8.

One of the key elements in the effectiveness of the IBGAR scheme is
designing the flexibility management system. Access request signals are
sent in an asynchronous way, meaning that the access request signals
of devices are received at different times. To send the responses back
to devices, the flexibility management system waits for a time period 𝛿𝑡
(where 𝛿𝑡 < 𝛥𝑡), collects all the access requests received during this time
interval and determines the ‘‘Yes’’ or ‘‘No’’ notification for each device
based on the real-time error between actual aggregated output and the
dispatch signal. Different approaches can be used to determine which
access requests should be accepted among all requests received during
the time interval 𝛿𝑡. The first idea is to accept the requests sequentially.
In this approach, the requests are prioritized based on the time received
by the aggregator. This approach is simple but is not fair because if the
𝛥𝑡 is the same for some devices, they will always be prioritized in a
same way and some devices will always have higher priority over other
devices. Another idea is to prioritize the requests based on the history
of their requests in the last time intervals. In this approach, the devices
with fewer requests in the last time intervals have higher priority to
be supplied. This method is fair but more complicated than the first
approach and more importantly due to recording the historical data,
does not respect privacy. The third idea is to assign priorities randomly.
This approach is fair, easy to implement, and respects privacy of end-
users. Therefore, the third approach is used to prioritize the requests at
each time interval 𝛿𝑡.
7

Fig. 9. Schematic representation of heat pump and swimming pool set-up [35].

Table 2
Scenarios used for generating SPHSs parameters.
𝑀𝑑 (kg) 𝑚𝑑 (kg) 𝑚̇𝑑 (kg/h) 𝑃 𝑛

𝑑 (kW)

30 000 {2100, 3900} {4350, 5900} {7, 5, 3}
40 000 {2800, 5200} {5900, 7900} {9, 6, 4}
50 000 {3500, 6500} {7900, 9800} {11, 8, 5}

It is worth noting that the actual implementation of PEM (as the
basis of this work) shows that the communication delays for sending
grid access requests are less than one second which is much smaller
than the simulation time-steps 𝛥𝑡 and 𝛿𝑡 and does not affect the simu-
lation results significantly [28,29]. Moreover, to preserve privacy, the
coordinator receives grid access requests anonymously and accepting
or rejecting the requests does not require any knowledge/tracking of a
particular device.

3. Case study and numerical results

Among different controllable devices, heat pumps that are used to
supply swimming pools are found to be ideal flexibility resources in
many studies due to the high thermal storage capacity of the pools [30–
32]. In Denmark, the NOVASOL company manages more than 900
summerhouses with indoor swimming pools that are mostly heated by
heat pumps [32]. Moreover, the incorporation of other controllable
devices such as batteries and EVs into the PEM method has already been
investigated [22,33]. So, we focus on a test system with swimming pool
heating systems (SPHSs) supplied by heat pumps as controllable loads
and some uncontrollable loads as the case study. In order to show how
the method works at the aggregator level, it is assumed that the loads
in the area are supplied through a transformer with limited rated active
power. The aggregator receives the flexibility request signal from a DSO
to use flexibility such that the transformer does not get overloaded.
Other services such as frequency control or voltage regulations can also
be provided by the aggregator, however, the approach in the aggregator
and device levels would be the same.

Fig. 9 provides a schematic representation of a heat pump and
swimming pool set-up. In [34] a gray-box model is proposed to model
the dynamics of this SPHS. Parameters of this gray-box model are used
as the basis to describe the dynamics of the studied SPHSs in this
work. In order to obtain data for large number of SPHSs, it is suggested
that some realistic scenarios are generated for each parameter, taking
into account the calculated values in [34], and then use different
combinations of these scenarios as input data for each SPHS. Table 2
represents related scenarios for each parameter. Using these scenarios,
35 sets of data are generated to represent 35 SPHSs for the studied
system.

Parameters 𝑀𝑑 (kg), 𝑚𝑑 (kg) and 𝑚̇𝑑 (kg/h) are the mass of water
in the pool and heat exchanger and the flow rate for outlet water from
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the heat exchanger, respectively. 𝑃 𝑛
𝑑 (kW) is the rated power of the heat

ump. Since the studied cases are indoor pools, it is assumed that the
mbient temperature does not change significantly during the day and
aries between 17 ◦C and 20 ◦C. The heat transfer coefficient of the
ool, ℎ (kW/K), is assumed to be the same for all SPHSs and equal to
.5 kW/K.

Electricity price is considered as the external incentive. Both dy-
amic and flat price tariffs are investigated. Elspot market prices for
he DK1 grid region (west Denmark) in January 2022 plus a fixed
ariff are chosen as dynamic electricity price inputs [36]. Flat tariff
rice is assumed to be equal to the average dynamic prices. The load
f the DK1 grid region in January 2022 is scaled to obtain the data
or aggregated electricity consumption by uncontrollable loads in the
tudied test system.

At each pool, the water temperature should follow a set-point. A
ead-band (upper and lower bounds) is defined around the set-point
hat limits the temperature variations around the set-point. Without
oss of generality, it is assumed that the upper bound is constant but
he lower bound can change over time as the set-point changes by
sers. It is assumed that changes to the boundary conditions occur at
redetermined times (e.g., based on scheduled occupancy). 𝛥𝑡 and 𝛿𝑡

are assumed to be 20 min and 100 s, respectively.
As discussed before, the IBGAR method implementation does not

depend on a mathematical model of the devices and the decisions can
be made based on the real-time measurements of the studied case and
the external incentive. Even for implementing the look-ahead capabil-
ity, we can replace the mathematical model of the system with some
preheating tests performed before executing the method. However,
to have a simulation-based study, a discrete-time model is needed
to estimate the variation of the state variable at each time interval.
Moreover, in case the system has time-varying boundary conditions,
a simple model of the system will be useful for including the look-
ahead capability in the method (see Section 2.1.3. In Appendix A a
general description of the process of obtaining a discrete-time model
of a control device followed by the discrete-time model of the SPHSs is
presented. This model is used in this paper to model the dynamics of
SPHSs.

3.1. Designing the parameters 𝑎 and 𝑏 in 𝑓 (𝜌𝑛[𝑘]) and 𝑚𝑅

As mentioned in Section 2.1.2, variable 𝛼 in the beta distribution
is determined as a function of normalized price i.e., 𝛼 = 𝑓 (𝜌𝑛[𝑘]) =
𝑎𝑒𝑏𝜌𝑛[𝑘]. To obtain parameters 𝑎 and 𝑏, first, values of function 𝑓 for
𝑛[𝑘] = −1, 0, 1 are determined, and then a curve fitting tool such as
ftool in MATLAB is used to estimate 𝑎 and 𝑏.

For 𝜌𝑛[𝑘] = 0, as discussed in Section 2.1.2, we should have 𝑓 (0) =
𝛽0 to have symmetric probability distribution for generating random
numbers when the tariff is flat or equal to the average price of the
day. It is assumed that 𝑓 (𝜌𝑛[𝑘] = −1) = 1 which provides enough
right skewness for the Beta distribution when prices are very low. We
also take 𝑓 (𝜌𝑛[𝑘] = 1) = (𝛽0)2. This provides enough non-linearity
in the function 𝑓 and consequently enough left skewness in the Beta
distribution that significantly reduces the rate of sending grid access
requests at high prices. So, the three sets of data points will be as
(−1, 1), (0, 𝛽0) and (1, (𝛽0)2), which highlights the key role of 𝛽0 in
designing the parameters 𝑎 and 𝑏. To find a suitable value for 𝛽, we
need to run the simulations for its different values and evaluate the
results. However, to run the simulations, we should also determine
the design parameter 𝑚𝑅 in (3) and (4). Since both 𝛽 and 𝑚𝑅 affect
the outputs, simulations are performed for different values of both
parameters and then, by analyzing the results and using cost and
comfort-related metrics, suitable values of these parameters will be
found.

Electricity cost reduction compared to conventional methods is used
as the cost-related metric. Most existing SPHSs work with the conven-
8

tional binary ON/OFF method. In this method, the SPHS is controlled
to follow a set-point temperature 𝑇 𝑠𝑒𝑡
𝑑 within the lower (𝑇 𝑚𝑖𝑛

𝑑 [𝑘]) and
upper (𝑇 𝑚𝑎𝑥

𝑑 [𝑘]) bounds of water temperature which can be expressed
mathematically as follows:

𝑢𝑚[𝑘] =

⎧

⎪

⎨

⎪

⎩

1 𝑇 𝑝
𝑑 [𝑘] < 𝑇 𝑚𝑖𝑛

𝑑 [𝑘],
0 𝑇 𝑝

𝑑 [𝑘] > 𝑇𝑚𝑎𝑥
𝑑 [𝑘]

𝑢𝑚[𝑘 − 1] Otherwise .

(8)

Percentage of mean normalized temperature deviation (MNTD)
from set-points for all pools are defined as the metrics related to users’
comfort. MNTD is formulated as below:

𝑀𝑁𝑇𝐷 = 1
𝑁𝐾

𝑁
∑

𝑑=1

𝐾
∑

𝑘=1

𝑇 𝑝
𝑑 [𝑘] − 𝑇 𝑠𝑒𝑡

𝑑 [𝑘]

𝑇 𝑚𝑎𝑥
𝑑 [𝑘] − 𝑇 𝑚𝑖𝑛

𝑑 [𝑘]
, (9)

The percentage of variations in the electricity cost of SPHSs com-
pared to the conventional ON/OFF method and variations in the MNTD
compared to the set-point temperatures for different values of 𝛽 and 𝑚𝑅
nd for both dynamic and flat price tariffs are presented in Fig. 10.

As shown in Fig. 10a, for dynamic tariffs, by increasing 𝛽0, electric-
ty cost decreases. This happens due to the inverse relationship between

and the variance of the Beta distribution. For small values of 𝛽, the
variance of the distribution is high, which increases the possibility of
generating undesirable random numbers and consequently increasing
the cost. For 𝛽0 ≥ 6, the impact of 𝛽 on cost is not significant and the
cost is almost constant. Increasing 𝑚𝑅 increases both cost and MNTD
due to its direct relationship with the rate of grid access requests (see
Fig. 3). So, overall, from the cost-effectiveness perspective, we should
have 𝛽0 ≥ 6, however, if we wanted to keep the mean temperature close
o the set points we should choose pairs of 𝛽0 ≥ 6 and 𝑚𝑅 that lead to
NTDs close to zero. Some examples of these values are highlighted

n 10b in red. Among these points, the ones with lower 𝑚𝑅 values are
ore preferable due to their impacts on decreasing the cost. So, for
ynamic tariffs, it is suggested to have 𝑚𝑅 = 0.7 and 𝛽0 ≥ 8. Following
he same procedure for flat tariffs, we should have 𝑚𝑅 = 1.3 and 𝛽0 ≥ 8.

Fig. 10 also shows that the operation cost and temperature variation
n the studied system are more affected by parameter 𝑚𝑅 than 𝛽0.

It is worth mentioning that considering different values for 𝛽0 and
𝑅, the temperature will always be inside the dead-band (between the

ower and upper bound). Choosing different values for these parameters
elps us to manage the temperature variations inside the dead-band
uch that it fluctuates around the set-point or close to the lower
nd upper bounds. Water temperature variation of an arbitrary pool
n the studied system for three different values of 𝛽0 and 𝑚𝑅 are
resented in Fig. 11. The look-ahead capability which will be discussed
n Section 3.2 is also included in the simulations.

As shown in Fig. 11a, for dynamic price tariffs, when 𝑚𝑅 = 0.1,
he water temperature is lower than other cases and is usually close
o the lower bound, specially when the lower bound increases. In the
ase that 𝑚𝑅 = 0.7 and 𝛽0 = 10, the temperature tries to follow the
et-point considering the electricity price. When 𝛽0 = 2 and 𝑚𝑅 =
.7, in comparison to the case that 𝛽0 = 10 and 𝑚𝑅 = 0.7, the
emperature is usually lower, but the electricity cost is about 7% higher.
s discussed before in this section, this is due to high variance of

he beta distribution when 𝛽0 is small and consequently generating
ndesirable random numbers.

For flat price tariff, similarly, the temperature is the lowest when
𝑅 = 0.1. However, when 𝑚𝑅 = 1.3 and 𝛽0 = 10 the method is more

uccessful in following the set-point than the case with dynamic tariffs.
his happens because for flat price tariffs, the method is not dependent
n price and only tries to follow the set-point. It can also be seen in
ig. 11b that when 𝛽0 = 2 and 𝑚𝑅 = 1.3 the method is not successful
n following the set-point and the temperature is usually more than the
emperature of the case that 𝛽0 = 10 and 𝑚𝑅 = 1.3.

In the rest of the paper, we have 𝛽0 = 10 and 𝑚𝑅 = 0.7 for dynamic
ariffs and 𝛽0 = 10 and 𝑚 = 1.3 for flat tariffs. This results in 13%
𝑅
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Fig. 10. Impacts of 𝛽 and 𝑚𝑅 on a) electricity cost and (b) MNTD for dynamic tariffs and (c) electricity cost and (d) MNTD for flat tariffs.
Fig. 11. Water temperature variations in three different cases for (a) dynamic tariffs and (b) flat tariffs.
and 5% reduction in electricity cost by using the IBGAR method with
dynamic and flat tariffs, respectively.

3.2. Look-ahead capability feature modeling

As discussed at the beginning of this section, it is assumed that only
the lower bound of temperature changes over the time. In this case,
we can consider the look-ahead capability as a part of the ‘‘preheating
process’’. As mentioned in Section 2.1.3, to incorporate this process,
we need to compute the parameter 𝑡𝑚𝑖𝑛 that represents the minimum
time for increasing the temperature up to the next lower bound. For
an SPHS, this parameter can be calculated by solving the differential
Eqs. (A.3) and (A.4). Solving these equations gives 𝑇 𝑝

𝑑 (𝑡) as below:

𝑇 𝑝
𝑑 (𝑡) = 𝐴𝑑 + 𝐵𝑑𝑒

𝜏1𝑑 𝑡 + 𝐶𝑑𝑒
𝜏2𝑑 𝑡. (10)

Parameters 𝐴𝑑 , 𝐵𝑑 , 𝐶𝑑 , 𝜏1𝑑 , and 𝜏2𝑑 are defined in Appendix B.
Obtaining a closed-form expression for 𝑡𝑚𝑖𝑛 from (10) is non-trivial.
However, considering (B.1) and (B.2) in Appendix B and SPHSs data
presented at the beginning of Section 3 and Table 2, it can be seen that
9

the term 𝑚̇𝑑ℎ′

𝑀𝑑𝑚𝑑
is very small which leads to 𝜏2𝑑 ≪ 𝜏1𝑑 . So, we can simplify

the equation as below:

𝑇 𝑝
𝑑 (𝑡) ≈ 𝐴𝑑 + 𝐶𝑑𝑒

𝜏2𝑑 𝑡. (11)

Fig. 12a compares the variations in the pool water temperature
using (10) and (11) for an arbitrary SPHS. It can be seen that applying
the simplification causes error only in the first hour and then the error
is zero. Since the goal of using look-ahead capability is to estimate the
temperature in the next few hours, this error will not affect the results.
Now, using (11), 𝑡𝑚𝑖𝑛 can be easily estimated as following:

𝑡𝑚𝑖𝑛 ≈
𝑙𝑛(

𝑇𝑚𝑖𝑛,2
𝑑 −𝐴𝑑

𝐶𝑑
)

𝜏2𝑑
, (12)

where 𝑇 𝑚𝑖𝑛,2
𝑑 is the next lower bound for the pool temperature. Fig. 12b

illustrates the impacts of including the preheating process on the reac-
tion in changing the lower bound temperature for an SPHP. As shown
in Fig. 12b, taking into account the look-ahead capability prevents the
temperature from falling below the lower bound in all situations.
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Fig. 12. Impacts of (a) simplifying Eq. (10) on temperature variation modeling, and (b) applying look-ahead capability to the model.
Fig. 13. Comparing the power consumption of the SPHSs and electricity price.
Fig. 14. Comparing the total power consumption of the traditional ON/OFF method with (a) dynamic tariffs and (b) flat tariffs.
3.3. Implementing the IBGAR method without including the transformer
limitations

In this section, the impacts of the proposed method on responding to
dynamic and flat tariffs are studied. To investigate the responsiveness of
the method to dynamic prices, consumed power by SPHSs and prices
are depicted in Fig. 13. It can clearly be seen that using the IBGAR
method electricity consumption is shifted mostly to low electricity price
hours, which confirms the price responsiveness of the method.

Power consumption of the set of all controllable and uncontrollable
loads for both traditional and the IBGAR methods with dynamic and
flat tariffs is presented in Fig. 14.
10
As it can be seen in Fig. 14, using the proposed IBGAR method
can reduce the peak demand and the gap between maximum and
minimum load (help to flatten the demand curve). Numerical details
are presented in Table 3.

3.4. Implementing the IBGAR method including the transformer limitations

Fig. 15 illustrates the impacts of considering transformer limitations
on the aggregator’s response to grid access requests and consequently
total load. The number of rejected requests when the price tariff is
flat is much more than the case with dynamic tariff because of higher
electricity consumption of the IBGAR method with flat tariffs. In case
of using a dynamic tariff, rejected requests mostly belong to off-peak
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Table 3
Impacts of the proposed method in reducing the peak load and the gap between maximum and minimum
load compared to the traditional method.

Dynamic tariff Flat tariff

Reduction in peak load 7% 3.8%
Reduction in the gap between maximum and minimum load 24% 20%
Fig. 15. Power consumption of the loads and number of rejected grid access requests by the aggregator taking into account the transformer limitations for (a) dynamic price
ariffs and (b) flat price tariffs.
ours and then mid-peak hours. This happens because in on-peak hours,
here are the least access requests and hence, the number of rejected
equests is very low. In off-peak hours, the number of requests is
ery high which in some cases may cause rejecting some grid access
equests. During the mid-peak hours, the available capacity is less than
ff-peak hours and the number of access requests is more than on-peak
ours, which leads to rejection of some of the requests. Using flat tariffs,
ll rejected requests occur in mid-peak and on-peak hours because
ower consumption of controllable devices does not decrease at these
ours and their aggregation with high demand of uncontrollable loads
n mid-peak and on-peak hours leads to violating the transformer rate
ower.

As illustrated in Fig. 15, there are some time intervals, e.g., hour
37 for dynamic tariffs and 128, 130, and 132 for flat tariffs, where
he aggregator cannot keep the total load below the rated active power
f the transformer. This is due to the opt-out possibility defined for
evices to satisfy their boundary conditions.

emark. Clearly, there is a trade-off between guaranteeing comfort
QoS) at the device level and guaranteeing grid constraints/reliability.
hat is, if we enforce the grid constraint (and remove opt-outs), then
e cannot guarantee QoS. Thus, there is a fundamental limitation
ith any coordination scheme to either preserve grid limits or QoS.
erein, we have prioritized device QoS since small, short-duration
ower overloads (as illustrated herein) do not significantly impact
ransformer operations or winding insulation [37]. In addition, by ac-
ively managing device QoS via IBGAR, we exactly avoid large demand
pikes that could result from coincident opt-outs and cause larger power
verloads.

.5. Impacts of negative electricity prices on the results

Negative prices can happen during the off-peak hours when electric-
ty consumption is low due to technical limitations of power generators
r excess output power of renewable resources. To study the impacts of
egative prices on the results, simulations are repeated for two cases,
1) normal daily prices, (2) assigning negative prices for some hours of
day. Transformer limitations are not taken into account and the focus
11
Fig. 16. Impacts of including negative prices on the total power consumption of the
test system.

is only on the role of negative prices in energy consumption and water
temperature variations. Simulations are performed for two days and it
is assumed that negative prices are applied during the first five hours
of the second day (hours 24 to 29). Total consumed power of the test
system is presented for both cases in Fig. 16.

It can be seen that by applying negative prices, at first, the power
consumption of the test system increases as expected, and then de-
creases from hour 27 (3:00 a.m. of the second day) due to the water
temperatures of some swimming pools reaching their maximum values.
After hour 29, the power consumption decreases significantly, because
the water temperature of the pools is high and hence, there will be less
need for energy consumption in the next hours (rebound effect).

Water temperature variations in three arbitrary pools are presented
in Fig. 17. In Fig. 17.a, the heat pump is ON during the negative price
hours, reaches the upper limit at the end of the negative price hours
period and then it will be OFF for the rest of the day. In Fig. 17.b, the
heat pump is ON in the first four hours, then it reaches to the maximum
temperature and will be OFF for some time intervals, and finally turns
ON again before the negative price hours period ends to benefit from
negative prices. The heat pump in Fig. 17.c has a slow dynamic and
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Fig. 17. Impacts of including negative prices on the temperature variations in
swimming pools (a) 1, (b) 7, and (c) 15.

Table 4
Comparing the simulation results of the proposed IBGAR method with the traditional
method and the PEM.

Electricity cost Energy consumption MNTD
(€) (kWh) (𝑜C)

Traditional method 3185.5 9719.1 0.0908
PEM method 3001.3 9401.5 −0.1447
IBGAR method 2860.6 9582.8 −0.0228

while the heat pump is ON during the negative price hours period,
the temperature does not reach the maximum value. After the negative
price hours period, since the normalized prices in case 2 are greater
than normalized prices in case 1 (due to including negative prices in
(5) and (6)), fewer grid access requests will be sent, and hence, the
temperature will be lower than the temperature in case 1. However,
the operational constraints are still satisfied.

3.6. A comparative analysis among different approaches

In this section, the proposed IBGAR method is compared with the
traditional ON/OFF method and the standard PEM method from the
perspective of operation cost, energy consumption, and deviation from
set point temperature (MNTD). Price tariff is assumed to be dynamic.
To model the standard PEM method, the impact of external incentives
on generating random numbers in the ARM (see Fig. 2) is ignored
and the uniform distribution is used to generate random numbers.
Despite the proposed IBGAR method, both the traditional method and
the standard PEM method cannot take into account the look-ahead
capability. Simulation results are presented in Table 4. It can be seen
that using the proposed method the lowest electricity cost would be
achieved compared to the other two methods. The absolute value
of deviations from the reference temperature in the IBGAR method
is also less than other methods. However, more energy is consumed
compared to the PEM method. This is due to high energy consumption
in low-price hours.
12
3.7. Sensitivity analysis on the number of controllable devices

To understand the improvements of the IBGAR method compared
to the PEM regarding the capability of including controllable devices,
in this section, a sensitivity analysis is performed on the number of
devices. To this end, the number of devices varies between 5 and 70,
and simulations are repeated for each group of devices. The goal is to
see how the number of rejected grid access requests and transformer
loading is affected by choosing IBGAR or the PEM method. Simulation
results for dynamic price tariffs and for the studied time period in
Section 3.4 are presented in Fig. 18. It can be seen that the IBGAR
gives a better performance in all defined factors, i.e., (1) the number of
rejected requests, (2) maximum violations from transformer limitations,
and (3) energy transformed beyond the nominal capacity of the trans-
former. For PEM, rejection of requests starts from 20 devices, while the
same happens for IBGAR when the number of devices is 35. When the
number of devices is 45, the number of rejected requests for IBGAR
is almost 1800 less than the PEM. While the maximum violation from
transformer limitation in the IBGAR method with 45 devices is 4𝑘𝑊
this number is 39𝑘𝑊 for the PEM. The energy transformed beyond the
capacity of the transformer is not significant up to 55 devices for the
IBGAR method. This number is 40 devices for the PEM method.

It can also be seen that when the number of devices is very high
the two methods show similar results. This is because, at this number
of devices, the transformer is overloaded almost all the time, and hence
there is not much flexibility in operation and the two methods tend to
each other.

4. Conclusion

In this work, a coordination method for procuring the flexibility
of controllable devices is proposed. The method works based on send-
ing incentive-based randomized grid access requests from controllable
devices to an aggregator and receiving ‘‘Yes’’ or ‘‘No’’ notifications.
Grid access requests are generated through a stochastic process in
which price-dependent random numbers are evaluated by a stochastic
rate request function to decide about sending or not sending the grid
access request. The devices are also allowed to opt out of the pro-
gram temporarily and keep the device ON to satisfy their operational
constraints.

The main features of the proposed method are bottom-up structure
for providing flexibility that ensures customers’ quality of service, re-
specting the privacy of end-users, low computational complexity which
leads to less need for powerful hardware and thus cheaper installation
costs, and being model-free in many applications that increases the
chance of its large-scale implementation. The method can be applied
to any deferrable loads that controlling it for a limited time interval
(𝛥𝑡) does not violate its technical limitations and customers’ comfort.

The simulation results show that the method is suitably price re-
sponsive and compared to conventional methods, it can decrease the
electricity costs up to 17% and 11% for dynamic and flat price tariffs,
respectively. The method is also capable of dealing with time varying
boundary conditions, however, due to look-ahead implementations,
this element requires a (simplified) model of the devices’ responses.
The effectiveness of the method in dealing with negative prices is also
investigated. At the system level, the proposed method is useful for
peak shaving and load curve flattening. Simulation results highlights
the effectiveness of the proposed method in providing energy and
grid ancillary services by aggregators while respecting the operational
constraints of the devices.

Future directions of this work could include combining the method
with other incentive-based approaches (e.g., flexibility functions), en-
hancing the grid-awareness capabilities of the method, incorporating
more detailed operational models of heat pumps to account for part-
load operations and efficiency, extending the method to other control-

lable devices, using more advanced methods for calculating the design
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parameters such as machine learning and upgrading the method to
allow sending analog requests (such as the availability level) instead
of binary request/no request signals.
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Appendix A. Controllable device modeling

The differential equations of state variables for controllable device
𝑑 can be formulated as below:
𝑑𝑋𝑑 (𝑡)
𝑑𝑡

= 𝐴𝑑𝑋𝑑 (𝑡) + 𝐵𝑑𝑈𝑑 (𝑡) (A.1)

where 𝑋𝑎×1
𝑑 and 𝑈 𝑏×1

𝑑 are the vectors of state variables and inputs, and
𝑎×𝑎
𝑑 and 𝐵𝑎×𝑏

𝑑 are state and input matrices, respectively. 𝑎 and 𝑏 refer to
he number of state variables and inputs, respectively. An approximate
iscrete-time representation of (A.1) in 𝑡 ∈ [𝑘𝛥𝑡, (𝑘 + 1)𝛥𝑡] is obtained

as below:
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𝑋𝑑 [𝑘 + 1] = (𝐼 + 𝐴𝑑𝛥𝑡)𝑋𝑑 [𝑘] + 𝐵𝑑𝑈𝑑 [𝑘]𝛥𝑡 (A.2)
where 𝐼𝑎×𝑎 is an identity matrix. Using (A.2), we can update the state
variables at the end of each time interval.

For a SPHS as the studied case the thermodynamic model of the
SPHS 𝑑 is formulated by the two following equations [32]:

𝑚𝑑𝑐𝑝
𝑑𝑇 𝑠

𝑑 (𝑡)
𝑑𝑡

= 𝑚̇𝑑𝑐𝑝(𝑇
𝑝
𝑑 (𝑡) − 𝑇 𝑠

𝑑 (𝑡)) + 𝑄̇𝑡ℎ
𝑑 (𝑡), (A.3)

𝑑𝑐𝑝
𝑑𝑇 𝑝

𝑑 (𝑡)
𝑑𝑡

= 𝑚̇𝑑𝑐𝑝(𝑇 𝑠
𝑑 (𝑡) − 𝑇 𝑝

𝑑 (𝑡)) + ℎ(𝑇 𝑎
𝑑 (𝑡) − 𝑇 𝑝

𝑑 (𝑡)). (A.4)

Eq. (A.3) gives the power balance in the heat exchanger. 𝑇 𝑠
𝑑 (◦C)

nd 𝑇 𝑝
𝑑 (◦C) are the supply and pool water temperatures, respectively.

𝑝
𝑑 is chosen as the state variable for IBGAR algorithm for SPHS 𝑑. 𝑐𝑝
kj/kgK) is the specific heat capacity of water. 𝑄̇𝑡ℎ

𝑑 (kW) is the thermal
ower received from the heat pump and can be obtained as below:

̇ 𝑡ℎ
𝑑 (𝑡) = 𝑃 𝑛

𝑑 × 𝑢𝑑 (𝑡) × 𝐶𝑂𝑃𝑑 (𝑡), (A.5)

here 𝑢𝑑 is a binary control input that refers to the ON/OFF status of
eat pump 𝑑. The coefficient of performance (COP) gives the relation-
hip between the power that is drawn out of the heat pump and the
ower that is supplied to the heat pump as:

𝑂𝑃𝑑 (𝑡) =
𝑇 ℎ
𝑑 (𝑡) + 273

𝑇 ℎ
𝑑 (𝑡) − 𝑇 𝑎

𝑑 (𝑡)
𝜂𝐻𝑑 , (A.6)

here 𝑇 ℎ
𝑑 (◦C) is the condenser temperature, 𝑇 𝑎

𝑑 (◦C) is the ambient
temperature above the pool, and 𝜂𝐻𝑑 is the second-law efficiency and
assumed to be equal to 0.4.

Eq. (A.4) gives the power balance of the pool. Discrete-time model
of Eqs. (A.3) and (A.4) are used to obtain an estimation of water
temperature variation such that 𝑢𝑑 (𝑡) ∶= 𝑢𝑑 [𝑘] for 𝑡 ∈ [𝑘𝛥𝑡, (𝑘 + 1)𝛥𝑡],
s below:

𝑇 𝑠
𝑑 [𝑘 + 1] = (1 −

𝑚̇𝑑𝛥𝑡
𝑚𝑑

)𝑇 𝑠
𝑑 [𝑘] +

𝑚̇𝑑𝛥𝑡
𝑚𝑑

𝑇 𝑝
𝑑 [𝑘] +

𝑃 𝑛
𝑑 𝛥𝑡

𝑚𝑑𝑐𝑝
𝐶𝑂𝑃𝑑 [𝑘]𝑢𝑑 [𝑘], (A.7)

𝑝
𝑑 [𝑘 + 1] =

𝑚̇𝑑𝛥𝑡
𝑀𝑑

𝑇 𝑠
𝑑 [𝑘] + (1 −

𝑚̇𝑑𝛥𝑡
𝑀𝑑

− ℎ𝛥𝑡
𝑀𝑑𝑐𝑃

)𝑇 𝑝
𝑑 [𝑘] +

ℎ𝛥𝑡
𝑀𝑑𝑐𝑝

𝑇 𝑎
𝑑 [𝑘]. (A.8)

Eqs. (A.7) and (A.8) are used to update the water temperature of
he pool after each time interval in the simulations.

ppendix B. Defining the parameters of equations (10)

To calculate parameters 𝐴𝑑 , 𝐵𝑑 , 𝐶𝑑 , 𝜏1𝑑 , and 𝜏2𝑑 in (10), the dif-
erential Eqs. (A.3) and (A.4) should be solved. To do this, first, the
quivalent Laplace transform of these equations are written. Then, by
olving these two equations, we can find 𝑇 𝑝

𝑑 (𝑠) as a function of 𝑢𝑑 (𝑠),
𝑎
𝑑 (𝑠), and initial conditions 𝑇 𝑝

𝑑 (0) and 𝑇 𝑠
𝑑 (0). Afterwards, by finding

he inverse Laplace transform of the 𝑇 𝑝
𝑑 (𝑠), 𝑇

𝑝
𝑑 (𝑡) can be found as (10).

ollowing the steps above, parameters 𝜏1, 𝜏2 𝐴𝑑 , 𝐵𝑑 , and 𝐶𝑑 , are
btained as below: (see Box I) where ℎ′ = ℎ .
𝑐𝑝
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R

𝜏1𝑑 = −
(𝑀𝑑 𝑚̇𝑑 + 𝑚𝑑 (𝑚̇𝑑 + ℎ′))

2𝑀𝑑𝑚𝑑
−

√

(
𝑀𝑑 𝑚̇𝑑 + 𝑚𝑑 (𝑚̇𝑑 + ℎ′)

2𝑀𝑑𝑚𝑑
)2 −

𝑚̇𝑑ℎ′

𝑀𝑑𝑚𝑑
, (B.1)

𝜏2𝑑 = −
(𝑀𝑑 𝑚̇𝑑 + 𝑚𝑑 (𝑚̇𝑑 + ℎ′))

2𝑀𝑑𝑚𝑑
+

√

(
𝑀𝑑 𝑚̇𝑑 + 𝑚𝑑 (𝑚̇𝑑 + ℎ′)

2𝑀𝑑𝑚𝑑
)2 −

𝑚̇𝑑ℎ′

𝑀𝑑𝑚𝑑
, (B.2)

𝐴𝑑 = 𝑇 𝑎
𝑑 +

𝑃 𝑛
𝑑𝐶𝑂𝑃𝑑

ℎ
, (B.3)

𝐵𝑑 =
𝑃 𝑛
𝑑𝐶𝑂𝑃𝑑 𝑚̇𝑑∕𝑐𝑝 + 𝑚̇𝑑ℎ′𝑇 𝑎

𝑑 + (𝑚𝑑ℎ′𝑇 𝑎
𝑑 +𝑀𝑑 𝑚̇𝑑𝑇

𝑝
𝑑 (0) + 𝑚𝑑 𝑚̇𝑑𝑇 𝑠

𝑑 (0))𝜏
1
𝑑 +𝑀𝑑𝑚𝑑𝑇

𝑝
𝑑 (0)(𝜏

1
𝑑 )

2

𝑀𝑑𝑚𝑑𝜏1𝑑 (𝜏
1
𝑑 − 𝜏2𝑑 )

, (B.4)

𝐶𝑑 =
𝑃 𝑛
𝑑𝐶𝑂𝑃𝑑 𝑚̇𝑑∕𝑐𝑝 + 𝑚̇𝑑ℎ′𝑇 𝑎

𝑑 + (𝑚𝑑ℎ′𝑇 𝑎
𝑑 +𝑀𝑑 𝑚̇𝑑𝑇

𝑝
𝑑 (0) + 𝑚𝑑 𝑚̇𝑑𝑇 𝑠

𝑑 (0))𝜏
2
𝑑 +𝑀𝑑𝑚𝑑𝑇

𝑝
𝑑 (0)(𝜏

2
𝑑 )

2

𝑀𝑑𝑚𝑑𝜏2𝑑 (𝜏
2
𝑑 − 𝜏1𝑑 )

, (B.5)
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